JP2000053433A - Production of glass optical element - Google Patents

Production of glass optical element

Info

Publication number
JP2000053433A
JP2000053433A JP10224700A JP22470098A JP2000053433A JP 2000053433 A JP2000053433 A JP 2000053433A JP 10224700 A JP10224700 A JP 10224700A JP 22470098 A JP22470098 A JP 22470098A JP 2000053433 A JP2000053433 A JP 2000053433A
Authority
JP
Japan
Prior art keywords
temperature
glass material
glass
molded
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10224700A
Other languages
Japanese (ja)
Inventor
Shinichiro Hirota
慎一郎 広田
Yasuhiko Kaneko
康彦 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP10224700A priority Critical patent/JP2000053433A/en
Publication of JP2000053433A publication Critical patent/JP2000053433A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/12Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould
    • C03B11/122Heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Control Of Temperature (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a producing method of a glass optical element by which problems such as foaming in glass, melt sticking to dies, rough surface and pullout can be prevented irrespective of the kind of glass in an isothermal pressing method or an anisothermal pressing method. SOLUTION: This method includes a process (softening process) to heat and soften a glass raw material to a temp. at which the glass raw material has 105.5 to 199.5 Poise viscosity, a process (temp. controlling process) to control the temp. of the softened glass material to a temp. lower by 10 deg.C than the softening temp., and a process (molding process) to mold the glass raw material with the controlled temp. by using a press.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はプレス成形後におい
て研削、研磨等を必要としない高精度のレンズなどのガ
ラス光学素子の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a glass optical element such as a high-precision lens which does not require grinding, polishing or the like after press molding.

【0002】[0002]

【従来の技術】精密に加工した成形型を用いて高精度の
ガラス光学素子をプレス成形する技術が近年非常に進展
し、非球面レンズ等の大量生産が行われている。成形方
法としては大きく分類すると、ガラスと成形型を等しい
温度にしてプレス成形する等温プレス法と、ガラス温度
が高く、型温度が低い状態でプレス成形を開始する非等
温プレス法がある。
2. Description of the Related Art In recent years, a technique for press-molding a high-precision glass optical element using a precision-molded mold has been greatly advanced, and mass production of aspherical lenses and the like has been performed. The molding method can be roughly classified into an isothermal pressing method in which glass and a mold are pressed at the same temperature and a non-isothermal pressing method in which press molding is started in a state where the glass temperature is high and the mold temperature is low.

【0003】等温プレス法としては、例えば米国特許3,
833,347号に記載の非酸化性雰囲気でガラスと型をガラ
スの軟化点近傍まで昇温し、ガラスと型がほぼ等しい温
度で型によりガラスを加圧し、そして加圧を維持しなが
ら型温度をガラス転移点以下まで降温する方法がある。
また、米国特許4,481,023号に記載の方法は、最終製品
に近似の形状のガラスプリフォームを用意し、プリフォ
ームと型を10〜1012ポアズ相当の温度にし、十
分な時間にわたり加圧して型とプリフォームを同一温度
として成形し、1011〜1013ポアズで型から取り
出し、精密アニーリングを行う方法である。これら等温
プレス法では成形型の転写性が良く、形状精度が得やす
いが、成形のサイクルタイムが長くなり、生産性が上が
らない。
As an isothermal pressing method, for example, US Pat.
The temperature of the glass and the mold is raised to near the softening point of the glass in a non-oxidizing atmosphere described in No. 833,347, the glass is pressed by the mold at a temperature substantially equal to the mold, and the mold temperature is maintained while maintaining the pressure. There is a method of lowering the temperature to below the transition point.
Further, the method described in U.S. Patent No. 4,481,023 prepares a glass preform shape approximate to the final product, the preform and the mold to 10 8 to 10 12 poises equivalent temperature, pressurized for a time sufficient to mold And the preform are molded at the same temperature, removed from the mold at 10 11 to 10 13 poise, and subjected to precision annealing. In these isothermal pressing methods, the transferability of the mold is good and the shape accuracy is easily obtained, but the cycle time of molding is long and the productivity is not improved.

【0004】そこで、等温プレス法のこのような欠点を
解決する方法として非等温プレス法が検討されている。
例えば、特開平7-10556号に記載の方法では、10
10ポアズの粘度になるように加熱したガラス素材
を、このガラス素材が1010〜1012ポアズの粘度
なる温度に調温した成形用型でプレスする。また、特開
平9-48621号に記載の方法では、10〜10ポアズ
の粘度になるように加熱したガラス素材を、このガラス
素材が10〜1011ポアズの粘度になる温度の成形
用型でプレス成形する。
Therefore, a non-isothermal pressing method is being studied as a method for solving such a drawback of the isothermal pressing method.
For example, in the method described in JP-A-7-10556, 10 7 ~
A glass material heated to a viscosity of 10 9 poise is pressed with a molding die adjusted to a temperature at which the glass material has a viscosity of 10 10 to 10 12 poise. In the method described in JP-A-9-48621, a glass material heated to a viscosity of 10 5 to 10 7 poise is molded at a temperature at which the glass material has a viscosity of 10 9 to 10 11 poise. Press molding with a mold.

【0005】[0005]

【発明が解決しようとする課題】本発明者らは、種々の
組成のガラスと種々の型材料の使用の適否を検討する中
で、ガラス表面の水分および水酸基がプレス成形に非常
に悪影響を及ぼしているという知見を得た。等温プレス
法では、ガラスの種類によっては、プレスした成形型と
の界面に水分の離脱による発泡が生じやすい。リン酸塩
ガラスにおいては、この現象が特に顕著である。また、
この水分が非酸化物材料からなる成形型を酸化し、融着
や肌荒れを起こす。成形型が炭素系薄膜で被覆されてい
る場合は、炭素膜が顕著に侵される。また炭化ケイ素の
ような硬脆な型材料の場合は、炭化ケイ素表面が酸化し
てガラスと融着し、局部的に炭化ケイ素がえぐり取られ
てしまう(この現象をプルアウトと呼ぶ)。これらの現
象に対して、被成形ガラス素材を200℃で予備熱処理
して表面の吸着水を除去してプレス成形を試みたが、ほ
とんど効果はなかった。
SUMMARY OF THE INVENTION The present inventors have studied the suitability of using glasses of various compositions and various mold materials and found that water and hydroxyl groups on the glass surface have a very bad influence on press molding. I got the knowledge. In the isothermal pressing method, depending on the type of glass, foaming due to release of moisture easily occurs at the interface with the pressed mold. This phenomenon is particularly remarkable in phosphate glasses. Also,
This moisture oxidizes the mold made of a non-oxide material, causing fusion and rough skin. When the mold is covered with a carbon-based thin film, the carbon film is significantly attacked. In the case of a hard and brittle type material such as silicon carbide, the surface of silicon carbide is oxidized and fused with glass, and silicon carbide is locally removed (this phenomenon is called pullout). For these phenomena, the glass material to be molded was preliminarily heat-treated at 200 ° C. to remove water adsorbed on the surface, and press molding was attempted. However, there was little effect.

【0006】一方、ガラス温度を高くし、型温を低くし
た非等温プレス法においては、ガラスの種類によって異
なるが、例えば、バリウムホウケイ酸塩ガラスの場合に
は、上記のようなガラスの発泡、成形型の融着や肌荒
れ、さらにはプルアウト等の問題は完全ではないが、あ
る程度解消される。これは、ガラスの軟化の過程で、ガ
ラス表面からある程度の水が離脱し、さらに、ガラスよ
り低温の型でプレスするためであると考えられる。しか
し、例えば、リン酸塩ガラスの場合、非等温プレス法で
あっても、上記発泡等の問題は解消できない。
On the other hand, in the non-isothermal pressing method in which the glass temperature is raised and the mold temperature is lowered, the type of glass varies depending on the type of glass. Problems such as fusion of the mold, roughening of the surface, and pull-out are not perfect, but are solved to some extent. This is considered to be because some water is released from the glass surface during the softening process of the glass, and the glass is pressed with a mold at a lower temperature than the glass. However, for example, in the case of phosphate glass, the problem of foaming and the like cannot be solved even by a non-isothermal pressing method.

【0007】そこで本発明の目的は、等温プレス法また
は非等温プレス法おいて、ガラスの種類にかかわらず、
ガラスの発泡、成形型の融着や肌荒れ、プルアウト等の
問題を生じることのない、ガラス光学素子の製造方法を
提供することにある。
Accordingly, an object of the present invention is to provide an isothermal pressing method or a non-isothermal pressing method regardless of the type of glass.
An object of the present invention is to provide a method for manufacturing a glass optical element which does not cause problems such as foaming of glass, fusion of a mold, roughening of the surface, and pull-out.

【0008】[0008]

【課題を解決するための手段】本発明者らは、高い温度
でガラスを軟化させることによりガラス表面近傍の水分
および水酸基を除去し、しかる後に温度を下げることに
より、表面から水分が減少した状態を凍結し、この状態
でプレスすることにより上記の課題が解決できることを
見い出して本発明を完成した。
Means for Solving the Problems The present inventors removed water and hydroxyl groups near the glass surface by softening the glass at a high temperature, and then lowered the temperature to reduce the water content from the surface. It was found that the above problem could be solved by freezing and pressing in this state, and completed the present invention.

【0009】即ち、本発明は、被成形ガラス素材を、該
ガラス素材が105.5〜109. ポアズの粘度とな
る温度に加熱して軟化する工程(軟化工程)と軟化した
ガラス素材を前記軟化温度より10℃以上低い温度に制
御する工程(温度制御工程)と温度制御されたガラス素
材をプレス成形する工程(成形工程)とを含むガラス光
学素子の製造方法に関する。
That is, according to the present invention, a glass material to be molded is made of a glass material of 10 5.5 to 10 9. A step of heating to a temperature at which a viscosity of 5 poise is softened (softening step), a step of controlling the softened glass material to a temperature lower than the softening temperature by 10 ° C. or more (temperature control step), and a step of controlling the temperature of the glass material. The present invention relates to a method for producing a glass optical element including a step of press molding (molding step).

【0010】[0010]

【発明の実施の形態】本発明のガラス光学素子の製造方
法は、軟化工程、温度制御工程及び成形工程を含む。軟化工程 軟化工程においては、被成形ガラス素材を、該ガラス素
材が105.5〜10 9.5ポアズの粘度となる温度
〔図1(a)(非等温プレス)及び(b)(等温プレス)中の温度T
A〕に加熱して軟化する。好ましくは、ガラス素材は、
10〜10ポアズの粘度となる温度に加熱して軟化
する。尚、被成形ガラス素材は、ガラス塊を所定の形状
に整えたプリフォームであっても、溶融パイプから流下
する溶融ガラスを自然落下または切断刃によって切断し
た溶融ガラス塊であり、かつガラス塊を一旦109.5ポア
ズの粘度に相当する温度以下の温度(但し、(ガラス転移
温度-100℃)以上)に降温して得たものであってもよい。
このような溶融ガラス塊は、例えば、特開平8−277
132号に開示の方法により調製することができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Manufacturing method of glass optical element of the present invention
The method includes a softening step, a temperature control step, and a forming step.Softening process  In the softening step, the glass material to be molded is
Material is 105.5-10 9.5Temperature at which the viscosity of Poise
(Figure 1 (a) (non-isothermal press) and (b) Temperature T during (isothermal press)
A) to soften. Preferably, the glass material is
106-109Softens by heating to the temperature at which poise has viscosity
I do. In addition, the glass material to be molded has a
Even if the preform is properly prepared, it flows down from the molten pipe.
The molten glass to be dropped or cut by a cutting blade
Molten glass lump, and9.5Pore
Temperature below the temperature corresponding to the viscosity of the
(Temperature -100 ° C.) or more.
Such a molten glass lump is disclosed in, for example, JP-A-8-277.
No. 132 can be prepared.

【0011】被成形ガラス素材を、ガラス素材が10
5.5ポアズの粘度となる温度を超える温度に加熱する
と、被成形ガラス素材が柔らかくなりすぎて、被成形ガ
ラス素材を気流により浮上させることが困難となり、ま
た、浮上皿と接触し融着する危険性が大きくなる。ま
た、気流により浮上させる場合、ガス圧により被成形ガ
ラス素材表面に凹みを生じ、プレスでガストラップが生
じることもある。さらに、被成形ガラス素材を、ガラス
素材が105.5ポアズの粘度となる温度を超える温度
に加熱すると、型温が低い場合、面精度が得にくく、型
温が高いと反応しやすくなる傾向がある。
The glass material to be molded is made of 10
When heated to a temperature higher than the temperature at which the viscosity becomes 5.5 poise, the glass material to be molded becomes too soft, so that it is difficult to float the glass material to be molded by airflow, and the glass material contacts and fuses with the floating plate. The danger increases. In the case of floating by an air current, a dent is formed on the surface of the glass material to be formed due to gas pressure, and a gas trap may be generated by pressing. Moreover, the the glass molding material, when the glass material is heated to a temperature above the temperature at which the viscosity of 10 5.5 poise, when the mold temperature lower surface accuracy is difficult to obtain, easily reacts with high mold temperature trends There is.

【0012】被成形ガラス素材の軟化が、ガラス素材が
109.5ポアズの粘度となる温度を下回る温度での加
熱の場合、ガラスが硬すぎてプレス成形でのばす(変形
させる)ことが困難である。さらに、ガラス素材表面近
傍の水分および水酸基の離脱が少なく、本発明の効果を
得ることが難しい。
[0012] Softening of the glass molding material, in the case of heating at a temperature below the temperature at which the glass material is the viscosity of 10 9.5 poise, the glass is too hard extended by press molding (deforming) is difficult is there. Furthermore, the detachment of water and hydroxyl groups near the surface of the glass material is small, and it is difficult to obtain the effects of the present invention.

【0013】被成形ガラス素材の加熱・軟化は、被成形
ガラス素材を気流により浮上させながら行うことが、被
成形ガラス素材の融着を防止しつつ軟化させることがで
きるという観点から好ましい。また被成形ガラス素材を
成形型に導入した後に加熱軟化する方法と比較すると、
被成形ガラス素材から脱離した水や水酸基による成形型
の劣化が少なほか、成形型との接触による脱離の妨げが
ないためより好ましい。被成形ガラス素材を気流により
浮上させながら軟化させる方法は、例えば、特開平8−
259242号に記載の方法等により行うことができ
る。
The heating and softening of the glass material to be molded is preferably performed while the glass material to be molded is floated by an air current from the viewpoint that the glass material to be molded can be softened while preventing fusion. Also, when compared to the method of heating and softening after introducing the glass material to be molded into the mold,
It is more preferable because the deterioration of the molding die due to water and hydroxyl groups detached from the glass material to be molded is small, and there is no hindrance of detachment due to contact with the molding die. A method of softening a glass material to be formed while floating it by an air current is disclosed in, for example,
The method can be performed by the method described in JP-A-259242.

【0014】ガラス素材の浮上用気流に用いるガスは、
ガラス素材の浮上軟化装置や成形装置の劣化、さらに
は、軟化させるガラス素材の汚染等の防止を考慮して適
宜選択することが好ましい。そのようなガスは、実質的
にガラス素材および成形装置等と反応しない気体であ
り、ガラス素材を汚染するような物質、成分を含むもの
でなければ特に制限されるものではない。加熱された成
形装置等の酸化防止、およびそれに伴い成形装置の材質
の選択の範囲を広げるために、難反応性ガス、非酸化性
ガスであることが適当である。例えば、窒素などを挙げ
ることができる。さらに、若干の還元性成分の、例えば
水素ガスなどを窒素等に添加することも可能である。さ
らに、被成形ガラス素材浮上用気流として、乾燥気流を
用いることが、軟化工程における、ガラス素材表面近傍
の水分および水酸基の離脱を促進するという観点から好
ましい。
The gas used for the air flow for floating the glass material is
It is preferable to select an appropriate material in consideration of the deterioration of the floating softening device and the forming device of the glass material and the prevention of contamination of the glass material to be softened. Such a gas is a gas that does not substantially react with the glass material and the molding apparatus, and is not particularly limited as long as it does not contain substances or components that contaminate the glass material. In order to prevent oxidation of the heated molding device and the like, and to thereby expand the range of selection of the material of the molding device, it is appropriate to use a non-reactive gas or a non-oxidizing gas. For example, nitrogen and the like can be mentioned. Furthermore, it is also possible to add some reducing components, such as hydrogen gas, to nitrogen or the like. Further, it is preferable to use a dry airflow as the airflow for floating the glass material to be molded, from the viewpoint of promoting the release of moisture and hydroxyl groups near the surface of the glass material in the softening step.

【0015】気流の流量は、気流を吹き出す口の形状や
ガラス素材の形状及び重量等を考慮して適宜変更でき
る。通常の場合、ガス流量は0.005〜20リットル
/分の範囲がガラス素材の浮上に適している。但し、ガ
ス流量が0.005リットル/分未満であると、ガラス
素材の重量が300mg以上の場合、ガラス素材を十分
に浮上させることができない場合がある。また、ガス流
量が20リットル/分を超えると、ガラス重量が200
0mg以上の場合でも、浮上治具上のガラスが大きく揺
れて、加熱の際にガラス素材が意図しない形状に変化す
ることがあるからである。
The flow rate of the airflow can be changed as appropriate in consideration of the shape of the outlet for blowing the airflow, the shape and weight of the glass material, and the like. Usually, a gas flow rate in the range of 0.005 to 20 liters / minute is suitable for floating the glass material. However, if the gas flow rate is less than 0.005 liter / min, the glass material may not be able to float sufficiently when the weight of the glass material is 300 mg or more. Further, when the gas flow rate exceeds 20 liters / minute, the glass weight becomes 200
This is because, even in the case of 0 mg or more, the glass on the floating jig shakes greatly, and the glass material may change to an unintended shape during heating.

【0016】さらに本発明の方法では、前記加熱軟化し
たガラス素材の回転方向及び回転数を制御して、ガラス
素材の形状を所望の形状に変形させることもできる。所
望の形状としては、例えば球状、マーブル状(球を偏平
させた形状)、円板状、球面状等が挙げられる。
Further, in the method of the present invention, the shape and shape of the glass material can be changed to a desired shape by controlling the rotation direction and the number of rotations of the heat-softened glass material. Examples of the desired shape include a spherical shape, a marble shape (a shape obtained by flattening a sphere), a disk shape, and a spherical shape.

【0017】温度制御工程 上記軟化工程で所定の温度に加熱され軟化したガラス素
材(温度:TA)は、軟化温度より10℃以上低い温度
に制御される。軟化温度より10℃以上低い温度は、好
ましい、例えば、ガラス素材のガラス転移温度より100
℃低い温度(Tg−100℃)より高い温度(TB)で
ある。加熱され軟化したガラス素材は、好ましくは、そ
の温度を軟化温度より15℃以上低い温度に制御され
る。これによって、表面から水分が減少した状態を凍結
させる。また、冷却の温度を(Tg−100℃)より高
い温度とすることで、室温まで温度が下がると水分が再
吸着するが、そのような問題はなく、かつサイクルタイ
ムが不必要に長くなることを防げるという利点がある。
[0017]Temperature control process  Vitreous softened by heating to a predetermined temperature in the softening step
The temperature of the material (temperature: TA) is at least 10 ° C lower than the softening temperature.
Is controlled. A temperature lower than the softening temperature by 10 ° C or more is preferable.
For example, the glass transition temperature of the glass material is 100
At higher temperature (TB) than lower temperature (Tg-100 ° C)
is there. The heated and softened glass material is preferably
Temperature is controlled to be at least 15 ° C lower than the softening temperature.
You. This freezes the condition of reduced moisture from the surface
Let it. Further, the cooling temperature is higher than (Tg-100 ° C).
When the temperature drops to room temperature, moisture will
Adsorbs, but there is no such problem and cycle tie
This has the advantage of preventing the system from becoming unnecessarily long.

【0018】温度制御工程において、被成形ガラス素材
の温度制御(冷却)を、該ガラス素材を気流により浮上
させながら行うことが、被成形ガラス素材の融着を防止
しつつ冷却させることができるという観点から好まし
い。また被成形ガラス素材を成形型に導入した後に加熱
軟化する方法と比較すると、被成形ガラス素材から脱離
した水や水酸基による成形型の劣化がないほか、成形型
との接触により水や水酸基が脱離するのを妨げないため
より好ましい。被成形ガラス素材を気流により浮上させ
ながら冷却させる方法は、前述の軟化工程と同様に、例
えば、特開平8−259242号に記載の方法等により
行うことができる。さらに、被成形ガラス素材浮上用を
気流として、乾燥気流を用いることが好ましい。
In the temperature control step, performing the temperature control (cooling) of the glass material to be molded while floating the glass material by an air current can cool the glass material to be molded while preventing fusion. Preferred from a viewpoint. In addition, when compared with the method in which the glass material to be molded is heated and softened after being introduced into the molding die, there is no deterioration of the molding die due to water or hydroxyl groups detached from the glass material to be molded, and water and hydroxyl groups are reduced due to contact with the molding die. It is more preferable because it does not prevent the elimination. The method of cooling the glass material to be formed while floating it by an air current can be performed by, for example, the method described in JP-A-8-259242, similarly to the above-described softening step. Further, it is preferable to use a dry airflow as an airflow for floating the glass material to be formed.

【0019】温度制御工程で温度制御(冷却)した被成
形ガラス素材は、次いで、ガラス素材の温度と等しい温
度または低い温度の成形型でプレス成形を開始する。前
者は等温プレスであり、後者は非等温プレスである。非等温プレスの場合 非等温プレスの場合〔図1(a)〕
には、温度制御工程において被成形ガラス素材は、プレ
ス成形開始に適した温度(TB)に調整して冷却され
る。プレス成形開始に適した温度(TB)に冷却するこ
とで表面から水分が縮小した状態を凍結できるという利
点がある。温度制御工程において冷却される被成形ガラ
ス素材の温度は、例えば、プレス成形開始に適した成形
型の温度より、10℃以上高いことが好ましい。冷却し
た被成形ガラス素材(温度:TB)は、上記の如く、好
ましくは気体で浮上しながら軟化及び冷却され、成形の
ため浮上装置から成形型(被成形ガラス素材より低温で
あるTM)に移送されて、プレス成形を開始する。非等
温プレスの場合、成形型の温度が、ガラス素材の温度よ
り低いので、成形のサイクルタイムを短くすることがで
きるという利点がある。また、被成形ガラス素材の成形
型への移送に割型式浮上皿を使用する場合、浮上落下に
は落下時の偏肉を防止する機構を設けることが好まし
い。
The glass material to be formed, which has been temperature-controlled (cooled) in the temperature control step, is then subjected to press molding with a mold having a temperature equal to or lower than the temperature of the glass material. The former is an isothermal press and the latter is a non-isothermal press. Non-isothermal press Non-isothermal press [Fig. 1 (a)]
In the temperature control step, the glass material to be formed is cooled to a temperature (TB) suitable for starting press forming. By cooling to a temperature (TB) suitable for starting press molding, there is an advantage that a state in which moisture is reduced from the surface can be frozen. The temperature of the glass material to be cooled in the temperature control step is preferably, for example, 10 ° C. or more higher than the temperature of the forming die suitable for starting press forming. The cooled glass material to be formed (temperature: TB) is softened and cooled, preferably while floating with gas, as described above, and is transferred from a floating device to a forming die (TM which is lower in temperature than the glass material to be formed) for forming. Then, press molding is started. In the case of a non-isothermal press, since the temperature of the mold is lower than the temperature of the glass material, there is an advantage that the cycle time of molding can be shortened. When a split-type floating plate is used to transfer the glass material to be molded to the molding die, it is preferable to provide a mechanism for preventing uneven wall thickness at the time of falling during floating.

【0020】等温プレスの場合 等温プレスの場合〔図1(b)〕、温度制御工程におい
て被成形ガラス素材は、歪み点付近まで冷却した後、プ
レス成形開始前に加熱昇温し、その後にプレス成形を開
始する。プレス成形開始前に加熱昇温を行う場合、この
加熱昇温は、被成形ガラス素材を気流により浮上させな
がら行うか、または、被成形ガラス素材を成形型に移送
した後に行うことができる。歪み点付近まで冷却するこ
とで表面から水分が縮小した状態を凍結できるという利
点があり、また、プレス成形開始前に加熱昇温すること
で、面精度が得やすいという利点がある。さらに、ガラ
ス素材を歪点以下の温度に冷却して、一旦固化させてか
らパッドで成形型に移送し、成形型と共に再度昇温して
プレスすることもできる。この場合、成形型の中心への
セッティングが容易であり、面精度も得やすいという利
点がある。等温プレスではいずれの方法を採用すること
もできる。
[0020]In case of isothermal press  In the case of an isothermal press [Fig. 1 (b)], in the temperature control process
After the glass material is cooled to near the strain point,
Before starting molding, heat up the temperature and then start press molding.
Start. When heating and raising the temperature before press molding starts,
Heating and heating should not raise the glass material to be formed by airflow.
Or transfer the glass material to the mold
Can be done after. Cool to near the strain point.
With this, it is possible to freeze the state where the moisture has been reduced from the surface
There is a point, and it is necessary to heat up before starting press molding
Therefore, there is an advantage that surface accuracy is easily obtained. In addition, gala
Cool the material to a temperature below the strain point and allow it to solidify
Transfer to the mold with the pad and raise the temperature again with the mold
You can also press. In this case, the center of the mold
Easy setting and easy surface accuracy
There is a point. Either method should be adopted for isothermal press
Can also.

【0021】プレス成形を開始するときの成形型の温度
は、被成形ガラス素材の粘度が10 7.3〜1012
アズに相当する温度であることが好ましい。成形型の温
度が、被成形ガラス素材の粘度が107.3ポアズに相
当する温度を超える場合、成形型とガラスとが反応しや
すくなり、かつ発泡も生じやすくなるため、肌荒れを生
じたり、型ライフが短くなるという問題が生じる。さら
に、成形のサイクルタイムが長くなる原因にもなる。成
形型の温度が、被成形ガラス素材の粘度が1012ポア
ズに相当する温度未満場合、被成形ガラス素材の温度が
比較的低い場合には、被成形ガラス素材が粘度が高いた
め、プレス成形でのばす(変形させる)ことが困難とな
るという問題がある。被成形ガラス素材の温度が比較的
高い場合には、ガラス表面が急激に冷えて、面精度が得
にくい、またコバ厚が薄い場合はのばせない場合があ
る。尚、非等温プレスの場合、被成形ガラス素材の粘度
が105.7〜10ポアズに相当する温度であり、か
つ成形型が、被成形ガラス素材の粘度が10〜10
12ポアズに相当する温度であることが好ましい。
The temperature of the mold at the start of press molding
Means that the viscosity of the glass material to be molded is 10 7.3-1012Po
Preferably, the temperature is equivalent to as. Mold temperature
If the viscosity of the glass material to be molded is 107.3Poise
If the temperature exceeds the applicable temperature, the mold and glass may react with each other.
The skin becomes rougher and foams easily
The problem that the mold life is shortened is caused. Further
In addition, it also causes an increase in molding cycle time. Success
When the temperature of the mold is 10 and the viscosity of the glass material is 1012Pore
If the temperature of the glass material to be formed is lower than the temperature
If it is relatively low, the glass material
It is difficult to extend (deform) by press molding
Problem. The temperature of the glass material to be molded is relatively
If it is high, the glass surface cools rapidly, and surface accuracy is obtained.
If the edge is too thin,
You. In the case of a non-isothermal press, the viscosity of the glass
Is 105.7-108Temperature equivalent to poise,
The molding die has a viscosity of 108-10
12Preferably, the temperature is equivalent to poise.

【0022】上記プレス成形においては、前記加熱軟化
したガラス素材を成形型内で、例えば、0.5〜240
秒間初期加圧することができる。この初期加圧が0.5
秒未満では、一般にガラスの伸びが不十分であり、所望
の形状のガラス光学素子を得ることは難しいことが多
い。また、初期加圧は、長くなれ面精度等が向上するこ
ともあるが、長すぎるとサイクル時間が短縮できず、ま
た、成形型の寿命にも悪影響を及ぼすことがあり、実用
上上限は240秒程度である。好ましくは、2〜120
秒の範囲である。また、成形圧力は、ガラス素材の温度
及び成形型の温度等を考慮して適宜決定することがで
き、通常30〜300kg/cmの範囲の圧力とする
ことが適当である。
In the above press molding, the heat-softened glass material is placed in a mold, for example, from 0.5 to 240
Initial pressurization can be performed for seconds. This initial pressurization is 0.5
If the time is less than seconds, elongation of the glass is generally insufficient, and it is often difficult to obtain a glass optical element having a desired shape. In addition, the initial pressurization may be lengthened to improve surface accuracy and the like, but if it is too long, the cycle time cannot be shortened, and the life of the mold may be adversely affected. On the order of seconds. Preferably, 2-120
Range of seconds. The molding pressure can be appropriately determined in consideration of the temperature of the glass material, the temperature of the molding die, and the like, and is usually set to a pressure in the range of 30 to 300 kg / cm 2 .

【0023】プレス成形を開始した後、成形型の温度を
被成形ガラスのガラス転移点以下まで冷却してから離型
する。より具体的には、成形後に、例えば、前記成形型
の成形面近傍を20℃/分以上の速度で冷却する。冷却
速度を20℃/分より遅くしてもかまわないが、不必要
に成形のサイクルタイムが長くなるだけである。ガラス
成形体の大きさ、形状によって異なるが、高面精度を得
るという観点から、成形面近傍は20〜180℃/分の
速度、好ましくは50〜150℃/分の速度で冷却する
ことが好ましい。
After the start of press molding, the temperature of the mold is cooled to the glass transition point of the glass to be molded or lower, and then the mold is released. More specifically, after molding, for example, the vicinity of the molding surface of the mold is cooled at a rate of 20 ° C./min or more. The cooling rate can be slower than 20 ° C./min, but this only unnecessarily increases the molding cycle time. Although it depends on the size and shape of the glass molded body, from the viewpoint of obtaining high surface accuracy, it is preferable to cool the vicinity of the molded surface at a rate of 20 to 180 ° C./min, preferably 50 to 150 ° C./min. .

【0024】プレス成形を開始した後、成形型の温度を
被成形ガラスのガラス転移点以下まで冷却してから離型
することで、優れた面精度を有するガラス光学素子を得
ることができる。ガラス転移点より高い温度で離型する
とヒケが発生して面精度が得られにくくなる。また、成
形型とガラス光学素子とが密着しているため、ガラス転
移点を超える温度では離型そのものが容易でない。離型
は、歪点付近まで下げることがより好ましい。但し、そ
れ以上低温まで下げることはサイクルタイムを長くする
だけである。
After the start of press molding, the temperature of the mold is cooled to the glass transition point or lower of the glass to be molded, and then the mold is released, whereby a glass optical element having excellent surface accuracy can be obtained. When the mold is released at a temperature higher than the glass transition point, sink marks are generated, and it becomes difficult to obtain surface accuracy. Further, since the mold and the glass optical element are in close contact with each other, it is not easy to release the mold at a temperature exceeding the glass transition point. It is more preferable that the release is lowered to near the strain point. However, lowering the temperature further lowers the cycle time only.

【0025】本発明の製造方法では、被成形ガラス素材
の種類によらず、良好な物性を有する光学素子を製造す
ることができるが、特に、被成形ガラス素材が一般に、
水分を多く含むリン酸塩ガラスの場合においても、発泡
及び型の酸化を防ぐことができる。
According to the production method of the present invention, an optical element having good physical properties can be produced regardless of the type of the glass material to be molded.
Even in the case of phosphate glass containing a large amount of water, foaming and oxidation of the mold can be prevented.

【0026】本発明の製造方法では、特に、被成形ガラ
ス素材を、該ガラス素材が105. 〜109.5ポア
ズの粘度となる温度に加熱して軟化することにより該ガ
ラス素材の表面近傍の水分および水酸基を減少させ、し
かる後に、前記ガラス素材の温度を10℃以上低くして
該ガラス素材の粘度が107.3〜1012ポアズに相
当する温度の成形型でプレス成形を開始し、成形型の温
度を該ガラスのガラス転移点以下まで冷却してから離型
することで、等温プレス法及び非等温プレス法のいずれ
の方法においても、また、ガラスの種類にかかわらず、
ガラスの発泡、成形型の融着や肌荒れ、プルアウト等の
問題を生じることなく、ガラス光学素子を製造すること
ができる。
In the production method of the present invention, particularly, the glass material to be molded is 10 5. By heating to a temperature at which the viscosity becomes 5 to 9.5 poise and softening, moisture and hydroxyl groups near the surface of the glass material are reduced, and then the temperature of the glass material is lowered by 10 ° C. or more to reduce the temperature. By starting press molding with a mold having a temperature corresponding to 10 7.3 to 10 12 poise, the viscosity of the glass material is cooled to a temperature equal to or lower than the glass transition point of the glass, and then the mold is released. In any of the isothermal pressing method and the non-isothermal pressing method, and regardless of the type of glass,
A glass optical element can be manufactured without causing problems such as foaming of glass, fusion of a mold, roughening of the surface, and pull-out.

【0027】[0027]

【実施例】実施例1 P、PbO、Nbを主成分とするリン酸塩
ガラスで、屈折率nd1.80518、アッベ数νd25.5、転
移点466℃、屈伏点511℃を示すガラスを、基盤が炭化ケ
イ素からなり、表面に硬質炭素膜を被覆した成形型で外
径15mmで片面非球面の凸メニスカスレンズを成形した例
を説明する。表1に、上記リン酸塩ガラスの粘度と温度
の関係を示す。
EXAMPLE 1 P 2 0 5, PbO, in phosphate glass mainly composed of Nb 2 O 5, refractive index Nd1.80518, Abbe number Nyudi25.5, transition point 466 ° C., yield point 511 ° C. The following describes an example in which a glass having the above shape is formed into a convex meniscus lens having an outer diameter of 15 mm and an aspherical surface on one side by using a mold having a base made of silicon carbide and a hard carbon film coated on the surface. Table 1 shows the relationship between the viscosity of the phosphate glass and the temperature.

【0028】[0028]

【表1】 [Table 1]

【0029】装置内は窒素ガス雰囲気とした。被成形素
材として、冷間で研削、研磨することにより平凸形状に
したものと、熱間成形によりマーブル形状にしたものを
用意した。被成形ガラス素材を加熱軟化させて被成形ガ
ラス素材の表面近傍の水分および水酸基を減少させるに
は、被成形ガラス素材を支持する部材との接触および融
着を防ぐ必要がある。ここでは特開平8-133758号公報に
示される方法と類似の方法を採用した。
The inside of the apparatus was set to a nitrogen gas atmosphere. As the material to be molded, a material having a plano-convex shape by grinding and polishing in a cold state and a material having a marble shape by hot forming were prepared. In order to reduce the moisture and hydroxyl groups near the surface of the glass material to be molded by heating and softening the glass material to be molded, it is necessary to prevent contact and fusion with a member supporting the glass material to be molded. Here, a method similar to the method disclosed in JP-A-8-133758 was adopted.

【0030】高密度カーボン製の割型式浮上皿の下方か
ら非酸化性ガス(窒素ガス)を噴出させて、気流により
被成形ガラス素材を浮上させて加熱軟化させることによ
り、ガラス表面近傍から水分および水酸基を離脱させ、
減少させた。しかる後に割型式浮上皿を成形型の下型上
に移送し、被成形ガラス素材を所定温度まで下げて、ガ
ラス表面近傍から水分および水酸基の離脱した状態を凍
結させてから、割型式浮上皿を左右に開いて、所定温度
の成形型上に被成形ガラス素材を落下させ、直ちにプレ
ス成形を行った。実施例の諸条件を表2に示す。各実施
例で各100回プレス成形を行ったが、成形型との接触
界面に気泡は発生せず、硬質炭素膜にも異常はなかっ
た。
A non-oxidizing gas (nitrogen gas) is blown from below the split-type floating plate made of high-density carbon, and the glass material to be formed is floated by an air current to be heated and softened. Removing the hydroxyl group,
Reduced. Thereafter, the split-type floating plate is transferred to the lower mold of the forming mold, the glass material to be formed is lowered to a predetermined temperature, and the state in which moisture and hydroxyl groups are released from the vicinity of the glass surface is frozen, and then the split-type floating plate is removed. Opening right and left, the glass material to be molded was dropped on a mold at a predetermined temperature, and immediately press-molded. Table 2 shows the conditions of the example. Press molding was performed 100 times in each example, but no bubbles were generated at the contact interface with the molding die, and there was no abnormality in the hard carbon film.

【0031】[0031]

【表2】 [Table 2]

【0032】一方、被成形ガラス素材を加熱軟化した後
所定温度まで下げずに直ちにプレス成形を行った場合
は、成形条件によって多少異なるが、界面に小さな気泡
がわずかに発生し、数10回のプレス成形で硬質炭素膜
の浸食による荒れが認められ、約100回のプレス成形
で融着が発生した。また、別の装置を用い、成形型と共
に被成形ガラス素材を昇温し、いわゆる等温プレスを行
った場合は界面に顕著に気泡が生じ、数回のプレス成形
で硬質炭素膜の浸食により融着が発生した。
On the other hand, when the glass material to be formed is heated and softened and then immediately subjected to press forming without lowering to a predetermined temperature, small bubbles are slightly generated at the interface, depending on the forming conditions. Roughness due to erosion of the hard carbon film was observed in press molding, and fusion occurred in about 100 press moldings. In addition, when using another apparatus, the temperature of the glass material to be formed is raised together with the forming die, and when so-called isothermal pressing is performed, remarkable bubbles are generated at the interface, and the hard carbon film is fused by erosion of the hard carbon film by several times of press forming. There has occurred.

【0033】実施例2 成形型として、基盤を金属バインダーレスの超硬合金と
し、Pt-Ir-Rh-Au合金薄膜で表面被覆した成形型を用い
た以外は実施例1と同様である。 各成形条件でプレス
成形を行った結果、実施例1と同様に良好な結果が得ら
れた。比較例においては、実施例1のところで記載した
比較例に比べて浸食が認められない点でよいが、気泡は
やや軽減されるものの発生した。
Example 2 A mold was the same as that of Example 1 except that the base was made of a cemented carbide without a metal binder and the surface was coated with a Pt-Ir-Rh-Au alloy thin film. As a result of press molding under each molding condition, good results were obtained as in Example 1. The comparative example is good in that no erosion is observed as compared with the comparative example described in Example 1, but bubbles are generated although the bubbles are slightly reduced.

【0034】実施例3 実施例1と同一のガラスを用い同一の形状にプレス成形
を行った。本実施例では被成形ガラス素材として、最終
製品に近似の面形状に冷間で研磨したものを用いた、加
熱軟化に際し浮上させるのではなく、被成形ガラス素材
の最外周付近をリング状ホルダー(高密度炭素の表面を
グラッシカーボン化処理したものを使用)で支持して加
熱軟化し、リング状ホルダーとともに下型にセットし、
プレス成形を行った。実施例の諸条件を表3に示す。他
の条件については実施例1と同様であり、実施例1と同
様の結果が得られた。
Example 3 The same glass as in Example 1 was pressed into the same shape. In this embodiment, as a glass material to be molded, a glass material cold-polished to a surface shape similar to the final product is used. Instead of floating during heating and softening, the outermost periphery of the glass material to be molded is a ring-shaped holder ( The surface of the high-density carbon is treated with glassy carbon and then softened by heating, set in a lower mold with a ring-shaped holder,
Press molding was performed. Table 3 shows the conditions of the example. Other conditions were the same as in Example 1, and the same results as in Example 1 were obtained.

【0035】[0035]

【表3】 [Table 3]

【0036】実施例4 バリウムホウケイ酸塩ガラスで、屈折率nd1.58913、
アッベ数νd61.3、転移点514 ℃、屈伏点545℃を示す
ガラスで、熱間成形したマーブル形状の被成形ガラス素
材を用意し、外径15mmの凸メニスカスレンズを成形した
例を示す。このガラスの粘度と温度の関係を表4に示
す。
Example 4 Barium borosilicate glass having a refractive index of nd1.58913,
An example is shown in which a glass material having an Abbe number νd 61.3, a transition point of 514 ° C., and a deformation point of 545 ° C. is prepared, and a hot-formed marble-shaped glass material is prepared, and a convex meniscus lens having an outer diameter of 15 mm is formed. Table 4 shows the relationship between the viscosity and the temperature of this glass.

【0037】[0037]

【表4】 [Table 4]

【0038】装置内は水素を2%含む窒素ガス雰囲気と
した。用いた成形型は表面がCVD法で作製した炭化ケ
イ素である。高密度炭素の表面をグラッシカーボン化処
理した浮上皿(実施例1とは異なり、割型式ではない)
の下方から非酸化性ガス(水素を2%含む窒素ガス)を
噴出させて、気流により被成形ガラス素材を浮上させて
加熱軟化させた(条件は表5に示す)。しかる後に被成
形ガラス素材をガラス転移点以下まで(本実施例では歪
点である478℃まで)冷却し、高密度炭素の表面をグラ
ッシカーボン化処理した吸着パッドで被成形ガラス素材
を、被成形ガラス素材の歪点に相当する温度に予熱され
た成形型に移送した。次いで、表5に示す所定のプレス
温度まで成形型と共に被成形ガラス素材を急速に昇温
し、表5に示す所定の条件でプレス成形を行った。各条
件で各10回プレス成形を行った結果、いずれの条件で
もプルアウトは発生せず、レンズの外観品質も良好だっ
た。
The inside of the apparatus was set to a nitrogen gas atmosphere containing 2% of hydrogen. The mold used was silicon carbide whose surface was produced by the CVD method. Floating plate with high-density carbon surface treated with glassy carbon (unlike Example 1, not split type)
, A non-oxidizing gas (nitrogen gas containing 2% of hydrogen) was jetted from below, and the glass material to be molded was floated by an air current and softened by heating (conditions are shown in Table 5). Thereafter, the glass material to be molded is cooled to a temperature lower than the glass transition point (in this embodiment, to a strain point of 478 ° C.), and the glass material to be molded is molded with a suction pad in which the surface of high-density carbon has been subjected to glassy carbon treatment. The glass material was transferred to a mold preheated to a temperature corresponding to the strain point. Next, the temperature of the glass material to be molded was rapidly raised together with the forming die to a predetermined press temperature shown in Table 5, and press molding was performed under predetermined conditions shown in Table 5. As a result of performing press molding 10 times under each condition, no pull-out occurred under any condition, and the appearance quality of the lens was good.

【0039】[0039]

【表5】 [Table 5]

【0040】一方比較例では、被成形ガラス素材を軟化
温度までは加熱せずに、歪点の478℃まで加熱し、同様
のことを行った。条件により差異はあるが、各条件とも
1回のプレス成形で既にプルアウトが発生し、10回の
プレスでは多数のプルアウトが発生した。
On the other hand, in the comparative example, the same operation was performed without heating the glass material to be molded to the softening temperature but to the strain point of 478 ° C. Although there are differences depending on the conditions, pull-out has already occurred in one press molding under each condition, and many pull-outs have occurred in ten presses.

【0041】実施例5 実施例4の成形型の表面に硬質炭素膜を被覆して使用し
た。他は実施例4と同様である。各条件で各2,000
回プレス成形を行った結果、いずれの条件でもプルアウ
トは発生せず、レンズの外観品質も良好だった。一方比
較例では、条件により異なるが、約1000回のプレス
成形で炭素膜が浸食され、プルアウトが発生した。
Example 5 The surface of the mold of Example 4 was coated with a hard carbon film and used. Others are the same as the fourth embodiment. 2,000 for each condition
As a result of the first press molding, no pull-out occurred under any of the conditions, and the appearance quality of the lens was good. On the other hand, in the comparative example, although different depending on the conditions, the carbon film was eroded by about 1000 times of press molding, and pull-out occurred.

【0042】実施例6 被成形ガラス素材が溶融ガラスゴブである場合について
以下に説明する。図2に示す割型式浮上皿1は、ラッパ
状の凹部3と、この凹部3の中央部下方(凹部3の底)
に開口するようにして設けられた1つの細孔4とを有し
ている耐熱鋼(例えば、ステンレス)製のものであり、
凹部3の開口の広がり角度Θは15°、細孔4の直径は
2mmである。
Example 6 A case where the glass material to be molded is a molten glass gob will be described below. The split type floating plate 1 shown in FIG. 2 has a trumpet-shaped concave portion 3 and a central lower portion of the concave portion 3 (the bottom of the concave portion 3).
Heat-resistant steel (for example, stainless steel) having one pore 4 provided so as to open to
The opening angle Θ of the opening of the recess 3 is 15 °, and the diameter of the pore 4 is 2 mm.

【0043】この割型式浮上皿1を、内径が1mmで先
端の外径が2.5mmである溶融ガラス用流出パイプの
下方約50mmのところに配置し、粘性が15ポアズと
なるように加熱されたランタンフリント系ガラスからな
る溶融ガラスからなる溶融ガラス塊を前記の流出パイプ
の先端から自然落下させ、この溶融ガラス塊を前記の割
型式浮上皿1の凹部3によって受けた。このとき、割型
式浮上皿1に設けられている細孔4から毎分1リットル
の空気を吹き出しながら前記の溶融ガラス塊を受けるよ
うにした。その結果、溶融ガラス塊は、割型式浮上皿1
の凹部内面2aとほとんど接触せずにわずかに浮上した
状態で当該割型式浮上皿1の凹部3によって受けられ
た。
The split type floating dish 1 is placed at a position about 50 mm below a molten glass outflow pipe having an inner diameter of 1 mm and an outer diameter of 2.5 mm at a tip, and is heated so as to have a viscosity of 15 poise. The molten glass lump made of the molten glass made of the lanthanum flint glass was allowed to fall naturally from the tip of the outflow pipe, and the molten glass lump was received by the concave portion 3 of the split type floating dish 1. At this time, the molten glass lump was received while blowing out one liter of air per minute from the fine holes 4 provided in the split type floating dish 1. As a result, the molten glass lump is divided into split type floating dishes 1
And received slightly by the concave portion 3 of the split type floating plate 1 in a state where the floating surface slightly floated without almost contacting the inner surface 2a of the concave portion.

【0044】引き続き毎分1リットルの空気を細孔4か
ら吹き出しながら、上記の溶融ガラス塊を成形した。こ
のとき、図2に示したように、溶融ガラス塊2は割型式
浮上皿1の凹部内面2aとほとんど接触せずにわずかに
浮上した状態で回転して、球状に成形された。球状に成
形した溶融ガラス塊2を凹部3内に浮上させたまま冷却
し、表面がガラス転移温度(Tg)にまで下げた。その
後、気流により溶融ガラス塊2を浮上させながら再度加
熱軟化させることにより、ガラス表面近傍から水分およ
び水酸基を離脱させ、減少させた。
Subsequently, while blowing out one liter of air per minute from the pores 4, the above molten glass lump was formed. At this time, as shown in FIG. 2, the molten glass lump 2 rotated while slightly floating without almost contacting the inner surface 2 a of the concave portion of the split type floating plate 1, and was formed into a spherical shape. The spherically shaped molten glass lump 2 was cooled while floating in the recess 3, and the surface was lowered to a glass transition temperature (Tg). Thereafter, the molten glass lump 2 was heated and softened again while being floated by an air current, thereby removing and reducing moisture and hydroxyl groups from near the glass surface.

【0045】しかる後、実施例1と同様にして、溶融ガ
ラス塊2を所定温度まで下げて、ガラス表面近傍から水
分および水酸基の離脱した状態を凍結させてから、割型
式浮上皿を左右に開いて、所定温度の成形型上に被成形
ガラス素材を落下させ、直ちにプレス成形を行った。実
施例1と同様に100回プレス成形を行ったが、成形型
との接触界面に気泡は発生せず、硬質炭素膜にも異常は
なかった。
Thereafter, in the same manner as in Example 1, the molten glass lump 2 is lowered to a predetermined temperature to freeze the state in which water and hydroxyl groups have been released from the vicinity of the glass surface, and then the split-type floating pan is opened right and left. Then, the glass material to be molded was dropped on a mold at a predetermined temperature, and immediately press-molded. Press molding was performed 100 times in the same manner as in Example 1. However, no bubbles were generated at the contact interface with the molding die, and there was no abnormality in the hard carbon film.

【0046】[0046]

【発明の効果】本発明の製造方法によれば、成形型との
界面(レンズの表面)に気泡が生じることがなく、外観
品質の良好なレンズを量産できる。さらに本発明の製造
方法によば、水分により型表面が酸化されたり浸食され
たりすることが抑制されるので、融着や肌荒れが防止さ
れ、成形型のライフが長くなるという利点もある。ま
た、最適の成形条件を選択することにより、高い面精度
のレンズが適切な成形サイクルタイムで得られ、高い生
産性を実現することもできる。
According to the production method of the present invention, no bubbles are generated at the interface with the mold (the surface of the lens), and a lens having good appearance quality can be mass-produced. Furthermore, according to the production method of the present invention, since the surface of the mold is prevented from being oxidized or eroded by moisture, fusion and roughening of the surface are prevented, and the life of the mold is extended. Further, by selecting the optimal molding conditions, a lens with high surface accuracy can be obtained with an appropriate molding cycle time, and high productivity can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の製造方法における被成形ガラス素材
及び成形型の温度変化を示す〔(a)非等温プレス、(b)等
温プレス〕。
FIG. 1 shows temperature changes of a glass material to be molded and a molding die in a production method of the present invention [(a) non-isothermal press, (b) isothermal press].

【図2】 実施例6で用いた割型式浮上皿1の断面概略
図。
FIG. 2 is a schematic cross-sectional view of a split type floating dish 1 used in Example 6.

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 被成形ガラス素材を、該ガラス素材が1
5.5〜109.5ポアズの粘度となる温度に加熱し
て軟化する工程(以下、軟化工程という)と軟化したガ
ラス素材を前記軟化温度より10℃以上低い温度に制御
する工程(以下、温度制御工程という)と温度制御され
たガラス素材をプレス成形する工程(以下、成形工程と
いう)とを含むガラス光学素子の製造方法。
1. A glass material to be molded, wherein the glass material is 1
A step of heating to a temperature at which the viscosity becomes 0 5.5 to 10 9.5 poise (hereinafter, referred to as a softening step) and a step of controlling the softened glass material to a temperature lower than the softening temperature by at least 10 ° C. And a temperature control step) and a step of press-molding a temperature-controlled glass material (hereinafter, referred to as a forming step).
【請求項2】 プレス成形開始時にけるガラス素材の温
度と成形型の温度とが等しい請求項1に記載の製造方
法。
2. The method according to claim 1, wherein the temperature of the glass material at the start of press molding is equal to the temperature of the mold.
【請求項3】 温度制御工程において、ガラス素材を
(ガラス転移温度-100℃)より高い温度まで冷却し、次い
で加熱昇温した後に成形工程に移る請求項2に記載の製
造方法。
3. In the temperature control step, the glass material is
3. The method according to claim 2, wherein the molding is carried out after cooling to a temperature higher than (glass transition temperature -100 ° C.) and then heating and raising the temperature.
【請求項4】 プレス成形開始時にけるガラス素材の温
度が成形型の温度より高い請求項1に記載の製造方法。
4. The method according to claim 1, wherein the temperature of the glass material at the start of press molding is higher than the temperature of the mold.
【請求項5】 被成形ガラス素材が、溶融パイプから流
下する溶融ガラスを自然落下または切断刃によって切断
した溶融ガラス塊であり、かつガラス塊を一旦10 9.5
アズに相当する温度以下(但し、(ガラス転移温度-100
℃)以上)に降温して得たものである請求項1〜4のいず
れか1項に記載の製造方法。
5. The glass material to be formed is flowed from a molten pipe.
The falling molten glass is naturally dropped or cut by a cutting blade
Molten glass lump, and 9.5Po
Below the temperature equivalent to as (however, (glass transition temperature -100
(C) or more).
2. The production method according to claim 1.
【請求項6】 軟化工程において、被成形ガラス素材の
加熱軟化を、該ガラス素材を気流により浮上させながら
行う請求項1〜5のいずれか1項に記載の製造方法。
6. The method according to claim 1, wherein in the softening step, the glass material to be formed is softened by heating while the glass material is levitated by an air current.
【請求項7】 温度制御工程において、被成形ガラス素
材の温度制御を、該ガラス素材を気流により浮上させな
がら行う請求項1〜6のいずれか1項に記載の製造方
法。
7. The production method according to claim 1, wherein in the temperature control step, the temperature of the glass material to be molded is controlled while the glass material is levitated by an air current.
【請求項8】 被成形ガラス素材浮上用気流として、乾
燥気流を用いる請求項6または7に記載の製造方法。
8. The production method according to claim 6, wherein a dry airflow is used as the airflow for floating the glass material to be molded.
【請求項9】 温度制御した被成形ガラス素材を成形型
に移送して、プレス成形を開始する請求項1〜8のいず
れか1項に記載の製造方法。
9. The production method according to claim 1, wherein the temperature-controlled glass material to be molded is transferred to a molding die to start press molding.
【請求項10】 温度制御工程において温度制御した被
成形ガラス素材を、プレス成形開始前に加熱昇温し、そ
の後にプレス成形を開始する請求項1〜9のいずれか1
項に記載の製造方法。
10. The glass material to be molded whose temperature has been controlled in the temperature control step is heated and heated before starting the press molding, and thereafter the press molding is started.
The production method according to the paragraph.
【請求項11】 プレス成形開始前の加熱昇温を、被成
形ガラス素材を気流により浮上させながら行うか、また
は、被成形ガラス素材を成形型に移送した後に行う、請
求項10に記載の製造方法。
11. The production according to claim 10, wherein the heating and raising of the temperature before the start of press molding are performed while floating the glass material to be molded by an air current, or after transferring the glass material to be molded to a molding die. Method.
【請求項12】 プレス成形を開始するときの成形型の
温度を、被成形ガラス素材の粘度が107.3〜10
12ポアズに相当する温度とする請求項1〜11のいず
れか1項に記載の製造方法。
12. The temperature of a molding die at the start of press molding is determined by adjusting the viscosity of the glass material to be molded to 10 7.3 to 10
The method according to any one of claims 1 to 11, wherein the temperature is set to 12 poise.
【請求項13】 プレス成形を開始した後、成形型の温
度を被成形ガラスのガラス転移点以下まで冷却してから
離型する請求項1〜12のいずれか1項に記載の製造方
法。
13. The production method according to claim 1, wherein after the start of press molding, the temperature of the molding die is cooled to a glass transition point of the glass to be molded or lower, and then the mold is released.
【請求項14】 被成形ガラス素材がリン酸塩ガラスで
ある請求項1〜13のいずれか1項に記載の製造方法。
14. The production method according to claim 1, wherein the glass material to be formed is phosphate glass.
JP10224700A 1998-08-07 1998-08-07 Production of glass optical element Pending JP2000053433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10224700A JP2000053433A (en) 1998-08-07 1998-08-07 Production of glass optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10224700A JP2000053433A (en) 1998-08-07 1998-08-07 Production of glass optical element

Publications (1)

Publication Number Publication Date
JP2000053433A true JP2000053433A (en) 2000-02-22

Family

ID=16817883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10224700A Pending JP2000053433A (en) 1998-08-07 1998-08-07 Production of glass optical element

Country Status (1)

Country Link
JP (1) JP2000053433A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003054968A (en) * 2001-08-22 2003-02-26 Olympus Optical Co Ltd Method for molding optical element
JP2004059425A (en) * 2002-07-27 2004-02-26 Carl-Zeiss-Stiftung Method of blank pressing optics
CN101795984A (en) * 2007-09-13 2010-08-04 柯尼卡美能达精密光学株式会社 Process for producing glass molded product

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003054968A (en) * 2001-08-22 2003-02-26 Olympus Optical Co Ltd Method for molding optical element
JP2004059425A (en) * 2002-07-27 2004-02-26 Carl-Zeiss-Stiftung Method of blank pressing optics
CN101795984A (en) * 2007-09-13 2010-08-04 柯尼卡美能达精密光学株式会社 Process for producing glass molded product

Similar Documents

Publication Publication Date Title
US6595026B1 (en) Method of producing press-molded products
JP3853622B2 (en) Manufacturing method of glass molded body, manufacturing method of press-molded product, manufacturing method of glass optical element, and manufacturing apparatus of glass molded body
JPH08259242A (en) Flotation softening method for glass material, manufacture of optical device and optical device
JP3974200B2 (en) Glass optical element molding method
JP3494390B2 (en) Manufacturing method of glass optical element
JP4951166B2 (en) Lens blank and lens manufacturing method
JP3974376B2 (en) Method for producing glass lump, method for producing glass molded product, and method for producing optical element
JP2000053433A (en) Production of glass optical element
JP3229942B2 (en) Method for manufacturing glass optical element
US6230520B1 (en) Process for preparation of glass optical elements
JP2968156B2 (en) Press forming method for disk-shaped glass products
JPH0231012B2 (en)
JP3243219B2 (en) Method for manufacturing glass optical element
JP3587499B2 (en) Method for manufacturing glass molded body
JP3234871B2 (en) Method for manufacturing glass optical element
JP2003040632A (en) Production method for spherical glass, preform for press forming and press molding
JP2952185B2 (en) Glass optical element molding method
JPH11343126A (en) Production of blank for press forming and production of optical element
JP3753415B2 (en) Glass optical element molding method
JP3246728B2 (en) Glass optical element molding method
JP2004284847A (en) Method of manufacturing glass lump and method of manufacturing optical element
JP2001278631A (en) Glass forming die manufacturing method of glass formed body and glass optical element
JP5414222B2 (en) Preform for precision press molding and method for manufacturing optical element
JP4094587B2 (en) Glass optical element molding method
JP5386429B2 (en) Manufacturing method of glass blank, manufacturing method of magnetic recording medium substrate, and manufacturing method of magnetic recording medium

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060814

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060913