JP7167706B2 - Hot metal desulfurization method - Google Patents

Hot metal desulfurization method Download PDF

Info

Publication number
JP7167706B2
JP7167706B2 JP2018243482A JP2018243482A JP7167706B2 JP 7167706 B2 JP7167706 B2 JP 7167706B2 JP 2018243482 A JP2018243482 A JP 2018243482A JP 2018243482 A JP2018243482 A JP 2018243482A JP 7167706 B2 JP7167706 B2 JP 7167706B2
Authority
JP
Japan
Prior art keywords
hot metal
desulfurization
treatment
concentration
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018243482A
Other languages
Japanese (ja)
Other versions
JP2020105553A (en
Inventor
健夫 井本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2018243482A priority Critical patent/JP7167706B2/en
Publication of JP2020105553A publication Critical patent/JP2020105553A/en
Application granted granted Critical
Publication of JP7167706B2 publication Critical patent/JP7167706B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

本発明は、微粉炭、石油、炭化水素系ガスなどの燃料を酸化燃焼させることによって生成するバーナー燃焼ガスによって、脱硫剤と溶銑の界面とを加熱できる設備を用いた溶銑脱硫方法に関する。 The present invention relates to a hot metal desulfurization method using equipment capable of heating the interface between a desulfurizing agent and hot metal with burner combustion gas generated by oxidizing and burning fuel such as pulverized coal, petroleum, and hydrocarbon gas.

鉄鋼中の硫黄分は、強度劣化や材質の磁気特性、加工性などを阻害する悪影響を有することから、製品に応じた濃度以下のものが要求される。製鉄原料の炭材などに含まれる硫黄は高炉で製造される溶銑中や電気炉での型銑溶解や酸化鉄還元時の還元溶解後などの粗溶銑中に含有され、主に溶鉄の精錬段階において、フラックスやマグネシウムなどの脱硫剤により溶銑脱硫が実施される。 Sulfur in steel has an adverse effect of deteriorating strength and impairing the magnetic properties and workability of the material, so it is required to have a concentration below the concentration according to the product. Sulfur, which is contained in carbonaceous materials, which are raw materials for ironmaking, is contained in molten iron produced in blast furnaces, molten iron in electric furnaces, and crude molten iron after reduction and melting during iron oxide reduction. , hot metal desulfurization is carried out with a desulfurizing agent such as flux or magnesium.

更に、耐サワー剤などの極低硫濃度の上限が規定されるハイグレード鋼種では、転炉吹錬後や電気炉での溶解精錬末期以降の溶鋼段階においても、脱酸状態でフラックスを添加して極低硫化処理(溶鋼脱硫)が実施される。しかしながら、溶銑脱硫の段階で100ppm以下程度に脱硫処理されていない場合には、例えばS濃度が20ppm以下のハイグレード材を製造するためには、取鍋精錬段階で大量に脱硫剤を添加する必要があるとともに長時間の処理が必要となり、極めて高コスト、低生産性の操業を実施する必要が生じる。 Furthermore, for high-grade steel grades, such as sour-resistant agents, where the upper limit of ultra-low sulfur concentration is specified, flux is added in a deoxidized state even in the molten steel stage after blowing in a converter or after the final stage of melting and refining in an electric furnace. Ultra-low sulfidation treatment (molten steel desulfurization) is carried out. However, if the hot metal is not desulfurized to about 100 ppm or less in the hot metal desulfurization stage, it is necessary to add a large amount of desulfurization agent in the ladle refining stage in order to produce a high-grade material with an S concentration of 20 ppm or less. It also requires long processing times, resulting in the need to run extremely costly, low-productivity operations.

ここで、溶銑段階では溶銑中に炭素を多く含有し、この溶存炭素は溶存硫黄の活量を高めて酸素活量を低下させる作用を有する。したがって、脱硫処理を実施する場合、溶銑段階で実施する溶銑脱硫が効率の良い方法として広く実施されている。このとき、高価な金属マグネシウムを用いることはコスト的な制約があり、脱硫フラックスには、下記(1)式の反応が有効であることから、CaOを多く含むものを用いることが一般的である。
(CaO)+[S]→(CaS)+[O] ・・・・・(1)式
Here, in the molten iron stage, the molten iron contains a large amount of carbon, and this dissolved carbon has the effect of increasing the activity of dissolved sulfur and decreasing the oxygen activity. Therefore, when performing desulfurization treatment, hot metal desulfurization carried out at the hot metal stage is widely carried out as an efficient method. At this time, the use of expensive metal magnesium has cost restrictions, and the desulfurization flux generally uses a flux containing a large amount of CaO because the reaction of the following formula (1) is effective. .
(CaO) + [S] → (CaS) + [O] (1) formula

なお、(1)式中の括弧()は、脱硫フラックス(または精錬スラグ)中の物質を示し、括弧[]は、溶銑中の溶存物質を示す。溶銑脱硫を効率的に進行させるためには、脱硫フラックスの滓化促進によって精錬スラグの脱硫能を高めることが重要である。更に(1)式は吸熱反応であるため、反応界面の温度を高温に維持することが可能であれば、(1)式の反応を促進させることができる。 The brackets ( ) in the formula (1) indicate substances in the desulfurization flux (or refining slag), and the brackets [ ] indicate dissolved substances in the hot metal. In order to efficiently proceed with hot metal desulfurization, it is important to increase the desulfurization capacity of the refining slag by promoting the formation of slag from the desulfurization flux. Furthermore, since formula (1) is an endothermic reaction, the reaction of formula (1) can be promoted if the temperature of the reaction interface can be maintained at a high temperature.

特許文献1には、機械撹拌式脱硫装置を用い、バーナーにて精錬剤を加熱して上吹きランスから添加し、早期の滓化を実現するとともに溶銑温度の低下を抑えることを可能とする技術が示されている。 Patent Document 1 describes a technique that uses a mechanical stirring desulfurization device, heats a refining agent with a burner, and adds it from a top-blowing lance, thereby realizing early slag formation and suppressing a decrease in the hot metal temperature. It is shown.

更に、特許文献2には、バーナー機能を有する上吹きランスを用いて、バーナーで加熱した脱硫剤を溶鋼に吹き付ける技術が開示されている。また、燃料燃焼後の高温ガス成分であるCO2やH2Oが、Alキルド溶鋼に衝突すると、酸化によって0.2kg/t以上(質量濃度換算で0.02質量%)のAlロスを伴うことや、このAlロスによって脱硫率が大幅に低下するのを回避するために、一定の噴流調整制御の実施が必要であることも記載されている。 Furthermore, Patent Literature 2 discloses a technique of blowing a desulfurizing agent heated by a burner onto molten steel using a top-blowing lance having a burner function. In addition, when CO 2 and H 2 O, which are high-temperature gas components after fuel combustion, collide with Al-killed molten steel, oxidation causes an Al loss of 0.2 kg/t or more (0.02% by mass in terms of mass concentration). In addition, it is also described that it is necessary to perform constant jet flow adjustment control in order to avoid a significant drop in the desulfurization rate due to this Al loss.

特開2009-299126号公報JP 2009-299126 A 特開2012-21226号公報JP 2012-21226 A

前述した特許文献1に記載の技術では、バーナー加熱により脱硫フラックスを予め加熱して添加することが可能であるため、早期に滓化が進行する。しかしながら、機械式撹拌によって脱硫スラグが溶銑中に巻き込まれているため、前述の(1)式の反応が起こる反応界面での温度は、溶銑温度に近い温度となってしまう。 In the technique described in the aforementioned Patent Document 1, the desulfurization flux can be preheated and added by the burner heating, so that slag formation progresses at an early stage. However, since the desulfurization slag is caught in the hot metal by mechanical stirring, the temperature at the reaction interface where the reaction of formula (1) occurs is close to the temperature of the hot metal.

また、特許文献2に記載の技術は、溶銑脱硫ではなく取鍋精錬段階の溶鋼脱硫を対象としている。さらに、その時の脱酸剤は高価な強脱酸元素であるAlを用いているため、0.02質量%以上のAlロスを回避できないと有効な脱硫処理を実施できない。なお、一般的なAlキルド鋼のAl濃度の範囲は0.03~0.06質量%程度であることから、特許文献2における脱酸範囲も同様と考えられる。特許文献2における反応促進作用においては、フラックスを搬送するバーナー燃焼ガスが溶鋼表面に衝突して酸化によるAlロスが発生するが、バーナーによって燃焼されるガスはフラックスのキャリヤーガスとしても機能するため、バーナー燃焼ガスがフラックスと溶鋼との界面温度を上昇させる。前述の(1)式の反応は、バーナー燃焼ガスによって高温に熱せられた溶鋼表面で起こり、効率良く脱硫反応を促進できる。 Moreover, the technology described in Patent Document 2 is intended for molten steel desulfurization in the ladle refining stage, not for molten pig iron desulfurization. Furthermore, since Al, which is an expensive strong deoxidizing element, is used as the deoxidizing agent at that time, effective desulfurization treatment cannot be performed unless an Al loss of 0.02% by mass or more cannot be avoided. Since the range of Al concentration in general Al-killed steel is about 0.03 to 0.06% by mass, the deoxidization range in Patent Document 2 is considered to be the same. In the reaction promoting action in Patent Document 2, the burner combustion gas that carries the flux collides with the surface of the molten steel and causes Al loss due to oxidation. Burner combustion gases raise the interface temperature between flux and molten steel. The reaction of formula (1) above occurs on the molten steel surface heated to a high temperature by the burner combustion gas, and can efficiently promote the desulfurization reaction.

しかしながら、特許文献2に記載の技術を溶銑脱硫に適用する際には、溶銑中に含有しない高価な金属Alの合金添加が必要である。また、限定された送酸条件を満足してAlロスを低位に抑制できても、その後の脱炭時では酸素吹錬によってAlが先行して全量酸化燃焼する。このことから、コスト的に有利な操業に用いることはできないという課題を有している。 However, when applying the technique described in Patent Document 2 to hot metal desulfurization, it is necessary to add expensive metal Al, which is not contained in the hot metal, to the alloy. Moreover, even if the Al loss can be suppressed to a low level by satisfying the limited oxygen supply conditions, the entire amount of Al is oxidized and burned first by oxygen blowing during subsequent decarburization. For this reason, it has a problem that it cannot be used for cost-effective operations.

本発明は前述の問題点を鑑み、溶銑段階の処理で、バーナーの加熱により溶銑界面の温度を高位に維持しつつ、安価にかつ高効率に脱硫処理を実施できる溶銑脱硫方法を提供することを目的とする。 SUMMARY OF THE INVENTION In view of the above-mentioned problems, it is an object of the present invention to provide a hot metal desulfurization method that can perform desulfurization at a low cost and with high efficiency while maintaining the temperature of the hot metal interface at a high level by heating the hot metal in the treatment of the hot metal stage. aim.

即ち、本発明の要旨とするところは以下の通りである。
(1)溶銑段階でCaO系の精錬剤を添加して脱硫処理を行う溶銑脱硫方法であって、
前記脱硫処理を実行している間は溶銑中Si濃度を0.2質量%以上に維持し、溶銑表面の上部からのバーナー燃焼ガスの噴流で生成した溶銑表面の火点において、バーナーとは別系統で添加された前記精錬剤を加熱して脱硫処理を行うことを特徴とする溶銑脱硫方法。
(2)前記バーナー燃焼ガスにより前記精錬剤を溶銑表面に衝突させて添加することを特徴とする上記(1)に記載の溶銑脱硫方法。
(3)前記脱硫処理中における溶銑温度を液相線温度以上1320℃以下とすることを特
徴とする上記(1)又は(2)に記載の溶銑脱硫方法。
That is, the gist of the present invention is as follows.
(1) A hot metal desulfurization method in which a CaO-based refining agent is added in the hot metal stage to perform desulfurization,
While the desulfurization treatment is being performed, the Si concentration in the hot metal is maintained at 0.2% by mass or more, and a hot spot on the hot metal surface generated by a jet of burner combustion gas from above the hot metal surface is separated from the burner. A hot metal desulfurization method, characterized in that desulfurization is performed by heating the refining agent added in the system .
(2) The hot metal desulfurization method according to (1) above, wherein the refining agent is added by colliding with the hot metal surface by the burner combustion gas.
(3) The hot metal desulfurization method according to (1) or (2) above, characterized in that the temperature of the hot metal during the desulfurization treatment is above the liquidus temperature and below 1320°C.

本発明によれば、溶銑段階の処理で、バーナーの加熱により溶銑界面の温度を高位に維持しつつ、安価にかつ高効率に脱硫処理を実施することができる。 According to the present invention, it is possible to perform desulfurization treatment at a low cost and with high efficiency while maintaining the temperature of the molten iron interface at a high level by heating with a burner in the treatment of the molten iron stage.

本発明の実施様態に係る溶銑脱硫方法の例を説明するための図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure for demonstrating the example of the hot metal desulfurization method which concerns on embodiment of this invention.

以下、本発明の実施形態について、図1を参照して説明する。
図1は、本実施様態に係る溶銑脱硫方法の例を説明するための図である。
まず、図1に示す直流電気炉において、上部アーク電極2と下部水冷電極3とを通電してアーク加熱を行い、還元溶解によって型銑、炭材、およびダストブリケットを主原料とした溶銑1が製造される。
An embodiment of the present invention will be described below with reference to FIG.
FIG. 1 is a diagram for explaining an example of the hot metal desulfurization method according to the present embodiment.
First, in the direct-current electric furnace shown in FIG. 1, the upper arc electrode 2 and the lower water-cooled electrode 3 are energized to perform arc heating, and molten iron 1 whose main raw materials are iron molds, carbon materials, and dust briquettes is produced by reduction melting. manufactured.

溶銑脱硫を行う際には、上部アーク電極2と下部水冷電極3との通電を停止して上部アーク電極2を上昇待機させた状態にする。そして、精錬剤5(CaO系を基本にアルミナ、シリカ系滓化成分を配合したプリメルト品)をホッパー6からランス4中に切り出し供給する。このとき、酸素配管14からフレキシブルホース16を介して酸素をランス4に供給して精錬剤5を運搬するとともに、LPG配管15からフレキシブルホース16を介してLPGをランス4に供給する。なお、ランス4は一般的な水冷構造(図示せず)であり、ランス4内において酸素およびLPGは異なる通路で供給され、ランス4内では混合されないものとする。そして、ランス先端部で酸素とLPGとが混合されて火炎状のバーナー燃焼ガス7が溶銑1の表面に吹き付けられ、溶銑の脱硫処理が行われる。なお、本実施形態ではLPGを用いているが、微粉炭、石油、炭化水素系ガスなどの燃料であれば特に限定されない。 When performing hot metal desulfurization, the current between the upper arc electrode 2 and the lower water-cooled electrode 3 is stopped so that the upper arc electrode 2 is raised and waited. Then, a refining agent 5 (a pre-melt product in which alumina and silica-based slag-forming components are mixed with a CaO-based base) is cut out from a hopper 6 and fed into a lance 4 . At this time, oxygen is supplied to the lance 4 from the oxygen pipe 14 through the flexible hose 16 to convey the refining agent 5 , and LPG is supplied to the lance 4 from the LPG pipe 15 through the flexible hose 16 . The lance 4 has a general water-cooled structure (not shown), and oxygen and LPG are supplied through different passages within the lance 4 and are not mixed within the lance 4 . Oxygen and LPG are mixed at the tip of the lance, and flame-like burner combustion gas 7 is sprayed onto the surface of the hot metal 1 to desulfurize the hot metal. Although LPG is used in this embodiment, any fuel such as pulverized coal, petroleum, or hydrocarbon gas is not particularly limited.

更に、脱硫処理を終えた後に、炉体9を排滓傾動装置10によって傾動させて除滓孔11、排滓樋12を経由してスラグパン13へスラグ8の排滓が行われる。この排滓処理を実施した後に、ランス4より酸素のみを吹き付けて脱炭吹錬を実施することで、脱炭による溶鋼の製造、更には、脱燐、脱炭処理に伴う低窒素化が実施できる。 Furthermore, after the desulfurization process is finished, the furnace body 9 is tilted by the slag tilting device 10 to discharge the slag 8 to the slag pan 13 via the slag removal hole 11 and the slag discharge gutter 12 . After this slag treatment is carried out, decarburization blowing is carried out by blowing only oxygen from the lance 4 to produce molten steel by decarburization, and furthermore, nitrogen reduction accompanying dephosphorization and decarburization is carried out. can.

(1)式にて示される脱硫反応は、精錬剤5が吹き付けられる部位で、バーナー燃焼ガス7によって溶銑温度よりも高温状態で滓化および脱硫反応促進効果を得ることができる。このため、通常の上部精錬スラグと溶銑との界面だけの脱硫反応よりも反応速度は高位にできる。 In the desulfurization reaction represented by the formula (1), slag formation and desulfurization reaction acceleration effects can be obtained at a portion where the refining agent 5 is sprayed by the burner combustion gas 7 at a temperature higher than the hot metal temperature. For this reason, the reaction rate can be made higher than the desulfurization reaction only at the interface between the ordinary upper refining slag and hot metal.

一方で、バーナー燃焼ガス7の排ガス中には酸化性を有するCO2、H2Oを主成分とした燃焼排ガスが含まれる。このため、脱硫処理中に溶銑の表面では酸素ポテンシャルが増加しやすく、酸素ポテンシャルが高い界面においては脱硫反応の進行は著しく停滞してしまう。そこで、界面の酸素ポテンシャルを低くするために、酸化しやすく界面の酸素を取り込みやすい金属Alを溶銑中に添加することが考えられる。しかしながら、溶銑段階において、前述のように大量の高価な金属Alの添加は工業利用に対してコスト的に有効ではない。 On the other hand, the exhaust gas of the burner combustion gas 7 contains combustion exhaust gas mainly composed of oxidizing CO 2 and H 2 O. For this reason, the oxygen potential tends to increase on the surface of the hot metal during the desulfurization treatment, and the progress of the desulfurization reaction is remarkably stagnant at the interface where the oxygen potential is high. Therefore, in order to lower the oxygen potential at the interface, it is conceivable to add metal Al, which is easily oxidized and easily takes in oxygen at the interface, into the hot metal. However, in the hot metal stage, as mentioned above, the addition of large amounts of expensive Al metal is not cost effective for industrial use.

一方、一般的に溶銑中には、溶銑やダスト中における不可避的含有物や鉄鉱石の脈石分であるシリカが炭素還元時に比較的高濃度で混入しており、その濃度は一般的に0.3~1質量%程度である。そのために、脱硫処理中には激しい脱炭反応が進行せず、バーナー燃焼ガスの排ガス中の酸化成分のうち、系外へ排出せずに炉内反応に作用するものは、脱珪反応にて分解される。したがって、Siが高濃度の溶銑の場合は、溶銑との界面では、常に溶銑中のC及びSiによって低酸素ポテンシャルが維持され、反応部位では高温かつ低酸素という脱硫反応にとって有利な条件で脱硫反応が進行するのである。 On the other hand, in general, hot metal is mixed with silica, which is an unavoidable inclusion in hot metal and dust and gangue of iron ore, at a relatively high concentration during carbon reduction, and the concentration is generally zero. .3 to 1% by mass. Therefore, during the desulfurization process, a violent decarburization reaction does not proceed, and among the oxidizing components in the flue gas of the burner combustion gas, those that act on the reaction inside the furnace without being discharged outside the system are used in the desiliconization reaction. decomposed. Therefore, in the case of hot metal with a high concentration of Si, the C and Si in the hot metal always maintain a low oxygen potential at the interface with the hot metal, and the desulfurization reaction occurs at the reaction site under the favorable conditions of high temperature and low oxygen for the desulfurization reaction. progresses.

このように界面の酸素ポテンシャルを低位に維持するためには、脱硫処理を行う溶銑のSi濃度を脱硫処理中において常に0.2質量%以上に維持する必要がある。 In order to maintain the oxygen potential at the interface at a low level as described above, it is necessary to always maintain the Si concentration of the hot metal to be desulfurized at 0.2% by mass or more during the desulfurization treatment.

但し、脱硫処理を行う溶銑に脱珪処理を実施した型銑などを使用するような場合には、脱硫処理前の段階で溶銑中Si濃度が低位の場合がある。このような場合には、脱硫処理中に溶銑中Si濃度を0.2質量%以上に維持できないため、比較的安価なFe-Siなどを、脱硫処理前または脱硫処理中に添加することによって、溶銑中Si濃度を0.2質量%以上に確保することができる。 However, in the case of using desiliconized hot metal as the hot metal to be desulfurized, the Si concentration in the hot metal may be low before the desulfurization treatment. In such a case, the Si concentration in the hot metal cannot be maintained at 0.2% by mass or more during the desulfurization treatment. It is possible to ensure the Si concentration in the hot metal to be 0.2% by mass or more.

また、図1に示す例においては、1つのランスから精錬剤とともにバーナー燃焼ガスを照射部(火点)へ斜めに吹き付ける構成としたが、バーナー燃焼ガスと精錬剤とを別系統で吹き付けもしくは添加するようにしてもよい。例えば、バーナー燃焼ガスの照射部(火点)に別系統のランスから精錬剤を添加してもよく、十分に溶銑の界面が加熱できる状態であれば、精錬スラグ上方からバーナー加熱によって脱硫反応を促進させても同様の効果を享受することができる。 In the example shown in FIG. 1, the burner combustion gas is obliquely sprayed from one lance together with the refining agent to the irradiation part (fire point), but the burner combustion gas and the refining agent are sprayed or added in separate systems. You may make it For example, the refining agent may be added from a lance of another system to the irradiation part (fire point) of the burner combustion gas, and if the interface of the hot metal can be sufficiently heated, the desulfurization reaction will be started by heating the burner from above the refining slag. The same effect can be enjoyed even if it is accelerated.

さらに本実施形態においては、バーナー燃焼ガスによって脱硫反応が行われる溶銑表面を高温にするため、バルク温度(溶銑温度)を高くする必要はない。特に耐火物の損傷を大きく抑えられることから、脱硫処理中の溶銑温度は1320℃以下とすることが好ましい。(1)式の反応は吸熱反応であるため、一般的には溶銑温度が高い方が脱硫反応は促進される。したがって、滓化性を確保したりフラックス原単位を削減したりすることが困難な低温操業において、本発明の脱硫促進の効果は特に顕著となる。なお、溶銑温度の下限は特に限定しないが、溶銑の液相線温度を下回る凝固部が溶銑温度に存在するときには操業障害が発生するため、液相線温度以上の溶銑温度で操業することが好ましい。 Furthermore, in this embodiment, since the hot metal surface on which the desulfurization reaction is performed is heated by the burner combustion gas, it is not necessary to raise the bulk temperature (hot metal temperature). In particular, the hot metal temperature during the desulfurization treatment is preferably set to 1320° C. or lower because damage to the refractory can be greatly suppressed. Since the reaction of formula (1) is an endothermic reaction, the desulfurization reaction is generally accelerated at a higher hot metal temperature. Therefore, the effect of promoting desulfurization according to the present invention is particularly remarkable in low-temperature operation in which it is difficult to ensure slag forming properties and reduce the flux unit consumption. Although the lower limit of the molten iron temperature is not particularly limited, it is preferable to operate at a molten iron temperature equal to or higher than the liquidus temperature, because an operation failure occurs when a solidified portion below the liquidus temperature of the molten iron exists at the molten iron temperature. .

以上のように本実施形態では、直流電気炉で溶銑脱硫処理を行う例について説明した。一方、本発明は、直流電気炉以外にも、トーピードカーや溶銑鍋を用いた機械攪拌、三相交流や高周波型各種電気炉等を用いても実施可能であり、高炉溶銑や、溶融還元法、各種スクラップ溶解法などによって製造された溶鉄やそれらの混合物で、一般的にはCを2質量%以上含有する溶鉄を対象にして実施することができる。なお、本発明における溶銑とは、Cを2質量%以上含有する溶鉄ベースの溶融金属である。 As described above, in the present embodiment, the example of performing the hot metal desulfurization treatment in the DC electric furnace has been described. On the other hand, the present invention can be practiced by using mechanical stirring using a torpedo car or hot metal ladle, three-phase AC or high-frequency electric furnaces, etc., in addition to DC electric furnaces. Molten iron produced by various scrap melting methods or mixtures thereof, generally containing 2% by mass or more of C, can be targeted. The hot metal in the present invention is a molten iron-based molten metal containing 2% by mass or more of C.

次に、本発明の実施例について説明するが、この条件は、本発明の実施可能性及び脱硫促進の効果を確認するための一条件例であり、本発明は、この実施例の記載に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する種々の手段にて実施することができる。 Next, an example of the present invention will be described, but this condition is an example of conditions for confirming the feasibility of the present invention and the effect of promoting desulfurization, and the present invention is limited to the description of this example. not to be The present invention can be implemented in various ways to achieve the objects of the present invention without departing from the gist of the present invention.

まず、図1に示すような1MVAの直流電気炉で1t/chの溶銑(C濃度:4質量%、液相線温度1170℃)を製造し、処理前の溶銑中S濃度を0.03質量%に予め調整した。そして、脱硫剤には粒度0.2~0.5mmのCaO:Al23:SiO2=65:10:20(質量比)のプリメルト後粉砕品を用い、脱硫剤20kgを添加して脱硫実験を実施した。 First, 1t/ch of hot metal (C concentration: 4% by mass, liquidus temperature: 1170°C) was produced in a DC electric furnace of 1MVA as shown in Fig. 1, and the S concentration in the hot metal before treatment was 0.03 mass. % was preadjusted. Then, as the desulfurizing agent, a pulverized product after premelting of CaO:Al 2 O 3 :SiO 2 =65:10:20 (mass ratio) with a particle size of 0.2 to 0.5 mm is used, and 20 kg of a desulfurizing agent is added to desulfurize. An experiment was conducted.

実施例1~5及び比較例4では、水冷式のランスにLPGと酸素とを送り、ランス先端部からバーナー燃焼ガスを溶銑表面に向けて吹き付けた。また、実施例1~4では、同じランスにて酸素によって精錬剤(脱硫剤)を運搬してバーナー燃焼ガスと共に脱硫剤を吹き付けた。一方で、実施例5では、バーナー燃焼ガスによって加熱された溶銑表面の位置に脱硫剤を分割添加した。また、比較のため、比較例1~3では、LPGを止め、バーナーによる加熱なしで実験を行った。処理後に溶銑サンプルを採取し、処理後の溶銑中S濃度が0.01質量%以下を合格範囲として評価を行った。また、脱硫処理前後のSi濃度、処理温度(溶銑温度)等の条件は以下の表1に示す通りである。 In Examples 1 to 5 and Comparative Example 4, LPG and oxygen were fed to a water-cooled lance, and burner combustion gas was sprayed from the tip of the lance toward the hot metal surface. Further, in Examples 1 to 4, the refining agent (desulfurization agent) was transported by oxygen with the same lance, and the desulfurization agent was sprayed together with the burner combustion gas. On the other hand, in Example 5, the desulfurizing agent was dividedly added to the position of the hot metal surface heated by the burner combustion gas. For comparison, in Comparative Examples 1 to 3, the LPG was turned off and experiments were conducted without heating with a burner. A hot metal sample was collected after the treatment, and an evaluation was performed with the S concentration in the hot metal after the treatment being 0.01% by mass or less as an acceptable range. The conditions such as the Si concentration before and after the desulfurization treatment and the treatment temperature (hot metal temperature) are as shown in Table 1 below.

Figure 0007167706000001
Figure 0007167706000001

実施例1は、バーナー燃焼ガスとともに脱硫剤を溶銑表面に衝突するように添加した例であり、脱硫後の溶銑中S濃度が0.0065質量%であり、良好な脱硫特性を確認することができた。 Example 1 is an example in which the desulfurizing agent is added together with the burner combustion gas so as to impinge on the hot metal surface. did it.

実施例2は、実施例1よりも溶銑温度が高く、それ以外は実施例1と同様の条件で操業した例である。この場合も実施例1と同様の良好な脱硫特性が得られた。なお、溶銑温度が高めであったため、実験後の観察では耐火物の溶損量は許容範囲内ではあったがやや多い傾向が見られた。また、実施例1と比較しても、本発明の作用によって高温処理による脱硫促進の効果は比較的小さいことも確認できた。 Example 2 is an example in which the hot metal temperature is higher than that in Example 1, and the operation is performed under the same conditions as in Example 1 except for the above. Also in this case, good desulfurization characteristics similar to those of Example 1 were obtained. Since the hot metal temperature was high, observation after the experiment showed that the amount of erosion of the refractory was within the allowable range, but tended to be slightly large. Moreover, even when compared with Example 1, it was confirmed that the effect of promoting desulfurization by high-temperature treatment was relatively small due to the action of the present invention.

また、実施例3は、実施例1よりも溶銑温度が低く、それ以外は実施例1と同様の条件で操業した例である。溶銑温度が1320℃以下の低温操業においても処理後の溶銑中S濃度が合格範囲を満足できることを確認できた。また、本発明は低温操業において脱硫処理は停滞せず顕著な作用を発現することが確認できた。 In addition, Example 3 is an example in which the hot metal temperature is lower than that in Example 1 and the operation is performed under the same conditions as in Example 1 except for this. It was confirmed that the S concentration in hot metal after treatment satisfies the acceptable range even in low-temperature operation where the hot metal temperature is 1320°C or lower. In addition, it was confirmed that the present invention exerts a remarkable effect without stagnation of desulfurization treatment in low-temperature operation.

実施例4は、実施例1よりも溶銑中Si濃度が低く、それ以外は実施例1とほぼ同様の条件で操業した例である。脱硫処理前後、すなわち脱硫処理中において溶銑中Si濃度を0.2質量%以上に維持できたため、良好な脱硫特性を確認することができた。 Example 4 is an example in which the Si concentration in the hot metal is lower than that in Example 1, and the operation is performed under substantially the same conditions as in Example 1 except for this. Before and after the desulfurization treatment, that is, during the desulfurization treatment, the Si concentration in the hot metal could be maintained at 0.2% by mass or more, so good desulfurization characteristics could be confirmed.

実施例5は、バーナー燃焼ガスの噴流で生成した溶銑表面の火点(バーナー燃焼ガスの照射部)に対して1kgに小分けした脱硫到のフラックスを20回に分割投入した例である。実施例1よりは、火点中心からの添加位置の精度が乱れたため、処理後の溶銑中S濃度は実施例1~4に比べて若干高かったが、処理後の溶銑中S濃度が合格範囲内であった。 Example 5 is an example in which the desulfurization flux divided into 1 kg portions was charged 20 times to the hot spot on the hot metal surface (irradiated portion of the burner combustion gas) generated by the jet stream of the burner combustion gas. Compared to Example 1, the accuracy of the addition position from the center of the ignition point was disturbed, so the S concentration in the hot metal after treatment was slightly higher than in Examples 1 to 4, but the S concentration in the hot metal after treatment was within the acceptable range. was inside.

比較例1は、LPGを停止してバーナー加熱無しとした以外は実施例1と同様の条件で操業した例である。本発明の脱硫促進の効果は得られず、処理後の溶銑中S濃度は0.01質量%を超えていた。 Comparative Example 1 is an example operated under the same conditions as in Example 1 except that the LPG was stopped and the burner was not heated. The desulfurization acceleration effect of the present invention was not obtained, and the S concentration in the hot metal after the treatment exceeded 0.01% by mass.

比較例2は、LPGを停止してバーナー加熱無しとした以外は実施例2と同様の条件で操業した例である。高温処理であったため、比較例1と比較すると処理後の溶銑中S濃度はやや低位であったが、処理後の溶銑中S濃度は0.01質量%を超えており、本発明の脱硫促進の効果が得られなかった。 Comparative Example 2 is an example operated under the same conditions as in Example 2, except that the LPG was stopped and the burner was not heated. Due to the high temperature treatment, the S concentration in the hot metal after the treatment was slightly lower than in Comparative Example 1, but the S concentration in the hot metal after the treatment exceeded 0.01% by mass, indicating the desulfurization promotion of the present invention. effect was not obtained.

比較例3は、LPGを停止してバーナー加熱無しとした以外は実施例3と同様の条件で操業した例である。低温処理であったため、比較例1と比較すると処理後の溶銑中S濃度はさらに高く、極めて脱硫特性に劣るものであった。 Comparative Example 3 is an example operated under the same conditions as in Example 3, except that the LPG was stopped and the burner was not heated. Since the treatment was carried out at a low temperature, the S concentration in the hot metal after the treatment was even higher than in Comparative Example 1, and the desulfurization characteristics were extremely poor.

比較例4は、実施例4よりもさらに低いSi濃度で操業した例である。脱硫処理前では溶銑中Si濃度が0.25質量%であったが、脱硫処理前後、すなわち脱硫処理中において溶銑中Si濃度を0.2質量%以上に維持できなかった。そのため、処理後の溶銑中S濃度は0.01質量%を超えており、本発明の脱硫促進の効果が得られなかった。これは、溶銑の界面での酸素ポテンシャルを十分低減できなかったからだと考えられる。 Comparative Example 4 is an example in which the operation was performed at a lower Si concentration than in Example 4. Before the desulfurization treatment, the Si concentration in the hot metal was 0.25% by mass, but before and after the desulfurization treatment, that is, during the desulfurization treatment, the Si concentration in the hot metal could not be maintained at 0.2% by mass or more. Therefore, the S concentration in the hot metal after the treatment exceeded 0.01% by mass, and the desulfurization acceleration effect of the present invention was not obtained. This is probably because the oxygen potential at the hot metal interface could not be reduced sufficiently.

本発明によれば、バーナーを用いて溶銑脱硫処理を行う際に、高価な金属Alを使用せず、安価にかつ高効率に脱硫処理を実施することができ、その工業的利用価値は高い。 According to the present invention, when hot metal desulfurization treatment is performed using a burner, desulfurization treatment can be performed inexpensively and highly efficiently without using expensive metal Al, and its industrial utility value is high.

1 溶銑
2 上部アーク電極
3 下部水冷電極
4 ランス
5 精錬剤
6 ホッパー
7 バーナー燃焼ガス
8 スラグ
9 炉体
10 排滓傾動装置
11 除滓孔
12 除滓樋
13 スラグパン
14 酸素配管
15 LPG配管
16 フレキシブルホース
1 hot metal 2 upper arc electrode 3 lower water-cooled electrode 4 lance 5 refining agent 6 hopper 7 burner combustion gas 8 slag 9 furnace body 10 slag exhaust tilting device 11 slag removal hole 12 slag removal gutter 13 slag pan 14 oxygen pipe 15 LPG pipe 16 flexible hose

Claims (3)

溶銑段階でCaO系の精錬剤を添加して脱硫処理を行う溶銑脱硫方法であって、
前記脱硫処理を実行している間は溶銑中Si濃度を0.2質量%以上に維持し、溶銑表面の上部からのバーナー燃焼ガスの噴流で生成した溶銑表面の火点において、バーナーとは別系統で添加された前記精錬剤を加熱して脱硫処理を行うことを特徴とする溶銑脱硫方法。
A hot metal desulfurization method in which a CaO-based refining agent is added in the hot metal stage to perform desulfurization,
While the desulfurization treatment is being performed, the Si concentration in the hot metal is maintained at 0.2% by mass or more, and a hot spot on the hot metal surface generated by a jet of burner combustion gas from above the hot metal surface is separated from the burner. A hot metal desulfurization method, characterized in that desulfurization is performed by heating the refining agent added in the system .
前記バーナー燃焼ガスにより前記精錬剤を溶銑表面に衝突させて添加することを特徴とする請求項1に記載の溶銑脱硫方法。 2. The hot metal desulfurization method according to claim 1, wherein the refining agent is added by colliding with the hot metal surface by the burner combustion gas. 前記脱硫処理中における溶銑温度を液相線温度以上1320℃以下とすることを特徴とする請求項1又は2に記載の溶銑脱硫方法。 3. The hot metal desulfurization method according to claim 1 or 2, wherein the hot metal temperature during the desulfurization treatment is set to a liquidus temperature or higher and 1320°C or lower.
JP2018243482A 2018-12-26 2018-12-26 Hot metal desulfurization method Active JP7167706B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018243482A JP7167706B2 (en) 2018-12-26 2018-12-26 Hot metal desulfurization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018243482A JP7167706B2 (en) 2018-12-26 2018-12-26 Hot metal desulfurization method

Publications (2)

Publication Number Publication Date
JP2020105553A JP2020105553A (en) 2020-07-09
JP7167706B2 true JP7167706B2 (en) 2022-11-09

Family

ID=71449005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018243482A Active JP7167706B2 (en) 2018-12-26 2018-12-26 Hot metal desulfurization method

Country Status (1)

Country Link
JP (1) JP7167706B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009299126A (en) 2008-06-13 2009-12-24 Jfe Steel Corp Method for desulfurizing molten metal
JP2018127654A (en) 2017-02-07 2018-08-16 Jfeスチール株式会社 Method for desulfurizing molten iron

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3359969B2 (en) * 1994-01-07 2002-12-24 新日本製鐵株式会社 Hot metal desulfurization method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009299126A (en) 2008-06-13 2009-12-24 Jfe Steel Corp Method for desulfurizing molten metal
JP2018127654A (en) 2017-02-07 2018-08-16 Jfeスチール株式会社 Method for desulfurizing molten iron

Also Published As

Publication number Publication date
JP2020105553A (en) 2020-07-09

Similar Documents

Publication Publication Date Title
JP6743915B2 (en) Method for desulfurizing molten steel and desulfurizing agent
KR101529454B1 (en) Method of vacuum-refining molten steel
JP6036172B2 (en) Method of refining hot metal in converter
JP6028755B2 (en) Method for melting low-sulfur steel
JP5928094B2 (en) Method for refining molten iron
JP7167706B2 (en) Hot metal desulfurization method
JP5233383B2 (en) Method for refining molten steel
JP2005187901A (en) Refining method for molten steel
JP4311097B2 (en) Method for preventing slag flow in converter
JP6547734B2 (en) Method of manufacturing low-sulfur steel
JP4360270B2 (en) Method for refining molten steel
JP6323688B2 (en) Desulfurization method for molten steel
JP3577997B2 (en) Hot metal desulfurization method
JP2008184648A (en) Method for desiliconizing and dephosphorizing molten pig iron
JP2020125541A (en) Converter refining method
JP7167704B2 (en) Hot metal desulfurization method
JP6544531B2 (en) How to smelt molten metal
JP5928095B2 (en) Method for refining molten iron
JP7036993B2 (en) Method for producing low carbon ferromanganese
JP7420322B1 (en) Molten steel denitrification method
JP3496545B2 (en) Hot metal desulfurization method
JP2023147218A (en) Dephosphorization method of molten iron
JP2002275521A (en) Method for dephosphorizing molten high carbon steel
JPH05320731A (en) Method for effectively utilizing collected dust of aod furnace
JP6375822B2 (en) Hot metal desiliconization method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221010

R151 Written notification of patent or utility model registration

Ref document number: 7167706

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151