JPH1017915A - Converter refining method - Google Patents

Converter refining method

Info

Publication number
JPH1017915A
JPH1017915A JP18993696A JP18993696A JPH1017915A JP H1017915 A JPH1017915 A JP H1017915A JP 18993696 A JP18993696 A JP 18993696A JP 18993696 A JP18993696 A JP 18993696A JP H1017915 A JPH1017915 A JP H1017915A
Authority
JP
Japan
Prior art keywords
mgo
slag
amount
converter
refractory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18993696A
Other languages
Japanese (ja)
Other versions
JP3771635B2 (en
Inventor
Takeshi Matsui
剛 松井
Kazuhiro Horii
和弘 堀井
Osamu Kuwabara
治 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP18993696A priority Critical patent/JP3771635B2/en
Publication of JPH1017915A publication Critical patent/JPH1017915A/en
Application granted granted Critical
Publication of JP3771635B2 publication Critical patent/JP3771635B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a converter refining method for restraining the wear of a lining refractory of the converter. SOLUTION: This converter refining method charges MgOcontaining slag- making material into molten iron in a combination-blown converter lined with MgO-C quality to prevent the wear of the lining refractory by adjusting MgO concn. in the slag after completing the blowing. In the case when the slag quantity produced after completing the refining of the molten iron is >=60kg/ton of molten steel, the MgO content in the slag is made to in the range of 70 100% of saturated MgO and the T.Fe concn. in the slag is made to <=16% by adjusting the MgO-containing slag-making Material charged during converter- blowing and/or before starting the converter-blowing.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、溶融金属反応容
器、特に転炉の内張り耐火物の損耗を抑制するための転
炉精錬方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for refining a converter for suppressing abrasion of a refractory lining of a molten metal reactor, particularly a converter.

【0002】[0002]

【従来の技術】従来より転炉の内張り耐火物であるMg
O−C質耐火物の損耗を抑制するための手段として、ス
ラグコントロール技術およびスラグコーティング技術が
実施されている。スラグコントロール技術とは、MgO
−C質耐火物の支配的な損耗要因がMgO−C質耐火物
中のMgO粒子のスラグへの溶解であるとの観点に基づ
き確立されたものであり、具体的には吹錬前あるいは吹
錬中にMgOを、スラグに飽和する飽和MgO量以上投
入することで、MgO−C質耐火物中のMgO粒子のス
ラグへの溶解を防止するものである(例えば、特開昭5
4−5813号公報、「製銑・製鋼用耐火物」p.33
0〜p.335地人書館(株)平成7年6月23日第1
刷発行がある)。
2. Description of the Related Art Conventionally, Mg which is a refractory lining a converter is used.
Slag control technology and slag coating technology have been implemented as means for suppressing wear of OC refractories. Slag control technology is MgO
-It has been established from the viewpoint that the dominant wear factor of the C-C refractory is the dissolution of MgO particles in the MgO-C refractory into slag, and specifically, before or after blowing. By dissolving MgO particles in the MgO-C refractory into the slag by adding MgO during the smelting to the slag, the amount of the saturated MgO that saturates the slag is prevented.
No. 4-5813, "Refractory for iron and steel making" p. 33
0 to p. 335 Jinjin Shokan Co., Ltd. June 23, 1995 First
Print issuance).

【0003】一方、スラグコーティング技術としては、
特開昭53−37120号公報、特公昭59−3828
2号公報で提案のように、出鋼後転炉炉内に残留したス
ラグに軽焼ドロマイト、生ドロマイトまたは石灰石等の
スラグ固化剤を投入し、スラグの粘性を増加させた上
で、転炉炉体の傾動やあるいは底吹羽口からのガス吹き
込みによりスラグを内張り耐火物に付着させる方法、す
なわちMgO−C質耐火物表面にコーティング層を形成
させることで、耐火物中のCの気相による酸化損耗の抑
制や、発生熱応力の低減での熱応力破壊による剥離損耗
の抑制を図るというものである。
On the other hand, slag coating technology includes:
JP-A-53-37120, JP-B-59-3828
As proposed in Japanese Patent No. 2 gazette, a slag solidifying agent such as lightly-burned dolomite, raw dolomite, or limestone is added to the slag remaining in the converter furnace after tapping to increase the viscosity of the slag, and A method in which the slag is adhered to the lining refractory by tilting the furnace body or by blowing gas from the bottom blowing tuyere, that is, by forming a coating layer on the surface of the MgO-C refractory, the gas phase of C in the refractory The purpose of the present invention is to suppress the oxidative wear due to the above and to suppress the peeling wear due to the thermal stress destruction by reducing the generated thermal stress.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、吹錬前
あるいは吹錬中にMgOを多量に投入し、スラグ中のM
gO濃度が飽和MgO濃度超となるようにしても、内張
り耐火物であるMgO−C質耐火物の損耗が増大する現
象が多々発生した。また、スラグ中のMgO濃度が飽和
MgO濃度超となるように吹錬前、あるいは吹錬中に投
入するMgO量を調整して、吹錬を行い、出鋼後炉内に
残留するスラグにスラグ固化剤を投入し、転炉炉体の傾
動や、あるいは底吹羽口からのガス吹き込みを行うだけ
では、十分なスラグコーティング性が得られないという
現象も付随して発生した。
However, a large amount of MgO is introduced before or during blowing, and M
Even when the gO concentration was set to be higher than the saturated MgO concentration, many phenomena occurred in which the wear of the MgO-C refractory as the lining refractory increased. In addition, the blowing is performed by adjusting the amount of MgO charged before or during blowing so that the MgO concentration in the slag exceeds the saturated MgO concentration, and the slag remaining in the furnace after tapping is produced. A phenomenon that sufficient slag coating properties could not be obtained only by injecting the solidifying agent and tilting the converter furnace body or blowing gas from the bottom blowing port occurred.

【0005】本発明は、吹錬中および/または吹錬開始
前に装入するMgO量を調整して、スラグ中のMgO量
およびT.Fe濃度を調節することで、転炉内張り耐火
物の損耗を抑制するための転炉精錬方法を提供すること
を課題とするものである。
According to the present invention, the amount of MgO charged in the slag and the amount of T.O. An object of the present invention is to provide a converter refining method for suppressing the wear of a refractory lining of a converter by adjusting the Fe concentration.

【0006】[0006]

【課題を解決するための手段】本発明は、上記課題を解
決するためになされたものであり、その手段は、MgO
−C質耐火物で内張りされた上底吹き転炉内に吹錬中お
よび/または吹錬前にMgO含有造滓材を投入し、スラ
グ中のMgO濃度を調整して内張り耐火物の損耗を防止
する転炉精錬方法において、溶銑精錬終了後に生成する
推定スラグ量が溶鋼1t当たり60kg以上である場合
には、前記転炉吹錬中および/または転炉吹錬開始前に
投入するMgO含有造滓材量を調整して、スラグ中のM
gO量を飽和MgOの70%以上100%以下の範囲内
で、かつスラグ中のT.Fe濃度を16%以下にするこ
とを特徴とする転炉精錬方法にある。
Means for Solving the Problems The present invention has been made to solve the above-mentioned problems, and the means includes MgO.
A MgO-containing slag material is charged during and / or before blowing into a top and bottom blown converter lined with -C refractory, and the MgO concentration in the slag is adjusted to reduce the wear of the lined refractory. In the converter refining method to prevent, if the estimated amount of slag generated after the end of molten iron refining is 60 kg or more per ton of molten steel, the MgO-containing material to be charged during the converter blowing and / or before the start of the converter blowing. Adjust the amount of slag material and
gO within a range of 70% or more and 100% or less of saturated MgO and T.G. A converter refining method characterized in that the Fe concentration is 16% or less.

【0007】[0007]

【発明の実施の形態】本発明者らは、前記課題で述べた
現象の原因究明を行う過程で、スラグ中のMgO濃度が
重要な役割を果たすのではないかと考えた。すなわち、
スラグ中のMgO濃度が飽和MgO濃度超では、スラグ
中のT.Fe、つまり鉄酸化物濃度が増大するために、
MgO−C質耐火物中のCと鉄酸化物との反応が促進す
ることで、耐火物の損耗が進行すると共に、スラグ中の
T.Feの増大によるスラグの融点の低下で、スラグの
粘性が著しく低下するために、スラグコーティング性も
低下するのではないかと推察して種々の試験検討を行っ
た結果、図1〜図4に示す知見を得た。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have considered that the MgO concentration in slag may play an important role in the process of investigating the cause of the phenomenon described in the above problem. That is,
If the MgO concentration in the slag exceeds the saturated MgO concentration, the T.O. To increase the concentration of Fe, that is, iron oxide,
By promoting the reaction between C in the MgO-C refractory and the iron oxide, wear of the refractory proceeds, and T.C. As a result of various tests and investigations, assuming that the slag coating property may decrease due to the decrease in the melting point of the slag due to the increase in Fe, the results are shown in FIGS. 1 to 4. Obtained knowledge.

【0008】図1はMgO−C質耐火物で内張りされた
上底吹き転炉内での溶銑の精錬において、溶銑精錬終了
後に生成するスラグ量が溶鋼1t当たり60kg以上で
ある場合における溶銑精錬中に投入するMgO量の飽和
MgO量に対する比率と、内張り耐火物の損耗量との関
係を示すものであり、この図から投入するMgO量を飽
和MgO量の70%以上100%以下の範囲にすること
により、精錬中に内張り耐火物からの損耗が防止されて
いることが判明した。
FIG. 1 shows the refining of hot metal in a top-and-bottom blowing converter lined with MgO—C refractory, in which the amount of slag generated after the completion of hot metal refining is 60 kg or more per ton of molten steel. This figure shows the relationship between the ratio of the amount of MgO to the saturated MgO and the amount of wear of the refractory lining. The figure shows that the amount of MgO to be charged is in the range of 70% to 100% of the saturated MgO. This proved that during refining, wear from the refractory lining was prevented.

【0009】図2は、溶銑精錬終了後に生成するスラグ
量が溶鋼1t当たり60kg未満の場合における溶銑精
錬中に投入するMgO量の飽和MgO量に対する比率と
内張り耐火物の損耗量との関係を示すものであり、この
図から投入するMgO量の如何に関わらず精錬中に内張
り耐火物から損耗が生じていることが判明した。ここ
で、損耗量とは、以下に定義されるものである。
FIG. 2 shows the relationship between the ratio of the amount of MgO charged during the hot metal refining to the saturated MgO amount and the amount of wear of the refractory lining when the amount of slag generated after the completion of the hot metal refining is less than 60 kg per ton of molten steel. From this figure, it was found that wear occurred from the refractory lining during refining regardless of the amount of MgO charged. Here, the amount of wear is defined below.

【0010】損耗量(kg/t)=インプットMgO量
(kg/t)−アウトプットMgO量(kg/t) インプットMgO量(kg/t)=精錬中に投入する溶
鋼1t当たりのMgO量 アウトプットMgO量(kg/t)=溶鋼1t当たりの
生成スラグ量(kg/t)×スラグ中のMgO濃度 損耗量が正値のときは吹錬中にMgO−C質耐火物は損
耗しておらず、損耗量が負値のときは吹錬中にMgO−
C質耐火物は損耗していることを意味する。
Amount of wear (kg / t) = amount of input MgO (kg / t) −amount of output MgO (kg / t) Amount of input MgO (kg / t) = amount of MgO per ton of molten steel charged during refining Output MgO amount (kg / t) = slag amount generated per ton of molten steel (kg / t) x MgO concentration in slag If the wear amount is a positive value, the MgO-C refractory is worn out during blowing. When the amount of wear is a negative value, MgO-
The C-type refractory means that it is worn.

【0011】さらに、溶銑精錬終了後に生成するスラグ
量が溶鋼1t当たり60kg以上である場合において
は、図3から溶銑精錬中に投入するMgO量が飽和Mg
O量の100%以下の範囲に限り、スラグコーティング
性にも優れることが判明した。また、溶銑精錬終了後に
生成するスラグ量が溶鋼1t当たり60kg未満の場合
においては、図4から溶銑精錬中に投入するMgO量の
如何に関わらず、スラグコーティング性に劣ることが判
明した。
Further, when the amount of slag generated after the completion of hot metal refining is not less than 60 kg per ton of molten steel, it can be seen from FIG.
It has been found that the slag coating property is excellent only in the range of 100% or less of the O content. In addition, when the amount of slag generated after completion of the hot metal refining was less than 60 kg per 1 t of molten steel, it was found from FIG. 4 that the slag coating property was poor regardless of the amount of MgO charged during the hot metal refining.

【0012】なお、スラグコーティング性は、出鋼側、
装入側、トラニオンの両側の4方向に対して、次に示す
ような目視判断による点数化表示を行った。 付着スラグにより煉瓦目地が全て覆われている :3点 付着スラグにより煉瓦目地が半分覆われている :2点 付着スラグにより煉瓦目地が全く覆われていない:1点 スラグコーティング性は、点数が高いほど優れているこ
とを示す。
The slag coating properties are as follows:
In the four directions on both sides of the loading side and the trunnion, scoring display by visual judgment as shown below was performed. Brick joints are completely covered with attached slag: 3 points Brick joints are half covered by attached slag: 2 points Brick joints are not covered at all by attached slag: 1 point Slag coating properties are high It shows that it is better.

【0013】本発明に使用されるMgO含有造滓材と
は、軽焼ドロマイト、生ドロマイトまたはマグネサイト
のことであり、1種または2種以上を組み合わせて使用
することが可能である。
[0013] The MgO-containing slag material used in the present invention is lightly burned dolomite, raw dolomite or magnesite, and can be used alone or in combination of two or more.

【0014】本発明におけるスラグ中の飽和MgO濃度
は、スラグ中のMgO以外の成分と溶鋼温度から、熱力
学的データを使用した平衡計算により求まるものであ
る。
In the present invention, the concentration of saturated MgO in slag is determined from equilibrium calculation using thermodynamic data from the components other than MgO in slag and the temperature of molten steel.

【0015】本発明における溶鋼1t当たりの生成スラ
グ量は、例えば以下のように推定できるものである。 生成スラグ量(kg/t)=(生石灰投入量×生石灰中
のCaO含有率+石灰石投入量×石灰石中のCaO含有
率+軽焼ドロマイト投入量×軽焼ドロマイト中のCaO
含有率+生ドロマイト投入量×生ドロマイト中のCaO
含有率)/(溶鋼量×スラグ中のCaO濃度)
The amount of slag produced per ton of molten steel in the present invention can be estimated, for example, as follows. Generated slag amount (kg / t) = (input amount of quicklime × CaO content in quicklime + input amount of limestone × CaO content in limestone + input amount of lightly burned dolomite × CaO in lightly burned dolomite
Content + raw dolomite input x CaO in raw dolomite
Content) / (Amount of molten steel x CaO concentration in slag)

【0016】本発明における溶鋼1t当たりの飽和Mg
O量は、以下に定義されるものである。 飽和MgO量(kg/t)=溶鋼1t当たりの生成スラ
グ量×飽和MgO濃度
Saturated Mg per ton of molten steel in the present invention
The O amount is as defined below. Saturated MgO amount (kg / t) = generated slag amount per ton of molten steel x saturated MgO concentration

【0017】溶銑精錬中に投入するMgO量が飽和Mg
O量100%以下では、スラグ中の鉄酸化物濃度が減少
するので、鉄酸化物に侵食されるMgO−C質耐火物中
のC量も低減されることになる。その結果、MgO−C
質耐火物の支配的な損耗機構は、スラグ中の鉄酸化物に
よる炭素の侵食から、MgO粒子のスラグへの溶解へ移
行してくる。
The amount of MgO charged during the hot metal refining is
When the O content is 100% or less, the iron oxide concentration in the slag decreases, so the C content in the MgO-C refractory eroded by the iron oxide also decreases. As a result, MgO-C
The predominant wear mechanism for quality refractories shifts from the erosion of carbon by iron oxides in the slag to the dissolution of MgO particles into the slag.

【0018】ところで、MgO−炭素質耐火物中の炭素
は、スラグ中の鉄酸化物に侵食されるとAl23 −S
iO2 質の灰分を耐火物組織中に残存させる。そのAl
23 −SiO2 質灰分は、炭素に隣接するMgO粒子
と反応し、MgO粒子表面上にMgO−Al23 −S
iO2 質の第2層を形成することになる。この第2層の
存在により、MgO粒子はスラグと接触した場合にMg
O粒子中のMg2+の拡散が妨げられる結果、MgO粒子
のスラグへの溶解が進行せず、精錬中にMgO−C質耐
火物からの損耗を防止することができる。
By the way, carbon in MgO-carbonaceous refractory is eroded by iron oxide in slag and becomes Al 2 O 3 -S.
The ash of iO 2 quality is left in the refractory structure. The Al
The 2 O 3 —SiO 2 ash reacts with the MgO particles adjacent to the carbon and forms MgO—Al 2 O 3 —S on the surface of the MgO particles.
It will form a second layer of iO 2 quality. Due to the presence of this second layer, the MgO particles are exposed to Mg
As a result of preventing the diffusion of Mg 2+ in the O particles, the dissolution of the MgO particles into the slag does not progress, and wear from the MgO-C refractory during refining can be prevented.

【0019】しかし、溶銑精錬中に投入するMgO量が
飽和MgO量70%未満では、スラグ中の鉄酸化物によ
るCの侵食が進行しないため、耐火物組織中にAl2
3 −SiO2 質灰分が生成しなくなる。そのため、Mg
O粒子面上への第2層の形成が不可能となり、MgO粒
子がスラグと接触した場合に、容易に溶解が進行する結
果、精錬中にMgO−C質耐火物からの損耗が進行する
ことになる。
However, if the amount of MgO charged during the hot metal refining is less than 70% of saturated MgO, the erosion of C by the iron oxide in the slag does not progress, so that Al 2 O is contained in the refractory structure.
No 3- SiO 2 ash is generated. Therefore, Mg
The formation of the second layer on the surface of the O particles becomes impossible, and when the MgO particles come into contact with the slag, the dissolution proceeds easily. As a result, the wear from the MgO-C refractory proceeds during the refining. become.

【0020】スラグ中のT.Fe濃度を16%以下とす
るのは、スラグコーティング性に優れるためである。ス
ラグ中のT.Fe濃度が16%超では、スラグの融点が
低下しスラグの粘性が著しく低下するために、出鋼後に
炉内に軽焼ドロマイト、生ドロマイトまたは石灰石等の
スラグ固化剤を投入してもスラグの粘性が増加せず、転
炉炉体の傾動やあるいは底吹羽口からのガス吹き込みを
行ってもスラグが内張り耐火物に付着せず、スラグコー
ティング性に劣るからである。
T. in slag The reason for setting the Fe concentration to 16% or less is that the slag coating property is excellent. T. in slag If the Fe concentration is more than 16%, the melting point of the slag decreases and the viscosity of the slag decreases significantly. This is because the viscosity does not increase and the slag does not adhere to the refractory lining even when the converter furnace is tilted or gas is blown from the bottom blowing tuyere, resulting in poor slag coating property.

【0021】一方、溶銑精錬終了後に生成するスラグ量
が溶鋼1t当たり60kg未満である場合には、スラグ
中の鉄酸化物濃度は、溶銑精錬中に投入するMgO量に
依存せず著しく高くなる。その結果、MgO−C質耐火
物の支配的な損耗機構がスラグ中の鉄酸化物によるCの
侵食となるために、精錬中にMgO−C質耐火物の損耗
が進行することになる。
On the other hand, when the amount of slag generated after the completion of the hot metal refining is less than 60 kg per ton of molten steel, the iron oxide concentration in the slag becomes extremely high without depending on the amount of MgO charged during the hot metal refining. As a result, the dominant wear mechanism of the MgO-C refractory is the erosion of C by the iron oxide in the slag, so that the wear of the MgO-C refractory proceeds during the refining.

【0022】[0022]

【実施例】以下に本発明の実施例を示す。表1に使用し
た溶銑成分、精錬条件を示し、表2に試験条件を示し
た。両表共に実施例と比較例を示したが、表2には試験
結果を併せて示した。転炉は、上底吹きで容量は340
tで、MgO80wt%、C20wt%のMgO−C質
耐火物で内張りしたものである。
Examples of the present invention will be described below. Table 1 shows the hot metal components and refining conditions used, and Table 2 shows the test conditions. In both tables, examples and comparative examples are shown. Table 2 also shows test results. The converter has a capacity of 340 with top and bottom blowing.
At t, it is lined with a MgO-C refractory of 80 wt% MgO and 20 wt% C.

【0023】[0023]

【表1】 [Table 1]

【0024】MgO含有造滓材は、吹錬時間の20%ま
での吹錬開始時に投入を行った。表2中の投入MgO量
および投入MgO比率とは、以下に定義されるものであ
る。 投入MgO量(kg/t)=(精錬中に使用したMgO
量)/(溶鋼量) 投入MgO比率(%) =(投入MgO量×100)
/(飽和MgO量) スラグコーティングは、出鋼後炉内に残留させたスラグ
に生ドロマイト1t、石灰石0.5tを投入し底吹羽口
からのガス吹き込みによる方法で行った。スラグコーテ
ィング性については、前記した評点方法と同様である。
The MgO-containing slag material was introduced at the start of blowing up to 20% of the blowing time. The input MgO amount and the input MgO ratio in Table 2 are defined below. MgO input (kg / t) = (MgO used during refining
Amount) / (Amount of molten steel) Input MgO ratio (%) = (Input MgO amount x 100)
/ (Saturated MgO content) Slag coating was performed by charging 1 t of raw dolomite and 0.5 t of limestone into the slag remaining in the furnace after tapping, and injecting gas from the bottom tuyere. The slag coating property is the same as the above-mentioned scoring method.

【0025】[0025]

【表2】 [Table 2]

【0026】本実施例1〜5は、投入するMgO量はM
gOがスラグに飽和するMgO量未満であるにもかかわ
らず、精錬中にMgO−C質耐火物からの損耗が防止で
きていると共に、優れたスラグコーティング性を示し
た。一方、比較例1は投入するMgO量が飽和MgO量
の70%未満であるので、スラグコーティング性は優れ
るが、精錬中にMgO−C質耐火物は損耗している。比
較例2は投入するMgO量が飽和MgO量の90%超で
あるので、精錬中にMgO−C質耐火物は損耗している
と共に、スラグコーティング性に劣っていた。比較例3
〜5は、生成するスラグ量が溶鋼1t当たり60kg未
満であるので、精錬中にMgO−C質耐火物は損耗して
いると共に、スラグコーティング性が劣っていた。
In Examples 1 to 5, the amount of MgO to be charged is M
Despite the fact that gO is less than the amount of MgO saturated with slag, wear from MgO-C refractories was prevented during refining and excellent slag coating properties were exhibited. On the other hand, in Comparative Example 1, since the amount of MgO to be charged is less than 70% of the amount of saturated MgO, the slag coating property is excellent, but the MgO-C refractory is worn during refining. In Comparative Example 2, since the amount of MgO to be charged was more than 90% of the amount of saturated MgO, the MgO-C refractory was worn out during refining and had poor slag coating properties. Comparative Example 3
In Nos. To 5, since the amount of slag produced was less than 60 kg per ton of molten steel, the MgO-C refractory was worn out during refining and the slag coating property was poor.

【0027】[0027]

【発明の効果】本発明により、本発明の転炉精錬方法
は、MgO−C質耐火物で内張りされた上底吹き転炉内
で溶銑中にMgOを投入し、スラグ中のMgO濃度を調
整することで内張り耐火物の損耗を防止する転炉精錬方
法において、投入するMgO量を飽和MgO量の70%
以上100%以下とすることで、吹錬中での内張り耐火
物の損耗を防止し、さらにスラグ中のT.Fe濃度を1
6%以下にすることによりスラグコーティング性を向上
させることができ、その結果MgO使用量の削減および
転炉炉体寿命の延長による耐火物コストの削減が可能と
なる等の効果を奏するものである。
According to the present invention, the converter refining method of the present invention adjusts the MgO concentration in slag by charging MgO into hot metal in an upper and lower blown converter lined with MgO-C refractory. In the converter refining method in which the refractory lining is prevented from being worn, the amount of MgO to be charged is set to 70% of the amount of saturated MgO.
By setting it to 100% or less, wear of the refractory lining during blowing is prevented, and T.P. Fe concentration of 1
By making the content 6% or less, the slag coating property can be improved, and as a result, effects such as reduction of the amount of MgO used and reduction of refractory cost due to extension of the life of the converter body can be achieved. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】溶銑精錬終了後に生成するスラグ量が溶鋼1t
当たり60kg以上の場合における飽和MgO量に対す
る投入MgO量比率と内張り耐火物の損耗量の関係を示
した図
FIG. 1 The amount of slag generated after the end of hot metal refining is 1 t of molten steel
Figure showing the relationship between the input MgO amount ratio to the saturated MgO amount and the amount of wear of the refractory lining in the case of 60 kg or more per unit

【図2】溶銑精錬終了後に生成するスラグ量が溶鋼1t
当たり60kg未満の場合における飽和MgO量に対す
る投入MgO量比率と内張り耐火物の損耗量の関係を示
した図
FIG. 2 shows that the amount of slag generated after completion of hot metal refining is 1 t of molten steel.
Figure showing the relationship between the input MgO amount ratio to the saturated MgO amount and the amount of wear of the refractory lining when the weight is less than 60 kg per unit.

【図3】溶銑精錬終了後に生成するスラグ量が溶鋼1t
当たり60kg以上の場合における飽和MgO量に対す
る投入MgO量比率とスラグコーティング性の関係を示
した図
FIG. 3 shows that the amount of slag generated after completion of hot metal refining is 1 t of molten steel.
Figure showing the relationship between the input MgO amount ratio to the saturated MgO amount and the slag coating property in the case of 60 kg or more per unit.

【図4】溶銑精錬終了後に生成するスラグ量が溶鋼1t
当たり60kg未満の場合における飽和MgO量に対す
る投入MgO量比率とスラグコーティング性の関係を示
した図
FIG. 4 shows that the amount of slag generated after completion of hot metal refining is 1 t of molten steel.
Figure showing the relationship between the input MgO amount ratio and the slag coating property with respect to the saturated MgO amount in the case of less than 60 kg per unit.

【図5】溶銑精錬終了後に生成するスラグ量が溶鋼1t
当たり60kg以上の場合における飽和MgO量に対す
る投入MgO量比率とスラグ中のT.Fe濃度の関係を
示した図
FIG. 5 shows that the amount of slag generated after completion of hot metal refining is 1 t of molten steel.
MgO amount ratio to the saturated MgO amount and T.G. Diagram showing the relationship between Fe concentrations

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 MgO−C質耐火物で内張りされた上底
吹き転炉内に吹錬中および/または吹錬前にMgO含有
造滓材を投入し、スラグ中のMgO濃度を調整して内張
り耐火物の損耗を防止する転炉精錬方法において、溶銑
精錬終了後に生成する推定スラグ量が溶鋼1t当たり6
0kg以上である場合には、前記転炉吹錬中および/ま
たは転炉吹錬開始前に投入するMgO含有造滓材量を調
整して、スラグ中のMgO量を飽和MgOの70%以上
100%以下の範囲内で、かつスラグ中のT.Fe濃度
を16%以下にすることを特徴とする転炉精錬方法。
1. An MgO-containing slag material is charged into an upper and lower blowing converter lined with an MgO-C refractory during and / or before blowing to adjust the MgO concentration in the slag. In a converter refining method for preventing the wear of refractory lining, an estimated amount of slag generated after completion of hot metal refining is 6 tons per molten steel.
When it is 0 kg or more, the amount of MgO-containing slag material to be charged during the converter blowing and / or before the start of the converter blowing is adjusted so that the amount of MgO in the slag is 70% or more of the saturated MgO. % In the slag range. A converter refining method characterized in that the Fe concentration is 16% or less.
JP18993696A 1996-07-02 1996-07-02 Converter refining method Expired - Fee Related JP3771635B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18993696A JP3771635B2 (en) 1996-07-02 1996-07-02 Converter refining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18993696A JP3771635B2 (en) 1996-07-02 1996-07-02 Converter refining method

Publications (2)

Publication Number Publication Date
JPH1017915A true JPH1017915A (en) 1998-01-20
JP3771635B2 JP3771635B2 (en) 2006-04-26

Family

ID=16249695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18993696A Expired - Fee Related JP3771635B2 (en) 1996-07-02 1996-07-02 Converter refining method

Country Status (1)

Country Link
JP (1) JP3771635B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011184737A (en) * 2010-03-09 2011-09-22 Nippon Steel Corp Method for protecting lining-refractory in converter
CN106868248A (en) * 2015-12-11 2017-06-20 株式会社Posco Reduce the stainless steel method of refining that the refractory body of converter corrodes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011184737A (en) * 2010-03-09 2011-09-22 Nippon Steel Corp Method for protecting lining-refractory in converter
CN106868248A (en) * 2015-12-11 2017-06-20 株式会社Posco Reduce the stainless steel method of refining that the refractory body of converter corrodes

Also Published As

Publication number Publication date
JP3771635B2 (en) 2006-04-26

Similar Documents

Publication Publication Date Title
US5279639A (en) Compositions for synthesizing ladle slags
JP5233383B2 (en) Method for refining molten steel
CA1321075C (en) Additive for promoting slag formation in steel refining ladle
JPH1017915A (en) Converter refining method
JP4422318B2 (en) Hot metal dephosphorization method with little refractory damage
JP3353550B2 (en) Converter refractory erosion control method
JPH10183219A (en) Slag coating method
JP2002275521A (en) Method for dephosphorizing molten high carbon steel
JP3106870B2 (en) A smelting method that suppresses erosion of refractories
RU2757511C1 (en) Steelmaking method in electric arc furnace
JP4224197B2 (en) Hot metal dephosphorization method with high reaction efficiency
JPH10245616A (en) Method for extending service life of furnace body of converter
JP2002302712A (en) Method for protecting lined refractory in converter for steelmaking
JP3263276B2 (en) Steel refining method
KR100402013B1 (en) Method for making slag with waste alumina refratory
JPH0835022A (en) Smelting reduction method for nickel oxide-containing raw material
JPH0830206B2 (en) Slag coating method for melting and refining furnace
SU1747500A1 (en) Scrap-and-ore steelmaking process without oxygen blast
SU652222A1 (en) Method of treating rough ferronickel
JPS5928514A (en) Method for refining stainless steel
KR810002042B1 (en) Method of prolonging durable life of aod furnace refractory linings
JP3603969B2 (en) Method for producing hot metal containing chromium and / or nickel
JP2004176133A (en) Method for producing stainless steel
JPH02153011A (en) Smelting reduction furnace
JPH01234511A (en) Desulfurizing agent for molten iron

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090217

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140217

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees