WO2023119767A1 - Method for manufacturing optical element, and optical element - Google Patents

Method for manufacturing optical element, and optical element Download PDF

Info

Publication number
WO2023119767A1
WO2023119767A1 PCT/JP2022/035324 JP2022035324W WO2023119767A1 WO 2023119767 A1 WO2023119767 A1 WO 2023119767A1 JP 2022035324 W JP2022035324 W JP 2022035324W WO 2023119767 A1 WO2023119767 A1 WO 2023119767A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical element
mold
mirror
manufacturing
columnar
Prior art date
Application number
PCT/JP2022/035324
Other languages
French (fr)
Japanese (ja)
Inventor
淳 村田
昌樹 橋本
陽平 奥山
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023119767A1 publication Critical patent/WO2023119767A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements

Definitions

  • the present disclosure relates to an optical element manufacturing method and an optical element. More specifically, the present disclosure relates to a method of manufacturing an optical element that at least contributes to light transmission, and also relates to an optical element obtained by the manufacturing method.
  • optical elements made of resin materials, glass materials, etc. have been used for various purposes.
  • optical elements are used as lenses, prisms, mirrors or optical fibers.
  • optical elements have also been used in the optical sensing field, such as optical sensors for monitoring systems such as disaster prevention and/or crime prevention, or in-vehicle sensor modules for driving support systems.
  • the inventor of the present application realized that there were problems to be overcome in the production of conventional optical elements, and found the need to take countermeasures therefor. Specifically, it was found that there are the following problems.
  • Optical elements are manufactured through molding or by processing methods involving cutting, grinding and/or polishing.
  • the final shape of the optical element is obtained by shaving it from a raw material, resulting in a large amount of material loss (FIG. 13).
  • Mold press molding may be carried out as molding of optical elements. In such molding, since a pressing force is applied to the material using a mold, it is difficult to positively use a material made of a brittle material.
  • a main object of the present disclosure is to provide a method of manufacturing an optical element that is more suitable in terms of material loss reduction and molding.
  • the inventors of the present application have attempted to solve the above problems by dealing with them in a new direction, rather than dealing with them on the extension of the conventional technology. As a result, a method for manufacturing an optical element has been provided that achieves the above main object.
  • a method for manufacturing an optical element in which the entire surface of a columnar material is subjected to a mirror-finishing treatment for mirror-finishing by heating, a mirror-finished material is formed from the columnar material, and the mirror-finished material is subjected to mold press molding. be done.
  • the present disclosure also provides an optical element obtained by the above manufacturing method.
  • the optical element of the present disclosure includes a light transmitting portion and a flange portion extending outwardly from the light transmitting portion. Different internal strain.
  • an optical element can be obtained more preferably in terms of material loss reduction and molding.
  • the manufacturing method of the present disclosure can manufacture an optical element under conditions where the material loss of the raw material is reduced. Since the material used for mold press molding has a columnar shape, it is not necessary to obtain a shape relatively close to the shape of the optical element by grinding the material prior to the molding. For example, when manufacturing an optical element such as a lens, it is not necessary to obtain in advance a spherical or flattened lens-like shape by grinding or the like, and the material loss of the optical element can be further reduced.
  • the manufacturing method of the present disclosure can mold optical elements without applying excessive pressing force to the material.
  • mirror surface treatment is performed by heating prior to mold press molding.
  • the specular treatment itself can contribute to the transmittance of the optical element
  • the specular treatment is performed by heating the entire surface of the columnar material. This mirror-finishing treatment by heating the entire surface can bring the overall shape closer to the final shape of the optical element compared to the original columnar material, so it is possible to reduce the excessive pressing force applied to the material during mold press molding. It becomes possible. Therefore, even if the raw material is made of a brittle material, it can be used more positively for mold press molding.
  • Cross-sectional view schematically showing a lens as an optical element (Fig. 1(A): biconvex lens, Fig. 1(B): biconcave lens, Fig. 1(C): meniscus lens) Schematic cross-sectional view for explaining a part of the manufacturing method of the present disclosure
  • Cross-sectional view schematically illustrating the configuration of a mold used in mold press molding Process cross-sectional views schematically illustrating mold press molding in the manufacturing method of the present disclosure
  • Process cross-sectional view schematically illustrating mold press molding in the manufacturing method of the present disclosure (using a non-sleeve mold) Schematic cross-sectional view for explaining "aspect of mirror surface treatment using a mold”
  • Cross-sectional view schematically showing a lens as an optical element (Fig. 1(A): biconvex lens,
  • FIG. 9(A) biconvex lens
  • Fig. 9(B) biconcave lens
  • Fig. 9(C) meniscus lens
  • FIG. 2 is a cross-sectional view schematically illustrating the manner in which a meniscus lens is mold-pressed in accordance with the present disclosure
  • Schematic diagram for explaining an exemplary mode of manufacturing a lens by shaving from a raw material by grinding and polishing (prior art)
  • Upward and downward used directly or indirectly in this specification correspond to the upward and downward directions in the drawings, respectively.
  • the downward vertical direction that is, the direction in which gravity acts
  • the opposite direction corresponds to the "upward direction”.
  • the "cross-sectional view” is based on a virtual cross section obtained by cutting along the thickness direction of the optical element.
  • a sketch of a cross section cut along the thickness of the optical element corresponds to the "cross-sectional view”.
  • the "thickness direction of the optical element” can correspond to the direction of light transmission in the optical element.
  • the term “planar view” used in this specification is based on a sketch of the object viewed from above or below along the thickness direction.
  • the present disclosure relates to methods of manufacturing optical elements.
  • the present disclosure manufactures optical elements from blanks by mold pressing.
  • Mold press molding is a method of pressing and molding a material using a mold, and the present disclosure is characterized by items related to the molding method.
  • the entire surface of the columnar material is subjected to mirror-finishing treatment by heating to form a mirror-finished material from the columnar material, and the material obtained by the mirror-finishing treatment by heating, that is, the mirror-finished material is obtained. It is subjected to mold press molding.
  • optical element broadly means a member for transmitting light.
  • the optical elements may be lenses, prisms or mirrors, for example.
  • the optical element may be a window item or the like related to light transmission.
  • an “optical element” means a member for converging or diverging light, such as a lens (see FIG. 1).
  • the "light transmitting portion" of the optical element 10 corresponds to the lens portion (at least the "R surface” portion including the optically effective surface).
  • the material used for mold press molding is a mirror-finished material obtained from the columnar material by heating the entire surface of the columnar material. That is, the material used for mold press molding is a material whose entire surface has been mirror-finished by heating.
  • FIG. 2 schematically shows an exemplary aspect of the mirror surface treatment in the present disclosure.
  • the material to be subjected to mold press molding is a columnar material 20 whose entire surface is heated to obtain a mirror-finished material 25 .
  • the mirror-finished material 25 is subjected to mold press molding using a suitable mold.
  • the columnar material 20 is, as its name suggests, a material having a columnar shape as a whole. That is, the material to be mirror-finished by heating has a three-dimensional shape in which the cross-sectional shape in a predetermined direction (for example, the cross-sectional shape cut along the direction perpendicular to the thickness direction of the optical element) is substantially constant. It may be a material having an original shape. Such a columnar material 20 may have an overall shape such as a triangular column, a square column, a hexagonal column, or a cylinder, for example.
  • the columnar material 20 is preferably a single item. Such materials can be obtained from ingots. When the columnar material is obtained from an ingot, the material loss is small. In other words, the material 20 used in the manufacturing method of the present disclosure does not require grinding or the like to obtain a shape relatively close to the final optical element shape, and material loss is small. For example, in mold press molding, it is not necessary to grind a spherical or flattened lens-like material in advance, and material loss is reduced accordingly.
  • the columnar material may have a polygonal columnar shape or a cylindrical columnar shape.
  • the material to be subjected to the mirror-finishing by heating may be a prismatic material or a cylindrical material.
  • Prismatic material has a relatively simple shape and can be easily obtained from an ingot. Also, with the prismatic material, it is difficult to form a closed space between the mold surface and the material during molding. Therefore, compared with a material having a large R surface, a prismatic material is less likely to cause so-called "air retention" during molding.
  • the prismatic material may have, for example, a rectangular shape or a substantially rectangular shape in plan view.
  • quadrilateral means shapes such as squares and rectangles.
  • the cylindrical material may have a circular or substantially circular shape in plan view.
  • the columnar material may contain, for example, a glass material. That is, a mirror-finished material may be obtained from a material comprising a glass material, and the mirror-finished material may be subjected to mold press molding.
  • a glass material generally has a large coefficient of linear expansion, and in mold press molding, the amount of expansion during heating and the amount of shrinkage during cooling become large, making molding difficult.
  • application of excessive pressing force to the material due to the "mirror surface treatment by heating" is further avoided, and materials containing glass materials can be more positively employed.
  • the heating performed as mirror surface treatment is performed by heating the entire columnar material from the outside. That is, instead of local heating in which only a partial surface area of the columnar material is heated, the entire surface area of the columnar material is heated.
  • the columnar material is mirror-finished by heating the entire surface of the columnar material. Due to the overall plastic deformation of the columnar material, the heating of such a mirror surface treatment can bring the overall shape of the material closer to the shape of the optical element compared to the original columnar material, and the material during mold press molding. can be reduced. Therefore, even if the raw material is made of a brittle material, it can be used more positively for mold press molding.
  • the heating performed as a mirror surface treatment may be performed from the entire periphery of the columnar material. That is, the columnar material may be heated from all of the upward, downward, and lateral directions of the columnar material. In other words, the mirror surface heat treatment may be performed so that all the top, bottom and side surfaces of the columnar material are heated. As a result, the surface of the columnar material is not locally heated but wholly heated, and the entire material to be press-molded can more easily approximate the shape of the optical element.
  • the "lateral direction” here corresponds to a direction perpendicular to the material axis along the upward direction and the opposite downward direction of the columnar material.
  • the heating time for such mirror finishing may be relatively short. In other words, the softening does not have to reach the central portion of the columnar material, and at least the surface portion may be softened, so the heating time may be short.
  • the heating time for the mirror surface treatment is 800 seconds or less, 700 seconds or less, or 650 seconds or less at a temperature higher than the glass transition temperature (Tg). It may be within seconds.
  • the columnar material may be subjected to heat for specular treatment for 400 seconds to 800 seconds, 500 seconds to 700 seconds, or 550 seconds to 650 seconds.
  • the specular material obtained by heat-treating the entire surface of the columnar material preferably has a smooth surface or a glossy surface. That is, the specular material can preferably have a smooth or glossy surface as its specular surface. In particular, because of the heat treatment of the entire surface (rather than localized heating, such as the edge of the material), the entire surface of the mirrored material (i.e., the surface is ) can be smooth or glossy.
  • the mirror surface material has a low surface roughness due to its mirror surface.
  • the surface roughness of the mirror-finishing material may be reduced to Ra 50 nm or less, preferably Ra 35 nm or less, and more preferably Ra 20 nm or less by the mirror-finishing treatment.
  • the “mirror surface” of “mirror treatment” and/or “mirror material” in the present disclosure is substantially a mirror surface with a surface roughness of Ra 50 nm or less, preferably Ra 35 nm or less, more preferably Ra 20 nm or less.
  • the lower limit of the surface roughness Ra is not particularly limited, and may be Ra0 nm (not including 0), for example.
  • Ra is the so-called arithmetic average roughness, which is a value measured using a scanning white light interferometer (Zygo NewView) for at least one surface forming the outer surface of the mirrored material. be.
  • the surface roughness Ra the average value of the measured values at 10 arbitrary points on the surface of the mirror-finished material (for example, 10 arbitrary points including at least the surface constituting the mirror-finished material) may be adopted. .
  • the columnar material may be heated to a temperature higher than its glass transition temperature Tg. That is, the entire surface of the columnar material may be heated under heating conditions higher than the material of the columnar material or the glass transition temperature Tg of the material.
  • the columnar material is softened by heating under heating conditions 50 to 200° C. higher than the glass transition temperature Tg of the columnar material, more preferably 100 to 190° C. higher. Such heating conditions tend to soften the entire surface of the columnar material more effectively, and the effects of the present disclosure are more likely to be manifested.
  • the heating temperature is lower than the lower limit of the above temperature range, it is difficult to obtain a sufficient mirror surface, and defects in the mirror surface of the material are likely to occur. Phenomena such as material cracking are more likely to occur.
  • the "glass transition temperature Tg" in the present disclosure is a value obtained from a thermal expansion curve showing the relationship between temperature and sample elongation.
  • the glass transition temperature Tg of chalcogenide for example, Xinhuaguang IRG203
  • the glass transition temperature Tg of chalcohalide is about 375°C.
  • the entire surface of the pillar-shaped material may be heated under heating conditions of, for example, about 316°C to about 466°C, preferably about 366°C to about 456°C.
  • the entire surface of the columnar material may be heated, for example, under heating conditions of about 425°C to about 575°C, preferably about 475°C to about 565°C.
  • temperature condition in the present disclosure refers to the temperature of the columnar material or its ambient atmosphere, for simplicity or convenience, the set temperature (for example, the set temperature set in the heating means and/or the mold).
  • the mirror-finished material obtained by heat-treating the entire surface is subjected to mold press molding.
  • the entire surface of the columnar material prior to mold press molding, the entire surface of the columnar material is subjected to mirror-finishing treatment for mirror-finishing by heating.
  • mold press molding an optical element is molded from a mirror-finished material through pressure deformation.
  • the light transmitting portion and the flange portion of the optical element can be integrally molded from a single mirror-finished material by mold press molding.
  • Fig. 3 shows a mold used for mold press molding.
  • the mold 50 used in the manufacturing method of the present disclosure is composed of, for example, at least a pair of upper mold 51 and lower mold 52, which are main parts of the mold.
  • the upper mold 51 and the lower mold 52 are drivable so as to approach or separate from each other, and form a mold cavity 56 therebetween.
  • At least the light-transmitting portion of the optical element is formed by pressing and deforming the mirror-finishing material between the pair of upper mold 51 and lower mold 52 .
  • the optical element is a lens
  • the mirror surface material is deformed by the pressing force received from the upper mold 51 and the lower mold 52, and the shape of the lens portion, which is the "essential" of the optical element, is obtained.
  • the mold 50 may additionally comprise a mold sleeve 53, as shown in FIG.
  • the mold sleeve 53 has a "cylindrical shape" as its name suggests, and is provided on the outer peripheral surface of the main part of the mold.
  • the mold sleeve 53 is a mold member that, together with the upper mold side 51 and the lower mold 52, contributes to forming the mold cavity, and preferably acts to bound the outer edges of the mold cavity.
  • the "mold main part” as used herein means the main mold member that contributes to the formation of most of the mold cavity.
  • the term “mold sleeve” as used herein refers to a mold member that plays a secondary function and is provided on the outer peripheral surface of the main part of the mold so as to constitute at least a part of the body of the mold. means.
  • the mold sleeve is a cylindrical shape that bounds the outer edge of the mold cavity. It is a mold member.
  • the mold cavity has a circular or substantially circular shape in plan view. That is, the inner peripheral surface of the mold sleeve bounding the outer edge of the mold cavity may have a circular or substantially circular shape in plan view.
  • the outer peripheral surface of the main part of the mold has a form of a cylindrical outer surface, and a cylindrical mold sleeve may be provided for it, and the mold has a circular or substantially circular shape in plan view.
  • a cavity is provided.
  • Mold press molding using such a mold may be performed under temperature conditions specific to mirror-finished materials.
  • mold press molding may be performed under temperature conditions lower than the heating temperature of the mirror surface treatment. This is because the pressure deformation of the specular surface material becomes more preferable, and it becomes easier to obtain an optical element in which the light transmission portion and the flange portion are more preferably integrally molded.
  • mold press molding may be performed under temperature conditions that are preferably 20° C. to 130° C. lower than the heating temperature conditions for the mirror-finishing treatment, for example, under temperature conditions that are 40° C. to 90° C. lower than the heating temperature conditions for the mirror-finishing treatment. . From another point of view, the heating conditions for mirror finishing are preferably 20° C. to 130° C.
  • Heating for such a mirror surface treatment tends to favorably soften the surface of the columnar material as a whole, and the effects of the present disclosure are more likely to be manifested.
  • mold press molding may be performed at a temperature higher than the glass transition temperature of the columnar material.
  • the mold press molding may be performed under temperature conditions preferably 40° C. to 150° C. higher than the glass transition temperature of the columnar material, for example, 60° C. to 100° C. higher than the glass transition temperature of the columnar material. This is because the specular-finishing material obtained by the specular-finishing treatment based on heating can be more suitably plastically deformed.
  • mold press molding may be performed under an inert atmosphere.
  • a nitrogen atmosphere may be used as the atmosphere condition for mold press molding.
  • the mold press molding of the mirror-finished material may be performed in an atmosphere in which nitrogen gas accounts for the majority.
  • it may be a nitrogen atmosphere with an oxygen concentration of 10 ppm or less.
  • mold press molding will be described chronologically with reference to FIG.
  • the end face of the flange portion of the optical element molded in the mold cavity formed between the upper mold and the lower mold is subjected to mold transfer.
  • FIG. 4(A) a state in which the specular material 25 is put into the mold 50 is obtained. That is, as shown in the figure, a state is obtained in which the mirror-finished material 25 is placed in a mold cavity 56 surrounded by, for example, an upper mold 51, a lower mold 52, and a mold sleeve 53.
  • FIG. 4(A) a state in which the specular material 25 is put into the mold 50 is obtained. That is, as shown in the figure, a state is obtained in which the mirror-finished material 25 is placed in a mold cavity 56 surrounded by, for example, an upper mold 51, a lower mold 52, and a mold sleeve 53.
  • the mirror surface material 25 may be a single material.
  • a mirror-finished material 25 has, as its outer surface, a mechanical tool such as grinding or polishing and/or a liquid treatment (especially a treatment that brings a chemical liquid into contact with the material to obtain a mirror surface, such as a pH adjustment such as an acid range). It preferably has a mirror surface obtained without any chemical treatment using a chemical polishing liquid.
  • the overall shape of the mirrored blank 25 may have a shape that more closely approximates the final shape of the optical element compared to the original columnar blank. That is, in the present disclosure, the entire surface is mirror-finished by heating, and therefore the mirror-finishing treatment in the present disclosure is preferably a non-mechanical or non-chemical treatment.
  • the mirror-finished material 25 put into the mold 50 is deformed by being pressed by the heated mold 50 during mold press molding. That is, the specular surface material 25 is heated by the heat of the mold 50, and deformed by the pressing force received from the mold 50 as shown in FIGS. 4(B) and 4(C) into a desired shape. . More specifically, the single mirror-finishing material 25 is plastically deformed by the pressing force received from the mold 50 , and the inner surface shape of the mold 50 (especially the upper mold 51 and the lower mold 52 ) changes to the mirror-finishing material 25 . A light transmitting portion and a flange portion are integrally obtained from the material 25 by transferring.
  • the mirror-finished material 25 in the mold has an inconvenient "air" on its upper or lower surface. It is likely to have the advantage of being less likely to cause accumulations.
  • the mirror-finished material 25 which is plastically deformed during mold pressing, is deformed so as to expand outward, and then comes into contact with the mold sleeve 53 (see FIG. 4(D)). That is, the material 25 comes into contact with the inner peripheral surface 58 of the mold sleeve 53 having a circular shape or a substantially circular shape in plan view.
  • mold transfer is performed on the entire circumference of the end surface of the mirror-finished material.
  • the flange shape of the optical element that is, the peripheral edge contour of the optical element can be easily arranged in a desired shape.
  • the deformation of the mirror surface material is caused by the pressing force received from the mold.
  • the pressing force that can be applied to the material can be a pressure that is not undesirably excessive.
  • the mirrored material preferably has an overall shape (especially the shape formed by the entire surface or the entire outer surface) that is closer to the final optical element compared to the original columnar material. This is because it has a shape. Therefore, even if the raw material is made of a brittle material, it can be used more positively for mold press molding.
  • glass materials such as chalcogenide materials and/or chalcohalide materials have been thought to be generally unsuitable for mold press molding because they are brittle under pressure, although they are excellent lens materials in terms of optical properties. Even such a glass material can be used in the manufacturing method of the present disclosure.
  • the fact that the load applied to the mirror surface material during mold press molding is not excessive is that the material is ground prior to mold press molding to a shape relatively close to the shape of the optical element (for example, a lens approximate shape). This means that the material does not need to be prepared in advance.
  • the material loss of the raw material is reduced as a result, and from such a point of view as well, it is easy to employ a glass material such as a chalcogenide material and/or a chalcohalide material in the present disclosure.
  • a mirror-polished material comprising a glass material reduces the pressing force of the mold press by, for example, at least 5% compared to a material obtained by mechanical mirror-finishing. be able to.
  • the mold press pressure applied to the heat-treated mirror-polished material is reduced by 5% to 50%, or 10% to 40%, as compared to the mechanically mirror-polished material.
  • the mirror-finished material 25 that has been desirably transferred to the mold is released from the mold at the final stage of mold pressing. That is, the mirror-finished material that has been plastically deformed by the mold press is finally removed from the mold after unloading and cooling, and is provided as the desired optical element 10 (see FIG. 4(E)).
  • the manufacturing method of the present disclosure can be embodied in various modes.
  • mold press molding is performed without using a mold sleeve. That is, in mold press molding, the end face of the flange portion of the optical element molded in the mold cavity formed between the upper mold and the lower mold is not subjected to mold transfer.
  • a non-sleeve mold 50 as shown in FIG. 5 may be used as the mold.
  • the non-sleeve mold 50 is primarily composed of an upper mold 51 and a lower mold 52 and does not include a sleeve member (such as mold sleeve 53 shown in FIG. 3).
  • mold press molding is performed without transferring to a mold sleeve. This means that although mold press molding is performed in the same manner as in the embodiment described with reference to FIG.
  • the mirror-finished material 25 (see FIG. 6A) put into the mold 50 is heated by the heat of the mold 50 and deformed by the pressing force received from the mold 50 (see FIG. 6 ( B) and FIG. 6(C)).
  • the material obtained by the mirror-finishing treatment for mirror-finishing the entire surface by heating is plastically deformed due to the pressing force received from the mold 50 .
  • the mirror-finished material 25 (FIG.
  • the mirror-finished material 25 which is plastically deformed during mold press molding, is not pressed against the mold sleeve 53 (see FIG. 4(D)), and therefore the entire circumference of the end surface of the mirror-finished material is not transferred to the mold. Therefore, the outermost end surface (particularly, the end surface of the flange portion) of the obtained optical element 10 can have, for example, a rounded shape (see FIG. 6(E)).
  • the mirror-finished material that is mold press-molded has a shape that is closer to the final optical element than the original columnar material due to the mirror-finishing treatment.
  • the mirrored material has a mirror surface on its entire surface, but the overall shape is relatively close to the final optical element (that is, the final shape of the optical element compared to the original columnar material). "Relative approximation shape to the optical element"). Therefore, the plastic deformation of the mirror-finished material that deforms toward the outer peripheral portion that is not in contact with the upper and lower dies during mold press molding is easily performed uniformly, and the desired lens shape can be obtained by mold press molding without using a mold sleeve. It can be pressurized and deformed.
  • the close contact between the mold sleeve and the lens edge surface is essentially avoided during molding.
  • cracks may occur due to the difference in contraction due to the difference in linear expansion coefficient during the cooling process after molding. If no sleeve is used, it is reduced.
  • the entire surface of the columnar material is heated and mirror-finished by using a mold used for mold press molding. That is, a mirror-finished material is obtained with a mold for mold press molding.
  • a mold cavity of a mold used for mold press molding may be used to perform mirror surface treatment.
  • the mold cavity of the lower mold used for mold press molding may be used to perform the mirror surface treatment.
  • the heat of the lower mold 52 may be used to mirror-finish the columnar material 20 . This means that the columnar material may be mirror-polished by the forming means prior to mold press forming.
  • the columnar material 20 is mirror-finished by heating the columnar material 20 while it is placed in the lower mold 52 (see FIG. 7).
  • a columnar material is put into a lower mold whose temperature has been raised to the heating temperature condition of the specular treatment or is in the process of raising the temperature to the heating temperature, and the heat from the lower mold is used to form a columnar shape. Material may be heated.
  • the temperature of the lower mold may be raised to the heating temperature condition, and the heat from the lower mold may be used to heat the columnar material.
  • the mold cavity of the lower mold is used for the mirror surface treatment in this manner, a portion of the columnar material and the lower mold may be in contact with each other.
  • the lower mold may contact only a portion of the bottom surface (or the bottom surface or bottom side portion) of the columnar blank. For example, only the perimeter or rim of the bottom surface of the columnar blank may come into contact with the lower mold.
  • the columnar material is supported by the lower mold at the contact portion thereof, and is heated by the lower mold used for the support. If the bottom surface of the columnar material is in full contact with the bottom surface of the columnar material, the heating condition of the bottom surface of the columnar material may become too strong. It becomes easier to heat the entire surface evenly.
  • the lower mold may, for example, form the convex or concave shape of the optical surface of the optical element.
  • the cavity-forming surface of the lower mold may have a shape complementary to the convex or concave shape of such optical surface.
  • the cavity forming surface of the lower mold may be curved, for example.
  • the lower mold may be used in combination with the upper mold.
  • a mold may be used.
  • a heating means preferably an upper heating means provided on the upper side
  • the lower mold or a mold sleeve provided with the lower mold
  • the mirror surface material can be subjected to mold press molding more smoothly or efficiently. That is, since the mold is commonly used for the mirror-finishing treatment and the mold press molding, the transition from the mirror-finishing treatment to the mold press molding is relatively smooth.
  • the mold may be heated using a heating coil built into the mold and/or a heat medium flowing through a heat medium conduit of the mold.
  • the mold may be heated using heating means provided separately from the mold.
  • a heating means 60 provided outside the lower mold 52 may be used to heat the lower mold 52 to mirror-finish the columnar material.
  • a heating means 65 may be used instead of the upper mold at the position where the upper mold is arranged when the mold is used (see FIG. 7), thereby heating the columnar material and subjecting it to a mirror finish. may be performed.
  • the mirror-finishing treatment of the columnar material and the cooling of the resulting mirror-finishing material are performed continuously using a mold.
  • a mold 50 e.g., especially a lower mold
  • the same mold 50 e.g., the lower mold in particular
  • the means for mold pressing, the means for obtaining the mirror-finished material, and the means for cooling it may be substantially the same.
  • a mold used for mold press molding obtains a mirror-finished material, and the mold can be used to mold-press the mirror-finished material, so that smoother production of optical elements can be achieved.
  • the time required for mold press molding may be shorter than the time required for mirror polishing.
  • the lower mold may be used in combination with the upper mold.
  • a cooling means preferably an upper cooling means provided on the upper side
  • a lens is manufactured as the optical element 10 . That is, manufacturing lenses for converging or diverging light.
  • the type of lens is not particularly limited, and may be a convex lens or a concave lens.
  • the convex lens may be a biconvex lens (FIG. 1(A)), a plano-convex lens, or the like, and the concave lens may be a biconcave lens (FIG. 1(B)), a plano-concave lens, or the like.
  • the lens may be a meniscus lens as shown in FIG. 1(C).
  • the optical element obtained according to the above-described "non-edge aspect” may have a unique shape because the entire circumference of the end face of the mirror-finished material is not molded and transferred.
  • the outermost edge surface of the optical element 10 may have a rounded shape as a whole.
  • the outermost edge surface The profile may be curved as a whole.
  • the mirror-finished material obtained by heating the entire surface is subjected to mold press molding, it is difficult to apply an excessive pressing force to the material during mold press molding, and even brittle materials can be used. Can be actively recruited. Therefore, in the production method of the present disclosure, glass materials can be used more positively. In particular, a chalcogenide material and/or a chalcohalide material can be used more positively due to the mirror-finishing treatment that mirror-finishes the entire surface by heating.
  • the manufacturing method of the present disclosure is , as an optical element, a lens for at least the infrared region can be suitably manufactured.
  • optical element of the present disclosure is obtained by the manufacturing method described above, and corresponds to an optical element obtained from a raw material through the mold press molding described above.
  • the optical element of the present disclosure is an optical element obtained by mold-press molding a columnar material whose entire surface has been mirror-finished by heating.
  • the optical element of the present disclosure preferably comprises a light transmitting portion and a flange portion extending outwardly therefrom.
  • the optical element of the present disclosure has a light transmission portion corresponding to the lens portion and a flange portion extending outwardly therefrom.
  • the flange portion corresponds to the outermost edge portion of the optical element that does not contribute to light transmission when the optical element is in use, and is a portion of the optical element that can have, for example, a substantially constant thickness.
  • FIG. 10 shows a schematic diagram when the optical element 10 is a lens. Although only one example of the optical element, FIG. 10 shows a perspective view and a plan view of the appearance of a biconvex lens as the optical element 10 .
  • the light-transmitting portion 11 has a peripheral region (for example, a “region including the outermost peripheral portion” in the light-transmitting portion) and an inner region inside the peripheral region. is different. That is, as shown in the schematic diagram of FIG. 11, the amount of internal strain may be different between the inner region 11A corresponding to the substantial light transmitting portion of the light transmitting portion 11 and the surrounding region 11B. Note that the inner region and the surrounding region may correspond to regions that are adjacent to each other and integrally contact each other in a plan view.
  • the lower diagram of FIG. 11 illustrates the relative magnitude relationship of internal strain. In the lower diagram of FIG. 11, relatively dark colored portions indicate relatively large internal strain, and relatively light colored portions indicate relatively small or no internal strain.
  • the internal strain feature of FIG. 11 is preferably related to the manufacturing method described above.
  • internal strains associated with mold pressing which is performed with little material loss, may be introduced into the optical element.
  • the internal strain shown in FIG. 11 is obtained by mold press molding the material without obtaining an approximate lens shape by grinding or the like prior to mold press molding (preferably, mold press molding the material whose entire surface has been heat-treated as a mirror surface treatment. It can be said that this is an example of the internal strain that is characteristic of the optical element obtained by
  • the "surrounding area" may correspond to an area including the outermost peripheral portion of the light transmitting portion 11 in plan view.
  • D the diameter of the circular shape of the light transmitting portion 11 in plan view
  • the light transmitting region outside the concentric circular region having a diameter of at least 0.5D is referred to as the "surrounding region.” can be regarded as
  • the planar shape of the inner region may be a shape in which each side of a polygon such as a square curves toward the center and/or the periphery.
  • the planar shape of the inner region is a shape in which each side of a polygon such as a square (for example, a quadrangle) is curved relatively inward so that each side has an extreme value in the middle region or central portion.
  • the lighter colored portion may correspond to the inner region and the darker colored portion may correspond to the peripheral region.
  • the outer shape of the inner region (that is, the shape of the inner region in plan view) may be considered to correspond to the outer shape of the columnar material before mold press forming that forms the optical element. Then, the distortion-free region of the square or other polygonal columnar material may be processed by mold press molding into a shape in which each side of the square or other polygon is curved toward the center or the periphery. In such a case, in the light-transmitting portion, the internal strain may be different between a region corresponding to the outer shape of the columnar material (hereinafter also referred to as a “material-corresponding region”) and other regions. That is, as shown in FIG.
  • the lens of the area corresponding to the dimension of the region corresponding to the material The amount of internal distortion is different between the surface and the lens surface of the other area.
  • the internal strain in the light transmitting portion can be grasped, for example, by measuring retardation (phase difference).
  • a commercially available measuring instrument may be used to measure the retardation (phase difference).
  • a model PA-300-MT-NIR850 manufactured by Photonic Lattice Co., Ltd. may be used to measure retardation (phase difference). With such a retardation measuring instrument, it is possible to grasp the internal strain of the light transmitting portion (that is, the distribution of internal strain as shown in the lower diagram of FIG. 11).
  • the region corresponding to the material of the light transmitting portion in plan view can be a quadrangle such as a square.
  • the amount of internal strain may be different between the area corresponding to the dimension of the square material corresponding region in plan view and the area corresponding to the other light transmitting portion (that is, the surrounding region).
  • the internal strain in the square region area corresponding to the dimensions of the prismatic shape is about 8 to 12 nm, while the internal strain in the other region area (that is, the surrounding region area) is the maximum. It may be about 30 nm.
  • the amount of internal strain may be different between the inner region of the light transmitting portion and the peripheral region of the light transmitting portion, but the strain of the inner region including the central portion of the light transmitting portion is small. or substantially none.
  • the optical element of the present disclosure as a whole can have desired optical properties.
  • optical properties substantially comparable to those of optical elements manufactured through mechanical processing such as cutting, grinding and/or polishing (see FIG. 13) (e.g., optical elements manufactured through such mechanical processing)
  • Optical elements of the present disclosure may have optical transmission properties that are substantially similar to optical elements of the present disclosure.
  • the optical element has a stress distribution according to the plan view shape of the columnar material. That is, when the optical element is made of a glass material, the molded optical element may have a stress distribution according to the shape of the glass material due to the above-described manufacturing method. Further, in the optical element of the present disclosure, if it is desired to change the average value of the internal strain within the optical effective diameter, it can be handled by changing the dimensions of the columnar material. That is, when changing the average value of the internal strain within the optical effective diameter, it is possible to arbitrarily change the dimensions of the columnar material to be mirror-finished.
  • the material is not limited to a prismatic shape (that is, the planar shape of the area corresponding to the material of the light transmitting portion is not limited to a quadrangle such as a square). It may be a shaped material. That is, the planar shape of the region corresponding to the material of the light transmitting portion may be triangular, hexagonal, or circular. In such a case, a stress distribution corresponding to the triangular prism, hexagonal prism, or cylinder of such material can be obtained in the light transmitting portion of the optical element.
  • the optical element 10 of the present disclosure is preferably obtained by mold press molding from a single material 20, and thus has a unique configuration.
  • the light transmission portion 11 and the flange portion 12 are preferably made of the same material and integrated with each other.
  • the light transmitting portion 11 corresponding to the lens portion and the flange portion 12 outside thereof are made of the same material and are integrated with each other. Integrating with the same material in this manner increases the homogeneity and further improves the structural strength of the optical element 10 compared to the case where the light transmitting portion 11 and the flange portion 12 are integrated with different materials. can be.
  • the optical element 10 of the present disclosure is obtained under the condition that the load applied to the specular material during mold press molding is not excessive. Therefore, the optical element 10 can be suitably obtained through mold press molding from a chalcogenide material and/or a chalcogenide material or the like.
  • the optical element 10 of one preferred embodiment comprises a chalcogenide material and/or a chalcohalide material. It can also be said that the optical element 10 can comprise a so-called chalcogenide and/or chalcohalide glass. Most succinctly, it can be said that the optical element 10 preferably consists of a chalcogenide glass or a chalcohalide glass.
  • chalcogenide material as used herein broadly refers to at least one chalcogen element selected from the group consisting of S (sulfur), Se (selenium) and Te (tellurium) in group VIb of the periodic table. is one of the main components.
  • the chalcogenide material contains Ge (germanium), As (arsenic), Sb (antimony), P (phosphorus), Ga (gallium), In (indium), and Si (silicon).
  • chalcogenide material as used herein means a halogen element (at least one selected from the group consisting of fluorine, chlorine, bromine and iodine) or a compound thereof introduced into such a chalcogenide material.
  • the optical element 10 of the present disclosure can be suitably used as a lens for transmitting at least light rays in the infrared region.
  • the manufacturing method of the present disclosure may have its overall process in view of actual manufacturing.
  • the manufacturing methods of the present disclosure may be based on continuous processing.
  • the manufacturing method of the present disclosure may be based on batch processing.
  • an upper mold of the mold may additionally or alternatively be used to heat the columnar material for mirror surface treatment.
  • the columnar material may be mirror-finished by heating the upper mold using a heating coil built into the upper mold and/or a heat medium flowing through the heat medium pipe of the upper mold.
  • a heating means provided separately from the upper mold may be used.
  • the upper mold may be heated using a heating means arranged outside the upper mold to perform the mirror surface treatment.
  • the present disclosure is not limited to this.
  • the present disclosure can be applied in the same way even when the optical element 10, which is a meniscus lens, is mold-press molded.
  • the optical element according to the present disclosure can be used as various lenses.
  • the optical element according to the present disclosure may comprise a chalcogenide material and/or a chalcohalide material, etc. in certain preferred embodiments, so an infrared lens (a lens intended at least for far-infrared rays, by way of example only) ), a visible light lens, or a broadband transmission lens that transmits light in both the infrared region and the visible light region.

Abstract

Provided is a method for manufacturing an optical element. In this manufacturing method, a mirror surface conversion process for converting the entire surface of a columnar material to a mirror surface by heating is performed to form a mirror-surface-converted material from the columnar material, and the mirror-surface-converted material is subjected to mold press forming.

Description

光学素子の製造方法および光学素子Optical element manufacturing method and optical element
 本開示は、光学素子の製造方法および光学素子に関する。より具体的には、本開示は、光透過に少なくとも資する光学素子の製造方法に関すると共に、当該製造方法によって得られる光学素子にも関する。 The present disclosure relates to an optical element manufacturing method and an optical element. More specifically, the present disclosure relates to a method of manufacturing an optical element that at least contributes to light transmission, and also relates to an optical element obtained by the manufacturing method.
 従前から樹脂材料またはガラス材料等から成る光学素子が様々な用途に用いられている。例えば、光学素子は、レンズ、プリズム、ミラーまたは光ファイバー等として用いられている。 Optical elements made of resin materials, glass materials, etc. have been used for various purposes. For example, optical elements are used as lenses, prisms, mirrors or optical fibers.
 近年、光学素子は、防災および/もしくは防犯等の監視システム用の光センサー、または運転支援システム用の車載センサモジュールといった、光センシング分野などにも利用されている。 In recent years, optical elements have also been used in the optical sensing field, such as optical sensors for monitoring systems such as disaster prevention and/or crime prevention, or in-vehicle sensor modules for driving support systems.
特開2013-14455号公報JP 2013-14455 A 国際公開第2020/071071号WO2020/071071
 本願発明者は、従前の光学素子の製造では克服すべき課題があることに気付き、そのための対策を取る必要性を見出した。具体的には以下の課題があることを見出した。 The inventor of the present application realized that there were problems to be overcome in the production of conventional optical elements, and found the need to take countermeasures therefor. Specifically, it was found that there are the following problems.
 光学素子は、成形を通じて製造されたり、切削、研削および/または研磨による加工法で製造されたりする。研削および/または研磨によって光学素子を製造する場合、原料体から削り出して光学素子の最終形状を得るため、材料ロスが多い(図13)。 Optical elements are manufactured through molding or by processing methods involving cutting, grinding and/or polishing. When an optical element is manufactured by grinding and/or polishing, the final shape of the optical element is obtained by shaving it from a raw material, resulting in a large amount of material loss (FIG. 13).
 光学素子の成形として、モールドプレス成形が実施される場合がある。かかる成形では、金型を用いて素材に押圧力を加えるので、脆い材料から成る素材は積極的に使用し難い。 Mold press molding may be carried out as molding of optical elements. In such molding, since a pressing force is applied to the material using a mold, it is difficult to positively use a material made of a brittle material.
 本開示はかかる課題に鑑みて為されたものである。即ち、本開示の主たる目的は、材料ロス低減およびモールド成形の点でより好適な光学素子の製造方法を提供することである。 This disclosure has been made in view of such problems. That is, a main object of the present disclosure is to provide a method of manufacturing an optical element that is more suitable in terms of material loss reduction and molding.
 本願発明者は、従来技術の延長線上で対応するのではなく、新たな方向で対処することによって上記課題の解決を試みた。その結果、上記主たる目的が達成された光学素子の製造方法に至った。 The inventors of the present application have attempted to solve the above problems by dealing with them in a new direction, rather than dealing with them on the extension of the conventional technology. As a result, a method for manufacturing an optical element has been provided that achieves the above main object.
 本開示では、柱状素材の表面全体を加熱で鏡面化させる鏡面化処理を行って該柱状素材から鏡面化素材を形成し、該鏡面化素材をモールドプレス成形に付す、光学素子の製造方法が提供される。 In the present disclosure, a method for manufacturing an optical element is provided, in which the entire surface of a columnar material is subjected to a mirror-finishing treatment for mirror-finishing by heating, a mirror-finished material is formed from the columnar material, and the mirror-finished material is subjected to mold press molding. be done.
 また、本開示では、上記製造方法によって得られる光学素子も提供される。本開示の光学素子は、光透過部、および該光透過部から外側に延在するフランジ部を有して成り、前記光透過部では、周囲領域と該周囲領域よりも内側の内側領域とで内部歪が異なる。 The present disclosure also provides an optical element obtained by the above manufacturing method. The optical element of the present disclosure includes a light transmitting portion and a flange portion extending outwardly from the light transmitting portion. Different internal strain.
 本開示の製造方法では、材料ロス低減およびモールド成形の点で光学素子をより好適に得ることができる。 In the manufacturing method of the present disclosure, an optical element can be obtained more preferably in terms of material loss reduction and molding.
 材料ロス低減の点について、本開示の製造方法は、素材の材料損失を低減した条件で光学素子を製造できる。モールドプレス成形に用いられる素材は柱状形状ゆえ、当該成形に先立って素材を研削などによって光学素子形状に比較的近い形状を予め得ておく必要がない。例えば、レンズなどの光学素子を製造する場合、球状またはそれを扁平したようなレンズ近似形状を研削などで予め得ておく必要がなく、光学素子の材料ロスをより少なくできる。 Regarding the reduction of material loss, the manufacturing method of the present disclosure can manufacture an optical element under conditions where the material loss of the raw material is reduced. Since the material used for mold press molding has a columnar shape, it is not necessary to obtain a shape relatively close to the shape of the optical element by grinding the material prior to the molding. For example, when manufacturing an optical element such as a lens, it is not necessary to obtain in advance a spherical or flattened lens-like shape by grinding or the like, and the material loss of the optical element can be further reduced.
 また、モールド成形の点については、本開示の製造方法は、素材に対して過度な押圧力を加えずに光学素子を成形できる。これにつき、本開示では、モールドプレス成形に先立って加熱による鏡面化処理を行う。鏡面化処理自体は、光学素子の透過率に寄与し得るが、本開示では鏡面化処理を柱状素材の表面全体の加熱により行う。この表面全体による加熱の鏡面化処理は、元の柱状素材と比べてその全体形状を光学素子の最終形状により近づけることができるので、モールドプレス成形時に素材に加えられる過度な押圧力を減じることが可能となる。よって、素材が脆い材料から成る場合であっても、より積極的にモールドプレス成形に使用できる。 In addition, in terms of molding, the manufacturing method of the present disclosure can mold optical elements without applying excessive pressing force to the material. For this reason, in the present disclosure, mirror surface treatment is performed by heating prior to mold press molding. Although the specular treatment itself can contribute to the transmittance of the optical element, in the present disclosure, the specular treatment is performed by heating the entire surface of the columnar material. This mirror-finishing treatment by heating the entire surface can bring the overall shape closer to the final shape of the optical element compared to the original columnar material, so it is possible to reduce the excessive pressing force applied to the material during mold press molding. It becomes possible. Therefore, even if the raw material is made of a brittle material, it can be used more positively for mold press molding.
光学素子としてのレンズを模式的に示した断面図(図1(A):両凸レンズ、図1(B):両凹レンズ、図1(C):メニスカス・レンズ)Cross-sectional view schematically showing a lens as an optical element (Fig. 1(A): biconvex lens, Fig. 1(B): biconcave lens, Fig. 1(C): meniscus lens) 本開示の製造方法の一部を説明するための模式的断面図Schematic cross-sectional view for explaining a part of the manufacturing method of the present disclosure モールドプレス成形で用いる金型の構成を模式的に例示した断面図Cross-sectional view schematically illustrating the configuration of a mold used in mold press molding 本開示の製造方法におけるモールドプレス成形を模式的に例示した工程断面図Process cross-sectional views schematically illustrating mold press molding in the manufacturing method of the present disclosure モールドプレス成形で用いる非スリーブ型の金型の構成を模式的に例示した断面図Cross-sectional view schematically illustrating the configuration of a non-sleeve mold used in mold press molding 本開示の製造方法におけるモールドプレス成形を模式的に例示した工程断面図(非スリーブ型の金型使用)Process cross-sectional view schematically illustrating mold press molding in the manufacturing method of the present disclosure (using a non-sleeve mold) 「金型を利用した鏡面化処理の態様」を説明するための模式的な断面図Schematic cross-sectional view for explaining "aspect of mirror surface treatment using a mold" 「金型を用いた連続的処理の態様」を説明するための模式的な断面図Schematic cross-sectional view for explaining "a mode of continuous processing using a mold" 光学素子としてのレンズを模式的に示した断面図(図9(A):両凸レンズ、図9(B):両凹レンズ、図9(C):メニスカス・レンズ)Cross-sectional view schematically showing a lens as an optical element (Fig. 9(A): biconvex lens, Fig. 9(B): biconcave lens, Fig. 9(C): meniscus lens) 本開示の光学素子に係る例示形態を示す斜視図および平面図3A and 3B are a perspective view and a plan view showing an exemplary embodiment of the optical element of the present disclosure; FIG. 本開示に係る光学素子の光透過部における内部歪の特徴を例示的に示した模式図Schematic diagrams exemplarily showing characteristics of internal strain in a light transmitting portion of an optical element according to the present disclosure 本開示に従ってメニスカス・レンズをモールドプレス成形する態様を模式的に示す断面図FIG. 2 is a cross-sectional view schematically illustrating the manner in which a meniscus lens is mold-pressed in accordance with the present disclosure; 研削・研磨処理によって原料体から削り出してレンズを製造する例示態様を説明するための模式図(従来技術)Schematic diagram for explaining an exemplary mode of manufacturing a lens by shaving from a raw material by grinding and polishing (prior art)
 以下では、一実施形態に係る光学素子の製造方法およびその製造方法で得られる光学素子をより詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細な説明、或いは実質的に同一の構成に対する重複説明を省略する場合がある。これは、説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。 In the following, a method for manufacturing an optical element according to one embodiment and an optical element obtained by the manufacturing method will be described in more detail. However, more detailed description than necessary may be omitted. For example, detailed descriptions of well-known matters or redundant descriptions of substantially the same configurations may be omitted. This is to avoid unnecessary verbosity of the description and to facilitate understanding by those skilled in the art.
 出願人は、当業者が本開示を十分に理解するために添付図面および以下の説明を提供するのであって、これらによって特許請求の範囲に記載の主題を限定することを意図するものではない。なお、図面における各種の要素は、本開示の製造方法および光学素子の理解のために模式的かつ例示的に示したにすぎず、外観および寸法比などは実物と異なり得る。 Applicants provide the accompanying drawings and the following descriptions for the full understanding of the present disclosure by those skilled in the art, and are not intended to limit the claimed subject matter. Various elements in the drawings are only schematically and exemplarily shown for understanding of the manufacturing method and the optical element of the present disclosure, and the external appearance, dimensional ratios, etc. may differ from the actual ones.
 本明細書で直接的または間接的に用いる「上方向」および「下方向」は、それぞれ、図中における上方向および下方向に相当する。ある好適な態様では、鉛直方向下向き(すなわち、重力が働く方向)が「下方向」に相当し、その逆向きが「上方向」に相当すると捉えることができる。 "Upward" and "downward" used directly or indirectly in this specification correspond to the upward and downward directions in the drawings, respectively. In a preferred embodiment, the downward vertical direction (that is, the direction in which gravity acts) corresponds to the "downward direction", and the opposite direction corresponds to the "upward direction".
 本明細書において「断面図」は、光学素子の厚み方向に沿って切り取って得られる仮想断面に基づいている。換言すれば、光学素子の厚みに沿って切り取った断面における見取図が「断面図」に相当する。典型的には、“光学素子の厚み方向”は、光学素子における光透過方向に相当し得る。また、本明細書で用いる「平面視」とは、上記厚みの方向に沿って対象物を上側または下側からみた場合の見取図に基づいている。 In this specification, the "cross-sectional view" is based on a virtual cross section obtained by cutting along the thickness direction of the optical element. In other words, a sketch of a cross section cut along the thickness of the optical element corresponds to the "cross-sectional view". Typically, the "thickness direction of the optical element" can correspond to the direction of light transmission in the optical element. Further, the term “planar view” used in this specification is based on a sketch of the object viewed from above or below along the thickness direction.
 本明細書で言及する各種の数値およびその範囲は、「未満」または「より多い/より大きい」などの特段の用語が付されない限り、下限または上限の数値それ自体も含むことを意図している。つまり、例えば1~10といった数値範囲を例にとれば、下限値の“1”を含むと共に、上限値の“10”も含むものとして解釈され得る。 Various numerical values and ranges referred to herein are also intended to include the lower or upper numerical value itself, unless specific terms such as "less than" or "greater than/greater than" are provided. . That is, taking a numerical range of 1 to 10 as an example, it can be interpreted as including the lower limit of "1" and the upper limit of "10".
[本開示の製造方法]
 本開示は、光学素子を製造する方法に関する。特に、本開示は、モールドプレス成形によって素材から光学素子を製造する。モールドプレス成形は、金型を用いて素材を押圧して成形する手法であるところ、その成形手法に関連する事項に本開示の特徴がある。
[Manufacturing method of the present disclosure]
The present disclosure relates to methods of manufacturing optical elements. In particular, the present disclosure manufactures optical elements from blanks by mold pressing. Mold press molding is a method of pressing and molding a material using a mold, and the present disclosure is characterized by items related to the molding method.
 具体的には、柱状素材の表面全体を加熱で鏡面化させる鏡面化処理を行って柱状素材から鏡面化素材を形成し、その加熱による鏡面化処理で得られた素材、すなわち、鏡面化素材をモールドプレス成形に付す。 Specifically, the entire surface of the columnar material is subjected to mirror-finishing treatment by heating to form a mirror-finished material from the columnar material, and the material obtained by the mirror-finishing treatment by heating, that is, the mirror-finished material is obtained. It is subjected to mold press molding.
 本明細書において「光学素子」とは、広義には、光を透過させるための部材を意味している。よって、光学素子は、例えばレンズ、プリズムまたはミラーであってよい。さらにいえば、光学素子は、光透過に関連するウィンドウ品などであってもよい。狭義には「光学素子」は、レンズに代表されるように光を集束または発散させるための部材を意味している(図1参照)。光学素子10がレンズである場合、光学素子10の“光透過部”はレンズ部分(少なくとも光学有効面を含んだ“R面”の部分)に相当する。 In this specification, the term "optical element" broadly means a member for transmitting light. Thus, the optical elements may be lenses, prisms or mirrors, for example. Furthermore, the optical element may be a window item or the like related to light transmission. In a narrow sense, an "optical element" means a member for converging or diverging light, such as a lens (see FIG. 1). When the optical element 10 is a lens, the "light transmitting portion" of the optical element 10 corresponds to the lens portion (at least the "R surface" portion including the optically effective surface).
 本開示の製造方法において、モールドプレス成形に用いる素材は、柱状素材の表面全体の加熱によって当該柱状素材から得られる鏡面化素材である。つまり、モールドプレス成形に用いられる素材は、加熱によって表面全体が鏡面化された素材である。 In the production method of the present disclosure, the material used for mold press molding is a mirror-finished material obtained from the columnar material by heating the entire surface of the columnar material. That is, the material used for mold press molding is a material whose entire surface has been mirror-finished by heating.
 図2は、本開示における鏡面化処理の例示的な態様を模式的に示している。図2に示されるように、モールドプレス成形に供される素材は柱状素材20であり、その表面全体を加熱して鏡面化素材25を得る。次いで、鏡面化素材25は、適当な金型を用いてモールドプレス成形に付される。 FIG. 2 schematically shows an exemplary aspect of the mirror surface treatment in the present disclosure. As shown in FIG. 2, the material to be subjected to mold press molding is a columnar material 20 whose entire surface is heated to obtain a mirror-finished material 25 . Next, the mirror-finished material 25 is subjected to mold press molding using a suitable mold.
 柱状素材20は、その名称の通り、全体として柱状形状を有する素材である。つまり、加熱により鏡面化されることになる素材は、所定方向における断面形状(例えば、光学素子において厚さ方向に直交する方向に沿って切り取った断面形状)が実質的に一定となるような三次元形状を有する素材であってよい。かかる柱状素材20は、例えば、三角柱、四角柱、六角柱、または、円柱などの全体形状となっていてよい。 The columnar material 20 is, as its name suggests, a material having a columnar shape as a whole. That is, the material to be mirror-finished by heating has a three-dimensional shape in which the cross-sectional shape in a predetermined direction (for example, the cross-sectional shape cut along the direction perpendicular to the thickness direction of the optical element) is substantially constant. It may be a material having an original shape. Such a columnar material 20 may have an overall shape such as a triangular column, a square column, a hexagonal column, or a cylinder, for example.
 柱状素材20は、好ましくは単一品である。このような素材はインゴットから得ることができる。柱状素材をインゴットから得る場合、その材料ロスは小さくなる。換言すれば、本開示の製造方法で用いる素材20は、最終の光学素子形状に相対的に近い形状を得るため研削などを行う必要がなく、材料ロスは小さい。例えば、モールドプレス成形に際して、球状またはそれを扁平したようなレンズ近似形状の素材を研削などで予め得ておく必要がなく、その分だけ材料ロスは小さい。 The columnar material 20 is preferably a single item. Such materials can be obtained from ingots. When the columnar material is obtained from an ingot, the material loss is small. In other words, the material 20 used in the manufacturing method of the present disclosure does not require grinding or the like to obtain a shape relatively close to the final optical element shape, and material loss is small. For example, in mold press molding, it is not necessary to grind a spherical or flattened lens-like material in advance, and material loss is reduced accordingly.
 柱状素材は多角柱形状または円柱形状であってよい。つまり、加熱による鏡面化に供される素材が角柱素材または円柱素材となっていてよい。角柱素材は、その形状が比較的シンプルであり、インゴットから簡易に得ることができる。また、角柱素材は、モールド成形時に金型面と素材との間に密閉空間ができにくい。よって、R面の大きい素材等に比べて、角柱素材はモールド成形時にいわゆる“エア溜まり”が生じにくい。角柱素材は、その平面視形状が例えば四角形または略四角形となっていてよい。本明細書において四角形とは、正方形および矩形などの形状を意味している。一方、円柱素材は、その平面視形状が円形または略円形となっていてよい。 The columnar material may have a polygonal columnar shape or a cylindrical columnar shape. In other words, the material to be subjected to the mirror-finishing by heating may be a prismatic material or a cylindrical material. Prismatic material has a relatively simple shape and can be easily obtained from an ingot. Also, with the prismatic material, it is difficult to form a closed space between the mold surface and the material during molding. Therefore, compared with a material having a large R surface, a prismatic material is less likely to cause so-called "air retention" during molding. The prismatic material may have, for example, a rectangular shape or a substantially rectangular shape in plan view. As used herein, quadrilateral means shapes such as squares and rectangles. On the other hand, the cylindrical material may have a circular or substantially circular shape in plan view.
 柱状素材は、例えばガラス材料を含んでいてよい。つまり、ガラス材料を含んで成る素材から鏡面化素材を得て、その鏡面化素材をモールドプレス成形に付してよい。ガラス材料は一般的に線膨張係数が大きく、モールドプレス成形において加熱時の膨張量および冷却時の収縮量が大きくなり、成形し難い。本開示の製造方法では、後述するように“加熱による鏡面化処理”によって素材に過度な押圧力が掛かるのをより回避しており、ガラス材料を含んだ素材をより積極的に採用できる。 The columnar material may contain, for example, a glass material. That is, a mirror-finished material may be obtained from a material comprising a glass material, and the mirror-finished material may be subjected to mold press molding. A glass material generally has a large coefficient of linear expansion, and in mold press molding, the amount of expansion during heating and the amount of shrinkage during cooling become large, making molding difficult. In the manufacturing method of the present disclosure, as will be described later, application of excessive pressing force to the material due to the "mirror surface treatment by heating" is further avoided, and materials containing glass materials can be more positively employed.
 本開示の製造方法において、鏡面化処理として行う加熱は、柱状素材を外側から全体的に加熱することにより行われる。つまり、柱状素材の一部の表面領域のみが加熱される局所的な加熱ではなく、柱状素材の表面領域を全体的に加熱する。好ましくは、柱状素材を構成する全表面を加熱して柱状素材を鏡面化処理する。このような鏡面化処理の加熱は、柱状素材の全体的な塑性変形に起因して、元の柱状素材と比べて素材の全体形状を光学素子の形状により近づけることができ、モールドプレス成形時に素材に加えられる押圧力を減じることができる。よって、素材が脆い材料から成る場合であっても、より積極的にモールドプレス成形に使用できる。 In the manufacturing method of the present disclosure, the heating performed as mirror surface treatment is performed by heating the entire columnar material from the outside. That is, instead of local heating in which only a partial surface area of the columnar material is heated, the entire surface area of the columnar material is heated. Preferably, the columnar material is mirror-finished by heating the entire surface of the columnar material. Due to the overall plastic deformation of the columnar material, the heating of such a mirror surface treatment can bring the overall shape of the material closer to the shape of the optical element compared to the original columnar material, and the material during mold press molding. can be reduced. Therefore, even if the raw material is made of a brittle material, it can be used more positively for mold press molding.
 鏡面化処理として行う加熱は、柱状素材の全周囲から行ってよい。つまり、柱状素材の加熱として、柱状素材の上方向、下方向および側方向の全てから柱状素材を加熱してよい。換言すれば、柱状素材の上面、下面および側面の全ての面が加熱下に置かれるように鏡面化の加熱処理を行ってよい。これにより、柱状素材の表面が局所的でなく全体的に加熱されることになり、モールドプレス成形される素材全体が光学素子の形状により近づき易くなる。なお、ここでいう「側方向」は、柱状素材の上方向およびその反対の下方向に沿った素材軸に対して垂直となる方向に相当する。  The heating performed as a mirror surface treatment may be performed from the entire periphery of the columnar material. That is, the columnar material may be heated from all of the upward, downward, and lateral directions of the columnar material. In other words, the mirror surface heat treatment may be performed so that all the top, bottom and side surfaces of the columnar material are heated. As a result, the surface of the columnar material is not locally heated but wholly heated, and the entire material to be press-molded can more easily approximate the shape of the optical element. The "lateral direction" here corresponds to a direction perpendicular to the material axis along the upward direction and the opposite downward direction of the columnar material.
 鏡面化処理では、加熱により柱状素材の表面全体を軟化させて柱状素材を鏡面化させることが好ましい。素材の全体形状を光学素子の形状により近づけ易くなり、本開示の効果がより顕在化し易いからである。このような鏡面化処理の加熱時間は、比較的短くてよい。つまり、柱状素材の中央部分に至るまでの軟化である必要はなく、少なくとも表面部分の軟化であってよいので加熱時間は短くてよい。具体的には、カルコゲナイドガラス(例えば新華光製IRG203)を含む柱状素材の場合、鏡面化処理の加熱時間は、ガラス点移温度(Tg)より高い温度で800秒以内、700秒以内、または650秒以内などであってよい。例えば、鏡面化処理の加熱に柱状素材を400秒~800秒、500秒~700秒、または550秒~650秒付してよい。 In the mirror-finishing treatment, it is preferable to soften the entire surface of the columnar material by heating to mirror-finish the columnar material. This is because the overall shape of the material can more easily approximate the shape of the optical element, and the effects of the present disclosure can be more easily realized. The heating time for such mirror finishing may be relatively short. In other words, the softening does not have to reach the central portion of the columnar material, and at least the surface portion may be softened, so the heating time may be short. Specifically, in the case of a columnar material containing chalcogenide glass (for example, IRG203 manufactured by Xinhuaguang), the heating time for the mirror surface treatment is 800 seconds or less, 700 seconds or less, or 650 seconds or less at a temperature higher than the glass transition temperature (Tg). It may be within seconds. For example, the columnar material may be subjected to heat for specular treatment for 400 seconds to 800 seconds, 500 seconds to 700 seconds, or 550 seconds to 650 seconds.
 本開示の製造方法において、柱状素材の表面全体を加熱処理することで得られる鏡面化素材は、滑面または光沢面を好ましく有している。つまり、鏡面化素材は、その鏡面として滑面または光沢面を好ましくは有し得る。特に、表面全体の加熱処理ゆえ(素材のエッジなどの局所的な加熱ではないので)、素材エッジなどの一部のみというよりもむしろ、鏡面化素材の表面全体が(すなわち、表面が全体的に)滑面または光沢面となり得るといえる。 In the production method of the present disclosure, the specular material obtained by heat-treating the entire surface of the columnar material preferably has a smooth surface or a glossy surface. That is, the specular material can preferably have a smooth or glossy surface as its specular surface. In particular, because of the heat treatment of the entire surface (rather than localized heating, such as the edge of the material), the entire surface of the mirrored material (i.e., the surface is ) can be smooth or glossy.
 鏡面化素材は、鏡面ゆえその表面粗さが低い。例示すると、鏡面化処理によって、鏡面化素材の表面粗さをRa50nm以下、好ましくはRa35nm以下、より好ましくはRa20nm以下にしてよい。つまり、本開示における「鏡面化処理」および/または「鏡面化素材」の“鏡面”は、その表面粗さとして、Ra50nm以下、好ましくはRa35nm以下、より好ましくはRa20nm以下となる鏡面程度を実質的に指している。表面粗さRaの下限値は特に制限はなく、例えばRa0nm(0を含まず)であってよい。本開示において“Ra”は、いわゆる算術平均粗さであり、その値は、鏡面化素材の外表面を成す少なくとも1つの面につき走査型白色干渉計(Zygo NewView)を用いて測定される値である。なお、かかる表面粗さRaの値は、鏡面化素材の表面の任意の10箇所(例えば、鏡面化素材を構成する面を少なくとも含む任意の10箇所)における測定値の平均値を採用してよい。 The mirror surface material has a low surface roughness due to its mirror surface. By way of example, the surface roughness of the mirror-finishing material may be reduced to Ra 50 nm or less, preferably Ra 35 nm or less, and more preferably Ra 20 nm or less by the mirror-finishing treatment. In other words, the “mirror surface” of “mirror treatment” and/or “mirror material” in the present disclosure is substantially a mirror surface with a surface roughness of Ra 50 nm or less, preferably Ra 35 nm or less, more preferably Ra 20 nm or less. pointing to The lower limit of the surface roughness Ra is not particularly limited, and may be Ra0 nm (not including 0), for example. In the present disclosure, "Ra" is the so-called arithmetic average roughness, which is a value measured using a scanning white light interferometer (Zygo NewView) for at least one surface forming the outer surface of the mirrored material. be. As the value of the surface roughness Ra, the average value of the measured values at 10 arbitrary points on the surface of the mirror-finished material (for example, 10 arbitrary points including at least the surface constituting the mirror-finished material) may be adopted. .
 加熱による鏡面化処理では、柱状素材をそのガラス転移温度Tgよりも高い温度に加熱してよい。つまり、柱状素材の材料または材質のガラス転移温度Tgよりも高い加熱条件で柱状素材の表面全体を加熱してよい。例えば、鏡面化処理として、柱状素材のガラス転移温度Tgよりも50~200℃高い加熱条件、より好ましくは100~190℃高い加熱条件で柱状素材を加熱して軟化させる。かかる加熱条件は、より効果的に柱状素材の表面全体を軟化させ易く、本開示の効果がより顕在化し易い。例えば、上記温度範囲の下限値よりも低い加熱温度の場合、十分な鏡面化が得られ難くなり、素材の鏡面不良が生じやすい一方、上記温度範囲の上限値よりも高い場合、モールドプレス成形で素材割れなどの現象が生じやすくなる。ここで本開示における「ガラス転移温度Tg」は、温度と試料の伸びの関係を示す熱膨張曲線から得られる値である。柱状素材の材質について例示しておくと、カルコゲナイド(例えば新華光製IRG203)のガラス転移温度Tgは例えば約266℃であり、カルコハライドのガラス転移温度Tgは例えば約375℃である。よって、カルコゲナイドを含んで成る柱状素材が用いられる場合、例えば約316℃~約466℃の加熱条件、好ましくは約366℃~約456℃の加熱条件で柱状素材の表面全体を加熱してよい。カルコハライドを含んで成る柱状素材が用いられる場合、例えば約425℃~約575℃の加熱条件、好ましくは約475℃~約565℃の加熱条件で柱状素材の表面全体を加熱してよい。 In the mirror surface treatment by heating, the columnar material may be heated to a temperature higher than its glass transition temperature Tg. That is, the entire surface of the columnar material may be heated under heating conditions higher than the material of the columnar material or the glass transition temperature Tg of the material. For example, as the specular treatment, the columnar material is softened by heating under heating conditions 50 to 200° C. higher than the glass transition temperature Tg of the columnar material, more preferably 100 to 190° C. higher. Such heating conditions tend to soften the entire surface of the columnar material more effectively, and the effects of the present disclosure are more likely to be manifested. For example, if the heating temperature is lower than the lower limit of the above temperature range, it is difficult to obtain a sufficient mirror surface, and defects in the mirror surface of the material are likely to occur. Phenomena such as material cracking are more likely to occur. Here, the "glass transition temperature Tg" in the present disclosure is a value obtained from a thermal expansion curve showing the relationship between temperature and sample elongation. For example, the glass transition temperature Tg of chalcogenide (for example, Xinhuaguang IRG203) is about 266°C, and the glass transition temperature Tg of chalcohalide is about 375°C. Therefore, when a pillar-shaped material comprising chalcogenide is used, the entire surface of the pillar-shaped material may be heated under heating conditions of, for example, about 316°C to about 466°C, preferably about 366°C to about 456°C. When a columnar material comprising a chalcohalide is used, the entire surface of the columnar material may be heated, for example, under heating conditions of about 425°C to about 575°C, preferably about 475°C to about 565°C.
 なお、本開示における「温度条件」は、柱状素材またはその周囲雰囲気の温度を指しているものの、簡易的または便宜的には、後述する加熱および/またはモールプレス成形に用いる装置などの設定温度(例えば、加熱手段および/または金型において設定される設定温度)とみなしてもよい。 Although the term "temperature condition" in the present disclosure refers to the temperature of the columnar material or its ambient atmosphere, for simplicity or convenience, the set temperature ( For example, the set temperature set in the heating means and/or the mold).
 本開示の製造方法は、表面全体が加熱処理されて得られた鏡面化素材をモールドプレス成形に付す。つまり、本開示の製造方法においては、モールドプレス成形に先立って、柱状素材の全表面を加熱で鏡面化させる鏡面化処理を行う。モールドプレス成形では、鏡面化素材から加圧変形を通じて光学素子が成形される。つまり、単一の鏡面化素材からモールドプレス成形によって、光学素子の光透過部とフランジ部とが一体的に成形され得る。 In the manufacturing method of the present disclosure, the mirror-finished material obtained by heat-treating the entire surface is subjected to mold press molding. In other words, in the manufacturing method of the present disclosure, prior to mold press molding, the entire surface of the columnar material is subjected to mirror-finishing treatment for mirror-finishing by heating. In mold press molding, an optical element is molded from a mirror-finished material through pressure deformation. In other words, the light transmitting portion and the flange portion of the optical element can be integrally molded from a single mirror-finished material by mold press molding.
 図3は、モールドプレス成形に用いる金型を示している。図示するように、本開示の製造方法で用いる金型50は、例えば、金型主要部である一対の上金型51と下金型52とから少なくとも構成されている。かかる上金型51と下金型52とは、相対的に近づくように又は離隔するように駆動可能となっており、それらの間で金型キャビティ56を形成する。この対を成す上金型51と下金型52との間で鏡面化素材が押圧変形させられることによって、光学素子の光透過部分が少なくとも形造られる。光学素子がレンズの場合、上金型51と下金型52から受ける押圧力によって鏡面化素材が変形し、光学素子の“要”であるレンズ部分の形状が得られる。図3に示すように、金型50は、金型スリーブ53を付加的に備えていてもよい。金型スリーブ53は、その名称から分かるように“筒形状”を有しており、金型主要部の外周面上に設けられる。金型スリーブ53は、上金側51と下金型52と共に金型キャビティ形成に資する金型部材であり、好ましくは、金型キャビティの外縁を境界付けるように作用する。 Fig. 3 shows a mold used for mold press molding. As illustrated, the mold 50 used in the manufacturing method of the present disclosure is composed of, for example, at least a pair of upper mold 51 and lower mold 52, which are main parts of the mold. The upper mold 51 and the lower mold 52 are drivable so as to approach or separate from each other, and form a mold cavity 56 therebetween. At least the light-transmitting portion of the optical element is formed by pressing and deforming the mirror-finishing material between the pair of upper mold 51 and lower mold 52 . When the optical element is a lens, the mirror surface material is deformed by the pressing force received from the upper mold 51 and the lower mold 52, and the shape of the lens portion, which is the "essential" of the optical element, is obtained. The mold 50 may additionally comprise a mold sleeve 53, as shown in FIG. The mold sleeve 53 has a "cylindrical shape" as its name suggests, and is provided on the outer peripheral surface of the main part of the mold. The mold sleeve 53 is a mold member that, together with the upper mold side 51 and the lower mold 52, contributes to forming the mold cavity, and preferably acts to bound the outer edges of the mold cavity.
 このような説明から分かるように、本明細書でいう「金型主要部」とは、金型キャビティの大部分の形成に寄与する主要な金型部材のことを意味している。一方、本明細書でいう「金型スリーブ」は、金型の胴部分の少なくとも一部を構成するように金型主要部の外周面に設けられる副的な作用を果たす金型部材のことを意味している。金型主要部の上金型と下金型と金型スリーブとで囲まれる空間によって金型キャビティが形成される場合、金型スリーブは、その金型キャビティの外縁を境界付けるための筒状の金型部材となっている。 As can be seen from this description, the "mold main part" as used herein means the main mold member that contributes to the formation of most of the mold cavity. On the other hand, the term "mold sleeve" as used herein refers to a mold member that plays a secondary function and is provided on the outer peripheral surface of the main part of the mold so as to constitute at least a part of the body of the mold. means. When the mold cavity is formed by the space surrounded by the upper mold, the lower mold, and the mold sleeve in the mold main part, the mold sleeve is a cylindrical shape that bounds the outer edge of the mold cavity. It is a mold member.
 例えば、金型キャビティは、その平面視形状が円形または略円形となっている。つまり、金型キャビティの外縁を境界付ける金型スリーブの内周面が、平面視で円形または略円形状を有していてよい。具体的には、例えば金型主要部の外周面が円柱状外面の形態を有し、それに対して円筒状の金型スリーブが設けられてよく、平面視で円形状または略円形状の金型キャビティがもたらされる。 For example, the mold cavity has a circular or substantially circular shape in plan view. That is, the inner peripheral surface of the mold sleeve bounding the outer edge of the mold cavity may have a circular or substantially circular shape in plan view. Specifically, for example, the outer peripheral surface of the main part of the mold has a form of a cylindrical outer surface, and a cylindrical mold sleeve may be provided for it, and the mold has a circular or substantially circular shape in plan view. A cavity is provided.
 このような金型を用いたモールドプレス成形は、鏡面化素材について特有な温度条件で行ってよい。例えば、モールドプレス成形は、鏡面化処理の加熱温度よりも低い温度条件で行ってよい。鏡面化素材の加圧変形がより好適なものとなり、光透過部とフランジ部とがより好適に一体的に成形された光学素子を得やすくなるからである。例えば、鏡面化処理の加熱温度の条件よりも好ましくは20℃~130℃低い温度条件、例えば鏡面化処理の加熱温度の条件よりも40℃~90℃低い温度条件でモールドプレス成形を行なってよい。別の切り口で捉えると、モールドプレス成形時の加熱条件よりも好ましくは20℃~130℃高い温度、例えばモールドプレス成形時の加熱条件よりも40℃~90℃高い温度条件で鏡面化処理の加熱を行ってよい。このような鏡面化処理の加熱は、柱状素材の表面を全体的に好適に軟化させ易く、本開示の効果がより顕在化し易い。 Mold press molding using such a mold may be performed under temperature conditions specific to mirror-finished materials. For example, mold press molding may be performed under temperature conditions lower than the heating temperature of the mirror surface treatment. This is because the pressure deformation of the specular surface material becomes more preferable, and it becomes easier to obtain an optical element in which the light transmission portion and the flange portion are more preferably integrally molded. For example, mold press molding may be performed under temperature conditions that are preferably 20° C. to 130° C. lower than the heating temperature conditions for the mirror-finishing treatment, for example, under temperature conditions that are 40° C. to 90° C. lower than the heating temperature conditions for the mirror-finishing treatment. . From another point of view, the heating conditions for mirror finishing are preferably 20° C. to 130° C. higher than the heating conditions during mold press molding, for example, 40° C. to 90° C. higher than the heating conditions during mold press molding. may be performed. Heating for such a mirror surface treatment tends to favorably soften the surface of the columnar material as a whole, and the effects of the present disclosure are more likely to be manifested.
 柱状素材のガラス転移温度との関係でいえば、モールドプレス成形は、柱状素材のガラス転移温度よりも高い温度で行ってよい。例えば、柱状素材のガラス転移温度よりも好ましくは40℃~150℃高い温度条件、例えば柱状素材のガラス転移温度よりも60℃~100℃高い温度条件でモールドプレス成形を行ってよい。加熱に基づく鏡面化処理で得られた鏡面化素材がより好適に塑性変形し得るからである。 In terms of the relationship with the glass transition temperature of the columnar material, mold press molding may be performed at a temperature higher than the glass transition temperature of the columnar material. For example, the mold press molding may be performed under temperature conditions preferably 40° C. to 150° C. higher than the glass transition temperature of the columnar material, for example, 60° C. to 100° C. higher than the glass transition temperature of the columnar material. This is because the specular-finishing material obtained by the specular-finishing treatment based on heating can be more suitably plastically deformed.
 本開示の製造方法では、モールドプレス成形は、不活性雰囲気下で行ってよい。例えば、モールドプレス成形の雰囲気条件として窒素雰囲気を用いてよい。つまり、窒素ガスが大部分を占める雰囲気下で鏡面化素材のモールドプレス成形を行ってよい。例えば、酸素濃度が10ppm以下となるような窒素雰囲気であってよい。 In the manufacturing method of the present disclosure, mold press molding may be performed under an inert atmosphere. For example, a nitrogen atmosphere may be used as the atmosphere condition for mold press molding. In other words, the mold press molding of the mirror-finished material may be performed in an atmosphere in which nitrogen gas accounts for the majority. For example, it may be a nitrogen atmosphere with an oxygen concentration of 10 ppm or less.
 次に、図4を参照してモールドプレス成形を経時的に説明する。図4に示されるモールドプレス成形では、上金型と下金型との間に形成される金型キャビティで成形される光学素子のフランジ部の端面を金型転写に付す。 Next, mold press molding will be described chronologically with reference to FIG. In the mold press molding shown in FIG. 4, the end face of the flange portion of the optical element molded in the mold cavity formed between the upper mold and the lower mold is subjected to mold transfer.
 まず、図4(A)に示すように、鏡面化素材25が金型50に投入された状態を得る。つまり、図示するように、例えば上金型51と下金型52と金型スリーブ53とで囲まれる金型キャビティ56に鏡面化素材25が入れられた状態を得る。 First, as shown in FIG. 4(A), a state in which the specular material 25 is put into the mold 50 is obtained. That is, as shown in the figure, a state is obtained in which the mirror-finished material 25 is placed in a mold cavity 56 surrounded by, for example, an upper mold 51, a lower mold 52, and a mold sleeve 53. FIG.
 鏡面化素材25は、単一品の素材であってよい。かかる鏡面化素材25は、その外表面として、研削もしくは研磨などの機械的な工具および/または液体処理(特に化学液体を素材に接触させて鏡面を得るような処理、例えば酸性域などpH調整された化学研磨液を用いた化学処理)などに依らず得られた鏡面を好ましくは有している。そのような鏡面に関連して、鏡面化素材25の全体形状は、元の柱状素材と比べると光学素子の最終形状により近づいた形状を有し得る。つまり、本開示においては、あくまでも加熱によって表面全体を鏡面化処理しており、それゆえ、本開示における鏡面化処理は好ましくは非機械的または非化学的な処理といえる。 The mirror surface material 25 may be a single material. Such a mirror-finished material 25 has, as its outer surface, a mechanical tool such as grinding or polishing and/or a liquid treatment (especially a treatment that brings a chemical liquid into contact with the material to obtain a mirror surface, such as a pH adjustment such as an acid range). It preferably has a mirror surface obtained without any chemical treatment using a chemical polishing liquid. In connection with such a mirrored surface, the overall shape of the mirrored blank 25 may have a shape that more closely approximates the final shape of the optical element compared to the original columnar blank. That is, in the present disclosure, the entire surface is mirror-finished by heating, and therefore the mirror-finishing treatment in the present disclosure is preferably a non-mechanical or non-chemical treatment.
 金型50に投入された鏡面化素材25は、モールドプレス成形において、加熱された金型50から押圧力を受けて変形に付される。つまり、鏡面化素材25は、金型50の熱によって加熱されつつ、図4(B)および図4(C)に示すように、金型50から受ける押圧力で変形し、所望形状にされる。より具体的には、金型50から受ける押圧力によって単一の鏡面化素材25が塑性変形し、金型50(特に上金型51および下金型52)の内面形状が鏡面化素材25に転写されることで当該素材25から光透過部とフランジ部とが一体的に得られる。なお、柱状素材が角柱素材に相当し、その表面全体の加熱によって得られた鏡面化素材から両凸レンズを形成する場合、金型内の鏡面化素材25は、その上面または下面に不都合な“エア溜まり”を生じさせにくいといった利点がもたされ易い。 The mirror-finished material 25 put into the mold 50 is deformed by being pressed by the heated mold 50 during mold press molding. That is, the specular surface material 25 is heated by the heat of the mold 50, and deformed by the pressing force received from the mold 50 as shown in FIGS. 4(B) and 4(C) into a desired shape. . More specifically, the single mirror-finishing material 25 is plastically deformed by the pressing force received from the mold 50 , and the inner surface shape of the mold 50 (especially the upper mold 51 and the lower mold 52 ) changes to the mirror-finishing material 25 . A light transmitting portion and a flange portion are integrally obtained from the material 25 by transferring. In addition, when the columnar material corresponds to a prismatic material and the biconvex lens is formed from the mirror-finished material obtained by heating the entire surface thereof, the mirror-finished material 25 in the mold has an inconvenient "air" on its upper or lower surface. It is likely to have the advantage of being less likely to cause accumulations.
 モールドプレス時に塑性変形する鏡面化素材25は外側へと広がるように変形した後、金型スリーブ53に接することになる(図4(D)参照)。つまり、平面視で円形状または略円形状を有する金型スリーブ53の内周面58に素材25が接することになる。モールドプレス成形では、このように鏡面化素材の端面全周に対して金型転写が行われる。端面全周の金型転写では、光学素子のフランジ形状、すなわち、光学素子の周縁輪郭が所望の形状に整い易くなる。 The mirror-finished material 25, which is plastically deformed during mold pressing, is deformed so as to expand outward, and then comes into contact with the mold sleeve 53 (see FIG. 4(D)). That is, the material 25 comes into contact with the inner peripheral surface 58 of the mold sleeve 53 having a circular shape or a substantially circular shape in plan view. In mold press molding, mold transfer is performed on the entire circumference of the end surface of the mirror-finished material. In mold transfer of the entire periphery of the end surface, the flange shape of the optical element, that is, the peripheral edge contour of the optical element can be easily arranged in a desired shape.
 モールドプレス時において、鏡面化素材の変形は、金型から受ける押圧力によってもたらされる。本開示の製造方法では、素材に加えられ得る押圧力は、不都合に過度にならない圧力にすることができる。鏡面化素材は、上述の“表面全体の加熱”に起因して、好ましくは元の柱状素材と比べて全体形状(特に全体表面または全外表面が成す形状)が最終的な光学素子により近づいた形状となっているからである。よって、素材が脆い材料から成る場合であっても、それをより積極的にモールドプレス成形に使用できる。例えば、カルコゲナイド材料および/またはカルコハライド材料といったガラス材料は、光学特性の点で優れたレンズ材料である一方、押圧力に脆いのでモールドプレス成形に通常適していないと考えられていた。本開示の製造方法では、そのようなガラス材料であっても使用可能である。なお、モールドプレス成形時に鏡面化素材に掛かる負荷が過度とならないことは、モールドプレス成形に先立って素材を研削などして光学素子の形状に相対的に近い形状(例えば、レンズ近似形状)へと素材を予め調製しておく必要がないことを意味する。つまり、素材の材料ロスが結果として減じられることになり、そのような観点からも、カルコゲナイド材料および/またはカルコハライド材料などのガラス材材を本開示では採用し易い。 During mold pressing, the deformation of the mirror surface material is caused by the pressing force received from the mold. In the manufacturing method of the present disclosure, the pressing force that can be applied to the material can be a pressure that is not undesirably excessive. Due to the "heating of the entire surface" described above, the mirrored material preferably has an overall shape (especially the shape formed by the entire surface or the entire outer surface) that is closer to the final optical element compared to the original columnar material. This is because it has a shape. Therefore, even if the raw material is made of a brittle material, it can be used more positively for mold press molding. For example, glass materials such as chalcogenide materials and/or chalcohalide materials have been thought to be generally unsuitable for mold press molding because they are brittle under pressure, although they are excellent lens materials in terms of optical properties. Even such a glass material can be used in the manufacturing method of the present disclosure. In addition, the fact that the load applied to the mirror surface material during mold press molding is not excessive is that the material is ground prior to mold press molding to a shape relatively close to the shape of the optical element (for example, a lens approximate shape). This means that the material does not need to be prepared in advance. In other words, the material loss of the raw material is reduced as a result, and from such a point of view as well, it is easy to employ a glass material such as a chalcogenide material and/or a chalcohalide material in the present disclosure.
 ガラス材料(例えばカルコゲナイド材料および/またはカルコハライド材料)を含んで成る鏡面化素材は、機械的な鏡面化処理で得られた素材の場合と比べ、モールドプレス成形の加圧力を例えば少なくとも5%減じることができる。ある態様では、機械的な鏡面化処理で得られた素材の場合と比べ、加熱処理で得られた鏡面化素材に加えられるモールドプレス成形圧力を5%~50%減または10%~40%減とすることができる。 A mirror-polished material comprising a glass material (e.g., a chalcogenide material and/or a chalcohalide material) reduces the pressing force of the mold press by, for example, at least 5% compared to a material obtained by mechanical mirror-finishing. be able to. In one aspect, the mold press pressure applied to the heat-treated mirror-polished material is reduced by 5% to 50%, or 10% to 40%, as compared to the mechanically mirror-polished material. can be
 所望に金型転写された鏡面化素材25は、モールドプレスの最終段階で離型に付される。つまり、モールドプレスにより塑性変形した鏡面化素材は、最終的には除荷および冷却後に金型から取り出され、所望の光学素子10として供される(図4(E)参照)。 The mirror-finished material 25 that has been desirably transferred to the mold is released from the mold at the final stage of mold pressing. That is, the mirror-finished material that has been plastically deformed by the mold press is finally removed from the mold after unloading and cooling, and is provided as the desired optical element 10 (see FIG. 4(E)).
 本開示の製造方法は、種々の態様で具現化することができる。 The manufacturing method of the present disclosure can be embodied in various modes.
(非コバの態様)
 かかる態様は、金型スリーブを用いずモールドプレス成形を行う。つまり、モールドプレス成形において、上金型と下金型との間に形成される金型キャビティで成形される光学素子のフランジ部の端面を金型転写に付さない。金型としては、例えば図5に示されるような非スリーブ型の金型50を用いてよい。図示されるように、非スリーブ型の金型50は、主として上金型51および下金型52から構成され、スリーブ部材(例えば、図3に示される金型スリーブ53)を備えていない。
(Aspect of non-edge)
In such a mode, mold press molding is performed without using a mold sleeve. That is, in mold press molding, the end face of the flange portion of the optical element molded in the mold cavity formed between the upper mold and the lower mold is not subjected to mold transfer. As the mold, for example, a non-sleeve mold 50 as shown in FIG. 5 may be used. As shown, the non-sleeve mold 50 is primarily composed of an upper mold 51 and a lower mold 52 and does not include a sleeve member (such as mold sleeve 53 shown in FIG. 3).
 この態様では、鏡面化素材を上金型と下金型の間に投入した際に上下型に接触していない素材の外周部が金型転写に付されない。例えば図6の模式的な工程図に示すように、金型スリーブへの転写を行うことなく、モールドプレス成形を行う。これは、図4で説明した態様と同様にモールドプレス成形を行うものの、その際に鏡面化素材の端面全周を成形転写に付さないことを意味している。 In this aspect, when the mirror-finished material is put between the upper mold and the lower mold, the outer peripheral portion of the material that is not in contact with the upper and lower molds is not subjected to mold transfer. For example, as shown in the schematic process diagram of FIG. 6, mold press molding is performed without transferring to a mold sleeve. This means that although mold press molding is performed in the same manner as in the embodiment described with reference to FIG.
 具体的には、金型50に投入された鏡面化素材25(図6(A)参照)は、金型50の熱によって加熱されつつ、金型50から受ける押圧力で変形する(図6(B)および図6(C)参照)。特に金型50の上金型51および下金型52から押圧力を受ける鏡面化素材25は外側へと広がるように塑性変形する。つまり、表面全体を加熱で鏡面化させる鏡面化処理で得られた素材は、金型50から受ける押圧力に起因して塑性変形する。このような塑性変形を通じて所望に金型転写された鏡面化素材25(図6(D))は、モールドプレス成形の最終段階で離型に付され、光学素子10として取り出される(図6(E)参照)。かかる態様では、モールドプレス成形時に塑性変形する鏡面化素材25は金型スリーブ53(図4(D)参照)に押し当てられず、それゆえ、鏡面化素材の端面全周は金型転写されない。よって、得られる光学素子10の最外端面(特に、フランジ部の端面)は、例えば丸みを帯びた形状を有し得る(図6(E)参照)。 Specifically, the mirror-finished material 25 (see FIG. 6A) put into the mold 50 is heated by the heat of the mold 50 and deformed by the pressing force received from the mold 50 (see FIG. 6 ( B) and FIG. 6(C)). In particular, the mirror-finished material 25, which receives pressure from the upper mold 51 and the lower mold 52 of the mold 50, is plastically deformed so as to expand outward. In other words, the material obtained by the mirror-finishing treatment for mirror-finishing the entire surface by heating is plastically deformed due to the pressing force received from the mold 50 . The mirror-finished material 25 (FIG. 6(D)), which has been transferred to the desired mold through such plastic deformation, is released from the mold at the final stage of mold press molding and taken out as an optical element 10 (FIG. 6(E) )reference). In such a mode, the mirror-finished material 25, which is plastically deformed during mold press molding, is not pressed against the mold sleeve 53 (see FIG. 4(D)), and therefore the entire circumference of the end surface of the mirror-finished material is not transferred to the mold. Therefore, the outermost end surface (particularly, the end surface of the flange portion) of the obtained optical element 10 can have, for example, a rounded shape (see FIG. 6(E)).
 本開示の製造方法では、モールドプレス成形される鏡面化素材は、鏡面化処理に起因して、元の柱状素材と比べてその全体形状が最終的な光学素子により近づいた形状となっている。換言すれば、鏡面化素材は、その表面全体が鏡面を有しつつも、全体形状が最終的な光学素子に相対的に近づいた形状(つまり、元の柱状素材と比べると光学素子の最終形状により近づいた“光学素子に対する相対的近似形状”)となっている。したがって、モールドプレス成形時にて上下型に接触していない外周部に向かって変形する鏡面化素材の塑性変形が均一になされ易く、金型スリーブを用いずとも、モールドプレス成形で所望のレンズ形状に加圧変形させることができる。 In the manufacturing method of the present disclosure, the mirror-finished material that is mold press-molded has a shape that is closer to the final optical element than the original columnar material due to the mirror-finishing treatment. In other words, the mirrored material has a mirror surface on its entire surface, but the overall shape is relatively close to the final optical element (that is, the final shape of the optical element compared to the original columnar material). "Relative approximation shape to the optical element"). Therefore, the plastic deformation of the mirror-finished material that deforms toward the outer peripheral portion that is not in contact with the upper and lower dies during mold press molding is easily performed uniformly, and the desired lens shape can be obtained by mold press molding without using a mold sleeve. It can be pressurized and deformed.
 また、金型スリーブを用いない場合、成形時にて金型スリーブとレンズコバ面との密着状態が本質的に回避される。つまり、金型スリーブとレンズコバ面との密着状態があると、成形後の冷却過程で線膨張係数の違い起因した収縮差でクラック発生するなどの現象が場合によっては懸念される得るものの、金型スリーブを用いない場合、それが減じられる。 Also, when a mold sleeve is not used, the close contact between the mold sleeve and the lens edge surface is essentially avoided during molding. In other words, if there is a close contact between the mold sleeve and the lens edge surface, cracks may occur due to the difference in contraction due to the difference in linear expansion coefficient during the cooling process after molding. If no sleeve is used, it is reduced.
(金型を利用した鏡面化処理の態様)
 かかる態様は、モールドプレス成形に用いる金型を利用することによって、柱状素材の表面全体を加熱して鏡面化処理を行う。つまり、モールドプレス成形のための金型によって鏡面化素材を得る。例えば、モールドプレス成形に用いる金型の金型キャビティを利用して、鏡面化処理を行ってよい。より具体的には、モールドプレス成形に用いる下金型の金型キャビティを利用して、鏡面化処理を行ってよい。例えば図7に示すように、下金型52の熱を利用して柱状素材20の鏡面化処理を行ってよい。これは、モールドプレス成形に先立ち、その成形手段でもって柱状素材を鏡面化してよいことを意味している。
(Aspect of mirror surface treatment using a mold)
In such an embodiment, the entire surface of the columnar material is heated and mirror-finished by using a mold used for mold press molding. That is, a mirror-finished material is obtained with a mold for mold press molding. For example, a mold cavity of a mold used for mold press molding may be used to perform mirror surface treatment. More specifically, the mold cavity of the lower mold used for mold press molding may be used to perform the mirror surface treatment. For example, as shown in FIG. 7, the heat of the lower mold 52 may be used to mirror-finish the columnar material 20 . This means that the columnar material may be mirror-polished by the forming means prior to mold press forming.
 かかる態様では、下金型52に入れられた状態で柱状素材20を加熱することによって柱状素材20を鏡面化処理する(図7参照)。例えば、鏡面化処理の加熱温度の条件に昇温させた下金型または当該加熱温度への昇温過程にある下金型に柱状素材を入れ、その下金型からの熱を利用して柱状素材を加熱してよい。あるいは、下金型に柱状素材を投入した後に下金型を加熱温度の条件へと昇温させ、それによる下金型からの熱を利用して柱状素材を加熱してもよい。このように下金型の金型キャビティを鏡面化処理に利用する場合、柱状素材の一部分と下金型とが互いに接触した状態となっていてよい。これにつき、下金型は、柱状素材の底面(または下面もしくは底側部分)の1部のみに接触していてよい。例えば、柱状素材の底面の周辺部または周縁のみが下金型と接触してよい。柱状素材はその接触箇所で下金型に支持されつつ、その支持に供する下金型によって加熱されることになる。なお、柱状素材の底面が全面接触すると柱状素材の底面の加熱状況が強くなりすぎる場合があり得るところ、柱状素材の底面の1部のみが下金型に接触する場合、熱輻射に起因して表面全面に加熱が均等に行われ易くなる。下金型は、例えば光学素子の光学面の凸形状または凹形状を形成するものであってよい。つまり、下金型のキャビティ形成面は、そのような光学面の凸形状または凹形状に対して相補的な形状となっていてよい。別の切り口でいえば、下金型のキャビティ形成面は、例えば湾曲面を成していてよい。なお、下金型を利用して鏡面化処理を行う場合、下金型は上金型と組み合わせて用いてよいものの、例えば図7に示すように、上金型が備えられていない状態で下金型を用いてもよい。かかる場合、図示されるように、加熱手段(好ましくは上側に設けられる上側加熱手段)を下金型(又は下金型と共に設けられた金型スリーブ)と組み合わせて用いてもよい。 In this embodiment, the columnar material 20 is mirror-finished by heating the columnar material 20 while it is placed in the lower mold 52 (see FIG. 7). For example, a columnar material is put into a lower mold whose temperature has been raised to the heating temperature condition of the specular treatment or is in the process of raising the temperature to the heating temperature, and the heat from the lower mold is used to form a columnar shape. Material may be heated. Alternatively, after the columnar material is put into the lower mold, the temperature of the lower mold may be raised to the heating temperature condition, and the heat from the lower mold may be used to heat the columnar material. When the mold cavity of the lower mold is used for the mirror surface treatment in this manner, a portion of the columnar material and the lower mold may be in contact with each other. In this regard, the lower mold may contact only a portion of the bottom surface (or the bottom surface or bottom side portion) of the columnar blank. For example, only the perimeter or rim of the bottom surface of the columnar blank may come into contact with the lower mold. The columnar material is supported by the lower mold at the contact portion thereof, and is heated by the lower mold used for the support. If the bottom surface of the columnar material is in full contact with the bottom surface of the columnar material, the heating condition of the bottom surface of the columnar material may become too strong. It becomes easier to heat the entire surface evenly. The lower mold may, for example, form the convex or concave shape of the optical surface of the optical element. That is, the cavity-forming surface of the lower mold may have a shape complementary to the convex or concave shape of such optical surface. In another way, the cavity forming surface of the lower mold may be curved, for example. When the lower mold is used for the mirror surface treatment, the lower mold may be used in combination with the upper mold. A mold may be used. In such a case, a heating means (preferably an upper heating means provided on the upper side) may be used in combination with the lower mold (or a mold sleeve provided with the lower mold) as shown.
 金型キャビティを利用した加熱によって鏡面化処理を行う場合、鏡面化素材をよりスムーズ又は効率的にモールドプレス成形に付すことができる。つまり、鏡面化処理とモールドプレス成形との間で金型を共通的に使用するので、鏡面化処理からモールドプレス成形への移行が比較的スムーズとなる。 When the mirror surface treatment is performed by heating using the mold cavity, the mirror surface material can be subjected to mold press molding more smoothly or efficiently. That is, since the mold is commonly used for the mirror-finishing treatment and the mold press molding, the transition from the mirror-finishing treatment to the mold press molding is relatively smooth.
 金型の加熱の手法については、特に制限がない。例えば、金型に内蔵される加熱コイルおよび/または金型の熱媒体用管路に流される熱媒体などを用いて金型の加熱を行ってよい。金型とは別個に設けられる加熱手段を用いて金型を加熱してもよい。例えば、図7に示すように下金型52の外側に設けられた加熱手段60を用いて下金型52を加熱して柱状素材の鏡面化処理を行ってもよい。更には、金型使用時において上金型が配置される位置に上金型に代えて設けられる加熱手段65を用いてもよく(図7参照)、それによって柱状素材を加熱して鏡面化処理を行ってもよい。 There are no particular restrictions on the method of heating the mold. For example, the mold may be heated using a heating coil built into the mold and/or a heat medium flowing through a heat medium conduit of the mold. The mold may be heated using heating means provided separately from the mold. For example, as shown in FIG. 7, a heating means 60 provided outside the lower mold 52 may be used to heat the lower mold 52 to mirror-finish the columnar material. Furthermore, a heating means 65 may be used instead of the upper mold at the position where the upper mold is arranged when the mold is used (see FIG. 7), thereby heating the columnar material and subjecting it to a mirror finish. may be performed.
(金型を用いた連続的処理の態様)
 かかる態様は、柱状素材の鏡面化処理と、それにより得られる鏡面化素材の冷却とを金型を用いて連続的に行う。例えば図8に示すように、モールドプレス成形の金型50(例えば特に下金型)を利用することによって、柱状素材の表面全体を加熱して鏡面化処理を行なって鏡面化素材を得た後、その同じ金型50(例えば特に下金型)を用いて鏡面化素材を冷却してよい。つまり、モールドプレス成形のための手段と鏡面化素材を得る手段、そしてそれを冷却する手段とは互いに実質的に同じであってよい。モールドプレス成形に用いる金型で鏡面化素材を得て、その金型で鏡面化素材をモールドプレス成形できるので、よりスムーズな光学素子の製造がもたらされ得る。このような連続的処理において、例えばモールドプレス成形に要する時間は鏡面化処理に要する時間よりも短くてよい。なお、金型を利用して鏡面化素材の冷却を行う場合、下金型は上金型と組み合わせて用いてよいものの、例えば図8に示すように、上金型が備えられていない状態で下金型を用いてもよい。かかる場合、図示されるように、冷却手段(好ましくは上側に設けられる上側冷却手段)を下金型(または下金型と共に設けられた金型スリーブ)と組み合わせて用いてもよい。
(Aspect of continuous treatment using mold)
In such a mode, the mirror-finishing treatment of the columnar material and the cooling of the resulting mirror-finishing material are performed continuously using a mold. For example, as shown in FIG. 8, by using a mold 50 (e.g., especially a lower mold) for mold press molding, the entire surface of the columnar material is heated and mirror-finished to obtain a mirror-finished material. , the same mold 50 (e.g., the lower mold in particular) may be used to cool the mirror-finished material. That is, the means for mold pressing, the means for obtaining the mirror-finished material, and the means for cooling it may be substantially the same. A mold used for mold press molding obtains a mirror-finished material, and the mold can be used to mold-press the mirror-finished material, so that smoother production of optical elements can be achieved. In such a continuous process, for example, the time required for mold press molding may be shorter than the time required for mirror polishing. When the metal mold is used to cool the mirror-finished material, the lower mold may be used in combination with the upper mold. However, as shown in FIG. A lower mold may be used. In such a case, a cooling means (preferably an upper cooling means provided on the upper side) may be used in combination with the lower mold (or a mold sleeve provided with the lower mold) as shown.
(レンズ品の態様)
 かかる態様では、光学素子10としてレンズを製造する。つまり、光を集束または発散させるためのレンズを製造する。レンズの種類は、特に制限されず、凸レンズまたは凹レンズなどであってよい。凸レンズは、両凸レンズ(図1(A))または平凸レンズなどであってよく、凹レンズとしては、両凹レンズ(図1(B))または平凹レンズなどであってよい。さらには、レンズは、図1(C)に示すようなメニスカス・レンズであってもよい。なお、上記“非コバの態様”に従って得られた光学素子は、鏡面化素材の端面全周が成形転写されないので、それ特有の形状を有し得る。具体的には、光学素子10の最外縁面が全体として丸みを帯びた形状を有し得る。例えば図9に示すレンズでいえば、両凸レンズ(図9(A))、両凹レンズ(図9(B))、メニスカス・レンズ(図9(C))などの断面視において、最外縁面の輪郭が全体として湾曲状になり得る。
(Condition of lens product)
In such an embodiment, a lens is manufactured as the optical element 10 . That is, manufacturing lenses for converging or diverging light. The type of lens is not particularly limited, and may be a convex lens or a concave lens. The convex lens may be a biconvex lens (FIG. 1(A)), a plano-convex lens, or the like, and the concave lens may be a biconcave lens (FIG. 1(B)), a plano-concave lens, or the like. Furthermore, the lens may be a meniscus lens as shown in FIG. 1(C). It should be noted that the optical element obtained according to the above-described "non-edge aspect" may have a unique shape because the entire circumference of the end face of the mirror-finished material is not molded and transferred. Specifically, the outermost edge surface of the optical element 10 may have a rounded shape as a whole. For example, in the case of the lens shown in FIG. 9, in a cross-sectional view of a biconvex lens (FIG. 9A), a biconcave lens (FIG. 9B), a meniscus lens (FIG. 9C), etc., the outermost edge surface The profile may be curved as a whole.
 上述したように、本開示の製造方法では、表面全体が加熱されて得られた鏡面化素材をモールドプレス成形に付すので、モールドプレス成形時に素材に過度な押圧力が掛かり難く、脆い素材なども積極的に採用できる。よって、本開示の製造方法において、ガラス材料をより積極的に用いることができる。特に、表面全体を加熱により鏡面化させる鏡面化処理に起因して、カルコゲナイド材料および/またはカルコハライド材料などをより積極的に用いることができる。カルコゲナイド材料は赤外領域に対して好適な透過特性を有し、カルコハライド材料は赤外領域だけでなく可視光領域に対しても好適な透過特性を有し得るので、本開示の製造方法は、光学素子として、少なくとも赤外領域ためのレンズを好適に製造できる。 As described above, in the manufacturing method of the present disclosure, since the mirror-finished material obtained by heating the entire surface is subjected to mold press molding, it is difficult to apply an excessive pressing force to the material during mold press molding, and even brittle materials can be used. Can be actively recruited. Therefore, in the production method of the present disclosure, glass materials can be used more positively. In particular, a chalcogenide material and/or a chalcohalide material can be used more positively due to the mirror-finishing treatment that mirror-finishes the entire surface by heating. Since chalcogenide materials have suitable transmission properties for the infrared region, and chalcogenide materials can have suitable transmission properties for the visible light region as well as the infrared region, the manufacturing method of the present disclosure is , as an optical element, a lens for at least the infrared region can be suitably manufactured.
[本開示の光学素子]
 本開示の光学素子は、上述の製造方法で得られるものであり、上述のモールドプレス成形を通じて素材から得られる光学素子に相当する。つまり、本開示の光学素子は、表面全体の加熱により鏡面化処理された柱状素材がモールドプレス成形されて得られた光学素子である。
[Optical element of the present disclosure]
The optical element of the present disclosure is obtained by the manufacturing method described above, and corresponds to an optical element obtained from a raw material through the mold press molding described above. In other words, the optical element of the present disclosure is an optical element obtained by mold-press molding a columnar material whose entire surface has been mirror-finished by heating.
 本開示の光学素子は、好ましくは、光透過部とそれから外側に延在するフランジ部とを有して成る。光学素子がレンズである場合、本開示の光学素子は、レンズ部に相当する光透過部とそれから外側に延在するフランジ部とを有して成る。フランジ部は、光学素子の使用時にて光透過に資さない光学素子の最外縁部に相当し、光学素子において例えば実質的に一定厚みを有し得る部分である。 The optical element of the present disclosure preferably comprises a light transmitting portion and a flange portion extending outwardly therefrom. When the optical element is a lens, the optical element of the present disclosure has a light transmission portion corresponding to the lens portion and a flange portion extending outwardly therefrom. The flange portion corresponds to the outermost edge portion of the optical element that does not contribute to light transmission when the optical element is in use, and is a portion of the optical element that can have, for example, a substantially constant thickness.
 光学素子10がレンズである場合の模式図を図10に示す。あくまでも光学素子の1つの例示にすぎないが、図10は、光学素子10として両凸レンズの外観の斜視図および平面図を示している。 FIG. 10 shows a schematic diagram when the optical element 10 is a lens. Although only one example of the optical element, FIG. 10 shows a perspective view and a plan view of the appearance of a biconvex lens as the optical element 10 .
 本開示に係る光学素子10において、光透過部11は、周囲領域(例えば、光透過部において“最も外側の周縁部を含む領域”)と、その周囲領域よりも内側の内側領域とで内部歪が異なっている。つまり、図11の模式図に示されるように、光透過部11の実質的な光透過部分に相当する内側領域11Aとその周囲領域11Bとで内部歪の量が違っていてよい。なお、内側領域と周囲領域とは、平面視において隣接して互いに一体的に接する領域に相当し得る。図11の下側図は、内部歪の相対的な大小関係を例示している。図11の下側図において、相対的に濃い色の部分は内部歪が相対的に大きいことを示し、相対的に薄い色の部分は内部歪が相対的に小さい又は無いことを示している。図11の内部歪の特徴は、好ましくは上述の製造方法に関係している。特に材料ロスが少なく行われるモールドプレス成形に関連した内部歪が光学素子にもたらされていてよい。図11で示される内部歪は、モールドプレス成形に先立って研削などでレンズ近似形状を得ることなく素材をモールドプレス成形する(好ましくは鏡面化処理として表面全体が加熱処理された素材をモールドプレス成形する)ことで得られた光学素子に特徴的な内部歪の一例であるといえる。 In the optical element 10 according to the present disclosure, the light-transmitting portion 11 has a peripheral region (for example, a “region including the outermost peripheral portion” in the light-transmitting portion) and an inner region inside the peripheral region. is different. That is, as shown in the schematic diagram of FIG. 11, the amount of internal strain may be different between the inner region 11A corresponding to the substantial light transmitting portion of the light transmitting portion 11 and the surrounding region 11B. Note that the inner region and the surrounding region may correspond to regions that are adjacent to each other and integrally contact each other in a plan view. The lower diagram of FIG. 11 illustrates the relative magnitude relationship of internal strain. In the lower diagram of FIG. 11, relatively dark colored portions indicate relatively large internal strain, and relatively light colored portions indicate relatively small or no internal strain. The internal strain feature of FIG. 11 is preferably related to the manufacturing method described above. In particular, internal strains associated with mold pressing, which is performed with little material loss, may be introduced into the optical element. The internal strain shown in FIG. 11 is obtained by mold press molding the material without obtaining an approximate lens shape by grinding or the like prior to mold press molding (preferably, mold press molding the material whose entire surface has been heat-treated as a mirror surface treatment. It can be said that this is an example of the internal strain that is characteristic of the optical element obtained by
 本開示において、「周囲領域」は、光透過部11の平面視において、その最も外側の周縁部を含む領域に相当し得る。あくまでも例示であるが、例えば光透過部11の平面視円形の直径をDとすると(図11参照)、少なくとも0.5D以上の直径を有する同心円領域よりも外側の光透過領域を「周囲領域」とみなしてよい。 In the present disclosure, the "surrounding area" may correspond to an area including the outermost peripheral portion of the light transmitting portion 11 in plan view. Although it is only an example, for example, if the diameter of the circular shape of the light transmitting portion 11 in plan view is D (see FIG. 11), the light transmitting region outside the concentric circular region having a diameter of at least 0.5D is referred to as the "surrounding region." can be regarded as
 内側領域の平面視形状は正方形などの多角形の各辺が中心および/または周辺に向かって湾曲した形状であってよい。例えば、内側領域の平面視形状は、正方形などの多角形(例えば四角形)の各辺がその中間領域または中央部にて極値を有するように相対的に内側に湾曲したような形状となっていてよい。例えば平面視において光学素子の光透過部を正方形の各辺が中心に向かって湾曲した形状の内側領域とその外側の周囲領域とで仮想的に分けて考えると、それらの間で内部歪の量が違っていてよい。例えば図11に示す例示態様では、相対的に薄い色の部分が内側領域に相当し得、相対的に濃い色の部分が周囲領域に相当し得る。 The planar shape of the inner region may be a shape in which each side of a polygon such as a square curves toward the center and/or the periphery. For example, the planar shape of the inner region is a shape in which each side of a polygon such as a square (for example, a quadrangle) is curved relatively inward so that each side has an extreme value in the middle region or central portion. you can For example, when the light transmitting portion of an optical element is virtually divided into an inner area in which each side of a square is curved toward the center and an outer peripheral area, the amount of internal strain between them is may be different. For example, in the exemplary embodiment shown in FIG. 11, the lighter colored portion may correspond to the inner region and the darker colored portion may correspond to the peripheral region.
 ある好適な態様では、内側領域の外形(すなわち、内側領域の平面視形状)は、光学素子を形成するモールドプレス成形前の柱状素材の外形に相当するとみなしてもよい。そして、正方形などの多角形の柱状素材の歪のない領域が、モールドプレス成形により正方形などの多角形の各辺が中心または周辺に向かって湾曲した形状に加工されていてもよい。かかる場合、光透過部において、柱状素材の外形に相当する領域(以下、「素材相当領域」とも称する)とそれ以外の領域とで内部歪が異なっていてよい。つまり、図11(特にその下側に示される光学素子がレンズである場合の例示的な平面視図)に示されるように、光透過部11において素材相当領域の寸法に相当する面積部分のレンズ面とそれ以外の面積部分のレンズ面とで内部歪の量が違っている。 In a preferred embodiment, the outer shape of the inner region (that is, the shape of the inner region in plan view) may be considered to correspond to the outer shape of the columnar material before mold press forming that forms the optical element. Then, the distortion-free region of the square or other polygonal columnar material may be processed by mold press molding into a shape in which each side of the square or other polygon is curved toward the center or the periphery. In such a case, in the light-transmitting portion, the internal strain may be different between a region corresponding to the outer shape of the columnar material (hereinafter also referred to as a “material-corresponding region”) and other regions. That is, as shown in FIG. 11 (particularly, an exemplary planar view in the case where the optical element shown below is a lens), in the light transmitting portion 11, the lens of the area corresponding to the dimension of the region corresponding to the material The amount of internal distortion is different between the surface and the lens surface of the other area.
 本開示において、光透過部における内部歪は、例えばリタデーション(位相差)の測定により把握できる。かかるリタデーション(位相差)の測定には、市販の測定器を使用してよい。例えば、リタデーション(位相差)の測定に株式会社フォトニックラティス社製、型式PA-300-MT-NIR850)の測定器を使用してよい。このようなリタデーション測定器によって光透過部の内部歪(つまり、図11の下側図に示すような内部歪の分布)を把握できる。 In the present disclosure, the internal strain in the light transmitting portion can be grasped, for example, by measuring retardation (phase difference). A commercially available measuring instrument may be used to measure the retardation (phase difference). For example, a model PA-300-MT-NIR850 manufactured by Photonic Lattice Co., Ltd. may be used to measure retardation (phase difference). With such a retardation measuring instrument, it is possible to grasp the internal strain of the light transmitting portion (that is, the distribution of internal strain as shown in the lower diagram of FIG. 11).
 鏡面化処理された柱状素材が角柱形状であった場合、平面視における光透過部の素材相当領域が、正方形などの四角形となり得る。かかる場合、例えば平面視において正方形状の素材相当領域が有する寸法に相当する面積とそれ以外の光透過部(即ち、周囲領域)に相当する面積とで内部歪の量が違っていてよい。あくまでも例示にすぎないが、角柱形状の寸法に相当する正方形の領域面積における内部歪は8~12nm程度となっている一方、それ以外の領域面積(即ち、周囲領域面積)の内部歪は最大で30nm程度となっていてよい。 When the mirror-finished columnar material has a prismatic shape, the region corresponding to the material of the light transmitting portion in plan view can be a quadrangle such as a square. In such a case, for example, the amount of internal strain may be different between the area corresponding to the dimension of the square material corresponding region in plan view and the area corresponding to the other light transmitting portion (that is, the surrounding region). Although this is only an example, the internal strain in the square region area corresponding to the dimensions of the prismatic shape is about 8 to 12 nm, while the internal strain in the other region area (that is, the surrounding region area) is the maximum. It may be about 30 nm.
 このように、本開示の光学素子では光透過部の内側領域とその周縁の周囲領域とで内部歪の量が異なっていてよいところ、光透過部の中心部分を含めた内側領域の歪は小さい又は実質的に無い。そのような歪特性ゆえ、本開示の光学素子は全体として所望の光学特性を有し得る。例えば、切削、研削および/または研磨などの機械的加工を経て製造された光学素子(図13参照)と比べ、実質的に遜色のない光学特性(例えば、そのような機械的加工を経て製造された光学素子と比べて実質的に同等となるような光透過特性)を本開示の光学素子は有し得る。 Thus, in the optical element of the present disclosure, the amount of internal strain may be different between the inner region of the light transmitting portion and the peripheral region of the light transmitting portion, but the strain of the inner region including the central portion of the light transmitting portion is small. or substantially none. Because of such distortion properties, the optical element of the present disclosure as a whole can have desired optical properties. For example, optical properties substantially comparable to those of optical elements manufactured through mechanical processing such as cutting, grinding and/or polishing (see FIG. 13) (e.g., optical elements manufactured through such mechanical processing) Optical elements of the present disclosure may have optical transmission properties that are substantially similar to optical elements of the present disclosure.
 ある好適な態様では、光学素子が、柱状素材の平面視形状に応じた応力分布を有している。つまり、光学素子がガラス材料を含んで成る場合、上記製造方法に起因して、硝材形状に応じた応力分布が成形後の光学素子にもたらされていてよい。また、本開示の光学素子において、光学有効径内の内部歪の平均値を変化させたい場合、柱状素材の寸法変更で対応できる。つまり、光学有効径内の内部歪の平均値を変化させるに際して、鏡面化処理される柱状素材の寸法を任意に変更して対応できる。また、角柱形状の素材に限らず(すなわち、光透過部の素材相当領域の平面視形状が正方形などの四角形であることに限らず)、三角柱、もしくは六角柱などの多角形または、円柱などの形状の素材であってよい。即ち、光透過部の素材相当領域の平面視形状が三角形、六角形または円形であってもよい。かかる場合、光学素子の光透過部において、そのような素材の三角柱、六角柱、または、円柱に応じた応力分布を得ることができる。 In a preferred aspect, the optical element has a stress distribution according to the plan view shape of the columnar material. That is, when the optical element is made of a glass material, the molded optical element may have a stress distribution according to the shape of the glass material due to the above-described manufacturing method. Further, in the optical element of the present disclosure, if it is desired to change the average value of the internal strain within the optical effective diameter, it can be handled by changing the dimensions of the columnar material. That is, when changing the average value of the internal strain within the optical effective diameter, it is possible to arbitrarily change the dimensions of the columnar material to be mirror-finished. In addition, the material is not limited to a prismatic shape (that is, the planar shape of the area corresponding to the material of the light transmitting portion is not limited to a quadrangle such as a square). It may be a shaped material. That is, the planar shape of the region corresponding to the material of the light transmitting portion may be triangular, hexagonal, or circular. In such a case, a stress distribution corresponding to the triangular prism, hexagonal prism, or cylinder of such material can be obtained in the light transmitting portion of the optical element.
 本開示の光学素子10は、好ましくは単一の素材20からモールドプレス成形で得られるので、それ特有の構成を有している。具体的には、本開示の光学素子10は、好ましくは、光透過部11とフランジ部12とが同一材質から成り、かつ互いに一体化している。図10に示される態様でいえば、レンズ部に相当する光透過部11とその外側のフランジ部12とが同一材質から成り、かつ互いに一体化している。このように同一材質で一体化していると、光透過部11とフランジ部12とが異質な材質で一体化している場合よりも、均質性が増し、光学素子10の構造強度がより向上したものとなり得る。 The optical element 10 of the present disclosure is preferably obtained by mold press molding from a single material 20, and thus has a unique configuration. Specifically, in the optical element 10 of the present disclosure, the light transmission portion 11 and the flange portion 12 are preferably made of the same material and integrated with each other. In the embodiment shown in FIG. 10, the light transmitting portion 11 corresponding to the lens portion and the flange portion 12 outside thereof are made of the same material and are integrated with each other. Integrating with the same material in this manner increases the homogeneity and further improves the structural strength of the optical element 10 compared to the case where the light transmitting portion 11 and the flange portion 12 are integrated with different materials. can be.
 本開示の光学素子10は、モールドプレス成形時に鏡面化素材に掛かる負荷が過度にならない条件で得られている。よって、光学素子10は、カルコゲナイド材料および/またはカルコハライド材料などからモールドプレス成形を通じて好適に得ることができる。つまり、ある好適な態様の光学素子10は、カルコゲナイド材料および/またはカルコハライド材料を含む。光学素子10が、いわゆるカルコゲナイド系および/またはカルコハライド系のガラスを含んで成り得るともいえる。最も端的にいえば、光学素子10が好ましくはカルコゲナイドガラスまたはカルコハライドガラスから成っているといえる。 The optical element 10 of the present disclosure is obtained under the condition that the load applied to the specular material during mold press molding is not excessive. Therefore, the optical element 10 can be suitably obtained through mold press molding from a chalcogenide material and/or a chalcogenide material or the like. In other words, the optical element 10 of one preferred embodiment comprises a chalcogenide material and/or a chalcohalide material. It can also be said that the optical element 10 can comprise a so-called chalcogenide and/or chalcohalide glass. Most succinctly, it can be said that the optical element 10 preferably consists of a chalcogenide glass or a chalcohalide glass.
 本明細書でいう「カルコゲナイド材料」とは、広義には、周期律表のVIb族のS(硫黄)、Se(セレン)およびTe(テルル)から成る群から選択される少なくとも1種のカルコゲン元素を主成分の1つとする材料を意味している。例えば、カルコゲナイド材料は、S(硫黄)、Se(セレン)およびTe(テルル)から成る群から選択される少なくとも1種のカルコゲン元素がGe(ゲルマニウム)、As(ヒ素)、Sb(アンチモン)、P(リン)、Ga(ガリウム)、In(インジウム)およびSi(ケイ素)から成る群から選択される少なくとも1種と組み合わされた組成を有する材料となっていてよい。そして、本明細書でいう「カルコハライド材料」とは、そのようなカルコゲナイド材料に対してハロゲン元素(フッ素、塩素、臭素およびヨウ素から成る群から選択される少なくとも1種)またはその化合物が導入されて成るような組成を有する材料を意味している。このようなカルコゲナイド材料および/またはカルコハライド材料などは、赤外領域に対して又は赤外領域と可視光領域との双方に対して好適な透過特性を有し得る。よって、本開示の光学素子10は、少なくとも赤外領域の光線を透過させるためのレンズとして好適に供され得る。 The term "chalcogenide material" as used herein broadly refers to at least one chalcogen element selected from the group consisting of S (sulfur), Se (selenium) and Te (tellurium) in group VIb of the periodic table. is one of the main components. For example, the chalcogenide material contains Ge (germanium), As (arsenic), Sb (antimony), P (phosphorus), Ga (gallium), In (indium), and Si (silicon). The term "chalcogenide material" as used herein means a halogen element (at least one selected from the group consisting of fluorine, chlorine, bromine and iodine) or a compound thereof introduced into such a chalcogenide material. means a material having a composition such that it consists of Such chalcogenide and/or chalcohide materials and the like may have suitable transmission properties for the infrared region or for both the infrared and visible regions. Therefore, the optical element 10 of the present disclosure can be suitably used as a lens for transmitting at least light rays in the infrared region.
 以上、実施形態について説明してきたが、あくまでも典型例を例示したに過ぎない。従って、本開示の製造方法および光学素子はこれに限定されず、種々の態様が考えられることを当業者は容易に理解されよう。 Although the embodiments have been described above, they are merely examples of typical examples. Therefore, those skilled in the art will easily understand that the manufacturing method and optical element of the present disclosure are not limited to this, and that various embodiments are conceivable.
 例えば、上記説明では光学素子の好適な製造態様を図面を参照して説明したが、それはあくまでも説明の便宜のためである。本開示の製造方法は、その全体的なプロセスが実際の製造に鑑みたものとなっていてよい。例えば、本開示の製造方法は連続的処理に基づいたものであってよい。あるいは、本開示の製造方法はバッチ処理に基づいたものであってもよい。 For example, in the above description, a preferred mode of manufacturing the optical element was described with reference to the drawings, but that is for convenience of description only. The manufacturing method of the present disclosure may have its overall process in view of actual manufacturing. For example, the manufacturing methods of the present disclosure may be based on continuous processing. Alternatively, the manufacturing method of the present disclosure may be based on batch processing.
 また、図7を参照した上記説明では、下金型からの熱で柱状素材を加熱して鏡面化処理を行う態様を説明したが、本開示はこれに限定されない。例えば、金型の上金型を付加的に又は代替的に用いて柱状素材を加熱して鏡面化処理を行ってもよい。かかる場合、上金型に内蔵される加熱コイルおよび/または上金型の熱媒体用管路に流される熱媒体などを用いて上金型を加熱して柱状素材の鏡面化処理を行ってよい。また、上金型とは別個に設けられる加熱手段を用いてもよく、例えば上金型の外側に配置された加熱手段を用いて上金型を加熱して鏡面化処理を行ってもよい。 In addition, in the above description with reference to FIG. 7, a mode in which the columnar material is heated by the heat from the lower mold to perform the mirror-finishing treatment has been described, but the present disclosure is not limited to this. For example, an upper mold of the mold may additionally or alternatively be used to heat the columnar material for mirror surface treatment. In such a case, the columnar material may be mirror-finished by heating the upper mold using a heating coil built into the upper mold and/or a heat medium flowing through the heat medium pipe of the upper mold. . Also, a heating means provided separately from the upper mold may be used. For example, the upper mold may be heated using a heating means arranged outside the upper mold to perform the mirror surface treatment.
 さらには、上記説明では、特にレンズとして両凹レンズまたは両凸レンズをモールドプレス成形する態様を中心に説明してきたが、本開示はこれに限定されない。例えば、図12に示すように、メニスカス・レンズである光学素子10をモールドプレス成形する場合であっても本開示を同様に適用できる。 Furthermore, in the above description, the embodiment of mold-pressing a biconcave lens or a biconvex lens as a lens has been mainly described, but the present disclosure is not limited to this. For example, as shown in FIG. 12, the present disclosure can be applied in the same way even when the optical element 10, which is a meniscus lens, is mold-press molded.
 本開示に係る光学素子は、各種レンズとして使用することができる。特に、本開示に係る光学素子は、ある好適な態様ではカルコゲナイド材料および/またはカルコハライド材料などを含んで成り得るので、赤外線レンズ(あくまでも1つの例示にすぎないが、遠赤外線を少なくとも意図したレンズ)、可視光レンズ、または、それら赤外領域および可視光領域の双方の光線を透過させるような広帯域透過レンズなどとして用いることができる。 The optical element according to the present disclosure can be used as various lenses. In particular, the optical element according to the present disclosure may comprise a chalcogenide material and/or a chalcohalide material, etc. in certain preferred embodiments, so an infrared lens (a lens intended at least for far-infrared rays, by way of example only) ), a visible light lens, or a broadband transmission lens that transmits light in both the infrared region and the visible light region.
 10   光学素子
 11   光透過部
 11A  光透過部の内側領域
 11B  光透過部の周囲領域
 12   フランジ部
 20   柱状素材
 25   鏡面化素材
 50   金型
 51   上金型
 52   下金型
 53   金型スリーブ
 56   金型キャビティ
 58   金型スリーブの内周面
 60   加熱手段
 65   加熱手段
REFERENCE SIGNS LIST 10 optical element 11 light transmitting portion 11A inner region of light transmitting portion 11B peripheral region of light transmitting portion 12 flange portion 20 columnar material 25 mirror surface material 50 mold 51 upper mold 52 lower mold 53 mold sleeve 56 mold cavity 58 Inner peripheral surface of mold sleeve 60 Heating means 65 Heating means

Claims (17)

  1. 光学素子を製造する製造方法であって、
     柱状素材の表面全体を加熱で鏡面化させる鏡面化処理を行って該柱状素材から鏡面化素材を形成し、該鏡面化素材をモールドプレス成形に付す、光学素子の製造方法。
    A manufacturing method for manufacturing an optical element,
    A method of manufacturing an optical element, comprising the steps of subjecting the entire surface of a columnar material to mirror-finishing by heating to form a mirror-finished material from the columnar material, and subjecting the mirror-finished material to mold press molding.
  2. 前記鏡面化処理として、前記柱状素材のガラス転移温度よりも50℃~200℃高い加熱条件で前記柱状素材を加熱して軟化させる、請求項1に記載の光学素子の製造方法。 2. The method of manufacturing an optical element according to claim 1, wherein the specular surface treatment includes heating and softening the columnar material under a heating condition 50° C. to 200° C. higher than the glass transition temperature of the columnar material.
  3. 前記加熱として、前記柱状素材の上方向、下方向、および側方向の全てから該柱状素材を加熱する、請求項1または2に記載の光学素子の製造方法。 3. The method of manufacturing an optical element according to claim 1, wherein the heating is performed by heating the columnar material from all of the upward direction, the downward direction, and the lateral direction of the columnar material.
  4. 前記鏡面化処理よりも20℃~130℃低い温度条件で前記モールドプレス成形を行う、請求項1~3のいずれかに記載の光学素子の製造方法。 The method for manufacturing an optical element according to any one of claims 1 to 3, wherein the mold press molding is performed at a temperature 20°C to 130°C lower than that of the mirror surface treatment.
  5. 前記柱状素材のガラス転移温度よりも40℃~150℃高い温度条件で前記モールドプレス成形を行う、請求項1~4のいずれかに記載の光学素子の製造方法。 The method for manufacturing an optical element according to any one of claims 1 to 4, wherein the mold press molding is performed at a temperature condition that is 40°C to 150°C higher than the glass transition temperature of the columnar material.
  6. 前記モールドプレス成形に用いる下金型の金型キャビティを利用して、前記鏡面化処理を行う、請求項1~5のいずれかに記載の光学素子の製造方法。 6. The method for manufacturing an optical element according to claim 1, wherein the specular surface treatment is performed using a mold cavity of a lower mold used for the mold press molding.
  7. 前記下金型は、前記柱状素材の底面の1部のみに接触する、請求項6に記載の光学素子の製造方法。 7. The method of manufacturing an optical element according to claim 6, wherein the lower mold contacts only a portion of the bottom surface of the columnar material.
  8. 前記下金型は、前記光学素子の光学面の凸形状または凹形状を形成する、請求項6または7に記載の光学素子の製造方法。 8. The method of manufacturing an optical element according to claim 6, wherein the lower mold forms a convex or concave shape of the optical surface of the optical element.
  9. 前記鏡面化処理により、前記鏡面化素材の表面粗さがRa50nm以下にする、請求項1~8のいずれかに記載の光学素子の製造方法。 The method for manufacturing an optical element according to any one of claims 1 to 8, wherein the surface roughness Ra of the mirror-finishing material is set to 50 nm or less by the mirror-finishing treatment.
  10. 前記柱状素材は、多角柱形状または円柱形状である、請求項1~9のいずれかに記載の光学素子の製造方法。 10. The method for manufacturing an optical element according to claim 1, wherein said columnar material has a polygonal columnar shape or a cylindrical columnar shape.
  11. 前記柱状素材がカルコゲナイド材料および/またはカルコハライド材料を含む、請求項1~10のいずれかに記載の光学素子の製造方法。 The method for manufacturing an optical element according to any one of claims 1 to 10, wherein the columnar material contains a chalcogenide material and/or a chalcohalide material.
  12. 前記モールドプレス成形では、上金型と下金型との間に形成される金型キャビティで成形される前記光学素子のフランジ部の端面を金型転写に付す、請求項1~11のいずれかに記載の光学素子の製造方法。 12. The mold press molding according to any one of claims 1 to 11, wherein the end surface of the flange portion of the optical element molded in a mold cavity formed between an upper mold and a lower mold is subjected to mold transfer. 3. A method for manufacturing the optical element according to .
  13. 前記モールドプレス成形では、上金型と下金型との間に形成される金型キャビティで成形される前記光学素子のフランジ部の端面を金型転写に付さない、請求項1~11のいずれかに記載の光学素子の製造方法。 12. The method according to any one of claims 1 to 11, wherein in the mold press molding, the end surface of the flange portion of the optical element molded in a mold cavity formed between an upper mold and a lower mold is not subjected to mold transfer. A method for manufacturing an optical element according to any one of the above.
  14. 光学素子であって、
     光透過部、および該光透過部から外側に延在するフランジ部を有して成り、
     前記光透過部では、周囲領域と該周囲領域よりも内側の内側領域とで内部歪が異なる、光学素子。
    an optical element,
    comprising a light transmissive portion and a flange portion extending outwardly from the light transmissive portion;
    In the optical element, in the light transmitting portion, internal strain is different between a peripheral region and an inner region inside the peripheral region.
  15. 前記内側領域の平面視形状は多角形の各辺が中心または周辺に向かって湾曲した形状である、請求項14に記載の光学素子。 15. The optical element according to claim 14, wherein the planar view shape of the inner region is a shape in which each side of the polygon curves toward the center or the periphery.
  16. 前記内側領域の外形は、前記光学素子を形成するモールドプレス成形前の柱状素材の外形に相当する、請求項14に記載の光学素子。 15. The optical element according to claim 14, wherein the outer shape of said inner region corresponds to the outer shape of a columnar material before mold press forming forming said optical element.
  17. 前記光学素子がカルコゲナイド材料および/またはカルコハライド材料を含む、請求項14~16のいずれかに記載の光学素子。 The optical element according to any of claims 14-16, wherein the optical element comprises a chalcogenide material and/or a chalcohalide material.
PCT/JP2022/035324 2021-12-23 2022-09-22 Method for manufacturing optical element, and optical element WO2023119767A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021209724 2021-12-23
JP2021-209724 2021-12-23

Publications (1)

Publication Number Publication Date
WO2023119767A1 true WO2023119767A1 (en) 2023-06-29

Family

ID=86901893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035324 WO2023119767A1 (en) 2021-12-23 2022-09-22 Method for manufacturing optical element, and optical element

Country Status (1)

Country Link
WO (1) WO2023119767A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0624758A (en) * 1992-07-03 1994-02-01 Olympus Optical Co Ltd Method for smoothing glass surface
JPH0781948A (en) * 1993-09-17 1995-03-28 Olympus Optical Co Ltd Method and device for forming glass optical element
JPH07329203A (en) * 1994-06-09 1995-12-19 Tetsuo Izumitani Formation of preform for molded lens and formed preform
JPH08169721A (en) * 1995-08-01 1996-07-02 Canon Inc Glass blank for forming optical element
JPH10182171A (en) * 1996-12-25 1998-07-07 Minolta Co Ltd Formation of optical glass element
JPH1171121A (en) * 1998-03-26 1999-03-16 Olympus Optical Co Ltd Mold for molding optical part
JP2008275686A (en) * 2007-04-25 2008-11-13 Olympus Corp Composite optical element and method of manufacturing the same
JP2010018461A (en) * 2008-07-09 2010-01-28 Hoya Corp Mold, method for producing preform for precision press forming, and method for producing optical element
WO2015125850A1 (en) * 2014-02-20 2015-08-27 コニカミノルタ株式会社 Optical element production method and optical element
WO2020071071A1 (en) * 2018-10-02 2020-04-09 パナソニック株式会社 Optical element and production method therefor

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0624758A (en) * 1992-07-03 1994-02-01 Olympus Optical Co Ltd Method for smoothing glass surface
JPH0781948A (en) * 1993-09-17 1995-03-28 Olympus Optical Co Ltd Method and device for forming glass optical element
JPH07329203A (en) * 1994-06-09 1995-12-19 Tetsuo Izumitani Formation of preform for molded lens and formed preform
JPH08169721A (en) * 1995-08-01 1996-07-02 Canon Inc Glass blank for forming optical element
JPH10182171A (en) * 1996-12-25 1998-07-07 Minolta Co Ltd Formation of optical glass element
JPH1171121A (en) * 1998-03-26 1999-03-16 Olympus Optical Co Ltd Mold for molding optical part
JP2008275686A (en) * 2007-04-25 2008-11-13 Olympus Corp Composite optical element and method of manufacturing the same
JP2010018461A (en) * 2008-07-09 2010-01-28 Hoya Corp Mold, method for producing preform for precision press forming, and method for producing optical element
WO2015125850A1 (en) * 2014-02-20 2015-08-27 コニカミノルタ株式会社 Optical element production method and optical element
WO2020071071A1 (en) * 2018-10-02 2020-04-09 パナソニック株式会社 Optical element and production method therefor

Similar Documents

Publication Publication Date Title
EP0078658B1 (en) A process for moulding glass shapes
US4797144A (en) Deep pressing mold and process for molded optical elements
TWI607974B (en) Glass shaped body manufacturing method and forming die
US5346523A (en) Method of molding chalcogenide glass lenses
US20160154144A1 (en) Optics with Built-In Anti-Reflective Sub-Wavelength Structures
US20210129466A1 (en) Optical element and method for manufacturing the same
JP3224472B2 (en) Optical lens and mold for molding the same
WO2023119767A1 (en) Method for manufacturing optical element, and optical element
JPS6067118A (en) Manufacture of optical element
US4018587A (en) Method for producing a curved glass die having an aspherical polished concave face
CN101250021B (en) Lens blank and lentiform production method
CN1966432B (en) Method of manufacturing lens
JPS5838766B2 (en) Tashiyoten Lens Noseizouhou
JP3763552B2 (en) Glass lens having glass coating layer and manufacturing method thereof
JPH06130333A (en) Production of glass mold for multifocal spectacle lens
JPH0692656A (en) Method for molding optical element
JPH09249424A (en) Molding of optical element
JPH05330832A (en) Method for molding calchogenide glass lens
JP2621941B2 (en) Optical element molding method
JP4473692B2 (en) Manufacturing method of molded products
CN1903757B (en) Moulding method of glass lens and moulding device of glass lens
JPH1160251A (en) Formation of optical element
SU617393A1 (en) Method of making optical component
US20150198748A1 (en) Method for manufacturing rod lenses, and rod lenses
Hwang et al. Fabrication and evaluation of chalcogenide glass molding lens for car night-vision system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22910493

Country of ref document: EP

Kind code of ref document: A1