JP5233383B2 - Method for refining molten steel - Google Patents

Method for refining molten steel Download PDF

Info

Publication number
JP5233383B2
JP5233383B2 JP2008107044A JP2008107044A JP5233383B2 JP 5233383 B2 JP5233383 B2 JP 5233383B2 JP 2008107044 A JP2008107044 A JP 2008107044A JP 2008107044 A JP2008107044 A JP 2008107044A JP 5233383 B2 JP5233383 B2 JP 5233383B2
Authority
JP
Japan
Prior art keywords
mass
slag
tio
cao
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008107044A
Other languages
Japanese (ja)
Other versions
JP2009256727A (en
Inventor
政樹 宮田
善彦 樋口
鉄平 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2008107044A priority Critical patent/JP5233383B2/en
Publication of JP2009256727A publication Critical patent/JP2009256727A/en
Application granted granted Critical
Publication of JP5233383B2 publication Critical patent/JP5233383B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

本発明は、脱りん銑を転炉で脱炭吹錬する際に、スラグを適度にフォーミングさせて脱りん反応を促進する方法に関する。   The present invention relates to a method for promoting dephosphorization reaction by appropriately forming slag when decarburizing and decarburizing dephosphorization in a converter.

炭素含有鉄を転炉で脱炭・脱りんする際には通常生石灰が使用されている。ところが、この生石灰は融点が2000℃以上であるため、最高温度を1700℃程度とする転炉での脱炭・脱りん吹錬では、生石灰を単独で溶融・滓化させるのは容易ではない。   When decarburizing and dephosphorizing carbon-containing iron in a converter, quick lime is usually used. However, since this quick lime has a melting point of 2000 ° C. or higher, it is not easy to melt and hatch quick lime alone in decarburization / dephosphorization blowing in a converter with a maximum temperature of about 1700 ° C.

そこで、従来は蛍石等のハロゲン化物を添加して生石灰の溶融・滓化を促進していたが、スラグの利材化という観点において、最近では、環境問題によりフッ素に関わる法規制が厳格化され、製鋼スラグ製品にもフッ素の溶出量及び濃度の規制が行われる状況にある。このため、スラグ中のフッ素濃度を極限まで低下させる必要があり、蛍石を使わない脱りん技術の開発が強く望まれている。   So, conventionally, halides such as fluorite were added to promote the melting and hatching of quicklime, but recently, legal regulations related to fluorine have become stricter due to environmental problems from the viewpoint of making slag into a useful material. In addition, the amount of fluorine elution and concentration are regulated in steelmaking slag products. For this reason, it is necessary to reduce the fluorine concentration in the slag to the limit, and development of a dephosphorization technique that does not use fluorite is strongly desired.

このような背景の下、例えば溶銑予備処理において生石灰の溶融・滓化を促進する剤としてAlを用いる方法が、特許文献1に開示されている。
特開平11−21608号公報
Under such a background, for example, Patent Document 1 discloses a method of using Al 2 O 3 as an agent for promoting the melting and hatching of quicklime in hot metal pretreatment.
JP 11-21608 A

しかしながら、脱りん銑を転炉で脱炭吹錬する際にAl源を添加した場合の、脱りん挙動および耐火物溶損挙動を本発明者が調査したところ、脱りん反応を促進すべく添加されたスラグ中のAl含有量(質量%、以下「(%Al)」ともいう。)が3.5質量%超では、耐火物溶損量が急激に増加してしまうことが明らかになった。その一方で、スラグ中(%Al)が3.5質量%以下では、Al添加による脱燐反応促進効果は比較的小程度である。このように、本発明者の調査によって、生産性の向上(炉寿命の短縮要因の排除)と品質の向上(鋼のりん濃度の低減)とをさらに高次で両立するための手段が必要であることが明らかになった。 However, when the present inventor investigated the dephosphorization behavior and the refractory erosion behavior when an Al 2 O 3 source was added when decarburizing and decarburizing dephosphorization in a converter, the dephosphorization reaction was promoted. When the Al 2 O 3 content (mass%, hereinafter also referred to as “(% Al 2 O 3 )”) in the added slag is more than 3.5 mass%, the refractory erosion loss amount increases rapidly. It became clear that it would. On the other hand, when the content of slag (% Al 2 O 3 ) is 3.5% by mass or less, the effect of promoting dephosphorization reaction due to the addition of Al 2 O 3 is relatively small. Thus, as a result of the investigation by the present inventor, means for further improving the productivity (excluding the factor for shortening the furnace life) and improving the quality (reducing the phosphorus concentration of the steel) is required. It became clear that there was.

本発明は、この手段を提供することを目的とするものであり、具体的には、脱りん銑を転炉で蛍石を使用することなく脱炭吹錬する際に、スラグ中(%Al)が3.5質量%以下であっても脱りん反応を促進させうる溶鋼の精錬方法を提供することを目的とする。 The present invention is intended to provide this means. Specifically, when dephosphorizing a dephosphorization slag without using fluorite in a converter, it is contained in slag (% Al). 2 O 3) and has an object to provide a refining method of molten steel which are capable of promoting the dephosphorizing reaction be not more than 3.5 mass%.

上記課題を解決するべく提供される本発明は、次のとおりである。
(1)精錬容器にて脱りんした溶銑を、別の精錬容器である上底吹き転炉へ装入して脱炭吹錬するに際し、CaO源、SiO源、Al含有プリメルトフラックスおよびTiO源を添加して、処理後スラグの組成を、(%Al)=1.0〜3.5質量%、(%TiO)=0.2〜1.0質量%、下記式(1)による塩基度を3.0〜4.5とすることを特徴とする溶鋼の精錬方法:
塩基度=(CaO)/(SiO) (1)
但し、(CaO):スラグ中の全CaO含有量(質量%)
(SiO):スラグ中のSiO含有量(質量%)。
The present invention provided to solve the above problems is as follows.
(1) When molten iron dephosphorized in a refining vessel is charged into an upper bottom blowing converter, which is another refining vessel, and decarburized and blown, a premelt containing CaO, SiO 2 and Al 2 O 3 is contained. Flux and TiO 2 source were added, and the composition of the slag after treatment was (% Al 2 O 3 ) = 1.0 to 3.5% by mass, (% TiO 2 ) = 0.2 to 1.0% by mass. The method for refining molten steel, wherein the basicity according to the following formula (1) is 3.0 to 4.5:
Basicity = (CaO) / (SiO 2 ) (1)
However, (CaO): Total CaO content in slag (mass%)
(SiO 2 ): SiO 2 content (% by mass) in the slag.

(2)前記Al含有プリメルトフラックスとして取鍋スラグを用いることを特徴とする上記(1)に記載の溶鋼の精錬方法 (2) A ladle refining method according to (1), wherein ladle slag is used as the Al 2 O 3 -containing premelt flux.

(3)精錬容器にて脱りんした溶銑を、別の精錬容器である上底吹き転炉へ装入して脱炭吹錬するに際し、CaO源、SiO 源、ならびにAlおよびTiOを含有するプリメルトフラックスを添加して、処理後スラグの組成を、(%Al )=1.0〜3.5質量%、(%TiO )=0.2〜1.0質量%、下記式(1)による塩基度を3.0〜4.5とすることを特徴とする溶鋼の精錬方法。
塩基度=(CaO)/(SiO ) (1)
但し、(CaO):スラグ中の全CaO含有量(質量%)
(SiO ):スラグ中のSiO 含有量(質量%)
(3) When the hot metal dephosphorized in a refining vessel is charged into a top bottom blowing converter, which is another refining vessel, and decarburized and blown, a CaO source, a SiO 2 source, Al 2 O 3 and TiO The pre-melt flux containing 2 was added, and the composition of the slag after the treatment was (% Al 2 O 3 ) = 1.0 to 3.5% by mass, (% TiO 2 ) = 0.2 to 1.0. wt%, refining method of soluble steel you characterized that you basicity by the following formula (1) and 3.0 to 4.5.
Basicity = (CaO) / (SiO 2 ) (1)
However, (CaO): Total CaO content in slag (mass%)
(SiO 2 ): SiO 2 content in slag (mass%)

本発明によれば、脱りん銑を上底吹き転炉で脱炭吹錬する方法において、耐火物溶損を抑制しつつ生石灰等のフラックスの滓化を促進して、処理後[P]を低減できる。   According to the present invention, in a method of decarburizing and blowing dephosphorized rice in an upper bottom blowing converter, the hatching of flux such as quick lime is promoted while suppressing refractory melting, and after processing [P] Can be reduced.

以下、本発明に係る溶鋼の精錬方法の最良の形態について図面を参照しつつ説明する。
本発明に係る溶鋼の精錬方法は、脱りん銑を転炉(典型的には上底吹き転炉)で脱炭吹錬する際に、Al含有プリメルトフラックスを添加して生石灰の溶解・滓化が促進するが、耐火物溶損量が急激に増加しないように脱炭吹錬処理後のスラグ中(%Al)を3.5質量%以下にする。さらに、Ti鉱石等のTiO源を添加して、脱炭吹錬処理後のスラグ中のTiOの含有量(質量%、以下「(%TiO)」ともいう。)を制御するとともに、下記式(1)で示されるスラグの塩基度を制御する。
スラグの塩基度=(CaO)/(SiO) (1)
ここで、(CaO)は脱炭吹錬処理後のスラグ中の全CaO含有量(質量%)であり、(SiO)は脱炭吹錬処理後のスラグ中のSiO含有量(質量%)である。
Hereinafter, the best mode of a method for refining molten steel according to the present invention will be described with reference to the drawings.
In the method for refining molten steel according to the present invention, when dephosphorization is decarburized and blown in a converter (typically a top-bottom blown converter), an Al 2 O 3 -containing premelt flux is added, and Although melting and hatching are promoted, the slag after decarburization blowing treatment (% Al 2 O 3 ) is made 3.5% by mass or less so that the refractory erosion amount does not increase rapidly. Further, a TiO 2 source such as Ti ore is added to control the content of TiO 2 in the slag after decarburization blowing (mass%, hereinafter also referred to as “(% TiO 2 )”), The basicity of the slag represented by the following formula (1) is controlled.
Basicity of slag = (CaO) / (SiO 2 ) (1)
Here, (CaO) is the total CaO content in the slag after the decarburization blowing treatment (mass%), (SiO 2) is SiO 2 content in the slag after the decarburization blowing process (wt% ).

1.Al
プリメルトフラックスとはフラックスを構成する各成分があらかじめ溶融・滓化さらたものであって、Al含有プリメルトフラックスとしてはCaOやAlを適量配合してカルシウムアルミネート化した合成フラックスなどのほか、取鍋スラグなどが例示される。このようなAl含有プリメルトフラックスは融点が1500℃程度と低いので、脱炭吹錬の早い時期から滓化する。このため、生石灰と接触したときに生石灰の滓化を促進することが可能となる。
1. Al 2 O 3
The pre-melt flux is one in which the components constituting the flux have been previously melted and hatched. As the pre-melt flux containing Al 2 O 3, CaO and Al 2 O 3 are mixed in appropriate amounts to form calcium aluminate. In addition to synthetic flux, ladle slag and the like are exemplified. Such an Al 2 O 3 -containing pre-melt flux has a melting point as low as about 1500 ° C., and therefore hatches from the early stage of decarburization blowing. For this reason, it becomes possible to promote the hatching of quicklime when it comes into contact with quicklime.

ここで、取鍋スラグの組成としては、全CaO含有量が30〜60質量%、Al含有量が10〜40質量%、全鉄含有量が15質量%以下、およびSiO含有量が15質量%以下のものが望ましい。このような組成であれば、融点が低く、Al源としてはもちろんCaO源としても有用となる。 Here, as the composition of the ladle slag, the total CaO content is 30 to 60% by mass, the Al 2 O 3 content is 10 to 40% by mass, the total iron content is 15% by mass or less, and the SiO 2 content Is preferably 15% by mass or less. Such a composition has a low melting point and is useful as a CaO source as well as an Al 2 O 3 source.

なお、同じAl源であっても、Al含有プリメルトフラックス以外のAl源としてAl耐火物の廃材(Al含有量:95質量%)を用いたところ、上記スラグ組成となるようにフラックスを配合しても、脱りん反応は促進されなかった。このことは、高融点の生石灰、高融点のAl源およびTiO源を、単に炉内へ添加しただけでは、脱炭吹錬の後半までフラックスはほとんど滓化しないため脱りん反応が促進されないことを示している。 Incidentally, even with the same Al 2 O 3 source, waste of Al 2 O 3 Al 2 O 3 refractory as Al 2 O 3 source other than containing pre-melt flux (Al 2 O 3 content: 95 wt%) of When used, the dephosphorization reaction was not promoted even when the flux was blended to achieve the above slag composition. This means that if a high melting point quick lime, a high melting point Al 2 O 3 source and a TiO 2 source are simply added to the furnace, the flux hardly hatches until the second half of the decarburization blowing, so that the dephosphorization reaction is not caused. Indicates that it is not promoted.

脱炭吹錬処理後のスラグ中(%Al)の上限は上記のように耐火物溶損量の増加防止の観点から3.5質量%以下である。一方、スラグ中(%Al)の下限は1質量%以上であり、1質量%未満の場合にはTiO源を添加しても生石灰の溶解・滓化の促進が限定的となり、脱りん効率向上という効果が得られにくくなる。 The upper limit of the slag after decarburization blowing (% Al 2 O 3 ) is 3.5% by mass or less from the viewpoint of preventing an increase in the refractory melt loss as described above. On the other hand, the lower limit of slag (% Al 2 O 3 ) is 1% by mass or more, and in the case of less than 1% by mass, the promotion of dissolution and hatching of quick lime is limited even when a TiO 2 source is added, The effect of improving the dephosphorization efficiency becomes difficult to obtain.

Al含有プリメルトフラックス中のAl含有量は10〜70質量%が望ましい。10質量%未満ではプリメルトフラックス原単位が増加して、コスト的に不利となる。これに対し、70質量%を超えると、プリメルトフラックスの融点が高くなりすぎて、脱炭吹錬中に生石灰の滓化を促進する効果が小さくなってしまう。 Al 2 O 3 Al 2 O 3 content of containing the pre-melt in the flux is preferably 10 to 70 wt%. If it is less than 10% by mass, the pre-melt flux basic unit increases, which is disadvantageous in cost. On the other hand, when it exceeds 70 mass%, the melting point of the premelt flux becomes too high, and the effect of promoting hatching of quick lime during decarburization blowing is reduced.

また、Al含有プリメルトフラックス中のCaO含有量は、10〜70質量%が望ましい。Al含有量の高いフラックスにCaOを添加すると融点を著しく低下させることができるため、10質量%以上添加することが望ましい。しかしながら、CaOを70質量%以上添加すると逆にフラックスの融点が高くなりすぎるため好ましくない。 Further, the CaO content in the Al 2 O 3 -containing premelt flux is preferably 10 to 70% by mass. When CaO is added to a flux having a high Al 2 O 3 content, the melting point can be remarkably lowered, so it is desirable to add 10% by mass or more. However, adding 70 mass% or more of CaO is not preferable because the melting point of the flux becomes too high.

2.TiO
上記のようにAl源としてAl含有プリメルトフラックスは他のAl源に比べて脱りん反応を促進することができるが、上底吹き転炉では未滓化フラックスは浴面上の炉壁周囲付近に偏在しており、ある程度多量のAl含有プリメルトフラックスを炉内へ添加しなければ、生石灰等の未滓化フラックスと効率良く接触できないため、フラックスの滓化促進効果が小さくなってしまう。
2. TiO 2
Al 2 O 3 content premelt flux as Al 2 O 3 source as described above may be facilitated dephosphorization reaction as compared to other Al 2 O 3 source, the upper base blown in converter Not slag-based flux Is unevenly distributed in the vicinity of the furnace wall on the bath surface, and unless it is added to the furnace with a certain amount of Al 2 O 3 -containing pre-melt flux, it cannot be efficiently contacted with the unincubated flux such as quicklime. The effect of promoting hatching will be reduced.

この点に着目して本発明者が鋭意検討した結果、少量のAl含有プリメルトフラックスと共にTiO源を少量添加すると、脱炭吹錬初期から溶融スラグが形成され、しかもその溶融スラグが適度にフォーミングしてスラグ中の全鉄含有量(質量%、以下「(%T.Fe)」ともいう。)が高まり、その結果、脱りん反応が促進されるとの新たな知見が得られた。 As a result of intensive studies by the present inventors paying attention to this point, when a small amount of TiO 2 source is added together with a small amount of Al 2 O 3 -containing premelt flux, molten slag is formed from the initial stage of decarburization blowing, and the molten slag Will form appropriately and the total iron content in the slag (mass%, hereinafter also referred to as “(% T.Fe)”) will increase, and as a result, new knowledge will be obtained that the dephosphorization reaction is promoted. It was.

フォーミングしたスラグは浴面上方の炉内を覆い、そのスラグは未滓化フラックス(生石灰等)と常に接触し、またフォーミングスラグと未滓化フラックスは十分に攪拌・混合される。   The formed slag covers the inside of the furnace above the bath surface, and the slag is always in contact with unincubated flux (quick lime etc.), and the forming slag and unincubated flux are sufficiently stirred and mixed.

また、脱炭吹錬中に火点で生成されたFeOがフォーミングスラグ中へ取り込まれてスラグ中(%T.Fe)が増加する。このフォーミングスラグはフォーミングすることにより体積が増加しているため、スラグ単位体積当たりの溶銑−スラグ界面積が小さい。したがって、フォーミングスラグ中の鉄成分は溶銑中に溶解している炭素と接触する機会が少なくなり、スラグ中(%T.Fe)は高値で維持されやすい。その結果、スラグの酸素ポテンシャルが高くなって、脱りん反応が促進される。なお、本発明に係る製造方法により脱炭精錬がなされた後のスラグ中(%T.Fe)は、典型的には5〜20質量%である。   In addition, FeO generated at the fire point during decarburization blowing is taken into the forming slag and the amount of slag (% T. Fe) increases. Since the volume of the forming slag is increased by forming, the hot metal-slag interface area per slag unit volume is small. Accordingly, the iron component in the forming slag is less likely to come into contact with the carbon dissolved in the hot metal, and the slag (% T. Fe) is easily maintained at a high value. As a result, the oxygen potential of the slag is increased and the dephosphorization reaction is promoted. In the slag after decarburization refining by the production method according to the present invention (% T. Fe) is typically 5 to 20% by mass.

このように脱燐反応の促進に効果的なTiO源としては、イルメナイト鉱石やルチル鉱石が例示される。
本発明に係る溶鋼の精製方法では、脱炭吹錬処理後のスラグ中のTiO含有量「質量%、以下「(%TiO)」ともいう。」を0.2〜1質量%とする。この(%TiO)が0.2質量%未満の場合にはTiO源添加の効果が得られにくく、一方、この(%TiO)が1質量%超の場合には耐火物溶損量が急激に増加する傾向を示すようになる。
Thus, ilmenite ore and rutile ore are exemplified as the effective TiO 2 source for promoting the dephosphorization reaction.
In the method for refining molten steel according to the present invention, the content of TiO 2 in the slag after decarburization blowing is also referred to as “mass%, hereinafter“ (% TiO 2 ) ”. Is 0.2-1 mass%. When this (% TiO 2 ) is less than 0.2% by mass, it is difficult to obtain the effect of adding the TiO 2 source. On the other hand, when this (% TiO 2 ) exceeds 1% by mass, the amount of refractory is damaged. Tends to increase rapidly.

なお、AlおよびTiOを共に含有するプリメルトフラックスを用いる場合でも、上記の脱りん反応促進効果を得ることができる。
その場合には、プリメルトフラックス中の(%Al)は10〜70質量%、(%TiO)は0.5〜20質量%とすることが望ましい。
Even when a premelt flux containing both Al 2 O 3 and TiO 2 is used, the above dephosphorization reaction promoting effect can be obtained.
In that case, it is desirable that (% Al 2 O 3 ) in the pre-melt flux is 10 to 70% by mass, and (% TiO 2 ) is 0.5 to 20% by mass.

プリメルトフラックス中の(%TiO)が0.5質量%未満では、プリメルトフラックスの原単位が多くなりすぎてコストアップになる。一方、プリメルトフラックス中の(%TiO)が20質量%を超えると、スラグ中の(%Al)を調整する際に、スラグ中(%TiO)を適正な範囲に制御し難くなる。 If (% TiO 2 ) in the pre-melt flux is less than 0.5% by mass, the basic unit of the pre-melt flux increases so that the cost increases. On the other hand, if (% TiO 2 ) in the premelt flux exceeds 20% by mass, when adjusting (% Al 2 O 3 ) in the slag, the slag (% TiO 2 ) is controlled within an appropriate range. It becomes difficult.

3.塩基度等
本発明に係る溶鋼の精錬方法では、上記式(1)で表される脱炭精錬処理後スラグの塩基度(以下「実塩基度」ともいう。)を3.0〜4.5とする。この範囲とすることで、脱りん反応の促進効果が安定的に実現される。実塩基度が3.0よりも低い場合にはスラグの脱りん能が低いためにりん濃度を充分に低下させることが困難となる。一方、塩基度が4.5を超える場合には、スラグの融点が高くなるためスラグが滓化しにくく、やはり脱りん反応は進行しにくくなる。脱りん反応効果を特に安定的に得るためには、実塩基度を3.0〜4.0とすることが好ましい。
3. Basicity, etc. In the molten steel refining method according to the present invention, the basicity of the slag after decarburization refining treatment represented by the above formula (1) (hereinafter also referred to as “actual basicity”) is 3.0 to 4.5. And By setting it as this range, the dephosphorization reaction promoting effect is stably realized. When the actual basicity is lower than 3.0, it is difficult to sufficiently reduce the phosphorus concentration because the dephosphorization ability of slag is low. On the other hand, when the basicity exceeds 4.5, the melting point of the slag is increased, so that the slag is not easily hatched, and the dephosphorization reaction does not proceed easily. In order to obtain the dephosphorization reaction effect particularly stably, the actual basicity is preferably set to 3.0 to 4.0.

スラグのCaO源としては、生石灰、石灰石、消石灰、ドロマイトなどが例示され、SiO源としては、珪石、橄欖岩などが例示される。なお、スラグは上記の成分以外にMgOを含んでもよく、そのMgO源としては、ドロマイト、天然マグネシア、橄欖岩などが例示される。 Examples of the CaO source of slag include quick lime, limestone, slaked lime, and dolomite, and examples of the SiO 2 source include quartzite and peridotite. The slag may contain MgO in addition to the above components, and examples of the MgO source include dolomite, natural magnesia, peridotite, and the like.

4.溶銑組成、吹錬条件等
本発明に係る溶鋼の精製方法では、脱炭吹錬処理後のスラグ中の(%Al)、(%TiO)、および塩基度を所定の範囲にすることができれば、脱炭吹錬処理に供される溶銑の化学組成は特に限定されない。しかしながら、脱炭吹錬処理前の溶銑のりん濃度が過剰に高い場合には、本発明に係る脱炭吹錬処理でも充分に燐濃度を低下させることができないときもあるため、脱炭吹錬処理に供される溶銑は予備処理として脱りん処理がなされ、溶銑内のりん含有量(質量%、以下「[P]」という。)が0.05質量%であることが好ましく、0.03質量%以下であれば特に好ましい。この脱りん処理が行われる精錬容器は特に限定されず、トーピードカーおよび溶銑鍋が例示される。
4). Hot metal composition, blowing conditions, etc. In the method for refining molten steel according to the present invention, (% Al 2 O 3 ), (% TiO 2 ), and basicity in the slag after decarburization blowing are set within a predetermined range. If it can, the chemical composition of the hot metal used for the decarburization blowing process is not particularly limited. However, when the phosphorus concentration in the hot metal before the decarburization blown treatment is excessively high, the decarburization blown treatment according to the present invention may not be able to sufficiently reduce the phosphorus concentration. The hot metal used for the treatment is dephosphorized as a preliminary treatment, and the phosphorus content (% by mass, hereinafter referred to as “[P]”) in the hot metal is preferably 0.05% by mass, 0.03 If it is below mass%, it is especially preferable. The refining vessel in which this dephosphorization process is performed is not particularly limited, and a torpedo car and a hot metal ladle are exemplified.

脱炭吹錬処理に供される溶銑のその他の元素の典型的な含有量を示せば、次のとおりである:
[C]≦4.0質量%以下、
[Si]≦0.10質量%、
[Mn]≦0.30質量%、
[S]≦0.03質量%、
[Ti]≦0.01質量%。
The typical content of other elements in the hot metal used in the decarburization blowing process is as follows:
[C] ≦ 4.0% by mass or less,
[Si] ≦ 0.10 mass%,
[Mn] ≦ 0.30 mass%,
[S] ≦ 0.03 mass%,
[Ti] ≦ 0.01 mass%.

ここで、[元素]は、[P]と同様に、当該元素の溶鋼中含有量(質量%)を意味する。   Here, [element] means the content (mass%) in the molten steel of the said element similarly to [P].

脱炭吹錬処理の処理条件は、溶銑の化学組成と同様に、処理後のスラグが適切に制御されていれば、特に制限されない。
典型的には、上底吹き転炉を用い、上吹きランスからは酸素を含むガスを、底吹き羽口からは攪拌目的でArなどの不活性ガスを供給し、処理後の溶鋼温度が1600〜1700℃になるようにしつつ10〜15分程度の脱炭吹錬処理を行う。
The treatment conditions for the decarburization blowing process are not particularly limited as long as the slag after the treatment is appropriately controlled, similarly to the chemical composition of the hot metal.
Typically, an upper bottom blowing converter is used, a gas containing oxygen is supplied from an upper blowing lance, an inert gas such as Ar is supplied from the bottom blowing tuyere for stirring, and the molten steel temperature after processing is 1600. A decarburization blowing process for about 10 to 15 minutes is performed while maintaining the temperature to ˜1700 ° C.

脱炭吹錬処理において添加されるCaO源、SiO源、Al含有プリメルトフラックスおよびTiO源は、塊状として酸素吹付け前または酸素吹付け中の溶銑に投入する。 The CaO source, the SiO 2 source, the Al 2 O 3 -containing premelt flux and the TiO 2 source added in the decarburization blowing process are charged as a lump into the hot metal before oxygen blowing or during oxygen blowing.

脱炭吹錬処理後の溶鋼の組成も特に制限されない。炭素含有量を約0.3質量以下として低炭素鋼を得てもよいし、約0.3〜0.7質量%として中炭素鋼を得てもよい。あるいは、炭素含有量を0.05質量%未満として極低炭素鋼を得てもよい。   The composition of the molten steel after the decarburization blowing process is not particularly limited. Low carbon steel may be obtained with a carbon content of about 0.3 mass or less, or medium carbon steel may be obtained with about 0.3 to 0.7 mass%. Alternatively, an extremely low carbon steel may be obtained with a carbon content of less than 0.05% by mass.

以下に、本発明に係る溶鋼の精錬方法における溶銑および溶鋼ならびに脱炭脱燐吹錬後のスラグの組成ならびに吹錬条件(吹錬前後の温度)についてまとめたものを表1として示す。   Table 1 shows a summary of the hot metal and molten steel, the composition of slag after decarburization and dephosphorization, and the blowing conditions (temperatures before and after blowing) in the method for refining molten steel according to the present invention.

Figure 0005233383
Figure 0005233383

以下、実施例を用いて本発明をさらに説明するが、本発明は、以下の実施例に限定されない。   EXAMPLES Hereinafter, although this invention is further demonstrated using an Example, this invention is not limited to a following example.

(実施例1)
試験転炉(マグネシア−カーボン煉瓦を使用)へ以下の化学組成を有する脱りん銑2tonを装入した:
[C]:3.4〜4.0質量%、
[Si]≦0.05質量%、
[Mn]:0.18〜0.22質量%、
[P]:0.02〜0.03質量%、
[S]:0.005質量%、
[Ti]≦0.01質量%。
Example 1
A test converter (using magnesia-carbon brick) was charged with 2 ton dephosphorization having the following chemical composition:
[C]: 3.4 to 4.0% by mass,
[Si] ≦ 0.05 mass%,
[Mn]: 0.18 to 0.22% by mass,
[P]: 0.02-0.03% by mass,
[S]: 0.005 mass%,
[Ti] ≦ 0.01 mass%.

続いて、生石灰13〜20kg/t、珪石3.0〜5.5kg/t、MgO粒2kg/t、取鍋スラグ(組成:CaO=40質量%、SiO=10質量%、Al=20質量%、T.Fe=5質量%)0.8〜6.5kg/t、Ti鉱石(組成:TiO=40質量%、T.Fe=32質量%)を0.1〜1.1kg/t添加した。 Subsequently, quicklime 13-20 kg / t, silica stone 3.0-5.5 kg / t, MgO particles 2 kg / t, ladle slag (composition: CaO = 40 mass%, SiO 2 = 10 mass%, Al 2 O 3 = 20 wt%, T.Fe = 5 wt%) 0.8~6.5kg / t, Ti ore (composition: TiO 2 = 40 wt%, T.Fe = 32 weight%) 0.1 to 1. 1 kg / t was added.

その後、上吹きランスから酸素ガスを2.7Nm/min/tで上吹きし、底吹き羽口からArガスを0.2Nm/min/tで吹き込んだ。
吹錬終了時の溶鋼温度は約1650℃であり、その組成(質量%)は、りん以外については次のとおりであった:
[C]:0.05〜0.10質量%、
[Si]:<0.01質量%、
[Mn]:0.10〜0.17質量%、
[S]:0.005質量%、
[Ti]:<0.01質量%。
Thereafter, oxygen gas was blown from the top blowing lance at 2.7 Nm 3 / min / t, and Ar gas was blown from the bottom blowing tuyere at 0.2 Nm 3 / min / t.
The molten steel temperature at the end of blowing was about 1650 ° C., and its composition (mass%) was as follows except for phosphorus:
[C]: 0.05 to 0.10% by mass,
[Si]: <0.01% by mass,
[Mn]: 0.10 to 0.17% by mass,
[S]: 0.005 mass%,
[Ti]: <0.01% by mass.

吹錬中の耐火物溶損量は、吹錬中にスラグへ溶出したMgOの質量(以下「MgO溶出量」という。)を、スラグ中MgO含有量(質量%、以下「(%MgO)」という。)から算出し、処理後スラグ組成が実塩基度3.8、(%Al)=2.4、(%TiO)=0.5の場合(表1中のNo.7)のMgO溶出量で規格化した指数(以下「耐火物溶損指数」という。)で表す。 The refractory erosion amount during blowing is the mass of MgO eluted into the slag during blowing (hereinafter referred to as “MgO elution amount”), and the MgO content in the slag (mass%, hereinafter referred to as “(% MgO)”. And the slag composition after treatment has a basicity of 3.8, (% Al 2 O 3 ) = 2.4, and (% TiO 2 ) = 0.5 (No. 7 in Table 1). ), And an index normalized with the MgO elution amount (hereinafter referred to as “refractory material erosion index”).

耐火物溶損指数は1.5以下を目標とした。
処理後[P]は0.010質量%以下を目標とした。
結果を表2に示す。
The refractory melting index was set to 1.5 or less.
[P] after the treatment was targeted to be 0.010% by mass or less.
The results are shown in Table 2.

Figure 0005233383
Figure 0005233383

ここで、表2における評価の欄の評価基準は次のとおりである:
○:処理後[P]≦0.010質量%、耐火物溶損指数≦1.5を両方満足した場合
×:処理後[P]≦0.010質量%、耐火物溶損指数≦1.5のどちらか一方でも満足しなかった場合
△:フラックス量を増やして実塩基度を高めても、処理後[P]がほとんど変化せず、コスト的に好ましくない場合。
Here, the evaluation criteria in the evaluation column in Table 2 are as follows:
◯: When both [P] ≦ 0.010 mass% after treatment and refractory erosion index ≦ 1.5 are satisfied ×: [P] after treatment ≦ 0.010 mass%, refractory erosion index ≦ 1. When either one of 5 is not satisfied Δ: Even when the amount of flux is increased to increase the actual basicity, [P] is hardly changed after treatment, which is not preferable in terms of cost.

(実施例2)
試験転炉(マグネシア−カーボン煉瓦を使用)へ以下の化学組成を有する脱りん銑2tonを装入した:
[C]:3.5質量%、
[Si]:<0.01質量%、
[Mn]:0.20質量%、
[P]:0.025質量%、
[S]:0.005質量%、
[Ti]:<0.01質量%。
(Example 2)
A test converter (using magnesia-carbon brick) was charged with 2 ton dephosphorization having the following chemical composition:
[C]: 3.5% by mass,
[Si]: <0.01% by mass,
[Mn]: 0.20 mass%,
[P]: 0.025 mass%,
[S]: 0.005 mass%,
[Ti]: <0.01% by mass.

続いて、生石灰16.5kg/t、珪石4.1kg/t、プリメルトフラックス(組成:CaO=30質量%、SiO=7質量%、Al=18質量%、T.Fe=8質量%、TiO=3.4質量%)4.1kg/tを添加した。 Subsequently, quicklime 16.5 kg / t, quartzite 4.1 kg / t, pre-melt flux (composition: CaO = 30 mass%, SiO 2 = 7 mass%, Al 2 O 3 = 18 mass%, T.Fe = 8 (Mass%, TiO 2 = 3.4 mass%) was added in an amount of 4.1 kg / t.

その後、上吹きランスから酸素ガスを2.7Nm/min/tで上吹きし、底吹き羽口からArガスを0.2Nm/min/tで吹き込んだ。
吹錬終了時の溶鋼温度は約1650℃であり、その組成(質量%)は次のとおりであった:
[C]:0.08質量%、
[Si]:<0.01質量%、
[Mn]:0.15質量%、
[S]:0.005質量%、
[Ti]:<0.01質量%。
Thereafter, oxygen gas was blown from the top blowing lance at 2.7 Nm 3 / min / t, and Ar gas was blown from the bottom blowing tuyere at 0.2 Nm 3 / min / t.
The molten steel temperature at the end of blowing was about 1650 ° C., and its composition (mass%) was as follows:
[C]: 0.08% by mass,
[Si]: <0.01% by mass,
[Mn]: 0.15% by mass,
[S]: 0.005 mass%,
[Ti]: <0.01% by mass.

処理後スラグ組成は、実塩基度=3.8、(%Al)=2.4質量%、(%TiO)=0.5%で、溶鋼中[P]=0.005質量%、耐火物溶損指数=1.0であった。 The post-treatment slag composition is: real basicity = 3.8, (% Al 2 O 3 ) = 2.4 mass%, (% TiO 2 ) = 0.5%, and [P] = 0.005 mass in molten steel %, Refractory erosion index = 1.0.

Al含有取鍋スラグとTi鉱石を添加した場合(表1中のNo.7)より、処理後[P]が下がった。 [P] decreased after the treatment from the case where Al 2 O 3 -containing ladle slag and Ti ore were added (No. 7 in Table 1).

(比較例1)
試験転炉(マグネシア−カーボン煉瓦を使用)へ以下の化学組成を有する脱りん銑2tonを装入した:
[C]:3.7質量%、
[Si]:<0.01質量%、
[Mn]:0.21質量%、
[P]:0.025質量%、
[S]:0.005質量%、
[Ti]:<0.01質量%。
(Comparative Example 1)
A test converter (using magnesia-carbon brick) was charged with 2 ton dephosphorization having the following chemical composition:
[C]: 3.7% by mass,
[Si]: <0.01% by mass,
[Mn]: 0.21% by mass,
[P]: 0.025 mass%,
[S]: 0.005 mass%,
[Ti]: <0.01% by mass.

続いて、生石灰18kg/t、珪石5.0kg/t、MgO粒2kg/t添加した。
その後、上吹きランスから酸素ガスを2.7Nm/min/tで上吹きし、底吹き羽口からArガスを0.2Nm/min/tで吹き込んだ。
Subsequently, 18 kg / t quicklime, 5.0 kg / t silica, and 2 kg / t MgO particles were added.
Thereafter, oxygen gas was blown from the top blowing lance at 2.7 Nm 3 / min / t, and Ar gas was blown from the bottom blowing tuyere at 0.2 Nm 3 / min / t.

吹錬終了時の溶鋼温度は約1645℃であり、その組成は次のとおりであった:
[C]:0.09質量%、
[Si]:<0.01質量%、
[Mn]:0.14質量%、
[P]:0.018質量%、
[S]:0.005質量%、
[Ti]:<0.01質量%。
The molten steel temperature at the end of blowing was about 1645 ° C. and its composition was as follows:
[C]: 0.09% by mass,
[Si]: <0.01% by mass,
[Mn]: 0.14% by mass,
[P]: 0.018 mass%,
[S]: 0.005 mass%,
[Ti]: <0.01% by mass.

処理後スラグ組成は、実塩基度は3.0、(%Al)が0.5質量%、(%TiO)が0.1質量%であった。耐火物溶損指数は0.9であった。 In the post-treatment slag composition, the actual basicity was 3.0, (% Al 2 O 3 ) was 0.5% by mass, and (% TiO 2 ) was 0.1% by mass. The refractory erosion index was 0.9.

(比較例2)
試験転炉(マグネシア−カーボン煉瓦を使用)へ以下の化学組成を有する脱りん銑2tonを装入した:
[C]:3.4質量%、
[Si]:<0.01質量%、
[Mn]:0.22質量%、
[P]:0.026質量%、
[S]:0.005質量%、
[Ti]:<0.01質量%。
(Comparative Example 2)
A test converter (using magnesia-carbon brick) was charged with 2 ton dephosphorization having the following chemical composition:
[C]: 3.4% by mass,
[Si]: <0.01% by mass,
[Mn]: 0.22% by mass,
[P]: 0.026% by mass,
[S]: 0.005 mass%,
[Ti]: <0.01% by mass.

続いて、生石灰18kg/t、珪石5.0kg/t、MgO粒2kg/t、取鍋スラグ(組成:CaO=40質量%、SiO=10質量%、Al=20質量%、T.Fe=5質量%)3.0kg/tを添加した。 Subsequently, quicklime 18 kg / t, silica stone 5.0 kg / t, MgO particles 2 kg / t, ladle slag (composition: CaO = 40 mass%, SiO 2 = 10 mass%, Al 2 O 3 = 20 mass%, T . Fe = 5% by mass) 3.0 kg / t was added.

その後、上吹きランスから酸素ガスを2.7Nm/min/tで上吹きし、底吹き羽口からArガスを0.2Nm/min/tで吹き込んだ。
吹錬終了時の溶鋼温度は約1646℃であり、その組成は次のとおりであった:
[C]:0.06質量%、
[Si]:<0.01質量%、
[Mn]:0.12質量%、
[P]:0.011質量%、
[S]:0.005質量%、
[Ti]:<0.01質量%。
Thereafter, oxygen gas was blown from the top blowing lance at 2.7 Nm 3 / min / t, and Ar gas was blown from the bottom blowing tuyere at 0.2 Nm 3 / min / t.
The molten steel temperature at the end of blowing was about 1646 ° C. and its composition was as follows:
[C]: 0.06% by mass,
[Si]: <0.01% by mass,
[Mn]: 0.12% by mass,
[P]: 0.011% by mass,
[S]: 0.005 mass%,
[Ti]: <0.01% by mass.

処理後スラグ組成は、実塩基度は3.3、(%Al)が2質量%、(%TiO)が0.1質量%であった。耐火物溶損指数は0.9であった。 In the slag composition after the treatment, the actual basicity was 3.3, (% Al 2 O 3 ) was 2% by mass, and (% TiO 2 ) was 0.1% by mass. The refractory erosion index was 0.9.

(比較例3)
試験転炉(マグネシア−カーボン煉瓦を使用)へ以下の化学組成を有する脱りん銑2tonを装入した:
[C]:3.5質量%、
[Si]:<0.01質量%、
[Mn]:0.21質量%、
[P]:0.025質量%、
[S]:0.005質量%、
[Ti]:<0.01質量%。
(Comparative Example 3)
A test converter (using magnesia-carbon brick) was charged with 2 ton dephosphorization having the following chemical composition:
[C]: 3.5% by mass,
[Si]: <0.01% by mass,
[Mn]: 0.21% by mass,
[P]: 0.025 mass%,
[S]: 0.005 mass%,
[Ti]: <0.01% by mass.

続いて、生石灰16.5kg/t、珪石4.2kg/t、Al煉瓦廃材(組成:Al=100質量%)0.8kg/t、Ti鉱石(組成:TiO=40質量%、T.Fe=32質量%)を0.5kg/t添加した。 Subsequently, quicklime 16.5 kg / t, quartzite 4.2 kg / t, Al 2 O 3 brick waste (composition: Al 2 O 3 = 100 mass%) 0.8 kg / t, Ti ore (composition: TiO 2 = 40) Mass%, T.Fe = 32 mass%) was added at 0.5 kg / t.

その後、上吹きランスから酸素ガスを2.7Nm/min/tで上吹きし、底吹き羽口からArガスを0.2Nm/min/tで吹き込んだ。
吹錬終了時の溶鋼温度は約1650℃であり、その組成は次のとおりであった:
[C]:0.10質量%、
[Si]:<0.01質量%、
[Mn]:0.23質量%、
[P]:0.012質量%、
[S]:0.005質量%、
[Ti]:<0.01質量%。
Thereafter, oxygen gas was blown from the top blowing lance at 2.7 Nm 3 / min / t, and Ar gas was blown from the bottom blowing tuyere at 0.2 Nm 3 / min / t.
The molten steel temperature at the end of blowing was about 1650 ° C. and its composition was as follows:
[C]: 0.10% by mass,
[Si]: <0.01% by mass,
[Mn]: 0.23 mass%,
[P]: 0.012 mass%,
[S]: 0.005 mass%,
[Ti]: <0.01% by mass.

処理後スラグ組成は、実塩基度が3.7、(%Al)が2.0質量%、(%TiO)が0.6質量%で、溶鋼中、耐火物溶損指数は0.9であった。
Al含有取鍋スラグとTi鉱石を添加した場合(表1中のNo.7)と比べ、処理後[P]は下がらなかった。
The post-treatment slag composition has an actual basicity of 3.7, (% Al 2 O 3 ) of 2.0% by mass, and (% TiO 2 ) of 0.6% by mass. 0.9.
Compared with the case where Al 2 O 3 -containing ladle slag and Ti ore were added (No. 7 in Table 1), [P] did not decrease after treatment.

以下に、上記の実施例による各結果について説明する。
(1)実施例1のNo.1〜6について
吹錬後のスラグ組成が実塩基度=3.0〜4.5、(%TiO)=0.2〜1.0質量%として、(%Al)を変化させたところ、Al源添加によりスラグ中(%Al)が1質量%以上になると、フラックスの溶解・滓化が促進されて脱りんに有効な溶融スラグ量が増えて、処理後の[P]が目標値まで低下した。
Below, each result by said Example is demonstrated.
(1) No. 1 in Example 1 Slag composition subsequent blowing the actual basicity for 1-6 = 3.0 and 4.5, as (% TiO 2) = 0.2 to 1.0 wt%, alter the (% Al 2 O 3) As a result, when the Al 2 O 3 source addition (% Al 2 O 3 ) in the slag is 1 mass% or more, melting and hatching of the flux is promoted to increase the amount of molten slag effective for dephosphorization, Later [P] decreased to the target value.

ところが、スラグ中(%Al)が3.5質量%を超えると耐火物溶損量が急激に増加してしまった。
脱炭吹錬後に、スラグ中(%Al)が3.5質量%を超えたスラグを目視観察したところ、スラグの流動性が著しく高まっていた。よって、この流動性の高いスラグによって耐火物が浸食されてしまったと考えられる。
However, when the amount of slag (% Al 2 O 3 ) exceeds 3.5% by mass, the amount of refractory erosion was rapidly increased.
After decarburization blowing, where in the slag (% Al 2 O 3) was visually observed slag exceeds 3.5 mass%, the fluidity of the slag was significantly enhanced. Therefore, it is considered that the refractory has been eroded by this highly fluid slag.

(2)実施例1のNo.7〜10について
吹錬後のスラグ組成が実塩基度3.0〜4.5、(%Al)=1〜3.5質量%として、スラグ中(%TiO)を変化させて、脱りん挙動と耐火物溶損挙動を調査した。
(2) No. 1 in Example 1 About 7-10 As the slag composition after blowing is an actual basicity of 3.0-4.5, (% Al 2 O 3 ) = 1-3.5 mass%, the slag is changed in (% TiO 2 ) The dephosphorization behavior and refractory erosion behavior were investigated.

スラグ中(%TiO)が0.2質量%以上の場合には、吹錬中にスラグがフォーミングして、処理後[P]が目標値まで低下した。
一方、スラグ中(%TiO)が1.0質量%を超える場合には、吹錬の早い段階からスラグが激しくフォーミングし始めるとともに、耐火物溶損量が急激に増加した。スラグ中(%TiO)が1.0質量%を超える場合には、吹錬の早い段階からスラグ中の(%T.Fe)が高まってスラグの流動性が高い状態が長く続いたため、耐火物溶損量が増加したと考えられる。
When the amount of slag (% TiO 2 ) was 0.2% by mass or more, the slag formed during blowing, and [P] decreased to the target value after the treatment.
On the other hand, when the amount of slag (% TiO 2 ) exceeds 1.0% by mass, the slag started to form violently from the early stage of blowing and the refractory erosion amount increased rapidly. When slag (% TiO 2 ) exceeds 1.0% by mass, (% T.Fe) in the slag increased from the early stage of blowing, and the slag fluidity continued for a long time. It is thought that the amount of material damage increased.

(3)実施例1のNo.11〜15について
吹錬後のスラグ組成が(%Al)=1〜3.5質量%、(%TiO)=0.2〜1.0質量%であっても、スラグの実塩基度が3.0未満の場合は、処理後[P]を目標値まで低減できなかった。
(3) No. 1 in Example 1 About 11 to 15 Slag composition after blowing (% Al 2 O 3) = 1~3.5 wt%, even (% TiO 2) = 0.2~1.0 wt%, slag fruit When the basicity was less than 3.0, [P] after the treatment could not be reduced to the target value.

スラグの脱りん能は実塩基度が高いほど大きくなることが知られており、吹錬後のスラグ組成が(%Al)=1〜3.5質量%、(%TiO)=0.2〜1.0質量%では実塩基度を3.0以上にしなければ処理後[P]目標値まで低減できないことが明らかになった。 It is known that the dephosphorization ability of slag increases as the actual basicity increases, and the slag composition after blowing is (% Al 2 O 3 ) = 1 to 3.5% by mass, (% TiO 2 ) = From 0.2 to 1.0 mass%, it became clear that the actual basicity cannot be reduced to the [P] target value after the treatment unless the basic basicity is 3.0 or more.

なお、フラックス添加量を増やして装入塩基度を高めて、実塩基度が4.5を超えて更に高まるようにしても処理後[P]はほとんど変化しなかった。
スラグの実塩基度が4.5を超えるような組成のスラグは、その融点が著しく高いため、吹錬の終盤になって始めてフラックスが滓化し、塩基度が4.5を超えるような状態となる。ところが、脱りん反応が進行するためにはスラグが滓化することが必要であるから、このような高融点のスラグでは、吹錬の終盤になって滓化して急激に実塩基度が上がっても、脱りん反応が進行する時間は短いため、処理後[P]はほとんど変化しかなったものと推測される。
In addition, even if the amount of added flux was increased to increase the charging basicity, and the actual basicity was further increased beyond 4.5, [P] after the treatment hardly changed.
The composition of slag whose basicity is over 4.5 has a very high melting point, so that the flux hatches only after the end of blowing and the basicity exceeds 4.5. Become. However, in order for the dephosphorization reaction to proceed, it is necessary for the slag to hatch, so in such a high melting point slag, it hatched at the end of blowing and the actual basicity suddenly increased. However, since the time for which the dephosphorization reaction proceeds is short, it is presumed that [P] changed almost after the treatment.

このように、実塩基度が過剰に高い場合には処理後[P]がほとんど変化しないので、フラックス量を増加した分だけ経済的に不利である。
よって、実塩基度は3.0〜4.5とするのが望ましい。
Thus, when the actual basicity is excessively high, [P] hardly changes after the treatment, which is economically disadvantageous as much as the amount of flux is increased.
Therefore, the actual basicity is desirably 3.0 to 4.5.

(4)実施例2について
AlおよびTiOを含有するプリメルトフラックスを用いたことにより、Al含有プリメルトフラックスとして取鍋スラグを、TiO含有フラックスとしてTi鉱石を用いた場合に比べ、AlとTiOが溶融スラグ中に確実に共存することから、両者の相乗効果(適度にフォーミングして適度な(%T.Fe)を有したスラグを生成して、生石灰等のフラックスをスラグ中へ速やかに滓化させること)がより効率的に実現され、処理後[P]がより低下したものと推測される。
(4) About Example 2 By using a pre-melt flux containing Al 2 O 3 and TiO 2 , ladle slag was used as the Al 2 O 3 -containing pre-melt flux, and Ti ore was used as the TiO 2 -containing flux. Compared to the case, since Al 2 O 3 and TiO 2 coexist in the molten slag, the synergistic effect of the two (moderately formed to produce slag having an appropriate (% T. Fe), It is presumed that the flux such as quicklime is rapidly hatched into the slag) and [P] is further reduced after the treatment.

なお、AlおよびTiOを含有するプリメルトフラックスを用いた場合には、上記相乗効果が効率的に実現された、すなわちフラックスの滓化が促進されただけであり、吹錬中のスラグフォーミングが著しく激しくなる等の変化は見られなかった。そのため、AlおよびTiOを含有するプリメルトフラックスを用いても、耐火物の溶損量はほとんど変化しなかった。 In addition, when the pre-melt flux containing Al 2 O 3 and TiO 2 was used, the above synergistic effect was efficiently realized, that is, only the hatching of the flux was promoted, There was no change such as slag forming becoming extremely intense. Therefore, even when a premelt flux containing Al 2 O 3 and TiO 2 was used, the amount of refractory melt was hardly changed.

(5)比較例1について
Al源を添加しない場合には吹錬中にスラグがフォーミングせず、このため、生石灰の滓化が進まず、処理後[P]が目標値まで低下しなかった。
(5) About Comparative Example 1 When no Al 2 O 3 source is added, slag does not form during blowing, so that quick lime hatching does not progress, and [P] after processing decreases to the target value. There wasn't.

(6)比較例2について
Al源のみを少量添加しても(スラグ中(%Al)≦3.5)、生石灰の滓化が進まず、処理後[P]が目標値まで低下しなかった。
(6) About Comparative Example 2 Even if only a small amount of Al 2 O 3 source is added (in the slag (% Al 2 O 3 ) ≦ 3.5), quick lime hatching does not progress, and [P] after treatment is the target It did not drop to the value.

(7)比較例3について
Al源としてAl耐火物の廃材を用いた場合は、吹錬中にスラグはあまりフォーミングせず、処理後[P]は目標に達しなかった。
これは、前述のように、高融点の生石灰と高融点のAl源およびTiO源を、単に炉内へ添加しただけでは、脱炭吹錬の終盤までフラックスはほとんど滓化しないため、脱りん反応が進まなかったことによると考えられる。
(7) About Comparative Example 3 When the waste material of Al 2 O 3 refractory was used as the Al 2 O 3 source, slag did not form much during blowing and [P] did not reach the target after treatment.
As described above, the high melting point quick lime, the high melting point Al 2 O 3 source and the TiO 2 source are simply added to the furnace, so that the flux hardly hatches until the end of decarburization blowing. This is probably because the dephosphorylation reaction did not progress.

Claims (3)

精錬容器にて脱りんした溶銑を、別の精錬容器である上底吹き転炉へ装入して脱炭吹錬するに際し、CaO源、SiO源、Al含有プリメルトフラックスおよびTiO源を添加して、処理後スラグの組成を、(%Al)=1.0〜3.5質量%、(%TiO)=0.2〜1.0質量%、下記式(1)による塩基度を3.0〜4.5とすることを特徴とする溶鋼の精錬方法。
塩基度=(CaO)/(SiO) (1)
但し、(CaO):スラグ中の全CaO含有量(質量%)
(SiO):スラグ中のSiO含有量(質量%)
When hot metal dephosphorized in a refining vessel is charged into an upper bottom blowing converter, which is another refining vessel, and decarburized and blown, a CaO source, a SiO 2 source, an Al 2 O 3 -containing premelt flux, and TiO 2 sources are added, and the composition of the treated slag is (% Al 2 O 3 ) = 1.0 to 3.5% by mass, (% TiO 2 ) = 0.2 to 1.0% by mass, the following formula A method for refining molten steel, wherein the basicity according to (1) is 3.0 to 4.5.
Basicity = (CaO) / (SiO 2 ) (1)
However, (CaO): Total CaO content in slag (mass%)
(SiO 2 ): SiO 2 content in slag (mass%)
前記Al含有プリメルトフラックスとして取鍋スラグを用いることを特徴とする請求項1に記載の溶鋼の精錬方法 The ladle refining method according to claim 1, wherein ladle slag is used as the Al 2 O 3 -containing premelt flux . 精錬容器にて脱りんした溶銑を、別の精錬容器である上底吹き転炉へ装入して脱炭吹錬するに際し、CaO源、SiO 源、ならびにAlおよびTiOを含有するプリメルトフラックスを添加して、処理後スラグの組成を、(%Al )=1.0〜3.5質量%、(%TiO )=0.2〜1.0質量%、下記式(1)による塩基度を3.0〜4.5とすることを特徴とする溶鋼の精錬方法。
塩基度=(CaO)/(SiO ) (1)
但し、(CaO):スラグ中の全CaO含有量(質量%)
(SiO ):スラグ中のSiO 含有量(質量%)
When the hot metal dephosphorized in the refining vessel is charged into the top bottom blowing converter, which is another refining vessel, and decarburized and blown, it contains CaO source, SiO 2 source, Al 2 O 3 and TiO 2 The pre-melt flux is added, and the composition of the slag after the treatment is (% Al 2 O 3 ) = 1.0 to 3.5% by mass, (% TiO 2 ) = 0.2 to 1.0% by mass, refining method of the following formula (1) you characterized that you 3.0 to 4.5 basicity due soluble steel.
Basicity = (CaO) / (SiO 2 ) (1)
However, (CaO): Total CaO content in slag (mass%)
(SiO 2 ): SiO 2 content in slag (mass%)
JP2008107044A 2008-04-16 2008-04-16 Method for refining molten steel Active JP5233383B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008107044A JP5233383B2 (en) 2008-04-16 2008-04-16 Method for refining molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008107044A JP5233383B2 (en) 2008-04-16 2008-04-16 Method for refining molten steel

Publications (2)

Publication Number Publication Date
JP2009256727A JP2009256727A (en) 2009-11-05
JP5233383B2 true JP5233383B2 (en) 2013-07-10

Family

ID=41384507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008107044A Active JP5233383B2 (en) 2008-04-16 2008-04-16 Method for refining molten steel

Country Status (1)

Country Link
JP (1) JP5233383B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5673485B2 (en) * 2011-10-26 2015-02-18 新日鐵住金株式会社 Hot metal decarburization blowing method
KR101586741B1 (en) * 2013-12-23 2016-01-19 주식회사 포스코 Extraction method for metallic oxide
CN105039647A (en) * 2015-06-23 2015-11-11 武汉钢铁(集团)公司 LF furnace shallow dephosphorization refining method
CN108728609A (en) * 2018-07-23 2018-11-02 石家庄钢铁有限责任公司 A kind of de- titanium device and method of ladle bottom blowing stirring

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5210643B2 (en) * 1973-06-04 1977-03-25
JPS5627571B2 (en) * 1973-07-11 1981-06-25
GB1457877A (en) * 1973-12-12 1976-12-08 Johnston C J Device for use in advertising
JPS5258009A (en) * 1975-11-08 1977-05-13 Sumitomo Metal Ind Ltd Process for converter blowing of low silicon molten iron
JPS5258011A (en) * 1975-11-08 1977-05-13 Sumitomo Metal Ind Ltd Dephosphorizing agent for iron refining
JP2004277830A (en) * 2003-03-17 2004-10-07 Sumitomo Metal Ind Ltd Steelmaking method in converter
JP4848757B2 (en) * 2005-03-02 2011-12-28 Jfeスチール株式会社 Hot metal dephosphorization method

Also Published As

Publication number Publication date
JP2009256727A (en) 2009-11-05

Similar Documents

Publication Publication Date Title
JP5573424B2 (en) Desulfurization treatment method for molten steel
JP6743915B2 (en) Method for desulfurizing molten steel and desulfurizing agent
JP5418733B2 (en) Hot metal refining method
JP3557910B2 (en) Hot metal dephosphorization method and low sulfur and low phosphorus steel smelting method
JP5233383B2 (en) Method for refining molten steel
JP4848757B2 (en) Hot metal dephosphorization method
JP5895887B2 (en) Desulfurization treatment method for molten steel
JP5162922B2 (en) Hot metal dephosphorization method
JP5904238B2 (en) Method of dephosphorizing hot metal in converter
JP5061545B2 (en) Hot metal dephosphorization method
JP2008063645A (en) Steelmaking method
JP2003155516A (en) Method for desulfurizing molten steel with ladle- refining
JP2006009146A (en) Method for refining molten iron
JP5772645B2 (en) Dephosphorization method for hot metal
AU778658B2 (en) Method for producing pozzolanic binders for the cement industry from steel slags using a reduction metal bath
JP2008063600A (en) Method for desulfurizing molten iron containing chromium
JP2002047508A (en) Blowing method in converter
JP2002275521A (en) Method for dephosphorizing molten high carbon steel
JP7167704B2 (en) Hot metal desulfurization method
JP4214894B2 (en) Hot metal pretreatment method
JP5304816B2 (en) Manufacturing method of molten steel
JP5447554B2 (en) Dephosphorization method for hot metal
JP7167706B2 (en) Hot metal desulfurization method
JPH0813016A (en) Method for dephosphorizing and desulfurizing molten iron
JP2015067837A (en) Refining method of molten iron

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130311

R151 Written notification of patent or utility model registration

Ref document number: 5233383

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350