JPH10182171A - Formation of optical glass element - Google Patents

Formation of optical glass element

Info

Publication number
JPH10182171A
JPH10182171A JP34508296A JP34508296A JPH10182171A JP H10182171 A JPH10182171 A JP H10182171A JP 34508296 A JP34508296 A JP 34508296A JP 34508296 A JP34508296 A JP 34508296A JP H10182171 A JPH10182171 A JP H10182171A
Authority
JP
Japan
Prior art keywords
glass
glass gob
preform
lump
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34508296A
Other languages
Japanese (ja)
Inventor
Toshiya Tomisaka
俊也 富阪
Yoshihiro Kamata
善浩 釜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP34508296A priority Critical patent/JPH10182171A/en
Publication of JPH10182171A publication Critical patent/JPH10182171A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B7/00Distributors for the molten glass; Means for taking-off charges of molten glass; Producing the gob, e.g. controlling the gob shape, weight or delivery tact
    • C03B7/14Transferring molten glass or gobs to glass blowing or pressing machines
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for forming an optical glass element, enabling to product the optical glass element excellent in surface accuracy and not having air reservoirs and air bubbles on the surface by removing fine glass pieces from the surface of a glass gob having specific surface roughness and subsequently heating the glass gob in a support member until the surface portions of the glass gob reach a specific viscosity. SOLUTION: The surface roughness Rmax of a glass gob is controlled to 0.1-5μm. Fine cut or ground glass pieces on the surface of the glass gob are removed. The fine glass pieces are preferably removed by immersing the glass gob in a cleaning solution containing a synthetic detergent and subsequently subjecting the glass gob to a ultrasonic cleaning treatment. The cleaned glass gob is set to a concave support member provided with a non-spherical transfer surface having a desired surface accuracy and a desired curvature, inserted into an electric oven, heated with a heater up to a temperature at which the viscosity of the surface portions of the glass gob becomes 10<6> -10<3> poises, and subsequently maintained for a constant time. The whole body of the glass gob as well as its surface portions can be thereby thermally uniformly deformed to control the glass molded product to the desired surface accuracy and the desired shape.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、球面または非球面
を有する光学レンズもしくはプリズム、レンズアレー等
の光学ガラス素子を形成する方法、詳しくはガラス塊を
加熱することにより鏡面を有する光学ガラス素子を形成
する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming an optical glass element such as an optical lens or prism having a spherical surface or an aspherical surface, a lens array, and more specifically, to an optical glass element having a mirror surface by heating a glass block. It relates to a method of forming.

【0002】[0002]

【従来の技術】球面または非球面を有する光学ガラス素
子の従来からの形成方法としては、鏡面を有する金型対
により加圧成形するプレス成形法がその代表的な方法で
ある。このプレス成形法においては、予めガラス塊を所
定の形状に加工してある程度の面精度を有するプリフォ
ームを形成し、このプリフォームを再加熱して所望の面
精度を付与すべく金型により成形する「再加熱法」が一
般的であり、光学レンズのような高精度を要求されるガ
ラスレンズでも大量生産が可能である。
2. Description of the Related Art As a conventional method for forming an optical glass element having a spherical surface or an aspherical surface, a press molding method in which a glass mold having a mirror surface is press-molded is a typical method. In this press molding method, a glass lump is previously processed into a predetermined shape to form a preform having a certain degree of surface accuracy, and the preform is reheated and molded with a metal mold to give a desired surface accuracy. The "reheating method" is generally used, and mass production is possible even for glass lenses requiring high precision, such as optical lenses.

【0003】しかし、この再加熱法によれば、プリフォ
ームの表面をほぼ鏡面、即ち面粗さにしてRmax0.
02μm以下となる程度まで仕上げ加工して、表面の凹
凸をなくしておく必要があり、仕上げが不十分な場合は
プレス成形の際、プリフォーム表面の凹凸部分と金型と
の間に閉じ込められたエアにより、光学ガラス素子表面
にエア溜まりやクレータ状の凹部が発生し、所望の鏡面
が得られない。
However, according to this reheating method, the surface of the preform is made almost mirror-finished, that is, the surface roughness is set to Rmax0.
It is necessary to finish the surface to an extent of not more than 02 μm to eliminate unevenness on the surface, and if the finish is insufficient, it was trapped between the uneven portion of the preform surface and the mold during press molding. The air causes air pockets or crater-shaped recesses on the surface of the optical glass element, and a desired mirror surface cannot be obtained.

【0004】実際に、プリフォームをガラス材料から加
工するに際しては、その表面に研削条痕または研削キズ
等、深さがpv値(peak to valley値)で数ミクロン程
度の凹凸が生じるため、例えば、ガラスロッドからのス
ライス後、研磨する等の仕上げ方法が広く行われている
が、このような方法ではレンズが大口径になると、その
分プリフォームの加工量が増えるのでレンズコストが増
大する原因となり、またレンズの要求精度が高くなれ
ば、プリフォームも予め高精度に加工されていなければ
ならず、歩留が低下してしまう。
When a preform is actually processed from a glass material, irregularities having a depth of about several microns with a pv value (peak to valley value) such as grinding streaks or grinding flaws are generated on the surface thereof. Finishing methods such as polishing after slicing from a glass rod are widely performed. In such a method, when the lens becomes large in diameter, the processing amount of the preform increases by that much, so the lens cost increases. If the required accuracy of the lens increases, the preform must also be processed with high precision in advance, and the yield will decrease.

【0005】そこで、特開平7−329203号公報で
は、ガラス材料を、これが1010〜105ポアズとなる
温度範囲で加熱(ファイアーポリッシング)することに
より、Rmax0.04μm程度のガラス材料を0.01
μmまで加工する方法が提案されている。しかしなが
ら、この方法ではガラス材料が1010〜105ポアズと
なる比較的低い温度範囲で加熱され、この加熱による軟
化変形はガラス材料のごく表面にしか及ばないため、ガ
ラスを切削または研削することにより生じるRmax
0.1μm以上の表面粗さを有する面をこの加熱に供して
も、所望の面精度を得ることはできない。このため、予
めガラス材料を表面粗さRmax0.04μm程度にまで
研磨等により予備加工する必要が生じ、結果としてレン
ズコストが高くなるという問題が生じている。
Therefore, in Japanese Patent Application Laid-Open No. 7-329203, a glass material having an Rmax of about 0.04 μm is heated by heating (fire polishing) the glass material in a temperature range of 10 10 to 10 5 poise.
A method of processing down to μm has been proposed. However, in this method, the glass material is heated in a relatively low temperature range of 10 10 to 10 5 poise, and the softening deformation due to this heating extends only to the very surface of the glass material. The resulting Rmax
Even if a surface having a surface roughness of 0.1 μm or more is subjected to this heating, a desired surface accuracy cannot be obtained. Therefore, it is necessary to preliminarily process the glass material to a surface roughness Rmax of about 0.04 μm by polishing or the like, and as a result, there is a problem that the lens cost is increased.

【0006】一方、特開平8−169721号公報で
は、立方体状のガラス材料を保持部材で保持させて、所
定温度に加熱し、軟化させて、表面張力により隅角部を
丸くするとともに、表面粗さをRmax0.04μm以下
にする方法が開示されている。この方法では、実施の形
態でSF14ガラス材料を800〜850℃まで加熱し
ていることからも明らかなように、高温で加熱するため
ガラス表面は比較的容易に鏡面となり、本加熱処理に先
立つ予備加工は不要となるが、この加熱処理中において
はガラス材料の中心付近の粘度は103ポアズ以下とな
っていると考えられるため、ガラス材料を所望の形状に
制御することは非常に困難である。
On the other hand, in Japanese Patent Application Laid-Open No. Hei 8-169721, a cubic glass material is held by a holding member, heated to a predetermined temperature and softened, and the corners are rounded by surface tension, and the surface roughness is reduced. A method of reducing the height to Rmax 0.04 μm or less is disclosed. In this method, as is apparent from the fact that the SF14 glass material is heated to 800 to 850 ° C. in the embodiment, the glass surface becomes a mirror surface relatively easily because it is heated at a high temperature. Processing is unnecessary, but during this heat treatment, the viscosity near the center of the glass material is considered to be 10 3 poise or less, so it is very difficult to control the glass material to a desired shape. .

【0007】また、ガラス材料については、例えば、ガ
ラスロッドから切削または研削して得た後、これらの加
工により発生した微小ガラス片を、通常、それに続く研
磨加工により完全に除去してから用いられるが、上記の
特開平7−329203号公報および特開平8−169
721号公報における方法では研磨加工を経ずに加熱変
形処理に供されるため、微小ガラス片がガラス加工面の
凹凸に食い込んだり、または静電的引力によって付着し
たまま、即ち微小ガラス片とガラス材料表面との間に空
洞が形成された状態で加熱変形処理されることとなり、
この空洞中のエアが微細な泡となって表面付近に残った
光学ガラス素子が製造される。さらに、この光学ガラス
素子をプリフォームとして成形しても、成形面にエア溜
まり、あるいは表面近傍に微細な泡が残り、得られる光
学ガラス素子の外観品質が著しく損なわれるという問題
がある。
[0007] Further, the glass material is used, for example, after being obtained by cutting or grinding from a glass rod, the fine glass fragments generated by these processes are usually completely removed by subsequent polishing. Are disclosed in Japanese Patent Application Laid-Open Nos. 7-329203 and 8-169.
In the method disclosed in Japanese Patent Application Laid-Open No. 721-721, the glass is subjected to a heat deformation treatment without polishing, so that the fine glass pieces bite into the unevenness of the glass processing surface or remain attached by electrostatic attraction, that is, the fine glass pieces and the glass Heat deformation processing will be performed with the cavity formed between the material and the surface,
The optical glass element in which the air in the cavity becomes fine bubbles and remains near the surface is manufactured. Furthermore, even if this optical glass element is molded as a preform, there is a problem that air remains on the molding surface or fine bubbles remain near the surface, and the appearance quality of the obtained optical glass element is significantly impaired.

【0008】[0008]

【発明が解決しようとする課題】本発明は、ガラス材料
の研磨等の予備加工を経なくても、表面にエア溜まりや
泡が発生せず、また、ガラス材料の形状を容易に制御で
き、効率的かつ経済的な、面精度の優れた光学ガラス素
子の製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION According to the present invention, no air accumulation or bubbles are generated on the surface without a preliminary processing such as polishing of a glass material, and the shape of the glass material can be easily controlled. It is an object of the present invention to provide an efficient and economical method for manufacturing an optical glass element having excellent surface accuracy.

【0009】[0009]

【課題を解決するための手段】本発明は、表面粗さRm
axが0.1〜5μmのガラス塊から、その表面上の微小
ガラス片を除去した後、このガラス塊を、このガラス塊
の表面付近の粘度が106〜103ポアズになるまで支持
部材内で加熱することを特徴とする光学ガラス素子の形
成方法に関する。
According to the present invention, a surface roughness Rm is provided.
After removing small glass fragments on the surface from a glass block having an ax of 0.1 to 5 μm, the glass block is placed in a supporting member until the viscosity near the surface of the glass block becomes 10 6 to 10 3 poise. And a method for forming an optical glass element, characterized by heating the substrate.

【0010】本発明においては、加熱変形処理に先立っ
て、ガラス塊表面における微小ガラス片を除去すること
を特徴とし、これにより微小ガラス片とガラス材料表面
との間に空洞が形成されることが回避されるため、その
後の加熱変形処理およびプレス成形によっても、光学ガ
ラス素子表面およびその近傍におけるエア溜まりおよび
泡の形成を防止することが可能となる。
[0010] The present invention is characterized in that prior to the heat deformation treatment, the minute glass pieces on the surface of the glass block are removed, whereby a cavity is formed between the minute glass pieces and the surface of the glass material. Since it is avoided, the formation of air pockets and bubbles on the surface of the optical glass element and in the vicinity thereof can be prevented even by the subsequent heat deformation treatment and press molding.

【0011】また、本発明の別の側面では、加熱変形処
理においてガラス塊の表面付近の粘度を106〜103
アズとすることを特徴とし、これによりガラス塊の軟化
変形を中心にまで及ぼしめてガラス表面の鏡面化を容易
にし、加熱変形処理に先立つ予備加工を不要にするとと
もに、過度の軟化による形状制御不能を防止することが
可能となる。
Further, another aspect of the present invention is characterized in that the viscosity near the surface of the glass lump is set to 10 6 to 10 3 poise in the heat deformation treatment, whereby the softening deformation of the glass lump is mainly exerted. In addition, it is possible to easily make the glass surface mirror-like, to eliminate the need for preliminary processing prior to the heat deformation treatment, and to prevent the shape from being uncontrollable due to excessive softening.

【0012】[0012]

【発明の実施の形態】本発明の構成によると本発明の光
学ガラス素子の形成方法は少なくとも、表面粗さRma
xが0.1〜5μmのガラス塊から、その表面上の微小ガ
ラス片を除去する工程、およびそのガラス塊を、そのガ
ラス塊の表面付近の粘度が106〜103ポアズになるま
で支持部材内で加熱する工程を含む。例えば、図1に示
すような一連の製造工程により製造される。以下、図1
を参照しながら説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS According to the constitution of the present invention, the method for forming an optical glass element of the present invention comprises at least a surface roughness Rma.
supporting the glass gobs of x is 0.1 to 5 [mu] m, up to the step of removing the fine pieces of glass on its surface, and the glass gob, the viscosity near the surface of the glass gob is 10 6 to 10 3 poise member And heating the inside. For example, it is manufactured by a series of manufacturing steps as shown in FIG. Hereinafter, FIG.
This will be described with reference to FIG.

【0013】本発明において用いられるガラス塊1の表
面粗さRmaxは0.1〜5μm、好ましくは0.1〜3
μmであるが、これはRmax0.1μm未満のガラス塊
を使用することができないことを意図するものではな
く、0.1μm未満にまで仕上げることを要しないことを
意味する。Rmax0.1μm未満にまで仕上げるとその
加工に時間がかかりすぎ、かえって効率性および経済性
に劣ることとなるからである。一方、Rmaxが5μm
を越えるとガラス塊表面の凹凸はその後の加熱変形処理
によっても消え切らず、これを消すためにはガラス塊表
面温度をさらに上げる必要があり、これではガラス形状
の制御が困難になってしまう。
The glass block 1 used in the present invention has a surface roughness Rmax of 0.1 to 5 μm, preferably 0.1 to 3 μm.
μm, which does not mean that glass blocks less than Rmax less than 0.1 μm cannot be used, meaning that finishing to less than 0.1 μm is not required. If Rmax is less than 0.1 μm, the processing takes too much time, resulting in poor efficiency and economy. On the other hand, Rmax is 5 μm
Is exceeded, the irregularities on the surface of the glass ingot are not completely eliminated by the subsequent heat deformation treatment. To eliminate this, it is necessary to further raise the surface temperature of the glass ingot, which makes it difficult to control the glass shape.

【0014】ガラス塊は上記表面粗さを有するいかなる
ガラス材料からなるものであってもよく、例えば、B2
70ガラス、SF14ガラス、耐熱性ガラスからなるガ
ラスロッドを所望の厚みに切削、研削して得られる。通
常、この場合の切削面およびその他の面の表面粗さRm
axは3μm以下である。
The glass block may be made of any glass material having the above-mentioned surface roughness.
It is obtained by cutting and grinding a glass rod made of 70 glass, SF14 glass, and heat resistant glass to a desired thickness. Usually, the surface roughness Rm of the cut surface and other surfaces in this case
ax is 3 μm or less.

【0015】本発明においては、まず、このガラス塊の
切削、研削により生じるガラス塊表面上の微小ガラス片
を除去する。その除去方法としては、ガラス塊表面をほ
とんど変質させることなく、その表面上に残存する微小
ガラス片を完全に除去できれば特に制限されることはな
く、例えば、合成洗剤を含む洗浄液を用いる方法等が挙
げられる。詳しくは、洗浄液としては一般に、完成した
光学素子を超音波洗浄機により洗浄するために用いられ
る洗浄液等が好ましく、例えば、サンウオッシュLPW
−1(ライオン(株)製)、ファインクリーナーA(フ
ルウチ化学(株)製)等が挙げられる。これらの洗浄液
は界面活性効果により機械油や埃等の汚れを除去すると
ともに、ガラス表面と微小ガラス片とが接触する部分の
表面を僅かに溶解し、超音波によるキャビテーション効
果とあいまって微小ガラス片の表面からの剥離を促進す
るものと考えられる。
In the present invention, first, fine glass fragments on the surface of the glass lump generated by cutting and grinding the glass lump are removed. The removal method is not particularly limited as long as it can completely remove the small glass pieces remaining on the surface of the glass lump without substantially altering the surface of the glass lump, and for example, a method using a cleaning solution containing a synthetic detergent and the like can be used. No. Specifically, the cleaning liquid is preferably a cleaning liquid generally used for cleaning a completed optical element with an ultrasonic cleaning machine, for example, a sun wash LPW
-1 (manufactured by Lion Corporation) and Fine Cleaner A (manufactured by Furuuchi Chemical Co., Ltd.). These cleaning solutions remove dirt such as machine oil and dust by the surface active effect, and also slightly dissolve the surface where the glass surface comes into contact with the small glass piece, and combine with the cavitation effect by ultrasonic waves to remove the small glass piece. It is considered that this promotes separation from the surface.

【0016】一方、化学的エッチングに使用するフッ
酸、塩酸、酢酸等の希釈液や、水酸化ナトリウム、水酸
化カリウム等のアルカリ性水溶液等のエッチング液で
は、より効果的に微小ガラス片を除去することができる
が、ガラスの侵食が顕著となり、また切削面に残るカッ
ターマークや研削キズ等の溝を通して液がガラスの内部
にまで局部的に浸透するためガラスの内部品質が不均一
になるので好ましくない。
On the other hand, with a diluting solution such as hydrofluoric acid, hydrochloric acid, acetic acid or the like used for chemical etching or an etching solution such as an alkaline aqueous solution such as sodium hydroxide or potassium hydroxide, fine glass fragments are removed more effectively. However, it is preferable because the erosion of the glass becomes remarkable, and the liquid locally penetrates into the inside of the glass through grooves such as cutter marks and grinding scratches remaining on the cutting surface, so that the internal quality of the glass becomes non-uniform, which is preferable. Absent.

【0017】上記微小ガラス片の除去工程では、ガラス
片の付着したガラス塊を洗浄液に浸漬しながら20〜1
00Hzにて5〜20分間超音波洗浄することが好まし
い。洗浄液中にてブラシ等の物理的手段を用いて摺擦す
れば、微小ガラス片を除去できるが、ガラス塊表面に悪
影響を及ぼすので好ましくない。
In the step of removing the minute glass pieces, the glass block to which the glass pieces are adhered is immersed in a cleaning solution for 20 to 1 minute.
Preferably, ultrasonic cleaning is performed at 00 Hz for 5 to 20 minutes. By rubbing with a physical means such as a brush in the cleaning liquid, fine glass fragments can be removed, but this is not preferable because it adversely affects the surface of the glass block.

【0018】ガラス塊を洗浄液にて洗浄する前には粗く
研削屑を除去する目的から水道水により洗浄しておくこ
とが好ましく、また、洗浄液での洗浄後は純水洗浄、水
道水による洗浄および乾燥に供することが好ましい。ガ
ラス塊表面に洗浄液等の異物が付着していると、次工程
の加熱変形処理においてガラス塊表面でシミ、ヤケが起
こり所望の面が得られないため、次工程に供されるガラ
ス塊表面は清浄に保っておく必要があるからである。
Before the glass block is washed with the washing liquid, it is preferable to wash the glass lump with tap water for the purpose of roughly removing grinding debris. After the washing with the washing liquid, washing with pure water, washing with tap water, and so on are performed. Preferably, it is subjected to drying. If a foreign substance such as a cleaning liquid adheres to the surface of the glass lump, the surface of the glass lump to be used in the next step is undesirably stained or burned on the surface of the glass lump in the next step of the heat deformation treatment and cannot be obtained. This is because it is necessary to keep it clean.

【0019】このようにして微小ガラス片を除去したガ
ラス塊は加熱変形処理に供される。具体的には、図1に
示すようにガラス塊1を所望の面精度および所望の曲率
を有する非球面転写面3を備えた凹型支持部材4に設置
し、これらを電気炉5に挿入し、ガラス塊の表面付近
(表面から10〜20%の深さ)の粘度が106〜103
ポアズ、好ましくは105〜104ポアズとなる温度まで
ヒーターにより加熱して5〜30分間、好ましくは5〜
20分間維持する。
The glass block from which the fine glass pieces have been removed in this manner is subjected to a heat deformation treatment. Specifically, as shown in FIG. 1, the glass block 1 is placed on a concave support member 4 having an aspherical transfer surface 3 having a desired surface accuracy and a desired curvature, and these are inserted into an electric furnace 5. The viscosity around the surface of the glass block (10 to 20% depth from the surface) is 10 6 to 10 3
Poise, preferably heated by a heater to a temperature of 10 5 to 10 4 poise for 5 to 30 minutes, preferably 5 to
Hold for 20 minutes.

【0020】表面付近の粘度を上記規定範囲内に設定す
るため、熱変形をガラス塊表面に留まらせることなくガ
ラス塊全体に及ぼしめて所望の面精度を提供することが
可能となるとともに、またその形状を制御することも可
能となる。103ポアズより低いとガラス塊全体が流動
化し、その形状を制御することが困難となる。一方で1
6より高いと熱変形が表面のごく一部に留まり表面形
状を改質するには至らないため所望の面精度を得ること
ができない。加熱温度はガラス材料によって異なり、例
えば、ガラスB270の場合は約890〜1030℃、
ガラスSF14の場合は約750〜840℃が適当であ
る。
Since the viscosity in the vicinity of the surface is set within the above specified range, it is possible to provide a desired surface accuracy by applying thermal deformation to the entire glass lump without remaining on the surface of the glass lump. It is also possible to control the shape. If it is lower than 10 3 poise, the whole glass block is fluidized, and it is difficult to control its shape. 1 on the other hand
0 6 higher thermal deformation can not be obtained the desired surface accuracy for that does not lead to reforming a small portion to remain a surface shape of the surface. The heating temperature differs depending on the glass material, for example, about 890 to 1030 ° C. for glass B270,
In the case of glass SF14, about 750-840 ° C. is appropriate.

【0021】なお、本明細書中、支持部材とは、本発明
の加熱変形処理における加熱温度においても変質または
変形することなくガラス塊を保持することができ、また
その保持面が所望の面精度、すなわち、表面粗さRma
x0.02〜0.1μm、好ましくは0.03〜0.1μmに
精密加工されている部材を意図するものとし、プレス成
形における下型も包含されるものとする。また、図1に
おいては凹型非球面支持部材を用いているが、所望のプ
リフォーム形状、例えば、凹凸型、両凸型、両凹型、平
凸型等を得るために、その他凸型、平型の保持面を有す
る支持部材を用いてもよい。さらに、球面または非球面
いずれであってもよい。
In the present specification, the support member is capable of holding a glass lump without deterioration or deformation even at the heating temperature in the heat deformation treatment of the present invention, and the holding surface has a desired surface accuracy. That is, the surface roughness Rma
A member which is precisely processed to x 0.02 to 0.1 μm, preferably 0.03 to 0.1 μm is intended, and includes a lower mold in press molding. In FIG. 1, a concave aspherical support member is used. However, in order to obtain a desired preform shape, for example, a concavo-convex shape, a biconvex shape, a biconcave shape, a plano-convex shape, etc. May be used. Further, it may be spherical or aspherical.

【0022】加熱終了後、放置冷却し、支持部材4から
プリフォーム6を取り出すと、プリフォーム6には支持
部材4と当接していた接触面7に転写面3の形状が精度
よく転写されており、表面粗さRmaxは転写面3の表
面粗さを確保している。また、この接触面7は転写面3
の曲率を有している。一方、その反対面には熱変形によ
り緩やかな自由面8が形成されており、表面粗さRma
xは0.01〜0.05μm、好ましくは0.02〜0.0
3μmを確保している。この自由面8の曲率は接触面7
の曲率に依存し、換言すればこれを調節することにより
自由面の曲率は調節可能である。
When the preform 6 is taken out of the support member 4 after the heating, the shape of the transfer surface 3 is accurately transferred to the contact surface 7 which has been in contact with the support member 4 on the preform 6. Thus, the surface roughness Rmax ensures the surface roughness of the transfer surface 3. The contact surface 7 is the transfer surface 3
Of curvature. On the other hand, a gentle free surface 8 is formed on the opposite surface by thermal deformation, and the surface roughness Rma
x is 0.01-0.05 μm, preferably 0.02-0.0 μm.
3 μm is secured. The curvature of the free surface 8 is
In other words, the curvature of the free surface can be adjusted by adjusting the curvature.

【0023】さらに、得られたプリフォームの両面には
上述のエア溜まりや泡はほとんど存在しない。このた
め、所望の光学ガラス素子の形状精度が低ければ、得ら
れたプリフォームをそのまま光学ガラス素子として用い
ることもできる。従って、本発明においては、プレス成
形を経なくても外観品質および面精度の優れた光学ガラ
ス素子を、研磨等の予備加工なしで効率よく経済的に得
ることが可能である。
Further, the above-mentioned air pockets and bubbles hardly exist on both sides of the obtained preform. For this reason, if the shape precision of the desired optical glass element is low, the obtained preform can be used as it is as the optical glass element. Therefore, in the present invention, it is possible to efficiently and economically obtain an optical glass element having excellent appearance quality and surface accuracy without press molding without preliminary processing such as polishing.

【0024】次いでプリフォームは、形状を厳密に制御
すべく、さらにプレス成形工程に供される。加熱変形工
程における支持部材がプレス成形における下型である場
合には、加熱変形処理後プリフォームを下型に載せたま
ま搬送するだけでプレス成形工程に供することができる
ことは明らかであるが、支持部材が下型でない場合に
は、加熱変形処理後プリフォームを支持部材上に載せた
まま搬送してから金型間に移載するか、または支持部材
上のプリフォームを先に下型に移載して搬送し、プレス
成形工程に供する必要がある。いずれにしても、得られ
たプリフォームはプレス成形機に搬送する必要が生じる
が、移載工程の必要性は支持部材がプレス成形における
下型であるか否かによるため、支持部材としてはプレス
成形の下型を用いることが好ましい。一連の光学ガラス
素子の製造工程を簡略化して、さらに効率的に光学ガラ
ス素子を得ることができるためである。
Next, the preform is further subjected to a press molding step in order to precisely control the shape. When the supporting member in the heating deformation step is a lower mold in press molding, it is apparent that the preform can be subjected to the press molding step only by transporting the preform placed on the lower mold after the heating deformation processing. If the member is not a lower mold, the preform is transferred while being placed on the support member after the heat deformation treatment and then transferred between the dies, or the preform on the support member is transferred to the lower mold first. It needs to be mounted and transported and subjected to a press forming process. In any case, it is necessary to convey the obtained preform to a press molding machine. However, since the necessity of the transfer step depends on whether or not the support member is a lower mold in the press molding, a press member is used as the support member. It is preferable to use a lower mold. This is because a series of manufacturing steps of the optical glass element can be simplified, and the optical glass element can be obtained more efficiently.

【0025】プレス成形は従来から使用されているプレ
ス成形機により行われ、例えば、得られたプリフォーム
がほとんど冷却されないうちに、これを所望の面精度を
有する金型間に上述のごとく搬送、設置し、金型に圧力
を加え、金型表面の面精度および形状を転写する。
The press molding is performed by a conventionally used press molding machine. For example, before the obtained preform is almost cooled, the preform is transferred between a mold having a desired surface accuracy as described above. Install and apply pressure to the mold to transfer the surface accuracy and shape of the mold surface.

【0026】具体的には、図1に示す凹凸型プリフォー
ム6をプレス成形する場合、例えば、図2に示すプレス
成形装置を用いてリヒートプレス法により光学ガラス素
子を作製することができる。凸の球面に精密鏡面加工さ
れた型表面を有する上型14(材料:SiC)およびそ
れを保持する保持型16Aと、凹の非球面に精密加工さ
れた型表面を有する下型15(材料:SiC)およびそ
れを保持する保持型16B(材料:炭素)とを具備して
いる。押し棒17により保持型16Aは上型14と一体
になって下方移動して、下型15と一体となった保持型
16Bとかん合する。以上の型構造体は透明石英管18
の外周部に設置された加熱用光源19により加熱され、
保持型16B内に埋没した熱電対20により温度測定し
て、温度制御される。
More specifically, when press-molding the concavo-convex preform 6 shown in FIG. 1, an optical glass element can be produced by a reheat press method using, for example, a press-forming apparatus shown in FIG. An upper mold 14 (material: SiC) having a mold surface precision mirror-finished to a convex spherical surface and a holding mold 16A for holding the same, and a lower mold 15 (material: SiC) having a mold surface precisely machined to a concave aspheric surface. SiC) and a holding mold 16B (material: carbon) for holding the same. The holding die 16A moves downward integrally with the upper die 14 by the push rod 17, and engages with the holding die 16B integrated with the lower die 15. The above mold structure is a transparent quartz tube 18
Heated by a heating light source 19 installed on the outer peripheral portion of
The temperature is measured and controlled by the thermocouple 20 buried in the holding mold 16B.

【0027】前述のプリフォーム6を上、下型(14、
15)内に設置した後、窒素雰囲気下にして、加熱用光
源19により上、下型(14、15)をプリフォームの
転移点より50〜100℃高い温度に加熱した状態で押
し棒17を降下させ、上型14およびそれを保持する保
持型16Aに荷重を加えて加圧成形する(圧力:20kg
/cm2、加圧時間:30秒)。次に、押し棒17の圧力を
除去して、型(14、15、16A、16B)内に加圧
成形物、すなわち光学ガラス素子を包囲したまま放置冷
却し、その後光学ガラス素子を取り出す。この光学ガラ
ス素子表面には金型表面が精度よく転写されており、そ
の形状についてはプリフォームと比較して精度がさらに
向上している。
The above-described preform 6 is placed in the upper and lower molds (14,
15), the upper and lower molds (14, 15) are heated to a temperature 50 to 100 ° C. higher than the transition point of the preform by a heating light source 19 under a nitrogen atmosphere, and the push rod 17 is Then, the upper mold 14 and the holding mold 16A for holding the upper mold 14 are pressed and molded by applying a load (pressure: 20 kg).
/ cm 2 , pressurization time: 30 seconds). Next, the pressure of the push rod 17 is removed, and the press-molded product, that is, the optical glass element is allowed to cool while being surrounded in the mold (14, 15, 16A, 16B), and then the optical glass element is taken out. The surface of the mold is accurately transferred to the surface of the optical glass element, and the accuracy of the shape is further improved as compared with the preform.

【0028】金型の面精度については支持部材(金型で
ある場合を除く)の転写面における面精度と同程度か、
または高いことが好ましい。光学ガラス素子表面には結
果的に金型の面精度が付与されるため、プリフォームの
面精度が高くても金型の面精度が低ければ意味がないか
らである。すなわち表面粗さにして0.01〜0.05μ
m、0.01〜0.03μmが好ましい。また、金型形状に
ついては、成形時のエア溜まりを防ぐために、金型の曲
率半径を支持部材の曲率半径よりも大きくすることが好
ましい。プレス成形における加熱温度については、プリ
フォーム表面は先の加熱変形処理により所望の鏡面を有
しているため、プリフォーム形状の微調整を行うことが
できる温度であれば特に限定されるものではなく、具体
的にはプリフォーム表面付近の粘度が106〜109ポア
ズ、好ましくは107〜108ポアズとなるように設定す
ることが望ましい。
The surface accuracy of the mold is about the same as the surface accuracy of the transfer surface of the support member (excluding the case of a mold).
Or higher. This is because, as a result, the surface accuracy of the mold is given to the surface of the optical glass element, so that even if the surface accuracy of the preform is high, it is meaningless if the surface accuracy of the mold is low. That is, 0.01 to 0.05 μ in terms of surface roughness
m, 0.01 to 0.03 μm is preferred. Regarding the shape of the mold, it is preferable that the radius of curvature of the mold is larger than the radius of curvature of the support member in order to prevent air from being trapped during molding. The heating temperature in press molding is not particularly limited as long as the preform surface has a desired mirror surface due to the previous heating deformation treatment, so long as the preform shape can be finely adjusted. Specifically, it is desirable to set the viscosity near the surface of the preform to 10 6 to 10 9 poise, preferably 10 7 to 10 8 poise.

【0029】上述のごとくプレス成形するにあたって
は、従来のようにプリフォーム表面に微小ガラス片が付
着していることはないため、成形後の光学ガラス素子表
面にエア溜まりや泡が発生することはなく、厳密な形状
制御が可能となる。また、時間やコストのかかる研磨等
の予備加工工程を経る必要はないため、結果として効率
的かつ経済的である。本発明を以下の実施例によりさら
に詳しく説明する。
In the press molding as described above, since fine glass fragments do not adhere to the surface of the preform as in the prior art, it is possible to prevent air accumulation or bubbles from being generated on the surface of the optical glass element after molding. Strict shape control is possible. Further, it is not necessary to go through a preparatory processing step such as polishing which requires time and cost, and as a result, it is efficient and economical. The present invention is described in more detail by the following examples.

【0030】[0030]

【実施例】実施例1 図1を参照しながら説明する。白板ガラスB270のロ
ッド材を略円板状に切削し、直径40mm、厚さ10mmの
ガラス塊1を形成した。市販の表面粗さ計(サーフコ
ム;(株)東京精密製)でガラス塊の切削面およびその
他の面の表面粗さを測定したところ、切削面はRmax
3μm、その他の面はRmax1μmであった。また、切
削面を走査型電子顕微鏡により1000倍で観察したと
ころ、図4に示すようにガラス塊を切削した際に生じた
微小ガラス片が残存しており、またカッターマークやキ
ズが連続的な凹凸として観察された。
EXAMPLE 1 Example 1 will be described with reference to FIG. The rod material of the white plate glass B270 was cut into a substantially disk shape to form a glass lump 1 having a diameter of 40 mm and a thickness of 10 mm. When the surface roughness of the cut surface of the glass lump and other surfaces was measured with a commercially available surface roughness meter (Surfcom; manufactured by Tokyo Seimitsu Co., Ltd.), the cut surface was Rmax.
3 μm, and the other surface was Rmax 1 μm. In addition, when the cut surface was observed at a magnification of 1000 with a scanning electron microscope, as shown in FIG. 4, fine glass fragments generated when the glass lump was cut remained, and cutter marks and scratches were continuous. It was observed as unevenness.

【0031】このガラス塊1を洗浄・乾燥装置2に供し
た。この装置2は水道水による洗浄−洗剤による洗浄−
純水による洗浄−水道水による洗浄−乾燥を連続的に行
う装置であり、洗剤としてはサンウオッシュLPW−1
(ライオン(株)製)を用いている。また、この装置内
においてはガラス塊をそのまま順に各槽に浸漬して、引
き上げることにより、この表面に残存した微小ガラス片
の除去が行われ、特に洗剤による洗浄工程においては5
0℃の洗剤に5分間浸漬し、乾燥は80℃にて10分間
行った。この装置から出てきたガラス塊の切削面および
その他の面の表面粗さを測定したところ、切削面はRm
ax2.9μm、その他の面はRmax1μmであった。
また、切削面を走査型電子顕微鏡により1000倍で観
察したところ、図5に示すように、その表面の粗さや表
面状態はほとんど変化は見られず、処理前と同様に連続
的な凹凸が見られたが、微小ガラス片はほぼ完全に除去
されていた。
This glass lump 1 was supplied to a washing / drying apparatus 2. This device 2 is used for cleaning with tap water-cleaning with detergent-
This is a device that continuously performs washing with pure water, washing with tap water, and drying. Sunwash LPW-1 is used as a detergent.
(Manufactured by Lion Corporation). In addition, in this apparatus, the glass lump is immersed in each tank as it is, and then lifted to remove the small glass fragments remaining on the surface.
It was immersed in a detergent at 0 ° C. for 5 minutes, and dried at 80 ° C. for 10 minutes. When the surface roughness of the cut surface and other surfaces of the glass block coming out of this apparatus was measured, the cut surface was Rm
ax 2.9 μm, and the other surface was Rmax 1 μm.
Further, when the cut surface was observed at a magnification of 1000 with a scanning electron microscope, as shown in FIG. 5, the surface roughness and surface condition showed almost no change, and continuous irregularities were observed as before the treatment. However, the fine glass fragments were almost completely removed.

【0032】次に、このようにして微小ガラス片が除去
されたガラス塊1を支持部材4に図1のごとく設置し、
電気炉5に挿入して加熱変形処理に供した。支持部材4
は表面粗さRmax0.03μm、近似曲率半径R=45
mm、中心部深さ11mmの転写面3を備えた非球面凹型で
ある。電気炉5内では、このガラス塊の材料であるガラ
スB270が104ポアズとなる1000℃付近(正確
には1000℃)で7分間維持した。
Next, the glass block 1 from which the fine glass pieces have been removed is placed on a support member 4 as shown in FIG.
It was inserted into an electric furnace 5 and subjected to a heating deformation treatment. Support member 4
Is the surface roughness Rmax 0.03 μm, the approximate radius of curvature R = 45
It is an aspherical concave type provided with a transfer surface 3 having a depth of 11 mm at a central portion of 11 mm. In the electric furnace 5, the glass B270, which is the material of the glass lump, was maintained at about 1000 ° C. (accurately, 1000 ° C.) at which the polish becomes 10 4 poise for 7 minutes.

【0033】加熱終了後、放置冷却し、支持部材4から
プリフォーム6を取り出し、支持部材4と当接していた
接触面7の表面粗さを触針式表面粗さ計(サーフコム;
(株)東京精密製)で測定したところRmax約0.0
3であり、曲率半径R=45mmの転写面3形状が精度よ
く転写された凸型非球面を有していることが明らかにな
った。また、その反対面には熱変形により曲率半径R=
60mmの緩やかな自由面8が形成されており、表面粗さ
Rmaxは約0.03μmであった。さらに、これら接触
面7および自由面8を微分干渉顕微鏡により50倍で観
察したところ、図6に示すように、切削条痕や加工キズ
等の凹凸はほとんど見られず、エア溜まりや泡等も全く
観察されなかった。以上より、有効径が40mm、心厚が
15mmであって、一方の面は近似曲率半径がR=45mm
の非球面、他方の面は近似曲率半径がR=60mmの球面
である凹凸型プリフォームを得た。このプリフォームは
形状精度が低くてもよい光学ガラス素子として十分に使
用することができる。
After the heating is completed, the preform 6 is taken out from the support member 4 and left to cool, and the surface roughness of the contact surface 7 which has been in contact with the support member 4 is measured by a stylus type surface roughness meter (Surfcom;
Rmax about 0.0 measured by Tokyo Seimitsu Co., Ltd.)
3, which indicates that the shape of the transfer surface 3 having a curvature radius R = 45 mm has a convex aspherical surface to which the transfer is accurately performed. On the other side, the radius of curvature R =
A gentle free surface 8 of 60 mm was formed, and the surface roughness Rmax was about 0.03 μm. Further, when the contact surface 7 and the free surface 8 were observed with a differential interference microscope at a magnification of 50 times, as shown in FIG. 6, almost no irregularities such as cutting streaks and processing scratches were observed, and air accumulation and bubbles were also observed. No observations were made. From the above, the effective diameter is 40 mm, the core thickness is 15 mm, and one surface has an approximate radius of curvature of R = 45 mm.
An aspherical preform was obtained, and the other surface was a spherical surface having an approximate radius of curvature of R = 60 mm. This preform can be sufficiently used as an optical glass element whose shape accuracy may be low.

【0034】実施例2 ガラス塊として直径35mm、厚さ15mmの円板状のもの
を用いたこと、支持部材として表面粗さRmax0.0
3μmの転写面を備えた平型を用いたこと以外、実施例
1と同様にして、プリフォームを得た。また、支持部材
としてはプレス成形における下型として使用できないも
のを用いた。このプリフォームは有効径が30mm、心厚
が13mmであって、一方の面は近似曲率半径がR=50
mmの非球面、他方の面は平面である平凸型プリフォーム
であった。
Example 2 A disk-shaped glass lump having a diameter of 35 mm and a thickness of 15 mm was used, and a surface roughness Rmax of 0.0 was used as a supporting member.
A preform was obtained in the same manner as in Example 1, except that a flat mold having a transfer surface of 3 μm was used. Further, a support member that cannot be used as a lower mold in press molding was used. This preform has an effective diameter of 30 mm and a core thickness of 13 mm, and one surface has an approximate radius of curvature of R = 50.
The aspheric surface of mm and the other surface were a plano-convex preform which was flat.

【0035】得られたプリフォームを搬送し、プレス成
形に供した。具体的には、加熱変形処理後すぐに、図3
に示すように、プリフォーム11を支持部材41に載せ
たままプレス成形機の上型14'および下型15'間に搬
送、移載し、金型を圧力20kg/cm2にて120秒間加圧
し、放置冷却した後、取り出した。なお、図3中程のプ
レス成形工程を表す図は図2のプレス成形機における上
型および下型を抜き出した概念図であり、本実施例で用
いられるプレス成形機はこれら金型を上型14'、下型
15'に代えた以外は図2に示されるプレス成形機と同
様であり、また操作方法も同様である。上型14'は表
面粗さRmax0.03μm、近似曲率半径R=50mm、
中心部深さ11mmの転写面を備えた非球面凹型であり、
下型15'は表面粗さRmax0.03μmの転写面を備
えた平面型である。
The obtained preform was conveyed and subjected to press molding. Specifically, immediately after the heat deformation treatment, FIG.
As shown in (1), the preform 11 is conveyed and transferred between the upper mold 14 'and the lower mold 15' of the press molding machine while being placed on the support member 41, and the mold is applied at a pressure of 20 kg / cm 2 for 120 seconds. After being pressed and allowed to cool, it was taken out. FIG. 3 is a conceptual diagram showing the upper mold and the lower mold in the press molding machine shown in FIG. 2, and the press molding machine used in the present embodiment uses the upper mold as the upper mold. It is the same as the press molding machine shown in FIG. 2 except that it is replaced with 14 ′ and the lower mold 15 ′, and the operation method is also the same. The upper mold 14 ′ has a surface roughness Rmax of 0.03 μm, an approximate radius of curvature R = 50 mm,
It is an aspheric concave type with a transfer surface with a center depth of 11 mm,
The lower mold 15 ′ is a flat mold having a transfer surface with a surface roughness Rmax of 0.03 μm.

【0036】取り出した加圧成形物、すなわち光学ガラ
ス素子12の上型と当接していた面の表面粗さを触針式
表面粗さ計(サーフコム;(株)東京精密製)で測定し
たところRmax約0.03であり、曲率半径R=50m
mの転写面形状が精度よく転写された凸型非球面を有し
ていることが明らかになった。また、その反対面には表
面粗さRmax約0.03μmの平面が転写されていた。
さらに、これら曲面および平面を微分干渉顕微鏡により
50倍で観察したところ、図7に示すように、切削条痕
や加工キズ等の凹凸はほとんど見られず、エア溜まりや
泡等も全く観察されなかった。以上より、形状が精度よ
く制御され、有効径が30mm、心厚が12mmであって、
一方の面は近似曲率半径がR=50mmの凸型非球面、他
方の面は平面である平凸型光学ガラス素子を得た。
The surface roughness of the pressure-molded product taken out, that is, the surface in contact with the upper mold of the optical glass element 12 was measured by a stylus type surface roughness meter (Surfcom; Tokyo Seimitsu Co., Ltd.). Rmax is about 0.03, radius of curvature R = 50 m
It was clarified that the transfer surface shape of m had a convex aspherical surface transferred accurately. A flat surface having a surface roughness Rmax of about 0.03 μm was transferred to the opposite surface.
Further, when these curved surfaces and flat surfaces were observed at a magnification of 50 times with a differential interference microscope, as shown in FIG. 7, almost no irregularities such as cutting streaks and processing scratches were observed, and no air accumulation or bubbles were observed at all. Was. From the above, the shape is accurately controlled, the effective diameter is 30 mm, the core thickness is 12 mm,
A plano-convex optical glass element was obtained in which one surface was a convex aspheric surface having an approximate radius of curvature of R = 50 mm and the other surface was a flat surface.

【0037】比較例1 ガラス塊を洗浄・乾燥装置に供さなかった代わりに従来
行われている純水による超音波洗浄を5分間行ったこと
以外、実施例1と同様にして、ガラス塊を得た。このガ
ラス塊の切削面およびその他の面の表面粗さを測定した
ところ、切削面はRmax2.9μm、その他の面はRm
ax1.2μmであった。また、切削面を走査型電子顕微
鏡により1000倍で観察したところ、図8に示すよう
に、無数の微小ガラス片が付着していた。
COMPARATIVE EXAMPLE 1 A glass lump was prepared in the same manner as in Example 1, except that the glass lump was not subjected to the washing / drying apparatus, but the conventional ultrasonic cleaning with pure water was performed for 5 minutes. Obtained. When the surface roughness of the cut surface and other surfaces of this glass block was measured, the cut surface was Rmax 2.9 μm, and the other surfaces were Rm.
ax 1.2 μm. Further, when the cut surface was observed at a magnification of 1000 with a scanning electron microscope, as shown in FIG. 8, countless fine glass pieces were adhered.

【0038】さらに、このガラス塊をレンズの清掃にお
いて従来行われている手拭き洗浄処理に供したが、ほと
んど微小ガラス片は除去されなかった。
Further, the glass lump was subjected to a conventional hand wiping cleaning process for cleaning the lens, but almost no fine glass fragments were removed.

【0039】その後、このガラス塊を、再び実施例1と
同様にして、加熱変形工程に供し、プリフォームを得
た。このプリフォームにおける下型と当接していた面お
よびその反対面の表面粗さを触針式表面粗さ計(サーフ
コム;(株)東京精密製)で測定したところ、いずれも
Rmax約0.04μmであり、表面粗さとしては実施例
1および2の光学ガラス素子表面とほぼ同等であった
が、微分干渉顕微鏡により50倍で両面を観察したとこ
ろ、図9に示すように、エア溜まりや泡等が視野のほと
んど全域で観察され、著しく外観品質に劣っていた。
Thereafter, the glass lump was subjected to a heating deformation step again in the same manner as in Example 1 to obtain a preform. The surface roughness of the preform in contact with the lower mold and the surface opposite to the lower mold were measured by a stylus type surface roughness meter (Surfcom; manufactured by Tokyo Seimitsu Co., Ltd.), and Rmax was about 0.04 μm. The surface roughness was almost the same as the optical glass element surfaces of Examples 1 and 2. However, when both surfaces were observed at a magnification of 50 times with a differential interference microscope, as shown in FIG. And the like were observed in almost the entire visual field, and the appearance quality was remarkably inferior.

【0040】[0040]

【発明の効果】本発明の方法により、ガラス材料の研磨
等の予備加工処理を経なくても、表面にエア溜まりや泡
のない面精度の優れた光学ガラス素子を容易に提供する
ことが可能になった。また、この方法は、ガラス材料の
形状を容易に制御でき、効率的かつ経済的であるといえ
る。
According to the method of the present invention, it is possible to easily provide an optical glass element having excellent surface accuracy without air accumulation or bubbles on the surface without performing a preliminary processing such as polishing of a glass material. Became. In addition, this method can easily control the shape of the glass material, and can be said to be efficient and economical.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明による光学ガラス素子の製造工程にお
いてプリフォームを得るまでの工程を表す概略図の一例
を示す。
FIG. 1 shows an example of a schematic diagram illustrating a process until a preform is obtained in a process of manufacturing an optical glass element according to the present invention.

【図2】 本発明において用いられるプレス成形機の概
略構成図の一例を示す。
FIG. 2 shows an example of a schematic configuration diagram of a press molding machine used in the present invention.

【図3】 本発明による光学ガラス素子の製造工程にお
いてプリフォームをプレス成形する際の工程を表す概略
図の一例を示す。
FIG. 3 is an example of a schematic view showing a step of press-molding a preform in a manufacturing process of an optical glass element according to the present invention.

【図4】 実施例1において微小ガラス片の除去前にお
けるガラス塊の切削面を表すSEM写真を示す。
FIG. 4 is a SEM photograph showing a cut surface of a glass lump before removing fine glass pieces in Example 1.

【図5】 実施例1において微小ガラス片の除去後にお
けるガラス塊の切削面を表すSEM写真を示す。
FIG. 5 is a SEM photograph showing a cut surface of a glass lump after removing fine glass pieces in Example 1.

【図6】 実施例1で得られたプリフォーム表面の微分
干渉顕微鏡写真を示す。
FIG. 6 shows a differential interference micrograph of the preform surface obtained in Example 1.

【図7】 実施例2で得られた光学ガラス素子表面の微
分干渉顕微鏡写真を示す。
FIG. 7 shows a differential interference micrograph of the surface of the optical glass element obtained in Example 2.

【図8】 比較例1において従来の洗浄方法によりガラ
ス塊を洗浄した後のガラス塊の切削面を表すSEM写真
を示す。
FIG. 8 is an SEM photograph showing a cut surface of the glass lump after cleaning the glass lump by the conventional cleaning method in Comparative Example 1.

【図9】 比較例1で得られたプリフォーム表面の微分
干渉顕微鏡写真を示す。
9 shows a differential interference micrograph of the preform surface obtained in Comparative Example 1. FIG.

【符号の説明】[Explanation of symbols]

1:ガラス塊、2:洗浄・乾燥装置、3:転写面、4:
支持部材、5:電気炉、6:プリフォーム、7:接触
面、8:自由面、11:プリフォーム、12:光学ガラ
ス素子、14:凸型上型、14':凹型上型、15:凹
型下型、15':平型下型、16A:保持型、16B:
保持型、17:押し棒、18:透明石英管、19:加熱
用光源、20:熱電対、41:支持部材
1: glass block, 2: washing / drying device, 3: transfer surface, 4:
Supporting member, 5: electric furnace, 6: preform, 7: contact surface, 8: free surface, 11: preform, 12: optical glass element, 14: convex upper mold, 14 ': concave upper mold, 15: Recessed lower mold, 15 ': Flat lower mold, 16A: Holding mold, 16B:
Holding type, 17: push rod, 18: transparent quartz tube, 19: heating light source, 20: thermocouple, 41: support member

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 表面粗さRmaxが0.1〜5μmのガラ
ス塊から、その表面上の微小ガラス片を除去した後、こ
のガラス塊を、このガラス塊の表面付近の粘度が106
〜103ポアズになるまで支持部材内で加熱することを
特徴とする光学ガラス素子の形成方法。
1. After removing fine glass fragments on the surface of a glass lump having a surface roughness Rmax of 0.1 to 5 μm, the glass lump has a viscosity of 10 6 near the surface of the glass lump.
A method for forming an optical glass element, wherein heating is performed in a support member until the pressure becomes 10 to 3 poise.
【請求項2】 表面粗さRmaxが0.1〜5μmのガラ
ス塊から、その表面上の微小ガラス片を除去した後、こ
のガラス塊を、このガラス塊の表面付近の粘度が106
〜103ポアズになるまでプレス成形の下型内で加熱
し、さらにこの下型と、これに対向配置した上型とによ
りプレス成形することを特徴とする光学ガラス素子の形
成方法。
2. After removing fine glass fragments on the surface of a glass lump having a surface roughness Rmax of 0.1 to 5 μm, the glass lump has a viscosity of 10 6 near the surface of the glass lump.
A method for forming an optical glass element, comprising heating in a lower mold of press molding until the pressure becomes 10 to 3 poise, and further press-molding the lower mold and an upper mold disposed opposite to the lower mold.
【請求項3】 支持部材がプレス成形の下型として使用
することができない場合、表面粗さRmaxが0.1〜
5μmのガラス塊から、その表面上の微小ガラス片を除
去した後、このガラス塊を、このガラス塊の表面付近の
粘度が106〜103ポアズになるまで支持部材内で加熱
し、得られたガラス塊をプレス成形の金型間に移動させ
て、さらにこの金型によりプレス成形することを特徴と
する光学ガラス素子の形成方法。
3. When the supporting member cannot be used as a lower die for press molding, the surface roughness Rmax is 0.1 to 1.0.
After removing fine glass fragments on the surface from a 5 μm glass lump, the glass lump is heated in a support member until the viscosity near the surface of the glass lump becomes 10 6 to 10 3 poise. A method for forming an optical glass element, comprising: moving a lump of glass between press-molding dies;
【請求項4】 得られる光学ガラス素子の表面粗さRm
axが0.05μm以下であることを特徴とする、請求項
1〜3いずれかに記載の光学ガラス素子の形成方法。
4. The surface roughness Rm of the obtained optical glass element
The method for forming an optical glass element according to claim 1, wherein ax is 0.05 μm or less.
JP34508296A 1996-12-25 1996-12-25 Formation of optical glass element Pending JPH10182171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34508296A JPH10182171A (en) 1996-12-25 1996-12-25 Formation of optical glass element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34508296A JPH10182171A (en) 1996-12-25 1996-12-25 Formation of optical glass element

Publications (1)

Publication Number Publication Date
JPH10182171A true JPH10182171A (en) 1998-07-07

Family

ID=18374167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34508296A Pending JPH10182171A (en) 1996-12-25 1996-12-25 Formation of optical glass element

Country Status (1)

Country Link
JP (1) JPH10182171A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009229702A (en) * 2008-03-21 2009-10-08 Olympus Corp Method of manufacturing optical element
WO2023119767A1 (en) * 2021-12-23 2023-06-29 パナソニックIpマネジメント株式会社 Method for manufacturing optical element, and optical element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009229702A (en) * 2008-03-21 2009-10-08 Olympus Corp Method of manufacturing optical element
WO2023119767A1 (en) * 2021-12-23 2023-06-29 パナソニックIpマネジメント株式会社 Method for manufacturing optical element, and optical element

Similar Documents

Publication Publication Date Title
US3208839A (en) Method of shaping a glass article
JPH10182171A (en) Formation of optical glass element
JPH11199255A (en) Production of thin sheet glass
JP2000302473A (en) Optical element, and production of formed glass lump for production of the optical element
JP3630829B2 (en) Manufacturing method of optical element molding material
JPH1160251A (en) Formation of optical element
JP2621956B2 (en) Optical element molding method
JP2000086255A (en) Method for molding optical element
JPH048374B2 (en)
JP5306855B2 (en) Manufacturing method of information recording medium substrate and manufacturing method of information recording medium
JP2000233934A (en) Method for press-forming glass product and device therefor
JPH06144849A (en) Apparatus for forming optical element, its production and method for forming optical element
JPH0333023A (en) Method for forming optical glass element
JP2501588B2 (en) Mold for press molding optical glass element and molding method thereof
JPS63307129A (en) Production of optical element
JPS5818330B2 (en) Manufacturing method for meniscus lenses for eyeglasses
JPH04170327A (en) Production of optical element
JP2000053433A (en) Production of glass optical element
JP2001302259A (en) Glass molding, method for producing the same and method for producing glass substrate
JP4426740B2 (en) Glass molded product manufacturing method, optical component manufacturing method, press molding apparatus
JPH04310527A (en) Production of optical element
JPS60118644A (en) Molding of press lenses
JP2024065018A (en) Press molding apparatus and press molding method, glass lens blank and glass lens, and manufacturing method thereof
JP2740453B2 (en) Manufacturing method of glass material for molding optical elements
JP2001146432A (en) Method for treating of glass preform

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040126

A02 Decision of refusal

Effective date: 20040608

Free format text: JAPANESE INTERMEDIATE CODE: A02

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040702

A521 Written amendment

Effective date: 20040705

Free format text: JAPANESE INTERMEDIATE CODE: A821