JP2009229702A - Method of manufacturing optical element - Google Patents

Method of manufacturing optical element Download PDF

Info

Publication number
JP2009229702A
JP2009229702A JP2008073668A JP2008073668A JP2009229702A JP 2009229702 A JP2009229702 A JP 2009229702A JP 2008073668 A JP2008073668 A JP 2008073668A JP 2008073668 A JP2008073668 A JP 2008073668A JP 2009229702 A JP2009229702 A JP 2009229702A
Authority
JP
Japan
Prior art keywords
optical element
rough surface
projecting
mold
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008073668A
Other languages
Japanese (ja)
Other versions
JP5276866B2 (en
Inventor
Tomoyuki Koda
倫行 国府田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2008073668A priority Critical patent/JP5276866B2/en
Publication of JP2009229702A publication Critical patent/JP2009229702A/en
Application granted granted Critical
Publication of JP5276866B2 publication Critical patent/JP5276866B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing an optical element, improving the quantity of transmitted light while maintaining high diffusion of projecting and recessed parts caused by grinding for eliminating uneven luminous intensity distribution. <P>SOLUTION: According to this manufacturing method, a projecting part 16 of the optical element 15 is subjected to grinding so that a roughened surface is formed by a large projecting and recessed part 11 whose form error Pv (Peak to value) is within 10 μm and a small projecting and recessed part whose arithmetic roughness Ra (Reckoning asperity) is 0.29-0.6 μm, which is formed on the surface of the large projecting and recessed part 11. The optical element 15 is held with the projecting part 16 abutted or brought close to a face 21 of a mold bed 22 having the face 21, which is shaped along the projecting part 16 to cover the projecting part 16 only. The mold bed 22 is carried onto a heat plate 24 having a plurality of built-in heat sources 23, thereby heating the mold bed 22. The roughened surface of the projecting part 16 of the optical element 15 is heated by the face 21 of the mold bed 22, thereby melting very small projecting and recessed part 12 of a surface layer of the large projecting and recessed part 11 of the roughened surface of the projecting part 16 so that only the large projecting and recessed part 11 is left undone. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、配光ムラ解消のための研削によって生じる凹凸の高い拡散性を維持しつつ透過光量をも向上させることができる光学素子の製造方法に関する。   The present invention relates to a method for manufacturing an optical element capable of improving the amount of transmitted light while maintaining high diffusibility of unevenness caused by grinding for light distribution unevenness.

近年、例えばディスプレー装置のバックライトや内視鏡等の照明光学系において、観察視野を照射する光源装置に小型の光学素子が用いられている。この光学素子から出射される光を拡散させて照明の配光ムラを解消するために、光学素子の光学機能面に微細な凹凸部を形成するようにした技術が知られている。(例えば、特許文献1参照。)
また、そのような凹凸を形成する方法としては、例えば研削加工で凹凸を形成する方法などが知られている。(例えば、特許文献2参照。)
図6(a),(b) は、例えば内視鏡等の照明光学系における光源の光学素子の形状を2例示す図である。
In recent years, for example, in an illumination optical system such as a backlight of a display device or an endoscope, a small optical element is used for a light source device that irradiates an observation field. In order to diffuse the light emitted from the optical element and eliminate the uneven light distribution of illumination, a technique is known in which fine uneven portions are formed on the optical functional surface of the optical element. (For example, refer to Patent Document 1.)
As a method for forming such irregularities, for example, a method for forming irregularities by grinding is known. (For example, see Patent Document 2.)
6A and 6B are diagrams showing two examples of the shape of the optical element of the light source in the illumination optical system such as an endoscope.

図6(a) は光ファイバー1の射出光2を出射する出射口3に近接して配置されたレンズ4を示している。レンズ4は、光学機能面として、光ファイバー1から入射する射出光2を散乱させながら導入する凸状部5と、その散乱しながら入射した射出光2を照射光6として観察視野に照射する平面部7の二面を備えている。   FIG. 6A shows the lens 4 disposed in the vicinity of the exit 3 for emitting the exit light 2 of the optical fiber 1. The lens 4 has, as an optical function surface, a convex portion 5 that is introduced while scattering the incident light 2 incident from the optical fiber 1, and a planar portion that irradiates the observation field as the irradiated light 6 with the emitted incident light 2 incident while being scattered. 7 two sides.

また、図6(b) は、光ファイバー1の出射光2を出射する出射口3に近接して配置されたレンズ8を示している。レンズ8は、光学機能面として、光ファイバー1から入射する射出光2を散乱させながら導入する凸状部5と、の照明光2が入射する凸状部5と、その散乱しながら入射した射出光2を反射する内部反射面9と、反射した散乱光を照射光6として観察視野に照射する平面部10の三面を備えている。   FIG. 6B shows the lens 8 disposed in the vicinity of the exit 3 for emitting the exit light 2 of the optical fiber 1. The lens 8 has, as an optical function surface, a convex portion 5 that is introduced while scattering the outgoing light 2 incident from the optical fiber 1, a convex portion 5 that the illumination light 2 enters, and an outgoing light that is incident while being scattered. 3, an internal reflection surface 9 that reflects 2, and a plane portion 10 that irradiates the observation field of view with the reflected scattered light as irradiation light 6.

図7(a) は、図6(a) に示すレンズ4を拡大して示す図であり、図7(b) はレンズ4の凸状部5の図7(a) において破線丸aで囲んで示す部分を拡大して示す図である。
図7(a) に示すレンズ4の凸状部5(図6(b) のレンズ8の凸状部5も同様)の凹凸は、図7(b) に示すように、大きな凹凸11と、この大きな凹凸11の表層に形成された微細な凹凸12を有している。
特開2000−193894号公報 特開2001−150323号公報
7 (a) is an enlarged view of the lens 4 shown in FIG. 6 (a), and FIG. 7 (b) is surrounded by a broken-line circle a in FIG. 7 (a) of the convex portion 5 of the lens 4. FIG. It is a figure which expands and shows the part shown by.
The unevenness of the convex portion 5 of the lens 4 shown in FIG. 7 (a) (the same applies to the convex portion 5 of the lens 8 of FIG. 6 (b)), as shown in FIG. It has fine irregularities 12 formed on the surface layer of the large irregularities 11.
JP 2000-193894 A JP 2001-150323 A

ところで、上記のように研削された凹凸の面は光の拡散は得やすい(配光ムラが少ない)が、観察視野を照射するために一般に必要とされる14から15.5ルーメンの透過光量を確保しにくいという問題を有している。   By the way, although the uneven surface ground as described above is easy to obtain light diffusion (there is little unevenness of light distribution), the transmitted light amount of 14 to 15.5 lumen generally required for irradiating the observation field is obtained. It has a problem that it is difficult to secure.

一般に、このような光学系には、外部から光が入射する光学機能面の凹凸の粗さを細かくすると光量は向上するが拡散性が悪化し、逆に凹凸の粗さを粗くすると拡散性は向上するが光量は悪化するという、二者択一の中で選択困難な問題が存在している。   Generally, in such an optical system, if the roughness of the optical functional surface on which light is incident from the outside is made finer, the amount of light is improved but the diffusibility is deteriorated. Conversely, if the roughness of the unevenness is made rough, the diffusivity is reduced. There is a problem that it is difficult to select among the alternatives of improving the light quantity but deteriorating the light quantity.

本発明は、 以上のような課題に鑑みてなされたものであって、配光ムラ解消のための研削によって生じる凹凸の高い拡散性を維持しつつ透過光量をも向上させることができる光学素子の製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and is an optical element capable of improving the amount of transmitted light while maintaining high diffusibility of unevenness caused by grinding for light distribution unevenness elimination. An object is to provide a manufacturing method.

上記目的を達成するために、本発明の光学素子の製造方法は、光学素子の複数の機能面の中で光線を散乱させる機能を持つ粗面を加熱し、該粗面の大きな凹凸の表層の微細な凹凸を溶解して大きな凹凸のみからなる粗面とする、ことを特徴とする。  In order to achieve the above object, the method for manufacturing an optical element of the present invention heats a rough surface having a function of scattering light among a plurality of functional surfaces of the optical element, and forms a rough surface layer of the rough surface. It is characterized in that fine irregularities are dissolved to form a rough surface consisting only of large irregularities.

本発明によれば、粗面の大きな凹凸の表層の微細な凹凸を溶解して大きな凹凸からなる粗面とするので、研削によって生じる凹凸の高い拡散性を維持しつつ透過光量をも向上させることができる光学素子の製造方法を提供することが可能となる。   According to the present invention, since the fine unevenness of the surface layer of the rough surface having a large rough surface is dissolved to form a rough surface having large unevenness, the amount of transmitted light can be improved while maintaining the high diffusibility of the unevenness caused by grinding. It is possible to provide a method for manufacturing an optical element capable of achieving the above.

以下、図面を参照して本発明の実施形態について詳細に説明する。
(第1の実施の形態)
図1(a) は、第1の実施の形態における光学素子15を拡大して示す図であり、図7(b) は光学素子15の凸状部16の図1(a) において破線丸bで囲んで示す部分を拡大して示す図である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(First embodiment)
FIG. 1A is an enlarged view showing the optical element 15 in the first embodiment, and FIG. 7B is a broken line b in FIG. 1A of the convex portion 16 of the optical element 15. It is a figure which expands and shows the part enclosed and shown by.

本例において、図1(a) に示す光学素子15は、用途、大きさともに、図6(a) 及び図7(a) に示した従来のレンズ4と同様であるが、この光学素子15の凸状部16は、図1(b) に示すように、図6(b) に示したような粗面の大きな凹凸11の表層の微細な凹凸12が消えており、大きな凹凸11のみからなる粗面となっている。   In this example, the optical element 15 shown in FIG. 1 (a) is the same as the conventional lens 4 shown in FIGS. 6 (a) and 7 (a) in both use and size. As shown in FIG. 1 (b), the convex portion 16 of FIG. 1B has the fine irregularities 12 on the surface layer of the large irregularities 11 of the rough surface as shown in FIG. It has become a rough surface.

ここで、大きな凹凸11は、形状誤差Pv(Peak to value)が10μm以内の、つまり0.01μm〜10μmの間で形成されている凹凸である。そして、小さな凹凸は、算術粗さRa(Reckoning asperity)が0.29〜0.6μmで形成されている凹凸である。   Here, the large irregularities 11 are irregularities formed with a shape error Pv (Peak to value) within 10 μm, that is, between 0.01 μm and 10 μm. And a small unevenness | corrugation is an unevenness | corrugation currently formed by arithmetic roughness Ra (Reckoning asperity) 0.29-0.6micrometer.

この光学素子15を、図6(a) に示したレンズ4と同様に用いると、研削で形成された凹凸のうち消えずに残された大きな凹凸11による入射光の拡散効果が維持されながら、その表層の微細な凹凸12が消えて無くなっていることにより、透過光量が向上して、実験で測定してみると、およそ16〜18ルーメンの透過光量が得られることが判明した。   When this optical element 15 is used in the same manner as the lens 4 shown in FIG. 6 (a), the diffusion effect of incident light due to the large unevenness 11 left undissolved among the unevenness formed by grinding is maintained. Since the fine irregularities 12 on the surface layer disappeared and disappeared, the amount of transmitted light was improved, and it was found that a transmitted amount of light of about 16 to 18 lumens was obtained when measured experimentally.

図2は、図1(a),(b) に示す光学素子15の基本的作製方法を示す図である。図2に示すように、研削された直後の大きな凹凸11と表層の微細な凹凸12が凸状部16に形成された光学素子15は、凸状部16を上にし、平面部17を下にし、その平面部17を治具18に保持されている。   FIG. 2 is a diagram showing a basic manufacturing method of the optical element 15 shown in FIGS. 1 (a) and 1 (b). As shown in FIG. 2, the optical element 15 in which the large unevenness 11 immediately after grinding and the fine unevenness 12 on the surface layer are formed on the convex portion 16 has the convex portion 16 on the upper side and the flat portion 17 on the lower side. The flat portion 17 is held by a jig 18.

そして、凸状部16に近接して、複数の熱源19を内蔵する熱プレート20が配置されている。この状態で、複数の熱源19が発熱駆動され、これらを内蔵する熱プレート20が加熱され、この加熱された熱が光学素子15の表面に輻射されて、光学素子15の凸状部16が加熱される。   A heat plate 20 containing a plurality of heat sources 19 is disposed in the vicinity of the convex portion 16. In this state, the plurality of heat sources 19 are driven to generate heat, the heat plate 20 containing them is heated, the heated heat is radiated to the surface of the optical element 15, and the convex portion 16 of the optical element 15 is heated. Is done.

凸状部16の粗面は、上記の加熱により、粗面の大きな凹凸11の表層の微細な凹凸12(図7(b) 参照)が溶解され、図1(a),(b) に示したように、大きな凹凸11からなる粗面に修正される。
(第2の実施の形態)
ところで、図2に示した粗面の修正方法は、凸状部16の中央部と周囲部とでは、熱プレート20からの距離が異なり、中央部の方が周囲部よりも熱プレート20に近いので中央部の方が先に大きな凹凸11からなる粗面に修正されるから、中央部と周囲部では光の透過性が異なってくる。
The rough surface of the convex portion 16 dissolves the fine unevenness 12 (see FIG. 7 (b)) on the surface layer of the unevenness 11 having a large rough surface by the above heating, and is shown in FIGS. 1 (a) and 1 (b). As shown in FIG.
(Second Embodiment)
In the meantime, in the method for correcting the rough surface shown in FIG. 2, the distance from the heat plate 20 is different between the central portion and the peripheral portion of the convex portion 16, and the central portion is closer to the heat plate 20 than the peripheral portion. Therefore, the central portion is first corrected to a rough surface composed of the large irregularities 11, so that the light transmittance is different between the central portion and the peripheral portion.

これでも従来よりも入射光の拡散性を維持しながら透過性も向上するが、更に拡散性を維持しながら透過性も向上する粗面の修正方法がある。これについて、第2の実施の形態として以下に説明する。   Even in this case, the transmittance is improved while maintaining the diffusibility of the incident light as compared with the conventional case, but there is a method for correcting the rough surface which further improves the transmittance while maintaining the diffusibility. This will be described below as a second embodiment.

図3は、第2の実施の形態における光学素子15の粗面の修正方法を説明する図である。本例の粗面の修正方法では、図3に示すように、先ず、凸状部16の粗面の形状に沿った形状で凸状部16の粗面のみを覆う形状の面21を有する型台22を備える。   FIG. 3 is a diagram for explaining a method for correcting a rough surface of the optical element 15 in the second embodiment. In the rough surface correcting method of this example, as shown in FIG. 3, first, a mold having a surface 21 having a shape that covers only the rough surface of the convex portion 16 in a shape along the shape of the rough surface of the convex portion 16. A stand 22 is provided.

次に、型台22の面21に光学素子15の凸状部16の粗面を当接又は近接させて光学素子15を型台22上に、不図示の保持部材で保持する。光学素子15の凸状部16の粗面を型台22の面21に載置したときは、光学素子15の凸状部16の粗面を型台22の面21に当接する。   Next, the optical element 15 is held on the mold table 22 by a holding member (not shown) by bringing the rough surface of the convex portion 16 of the optical element 15 into contact with or close to the surface 21 of the mold table 22. When the rough surface of the convex portion 16 of the optical element 15 is placed on the surface 21 of the mold base 22, the rough surface of the convex portion 16 of the optical element 15 is brought into contact with the surface 21 of the mold base 22.

このように光学素材15を台型22の面21に載置することにより、台型22の面21と光学素材15の凸状部16の粗面との距離を一定に保つ働きが生じるから、載置するほうが好ましい。   By placing the optical material 15 on the surface 21 of the trapezoid 22 in this way, there is a function of keeping the distance between the surface 21 of the trapezoid 22 and the rough surface of the convex portion 16 of the optical material 15 constant. It is preferable to place it.

しかし、これに限ることなく、例えば不図示の保持部材により、型台22の面21からほぼ0.1mm離して光学素子15を型台22上に保持するようにしてもよい。
図3に示すように、型台22の下面は、複数の熱源23を内蔵する熱プレート24上に接して配置される。これにより、複数の熱源23が発熱駆動されて、これらを内蔵する熱プレート24が加熱され、この熱は型台22に伝達されて型台22を加熱する。そして、この加熱された型台22により光学素子15の凸状部16の粗面が加熱され、凸状部16の粗面の大きな凹凸11の表層の微細な凹凸12が溶解され、図1(a),(b) に示したように、大きな凹凸11のみからなる粗面に修正される。
However, the present invention is not limited to this. For example, the optical element 15 may be held on the mold table 22 by being separated from the surface 21 of the mold table 22 by approximately 0.1 mm by a holding member (not shown).
As shown in FIG. 3, the lower surface of the mold base 22 is disposed in contact with a heat plate 24 that houses a plurality of heat sources 23. As a result, the plurality of heat sources 23 are driven to generate heat, the heat plate 24 containing them is heated, and this heat is transmitted to the mold table 22 to heat the mold table 22. Then, the rough surface of the convex portion 16 of the optical element 15 is heated by the heated mold table 22, and the fine unevenness 12 on the surface layer of the large unevenness 11 of the convex portion 16 is melted. As shown in a) and (b), the surface is corrected to a rough surface consisting only of large irregularities 11.

本例においては、最も簡単な方法で、熱伝達源である台型22とガラス素材からなる光学素子15の距離を一定に保つことができ、熱伝導の悪いガラス素材の凸状部16の粗面の深さ約40μmの表層部分だけを、均一に加熱し軟化させることができる。   In this example, the distance between the trapezoid 22 serving as a heat transfer source and the optical element 15 made of glass material can be kept constant by the simplest method, and the rough portion of the convex portion 16 made of glass material having poor heat conduction can be maintained. Only the surface layer portion having a surface depth of about 40 μm can be uniformly heated and softened.

また、この方法によれば、凸状部16の粗面の内部まで溶融しないので、凸状部16の粗面全体の形状および表層部の大きな凹凸11を、形状誤差Pvが10μm以内となるように抑えて大きな凹凸の形状が崩れないように維持することができる。   Further, according to this method, since the inside of the rough surface of the convex portion 16 is not melted, the shape error Pv of the rough surface of the convex portion 16 and the large unevenness 11 of the surface layer portion is within 10 μm. The shape of the large unevenness can be maintained so as not to collapse.

このように大きな凹凸を残すことにより、入射光の拡散効果を損なうことなく、小さな凹凸を消し去ることにより光量の向上が可能となる。
尚、載置だけで上から加圧しなければ、凸状部16の粗面の全体形状が変形することはないので問題はない。また、表層加熱であり、加熱期間も短時間であるので、この点でも凸状部16の粗面の全体形状が変形することはない。
(第3の実施の形態)
ところで、上記のように光学素子15の凸状部16の粗面を型台22の面21に載置するだけであると、光学素子15が倒れる可能性があるので、その外周をリングで抑えるようにするとよい。
By leaving such large irregularities, the amount of light can be improved by eliminating small irregularities without impairing the diffusion effect of incident light.
Note that there is no problem because the entire shape of the rough surface of the convex portion 16 is not deformed unless pressure is applied from above only by placement. Moreover, since it is surface layer heating and a heating period is also short, the whole shape of the rough surface of the convex part 16 does not deform | transform also in this point.
(Third embodiment)
By the way, if the rough surface of the convex portion 16 of the optical element 15 is merely placed on the surface 21 of the mold base 22 as described above, the optical element 15 may fall down, and the outer periphery thereof is suppressed by a ring. It is good to do so.

この場合、リングは熱伝導の良い超硬合金とかAlNで造るとよい。そうしないと、凸状部16の粗面の表層部だけでなく、熱が光学素子15の内部にこもって、光学素子15の中まで溶けるおそれがある。   In this case, the ring may be made of a cemented carbide or AlN having a good thermal conductivity. Otherwise, not only the rough surface layer portion of the convex portion 16 but also heat may be trapped inside the optical element 15 and melt into the optical element 15.

また、加熱と冷却を、時間的にあまり緩やかに行うと、素材全体が加熱されて、素材全体が軟化し、形状の維持が困難になるおそれがある。したがって、台型の温度の急速な変更で、素材全体の加熱を防止するようにする。   If heating and cooling are performed too slowly in time, the entire material is heated and the entire material is softened, which may make it difficult to maintain the shape. Therefore, a rapid change in the temperature of the trapezoid prevents the entire material from being heated.

また、表層部の溶融に先立って他のヒータで光学素子16全体を予備加熱することにより、光学素材15の全体温度を安定させることができ、内部から表層部への不安定な冷却を防止できる。また、このヒータを温度調整することで、微妙な表層部の溶融深さの調整ができる。   Further, by preheating the entire optical element 16 with another heater prior to the melting of the surface layer portion, the entire temperature of the optical material 15 can be stabilized, and unstable cooling from the inside to the surface layer portion can be prevented. . Further, by adjusting the temperature of the heater, it is possible to finely adjust the melting depth of the surface layer portion.

以上のことを実現するには、光学素子15を保持した型台22を搬送して、少なくも3つの温調した成形粗面修正軸部に順次移動させ、台型22の温度を予熱→加熱→冷却と急速に変化させる。これについて、第3の実施の形態として以下に説明する。   In order to realize the above, the mold base 22 holding the optical element 15 is transported and sequentially moved to at least three temperature-controlled molding rough surface correcting shafts, and the temperature of the base mold 22 is preheated → heated. → Change rapidly with cooling. This will be described below as a third embodiment.

図4(a) は、第3の実施の形態における型台セットと光学素子を示す断面図であり、同図(b) は、粗面の修正を行う粗面修正部を模式的に示す図である。同図(a) に示す型台セット25は、上面中央に粗面修正用凹部26を形成されて下部周面に段差部を有する下型27を備えている。   FIG. 4A is a cross-sectional view showing a mold base set and an optical element in the third embodiment, and FIG. 4B is a diagram schematically showing a rough surface correcting portion for correcting the rough surface. It is. The mold base set 25 shown in FIG. 1A includes a lower mold 27 having a rough surface correcting recess 26 formed at the center of the upper surface and having a stepped portion on the lower peripheral surface.

この下型27の粗面修正用凹部26も、図3に示した型台22の面21と同様に、光学素子15の凸状部16の粗面の形状に沿った形状で、粗面のみを覆う形状の面を有する凹部である。   Similarly to the surface 21 of the mold base 22 shown in FIG. 3, the rough surface correcting concave portion 26 of the lower mold 27 has a shape along the shape of the rough surface of the convex portion 16 of the optical element 15, and only the rough surface. It is a recessed part which has a surface of the shape which covers.

そして、この粗面修正用凹部26には、倒立した光学素子15が、その凸状部16の粗面を凹部に当接させて載置されている。
また、下型27の下部周面の段差部には円筒状のスリーブ28が係合して立設されている。このスリーブ28の内側には、円環状のリング29が配置されている。リング29は、外周面をスリーブ28の内壁に当接させ、下面を下型27の上面に密着させ、内周面で光学素子15を倒れないように支えている。
The inverted optical element 15 is placed in the rough surface correcting concave portion 26 with the rough surface of the convex portion 16 in contact with the concave portion.
A cylindrical sleeve 28 is engaged with a step portion on the lower peripheral surface of the lower mold 27 so as to be erected. An annular ring 29 is disposed inside the sleeve 28. The ring 29 has its outer peripheral surface abutted against the inner wall of the sleeve 28, and its lower surface is in close contact with the upper surface of the lower mold 27, and supports the optical element 15 so as not to fall down on the inner peripheral surface.

同図(b) に示す粗面修正部30には、左から右へ工程順に3個の粗面修正軸部31(31a、31b、31c)が配置されている。第1軸となる粗面修正軸部31aは予熱工程用の軸部であり、第2軸となる粗面修正軸部31bは粗面表層部を加熱溶融する加熱工程用の軸部であり、第3軸となる粗面修正軸部31cは冷却工程用の軸部である。   In the rough surface correcting portion 30 shown in FIG. 3B, three rough surface correcting shaft portions 31 (31a, 31b, 31c) are arranged in order of steps from left to right. The rough surface correction shaft portion 31a serving as the first axis is a shaft portion for a preheating process, and the rough surface correction shaft portion 31b serving as the second axis is a shaft portion for a heating process for heating and melting the rough surface layer portion, The rough surface correction shaft portion 31c serving as the third shaft is a shaft portion for a cooling process.

各粗面修正軸部31は、温調用温度のみ異なるだけで構成は同一である。すなわち、下部には、軸部装置本体の下フレーム32に固設され、ヒータ33を内蔵した固定熱プレート34を備え、上部には、ヒータ35を内蔵した可動熱プレート36を備えている。可動熱プレート36は、軸部装置本体の上フレーム37に固設された不図示のシリンダ装置から上下に進退するピストン38の下端部に固定されている。   Each rough surface correcting shaft portion 31 has the same configuration except only the temperature adjustment temperature. That is, a fixed heat plate 34 that is fixed to the lower frame 32 of the shaft unit main body and includes a heater 33 is provided at the lower portion, and a movable heat plate 36 that includes a heater 35 is provided at the upper portion. The movable heat plate 36 is fixed to a lower end portion of a piston 38 that moves up and down from a cylinder device (not shown) fixed to the upper frame 37 of the shaft device body.

図5は、粗面修正部31の粗面修正工程を説明する図である。
先ず、図5に示すように、下型27に光学素子15を載置された常温の型台セット25が、外部の不図示の搬送機構により、矢印aのように搬送されて第1軸の予熱工程を行う粗面修正軸部31aに供給される。そして粗面修正軸部31aのピストン38が下方に進出し、可動熱プレート36が型台セット25のスリーブ28の上端部に当接するまで降下する。
FIG. 5 is a diagram for explaining the rough surface correcting step of the rough surface correcting unit 31.
First, as shown in FIG. 5, a room temperature mold base set 25 on which the optical element 15 is placed on the lower mold 27 is conveyed as shown by an arrow a by an external conveyance mechanism (not shown), and the first axis It is supplied to the rough surface correcting shaft portion 31a that performs the preheating step. Then, the piston 38 of the rough surface correcting shaft portion 31 a advances downward, and moves down until the movable heat plate 36 contacts the upper end portion of the sleeve 28 of the mold base set 25.

上部の可動熱プレート36からの輻射とスリーブ28内の対流により、光学素子15の平面部に熱が伝達され、光学素子15の平面部側が予熱される。また、下部では固定熱プレート34が型台セット25の下型27の下面に密着して熱を伝達して下型29を加熱し、この下型29の熱が光学素子15の凸状部16に伝達され、光学素子15の凸状部16側が予熱される。この予熱時間は20秒である。   Heat is transmitted to the flat portion of the optical element 15 by radiation from the upper movable heat plate 36 and convection in the sleeve 28, and the flat portion side of the optical element 15 is preheated. In the lower part, the fixed heat plate 34 is in close contact with the lower surface of the lower mold 27 of the mold base set 25 to transmit heat to heat the lower mold 29, and the heat of the lower mold 29 is heated to the convex portion 16 of the optical element 15. And the convex portion 16 side of the optical element 15 is preheated. This preheating time is 20 seconds.

この予熱では、光学素子15の素材を「オハラS−LAH58」とすると、その歪点は660℃であり、その歪点よりも10℃低い「660℃−10℃=650℃」で予熱する。   In this preheating, when the material of the optical element 15 is “OHARA S-LAH58”, the strain point is 660 ° C., and preheating is performed at “660 ° C.−10 ° C. = 650 ° C.” which is 10 ° C. lower than the strain point.

下型27の粗面修正用凹部26よりも上に出ている光学素子15の周面に当接するリング29によって、光学素子15は、その倒立状態が崩れないように支持されているとともに、リング29が、前述したように熱伝導の良い材質で出来ていることから、熱が光学素子15の内部にこもって、光学素子15の内部が解けるというような不具合は起きない。   The optical element 15 is supported by a ring 29 that comes into contact with the peripheral surface of the optical element 15 protruding above the rough surface correcting recess 26 of the lower mold 27 so that the inverted state does not collapse. 29 is made of a material having good heat conduction as described above, so that there is no problem that heat is trapped inside the optical element 15 and the inside of the optical element 15 is unraveled.

続いて、粗面修正軸部31aのピストン38が上昇して可動熱プレート36が型台セット25のスリーブ28から離隔して型台セット25を開放する。開放された上記予熱された光学素子15及びこれを載置した型台セット25は、矢印bで示すように搬送されて、第2軸の加熱工程を行う粗面修正軸部31bに供給される。   Subsequently, the piston 38 of the rough surface correcting shaft portion 31 a is raised, and the movable heat plate 36 is separated from the sleeve 28 of the mold base set 25 to open the mold base set 25. The released preheated optical element 15 and the mold base set 25 on which the optical element 15 is placed are conveyed as indicated by an arrow b and supplied to the rough surface correcting shaft portion 31b that performs the heating process of the second shaft. .

粗面修正軸部31bのピストン38が下方に進出し、可動熱プレート36が型台セット25のスリーブ28の上端部に当接するまで降下する。
ここでも、上部の可動熱プレート36からの輻射とスリーブ28内の対流により、光学素子15の平面部に熱が伝達され、光学素子15の平面部側が加熱される。また、下部では固定熱プレート34が型台セット25の下型27の下面に密着して熱を伝達して下型29を加熱し、この下型29の熱が光学素子15の凸状部16に伝達され、光学素子15の凸状部16側が加熱される。この加熱時間は120秒である。
The piston 38 of the rough surface correcting shaft portion 31b advances downward and moves down until the movable heat plate 36 contacts the upper end portion of the sleeve 28 of the mold base set 25.
Also here, heat is transmitted to the flat portion of the optical element 15 by radiation from the upper movable heat plate 36 and convection in the sleeve 28, and the flat portion side of the optical element 15 is heated. In the lower part, the fixed heat plate 34 is in close contact with the lower surface of the lower mold 27 of the mold base set 25 to transmit heat to heat the lower mold 29, and the heat of the lower mold 29 is heated to the convex portion 16 of the optical element 15. The convex portion 16 side of the optical element 15 is heated. This heating time is 120 seconds.

このようにして粗面修正軸部31bは予熱された光学素子15の凸状部16の粗面表層部を加熱して溶融する。この加熱では、光学素子15の素材の軟化点を803℃とすると、その軟化点803℃よりも97℃高い「803℃+97℃=900℃」で加熱する。   In this way, the rough surface correcting shaft portion 31b heats and melts the surface portion of the rough surface of the convex portion 16 of the preheated optical element 15. In this heating, when the softening point of the material of the optical element 15 is 803 ° C., the heating is performed at “803 ° C. + 97 ° C. = 900 ° C.” which is 97 ° C. higher than the softening point 803 ° C.

このように加熱しても、押圧や過熱がなければ、光学素子15の形状が2μm以上大きく変形することはなく、算術粗さRaが0.29〜0.6μmの小さな凹凸のみが溶融する。   Even if it is heated in this way, the shape of the optical element 15 is not greatly deformed by 2 μm or more without pressure or overheating, and only small irregularities with an arithmetic roughness Ra of 0.29 to 0.6 μm are melted.

次に、粗面修正軸部31bのピストン38が上昇して可動熱プレート36が型台セット25から離隔して型台セット25を開放する。開放された上記加熱で粗面表層部の小さな凹凸が溶融した光学素子15を載置した型台セット25は、矢印cで示すように搬送されて、第3軸の冷却工程を行う粗面修正軸部31cに供給される。   Next, the piston 38 of the rough surface correcting shaft portion 31b rises and the movable heat plate 36 is separated from the mold table set 25 to open the mold table set 25. The mold base set 25 on which the optical element 15 in which the small unevenness of the rough surface layer portion has been melted by the above heating is mounted is conveyed as shown by an arrow c, and the rough surface correction is performed to perform the cooling process of the third axis. It is supplied to the shaft portion 31c.

粗面修正軸部31cのピストン38が下方に進出し、可動熱プレート36が型台セット25のスリーブ28の上端部に当接するまで降下する。
粗面修正軸部31cの軸温度は、光学素子15のガラス転移点を738℃として、そのガラス転移点738℃よりも238℃低い「738℃−238℃=500℃」である。この温度で、上記加熱で粗面表層部の小さな凹凸が溶融した光学素子15が冷却される。この冷却時間は30秒である。
The piston 38 of the rough surface correcting shaft portion 31c advances downward, and moves down until the movable heat plate 36 contacts the upper end portion of the sleeve 28 of the mold base set 25.
The axial temperature of the rough surface correcting shaft portion 31c is “738 ° C.−238 ° C. = 500 ° C.”, which is 238 ° C. lower than the glass transition point 738 ° C. when the glass transition point of the optical element 15 is 738 ° C. At this temperature, the optical element 15 in which the small unevenness of the surface portion of the rough surface is melted by the heating is cooled. This cooling time is 30 seconds.

続いて、粗面修正軸部31cのピストン38が上昇して可動熱プレート36が型台セット25から離隔して型台セット25を開放する。開放された上記冷却された光学素子15を載置した型台セット25は、矢印dで示すように搬送されて、図示しない常温室に搬送されて、常温まで徐冷される。   Subsequently, the piston 38 of the rough surface correcting shaft portion 31c is raised, and the movable heat plate 36 is separated from the mold table set 25 to open the mold table set 25. The mold set 25 on which the opened cooled optical element 15 is placed is transported as indicated by an arrow d, transported to a room temperature room (not shown), and gradually cooled to room temperature.

こうして、出来た光学素子15は、素材内部までの加熱を避け、全体の形状を2μm以上損なうことなく、すなわち凸状部16の表層部の形状誤差Pv10μm以内の大きな凹凸形状を損なうことなく、その大きな凹凸の表層の、Ra0.29μm〜0.6μmの小さな凹凸のみが溶融によって消える。   Thus, the resulting optical element 15 avoids heating to the inside of the material, and does not impair the overall shape by 2 μm or more, that is, without impairing the large uneven shape within the surface error Pv of 10 μm of the convex portion 16. Only small irregularities of Ra 0.29 μm to 0.6 μm on the surface of large irregularities disappear by melting.

このように、凸状部16の表層部の小さな凹凸を低減又は消し去って照射素子としての配光ムラの発生を抑制するとともに、大きな凹凸を残して配光性能を確保し、表面の透過光量を向上させることが可能となる。   In this way, the small unevenness of the surface layer portion of the convex portion 16 is reduced or eliminated to suppress the occurrence of uneven light distribution as an irradiation element, while ensuring the light distribution performance by leaving the large unevenness, and the amount of transmitted light on the surface Can be improved.

なお、本発明は、上記実施の形態に限定されるものでなく、実施段階では、その要旨を変更しない範囲で種々変形することが可能である。   In addition, this invention is not limited to the said embodiment, In the implementation stage, it can change variously in the range which does not change the summary.

(a) は第1の実施の形態における光学素子を拡大して示す図、(b) は光学素子の凸状部の(a) において破線丸bで囲んで示す部分を拡大して示す図である。(a) is an enlarged view showing the optical element in the first embodiment, (b) is an enlarged view showing a portion surrounded by a broken-line circle b in (a) of the convex portion of the optical element. is there. 第1の実施の形態における光学素子の基本的作製方法を示す図である。It is a figure which shows the basic manufacturing method of the optical element in 1st Embodiment. 第2の実施の形態における光学素子の粗面の修正方法を説明する図である。It is a figure explaining the correction method of the rough surface of the optical element in 2nd Embodiment. (a) は第3の実施の形態における型台セットと光学素子を示す断面図、(b) は粗面の修正を行う粗面修正部を模式的に示す図である。(a) is sectional drawing which shows the mold base set and optical element in 3rd Embodiment, (b) is a figure which shows typically the rough surface correction part which corrects a rough surface. 第3の実施の形態における粗面修正部の粗面修正工程を説明する図である。It is a figure explaining the rough surface correction process of the rough surface correction part in 3rd Embodiment. (a),(b) は従来の例えば内視鏡等の照明光学系における光源の光学素子の形状を2例示す図である。(a), (b) is a figure which shows two examples of the shape of the optical element of the light source in the conventional illumination optical systems, such as an endoscope. (a) は図6(a) に示すレンズを拡大して示す図、(b) は(a) において破線丸aで囲んで示す部分を拡大して示す図である。(a) is an enlarged view of the lens shown in FIG. 6 (a), and (b) is an enlarged view of a portion surrounded by a broken line circle a in (a).

符号の説明Explanation of symbols

1 光ファイバー
2 射出光
3 出射口
4 レンズ
5 凸状部
6 照射光
7 平面部
8 レンズ
9 内部反射面
10 平面部
11 レンズ
12 凸状部
15 光学素子
16 凸状部
17 平面部
18 治具
19 熱源
20 熱プレート
21 面
22 台型
23 熱源
24 熱プレート
25 型台セット
26 粗面修正用凹部
27 下型
28 スリーブ
29 リング
30 粗面修正部
31(31a、31b、31c) 粗面修正軸部
32 軸部装置本体下フレーム
33 ヒータ
34 固定熱プレート
35 ヒータ
36 可動熱プレート
37 軸部装置本体上フレーム
38 ピストン
DESCRIPTION OF SYMBOLS 1 Optical fiber 2 Outgoing light 3 Outlet 4 Lens 5 Convex part 6 Irradiation light 7 Plane part 8 Lens 9 Internal reflection surface 10 Plane part 11 Lens 12 Convex part 15 Optical element 16 Convex part 17 Plane part 18 Jig 19 Heat source 20 Heat plate 21 surface 22 stand type 23 heat source 24 heat plate 25 type stand set 26 rough surface correction recess 27 lower die 28 sleeve 29 ring 30 rough surface correction portion 31 (31a, 31b, 31c) rough surface correction shaft portion 32 shaft Lower part device body frame 33 Heater 34 Fixed heat plate 35 Heater 36 Movable heat plate 37 Shaft part body upper frame 38 Piston

Claims (5)

光学素子の複数の機能面の中で光線を散乱させる機能を持つ粗面を加熱し、該粗面の大きな凹凸の表層の微細な凹凸を溶解して前記大きな凹凸のみからなる粗面とする、ことを特徴とする光学素子の製造方法。   Heating a rough surface having a function of scattering light among a plurality of functional surfaces of the optical element, dissolving the fine unevenness of the surface layer of the large unevenness of the rough surface to form a rough surface consisting only of the large unevenness, A method for manufacturing an optical element. 前記粗面の形状に沿った形状で前記粗面のみを覆う形状の面を有する型台を備え、該型台の前記面に前記光学素子の前記粗面を当接又は近接させて前記光学素子を前記型台上に保持し、該型台を加熱し、該型台を介して前記粗面を加熱する、ことを特徴とする請求項1記載の光学素子の製造方法。   A mold base having a shape that covers only the rough surface in a shape along the shape of the rough surface, and the optical element is brought into contact with or close to the rough surface of the optical element. 2. The method of manufacturing an optical element according to claim 1, wherein the mold table is held, the mold table is heated, and the rough surface is heated through the mold table. 前記光学素子の前記粗面を前記型台の前記面に載置又は前記面からほぼ0.1mm離して前記光学素子を前記型台上に保持することを特徴とする請求項2記載の光学素子の製造方法。   3. The optical element according to claim 2, wherein the optical element is held on the mold table by placing the rough surface of the optical element on the surface of the mold table or by separating the rough surface from the surface by approximately 0.1 mm. Manufacturing method. 前記光学素子の外周をリングで抑えて前記光学素子を前記型台上に保持することを特徴とする請求項3記載の光学素子の製造方法。   4. The method of manufacturing an optical element according to claim 3, wherein an outer periphery of the optical element is held by a ring and the optical element is held on the mold base. 前記光学素子を保持した前記型台を搬送して、少なくも3つの温調した成形粗面修正軸部に順次移動させ、前記台型の温度を予熱→加熱→冷却と急速に変化させることを特徴とする請求項1、2、3又は4記載の光学素子の製造方法。   The mold table holding the optical element is transported and sequentially moved to at least three temperature-controlled molding rough surface correcting shafts, and the temperature of the mold is rapidly changed from preheating → heating → cooling. 5. The method of manufacturing an optical element according to claim 1, 2, 3 or 4.
JP2008073668A 2008-03-21 2008-03-21 Optical element manufacturing method Active JP5276866B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008073668A JP5276866B2 (en) 2008-03-21 2008-03-21 Optical element manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008073668A JP5276866B2 (en) 2008-03-21 2008-03-21 Optical element manufacturing method

Publications (2)

Publication Number Publication Date
JP2009229702A true JP2009229702A (en) 2009-10-08
JP5276866B2 JP5276866B2 (en) 2013-08-28

Family

ID=41245191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008073668A Active JP5276866B2 (en) 2008-03-21 2008-03-21 Optical element manufacturing method

Country Status (1)

Country Link
JP (1) JP5276866B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54123119A (en) * 1978-03-18 1979-09-25 Daiichi Garasu Kk Surface treatment of glass articles
JPS63245806A (en) * 1987-03-31 1988-10-12 東芝ライテック株式会社 Lighting fixture
JPH10182171A (en) * 1996-12-25 1998-07-07 Minolta Co Ltd Formation of optical glass element
JPH1160251A (en) * 1997-08-04 1999-03-02 Minolta Co Ltd Formation of optical element
JP2000193894A (en) * 1998-12-25 2000-07-14 Olympus Optical Co Ltd Illuminating optical system for endoscope
JP2002100025A (en) * 2000-07-21 2002-04-05 Matsushita Electric Ind Co Ltd Molded glass substrate for magnetic disk and method for producing the same
JP2004252396A (en) * 2002-05-17 2004-09-09 Optrex Corp Optically reflective structure, its manufacturing method, photomask, and display device
JP2007193215A (en) * 2006-01-20 2007-08-02 Olympus Corp Optical element and its manufacturing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54123119A (en) * 1978-03-18 1979-09-25 Daiichi Garasu Kk Surface treatment of glass articles
JPS63245806A (en) * 1987-03-31 1988-10-12 東芝ライテック株式会社 Lighting fixture
JPH10182171A (en) * 1996-12-25 1998-07-07 Minolta Co Ltd Formation of optical glass element
JPH1160251A (en) * 1997-08-04 1999-03-02 Minolta Co Ltd Formation of optical element
JP2000193894A (en) * 1998-12-25 2000-07-14 Olympus Optical Co Ltd Illuminating optical system for endoscope
JP2002100025A (en) * 2000-07-21 2002-04-05 Matsushita Electric Ind Co Ltd Molded glass substrate for magnetic disk and method for producing the same
JP2004252396A (en) * 2002-05-17 2004-09-09 Optrex Corp Optically reflective structure, its manufacturing method, photomask, and display device
JP2007193215A (en) * 2006-01-20 2007-08-02 Olympus Corp Optical element and its manufacturing method

Also Published As

Publication number Publication date
JP5276866B2 (en) 2013-08-28

Similar Documents

Publication Publication Date Title
JP5497992B2 (en) Heat treatment equipment
JP5093695B2 (en) Light guide plate and manufacturing method thereof
US9463600B2 (en) Method of producing composite optical element
KR102094556B1 (en) A laser polishing system
JP2017502529A (en) Low temperature RTP control using an infrared camera
JP6175470B2 (en) Laser dicing apparatus and method
US20170057856A1 (en) Method for Producing Optical Element and Optical Element
TW201909249A (en) Heat treatment apparatus
JP2006273695A (en) Apparatus for and method of treating cut surface of glass plate
JP5276866B2 (en) Optical element manufacturing method
JP2010013349A (en) Heating process and apparatus of molding glass
JP2012248704A (en) Laser dicing device and method
JP2001237195A (en) Flashing light irradiation-heating device
KR20220007520A (en) Light heating apparatus and heating process method
TW201632476A (en) Bending/forming apparatus and bending/forming method for glass plate
JP2008117892A (en) Semiconductor manufacturing device and manufacturing method of semiconductor device
TWI454762B (en) Method of manufacturing light guide plate
KR101574336B1 (en) supporter and substrate processing apparatus having the same and treatment method thereof
CN103454769B (en) The method of optical system, exposure device and manufacture device
KR101678986B1 (en) Glass forming apparatus and glass forming method using laser beam
US20150292689A1 (en) Light source assembly and method for manufacturing the same
KR101436627B1 (en) Method for cutting glass substrate
KR20160140213A (en) Glass forming apparatus and glass forming method
JP2008203834A (en) Method of producing reflector from glass or glass ceramic
JP2004179148A (en) Patterning method of optical element front surface

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130520

R151 Written notification of patent or utility model registration

Ref document number: 5276866

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250