JPH10177959A - Vapor thin film growth device and method - Google Patents

Vapor thin film growth device and method

Info

Publication number
JPH10177959A
JPH10177959A JP35438096A JP35438096A JPH10177959A JP H10177959 A JPH10177959 A JP H10177959A JP 35438096 A JP35438096 A JP 35438096A JP 35438096 A JP35438096 A JP 35438096A JP H10177959 A JPH10177959 A JP H10177959A
Authority
JP
Japan
Prior art keywords
gas
thin film
substrate holder
diameter
vapor phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35438096A
Other languages
Japanese (ja)
Other versions
JP3570653B2 (en
Inventor
Tadashi Ohashi
忠 大橋
Katsuhiro Chagi
勝弘 茶木
Taira Shin
平 辛
Tatsuo Fujii
達男 藤井
Katsuyuki Iwata
勝行 岩田
Shinichi Mitani
慎一 三谷
Yasuaki Honda
恭章 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd, Toshiba Ceramics Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP35438096A priority Critical patent/JP3570653B2/en
Priority to EP97122056A priority patent/EP0854210B1/en
Priority to US08/991,407 priority patent/US6059885A/en
Priority to TW086119399A priority patent/TW434696B/en
Priority to KR1019970069899A priority patent/KR100490238B1/en
Publication of JPH10177959A publication Critical patent/JPH10177959A/en
Application granted granted Critical
Publication of JP3570653B2 publication Critical patent/JP3570653B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent particles from attaching themselves to or a thin film component from depositing on the peripheral wall of the reaction oven by a method wherein the reaction oven is separated into an upper part of small diameter and a lower part of large diameter, the lower edge of the upper part and the upper edge of the lower part are joined together to connect their hollow inner spaces together, and flow regulating gas outlets are provided to a joint between the upper and the lower part of the oven. SOLUTION: A reaction oven 10 is partitioned into an upper part 1 and a lower part 2, where the upper part 1 is thinner than the lower part 2. That is, the inner diameter D1 of the upper part 1 is smaller than the inner diameter D2 of the lower part (D2 /D1 is not less than 1.2). The upper edge U of the lower part 2 is joined to the lower edge B of the upper part 1 at a joint 18 into the reaction oven 10 with an inner hollow space. Flow-regulating gas (carrier gas) is introduced into the reaction oven 10 through flow regulating gas outlet holes 18a bored in the joint 18 so as to make gas flow smooth toward an unreacted gas outlet. By this setup, reaction gas reaches to a wafer substrate 11 to grow a thin film and then discharged out through an exhaust vent 15 flowing smooth from outside a rotating substrate holder 12 located below the lower end B of the upper part 1 of the oven 10.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は気相薄膜成長装置及
び気相薄膜成長方法に関し、特に、高品質が要求される
半導体ウエハ基板の製造工程に適用される汚染物の発生
の少ない気相薄膜成長装置及び結晶欠陥が少なく均一な
膜厚の薄膜を形成する気相薄膜成長方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vapor phase thin film growth apparatus and a vapor phase thin film growth method, and more particularly, to a vapor phase thin film with less generation of contaminants applied to a process of manufacturing a semiconductor wafer substrate requiring high quality. The present invention relates to a growth apparatus and a vapor phase thin film growth method for forming a thin film having a uniform thickness with few crystal defects.

【0002】[0002]

【従来の技術】図8は、従来の気相成長装置の一例を示
す概略説明図である。図8において、一般に円筒状の反
応炉80内の下部には、例えばシリコンウエハ等のウエ
ハ基板81を載置する回転基板ホルダー82、回転基板
ホルダー82を回転させるための回転軸83及び加熱用
のヒータ84が配設され、回転軸83には回転駆動する
モータ(図示せず)が接続されている。また、反応炉8
0底部には未反応ガス等を排気する複数の排気口85、
85が配設されて排気制御装置(図示せず)に接続され
ている。一方、反応炉80の頂部には炉内に原料ガスや
キャリアガスを供給する複数のガス供給管86、86と
円盤状の整流板87とが配設され、整流板87には、ガ
スの流れを整える多数の孔87aが穿設されている。従
来の気相成長装置は上記のように構成され、モータの回
転駆動によって所定の回転数で回転する回転基板ホルダ
ー82上に載置された基板81は、回転しながらヒータ
84により所定温度に加熱される。同時に、反応炉80
内には原料ガスやキャリアガス等の反応ガスを複数のガ
ス供給管86、86を介して導入しガス運動量や圧力分
布を均一化し、次いで反応炉内のガス流速分布が均一な
るように整流板87の多数の孔87aを通過させ、回転
基板ホルダー82上のウエハ基板81に反応ガスを均一
に供給して薄膜を気相成長させている。
2. Description of the Related Art FIG. 8 is a schematic explanatory view showing an example of a conventional vapor phase growth apparatus. 8, a rotary substrate holder 82 on which a wafer substrate 81 such as a silicon wafer is mounted, a rotary shaft 83 for rotating the rotary substrate holder 82, and a heating A heater 84 is provided, and a rotating motor (not shown) is connected to the rotating shaft 83. Also, the reactor 8
A plurality of exhaust ports 85 for exhausting unreacted gas etc.
85 is provided and connected to an exhaust control device (not shown). On the other hand, a plurality of gas supply pipes 86, 86 for supplying a raw material gas and a carrier gas into the furnace and a disk-shaped current plate 87 are disposed at the top of the reaction furnace 80. Many holes 87a are formed to adjust the height. The conventional vapor phase growth apparatus is configured as described above, and the substrate 81 placed on the rotating substrate holder 82 that rotates at a predetermined rotation speed by the rotation of the motor is heated to a predetermined temperature by the heater 84 while rotating. Is done. At the same time, the reactor 80
A reaction gas such as a raw material gas or a carrier gas is introduced into the inside of the reactor through a plurality of gas supply pipes 86 to make the gas momentum and pressure distribution uniform, and then a rectifying plate so that the gas flow velocity distribution in the reaction furnace becomes uniform. The reaction gas is uniformly supplied to the wafer substrate 81 on the rotary substrate holder 82 by passing through a large number of holes 87 a of the substrate 87, and the thin film is vapor-phase grown.

【0003】上記したような半導体ウエハ上へ薄膜を形
成する気相成長装置においては、薄膜形成ガスによるパ
ーティクルの発生や反応炉内壁への析出物の付着を防止
するため、また、薄膜形成時の不都合により結晶欠陥が
生じないようにして薄膜が均質で且つ膜厚が均一な薄膜
形成ウエハが得られるように各種の提案がなされてい
る。例えば、特開平5−74719号公報では原料ガス
の供給流量を所定に制御して反応炉内の温度変化を防止
することにより結晶欠陥の防止を図っている。特開平5
−90167号公報では薄膜形成時のウエハ基板の面内
温度分布を均一にするように原料ガス量、炉内圧力、回
転基板ホルダの回転数等を所定に制御してスリップの防
止を図っている。特開平6−216045号公報では析
出物が生じ易い反応炉内壁の一部に内周面を平滑に維持
して遮蔽管を配設し、薄膜形成操作を行った後の反応炉
洗浄を容易にすると共に、ガス流を層流状態に維持して
均質な薄膜の形成を図るものである。また、特開平7−
50260号公報では、原料ガスやキャリアガスの反応
炉への導入方法を所定にすることにより、ガス運動量や
ガス圧を均一にして均一な流速で原料ガス等を基板上に
供給して薄膜厚の均一化を図るものである。
In the vapor phase growth apparatus for forming a thin film on a semiconductor wafer as described above, in order to prevent the generation of particles due to the gas for forming the thin film and the deposition of deposits on the inner wall of the reaction furnace, it is necessary to prevent Various proposals have been made so that crystal defects are not caused by inconvenience and a thin film-formed wafer having a uniform thin film and a uniform film thickness can be obtained. For example, in Japanese Patent Application Laid-Open No. Hei 5-74719, the crystal flow is prevented by preventing the temperature change in the reaction furnace by controlling the supply flow rate of the raw material gas to a predetermined value. JP 5
In JP-A-90167, the amount of the source gas, the pressure in the furnace, the number of rotations of the rotating substrate holder, and the like are controlled to a predetermined value so as to make the in-plane temperature distribution of the wafer substrate uniform during thin film formation, thereby preventing slip. . In Japanese Patent Application Laid-Open No. 6-216045, a shielding tube is provided on a part of the inner wall of the reactor where precipitates are liable to be formed, while keeping the inner peripheral surface smooth, and the reactor is easily cleaned after performing a thin film forming operation. In addition, the gas flow is maintained in a laminar state to form a uniform thin film. In addition, Japanese Patent Application Laid-Open
In Japanese Patent No. 50260, the source gas and carrier gas are supplied to the substrate at a uniform flow rate by uniformizing the gas momentum and the gas pressure by making the method of introducing the source gas and the carrier gas into the reaction furnace to be uniform. This is to achieve uniformity.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
各種提案の従来の気相成長装置においても、薄膜成長さ
せたウエハ基板で、結晶欠陥が生じたり、パーティクル
付着等の不都合が十分に防止できるとはいえず、また、
特に近年の半導体における超高集積化に伴い、ウエハ基
板は、ますます高品質化が要求されるようになったこと
から、薄膜形成ウエハ基板の僅かな欠陥の品質低下も問
題になることが多くなっている。本発明は、このような
従来の気相成長装置による気相成長薄膜形成でのウエハ
基板の品質低下に鑑み、それらを解決する目的でなされ
たものである。発明者らは、先ず、従来の気相成長装置
で生じている現象について詳細に検討した。その結果、
反応炉壁にパーティクルが多く付着する現象が観察さ
れ、そのため、メンテナンスサイクルを短縮させたり、
この反応炉壁に付着したパーティクルが、ウエハ基板に
付着し結晶欠陥の原因となったり、付着パーティクルと
して直接にウエハ品質の低下をもたらす原因となってい
ることを知見した。
However, even in the conventional vapor phase growth apparatuses proposed in the above-mentioned various proposals, it is possible to sufficiently prevent crystal defects and inconveniences such as particle adhesion on a wafer substrate on which a thin film is grown. Not really,
In particular, with the recent increase in the degree of integration of semiconductors, the quality of wafer substrates has been required to be higher and higher. Has become. SUMMARY OF THE INVENTION The present invention has been made in view of the deterioration of the quality of a wafer substrate in the formation of a vapor-growth thin film by such a conventional vapor-phase growth apparatus, and has been made for the purpose of solving them. The inventors first studied in detail the phenomenon occurring in a conventional vapor phase growth apparatus. as a result,
A phenomenon in which a large amount of particles adhere to the reactor wall has been observed.
It has been found that the particles adhered to the reaction furnace wall adhere to the wafer substrate and cause crystal defects, or directly cause deterioration of wafer quality as adhered particles.

【0005】発明者らは、上記知見から、更に、反応炉
壁でのパーティクル多量付着現象の原因を見出すべく、
反応炉内での原料ガス流れ等を検討した。その結果、下
記する現象が反応炉内で生じることが更に明らかになっ
た。即ち、上記のように反応炉頂部より導入され均一
な流速でウエハ基板81上に供給されるシリコン原料ガ
ス等の反応ガスは、ヒータ84により加熱され上部より
高温となっている反応炉80の下部のウエハ基板81近
傍に到達し加熱される。その結果、図8に矢印で示した
ように、上昇ガス流が生じ、反応炉壁に沿って反応ガス
の舞上り現象が生じ、ガス渦流の発生が起こる。ま
た、加温された反応ガスが上昇することから、反応炉8
0内全域の温度も上昇し気相中での薄膜形成原料ガスの
均一核生成が増大し、気相中でのパーティクル発生が増
大する。更に、上記ガス渦流が発生すると、回転基板
ホルダー82上のウエハ基板81の外周部で反応ガス中
のドーパントの再取込が起こるおそれがあり、得られる
ウエハ基板の面内抵抗値分布の不均一化の原因ともな
る。更にまた、ウエハ基板近傍に流下した反応ガスの
反応炉上方への舞上り現象は、ガス渦流の発生とは別
に、回転基板ホルダー82外周側に、いわゆる“ガス流
の荒れ”といわれるガス流が複雑な流れとなる乱れが生
じることになる。このガス流の荒れが生じると、排気口
85から排出されるべき未反応ガスが反応して回転基板
ホルダー82外周面に薄膜成分が析出したり、その回転
基板ホルダー82外周面に対向する反応炉壁にパーティ
クルが付着したりすることになる。
From the above findings, the inventors have further attempted to find the cause of the phenomenon of large amount of particles adhering to the reactor wall.
The raw material gas flow in the reactor was studied. As a result, it has been further clarified that the following phenomenon occurs in the reactor. That is, the reaction gas such as the silicon source gas introduced from the top of the reaction furnace and supplied onto the wafer substrate 81 at a uniform flow rate as described above is heated by the heater 84 and becomes lower in the temperature in the lower part of the reaction furnace 80 than in the upper part. Reaches the vicinity of the wafer substrate 81 and is heated. As a result, as shown by an arrow in FIG. 8, a rising gas flow is generated, a rising phenomenon of the reaction gas is generated along the reactor wall, and a gas vortex is generated. Further, since the heated reaction gas rises, the reaction furnace 8
The temperature of the entire region within 0 also increases, so that uniform nucleation of the thin film forming raw material gas in the gas phase increases, and particle generation in the gas phase increases. Further, when the gas vortex flows, the dopant in the reaction gas may be re-introduced at the outer peripheral portion of the wafer substrate 81 on the rotating substrate holder 82, and the in-plane resistance value distribution of the obtained wafer substrate may be uneven. It may also cause the transformation. Further, the rising phenomenon of the reactant gas flowing down near the wafer substrate to the upper part of the reaction furnace is generated separately from the generation of the gas vortex, on the outer peripheral side of the rotating substrate holder 82, by the so-called "roughness of gas flow". A turbulence resulting in a complicated flow will occur. When the gas flow becomes rough, the unreacted gas to be discharged from the exhaust port 85 reacts to deposit a thin film component on the outer peripheral surface of the rotating substrate holder 82 or the reaction furnace facing the outer peripheral surface of the rotating substrate holder 82. Particles may adhere to walls.

【0006】上記した各種の不都合を引き起こすガス渦
流やガス流の荒れの発生は、従来法において回転基板保
持体軸方向へのガス流速を約1m/s以上の極めて早い
速度とすることによりある程度抑制可能である。しか
し、そのためには大量のキャリアガスを流す必要があ
る。また、上記ガス渦流の発生を抑制するために反応炉
上部の直径を下部に比べ細く絞り込みむことにより、高
温の反応ガスが上昇する空間を閉塞することによりガス
渦流の発生を防止することを試みた。しかし、この場合
は反応炉上部等でのパーティクル付着等は防止できる
が、下記する比較例に用いた反応炉上部径を細くした気
相薄膜成長装置の概略説明図を示した図7で、例えば、
矢印で図示したように、回転基板ホルダー外側に位置す
る反応炉径の拡大部分でガス渦流やガス流の荒れが発生
することが知見された。径が拡大する部分でこのガス渦
流やガス流の荒れが生じると、同様に反応炉下部周壁で
パーティクルが付着したり、未反応ガスの反応により薄
膜成分の析出が生じる等で問題発生の反応炉部域が変化
するだけでメンテナンスサイクルが短縮する等の不都合
が同様に生じることも明らかになった。
The generation of the gas vortex and the roughening of the gas flow which cause the various inconveniences described above can be suppressed to some extent by setting the gas flow velocity in the axial direction of the rotating substrate holder to an extremely high speed of about 1 m / s or more in the conventional method. It is possible. However, for that purpose, it is necessary to flow a large amount of carrier gas. In addition, in order to suppress the generation of the gas vortex, the diameter of the upper part of the reactor was narrowed down compared to the lower part, so as to block the space where the high temperature reaction gas rises, and to prevent the generation of the gas vortex. Was. However, in this case, it is possible to prevent particles from adhering to the upper part of the reactor and the like, but FIG. 7 is a schematic explanatory view of a vapor phase thin film growing apparatus having a smaller upper part of the reactor used in the comparative example described below. ,
As shown by the arrow, it was found that a gas vortex or a rough gas flow was generated in the enlarged portion of the reactor diameter located outside the rotary substrate holder. If this gas vortex or gas flow becomes rough in the area where the diameter increases, the reactor also causes problems such as particles adhering to the lower peripheral wall of the reactor and deposition of thin film components due to the reaction of unreacted gas. It has also been clarified that inconveniences such as shortening of the maintenance cycle also occur when only the area is changed.

【0007】発明者らは上記知見に基づき、前記した薄
層形成ウエハ基板の品質低下や反応炉のメンテナンスサ
イクルの短縮等の不都合の原因が、反応炉内でのガスの
上昇流のガス流の乱れにあることを見出すと共に、その
ガス流の不都合が生じる上部空間部分を欠除させたり閉
塞するのみでなく、径の異なる反応炉の上部と下部の連
結部に整流ガス流出孔を設け径拡大部分にガス流を整流
するため整流用ガスを積極的に導入させること、また、
反応炉の上部径、下部径及び回転基板ホルダー径の比率
を所定にすることにより、上記した従来の気相成長装置
における反応炉壁や回転基板ホルダ反応炉下部で外周面
へのパーティクルの多量の付着や薄膜成分の析出、ドー
パントのウエハ外周部での取り込みを防止でき、そのた
めウエハ基板の品質低下を防止できることを見出し本発
明を完成した。即ち、本発明は、シリコン原料ガスの均
一核生成で発生したパーティクルが反応炉周壁で付着し
たり、薄膜成分の回転基板ホルダー外周部や炉内周壁へ
の析出を防止する気相薄膜成長装置を提供し、同時に欠
陥が少なく高品質で均一な薄膜をウエハ基板上に気相成
長させる方法を提供するものである。
On the basis of the above findings, the inventors have found that the above-mentioned inconveniences, such as deterioration of the quality of the thin-layer-formed wafer substrate and shortening of the maintenance cycle of the reactor, are caused by the gas flow of the upward flow of the gas in the reactor. In addition to finding that there is turbulence, not only eliminating or closing the upper space where the gas flow is inconvenient, but also providing straightening gas outflow holes at the connection between the upper and lower reactors with different diameters to enlarge the diameter Actively introduce rectifying gas to rectify the gas flow to the part,
By setting the ratio of the upper diameter of the reaction furnace, the lower diameter and the diameter of the rotating substrate holder to a predetermined value, a large amount of particles to the outer peripheral surface at the reactor wall or the lower portion of the rotating substrate holder in the conventional vapor phase growth apparatus described above. The inventors have found that it is possible to prevent adhesion, deposition of thin film components, and incorporation of dopants at the outer peripheral portion of the wafer, thereby preventing deterioration in the quality of the wafer substrate, and completed the present invention. That is, the present invention provides a vapor phase thin film growth apparatus that prevents particles generated by uniform nucleation of silicon source gas from adhering on the peripheral wall of the reaction furnace and preventing deposition of thin film components on the outer periphery of the rotating substrate holder and the inner peripheral wall of the furnace. The present invention also provides a method for vapor-phase growing a high-quality and uniform thin film on a wafer substrate with few defects.

【0008】[0008]

【課題を解決するための手段】本発明によれば、中空の
反応炉の頂部に複数の反応ガス供給口、底部に排気口、
内部にウエハ基板を載置する回転基板保持体、及び、内
部上部に複数の孔が穿設された整流板を有し、内部に反
応ガスを供給して回転基板保持体上のウエハ基板表面に
薄膜を気相成長させる気相成長装置において、前記反応
炉の中空内部が、相当内径が異なる上下部に区分され、
上部の相当内径が下部の相当内径より小さく、且つ、上
部下端と下部上端とが連結部により接続され中空内部が
連続すると共に、該連結部に整流ガス流出孔を有し、前
記回転基板保持体が反応炉下部内の該上部下端より所定
の高低差を有して下方に位置して配設されることを特徴
とする気相薄膜成長装置が提供される。
According to the present invention, a plurality of reactant gas supply ports are provided at the top of a hollow reactor, and an exhaust port is provided at a bottom thereof.
A rotating substrate holder on which a wafer substrate is placed, and a rectifying plate having a plurality of holes formed in an upper portion of the inside, and a reaction gas is supplied to the inside of the rotating substrate holder to cover the surface of the wafer substrate on the rotating substrate holder. In a vapor phase growth apparatus for vapor-phase growing a thin film, the hollow interior of the reaction furnace is divided into upper and lower portions having considerably different inner diameters,
An upper inner diameter is smaller than a lower lower inner diameter, and an upper lower end and a lower upper end are connected by a connecting portion to form a continuous hollow interior, and the connecting portion has a rectifying gas outflow hole; Is provided below the lower end of the reactor with a predetermined height difference from the lower end of the upper part of the reactor.

【0009】上記本発明の気相薄膜成長装置において、
更に、前記連結部上に、前記整流ガス流出孔を気密に包
囲してなる空間部が配設され、該空間部に整流ガス供給
口を有することが好ましい。また、前記上部の側面が前
記回転基板保持体上面に対し垂直であることが好まし
く、前記空間部と上部とが二重環状に形成されており、
前記空間部の外側面が連結部を介して前記下部上端に連
続することが好ましい。更に、前記反応炉中空内部の水
平断面が円形であって、前記上部直径(D1 )が、前記
ウエハ基板の直径より大であり、且つ、前記回転基板保
持体が円形でその直径(DS )との比(D1 /DS )が
0.7〜1.2であることが好ましく、上部直径(D
1 )と下部直径(D2 )との比(D2 /D1 )が1.2
以上であることが好ましく、下部直径(D2 )と回転基
板保持体直径(DS )との比(D2 /DS )が1.2以
上であることが好ましい。更にまた、前記上部下端と回
転基板保持体との高低差(H)が、該回転基板保持体上
面上のガス流の遷移層厚(T)より大であること、遷移
層厚(T)が3.22(ν/ω)1/2 (但し、νは反応
炉内雰囲気ガスの動粘性係数(mm2 /s)を、ωは回
転の角速度(rad/s)をそれぞれ表示する)の算出
値であること、前記連結部の一部と前記回転基板保持体
上面とが同一水平面内にあることが好ましい。
[0009] In the vapor phase thin film growth apparatus of the present invention,
Further, it is preferable that a space portion surrounding the rectification gas outlet hole in an airtight manner is provided on the connection portion, and the space portion has a rectification gas supply port. Further, it is preferable that the upper side surface is perpendicular to the upper surface of the rotating substrate holder, and the space portion and the upper portion are formed in a double annular shape,
It is preferable that an outer side surface of the space portion is continuous with the upper end of the lower portion via a connection portion. Furthermore, the horizontal cross section of the inside of the reactor hollow is circular, the upper diameter (D 1 ) is larger than the diameter of the wafer substrate, and the rotating substrate holder is circular and has a diameter ( DS). preferably) the ratio of (D 1 / D S) is 0.7 to 1.2, the upper diameter (D
1 ) and the ratio (D 2 / D 1 ) of the lower diameter (D 2 ) to 1.2
Preferably or more, it is preferable the ratio of the lower diameter (D 2) and the rotating substrate holder diameter (D S) (D 2 / D S) is 1.2 or more. Furthermore, the height difference (H) between the upper and lower ends and the rotating substrate holder is larger than the transition layer thickness (T) of the gas flow on the upper surface of the rotating substrate holder, and the transition layer thickness (T) is 3.22 (ν / ω) 1/2 (where ν indicates the kinematic viscosity coefficient (mm 2 / s) of the atmosphere gas in the reactor and ω indicates the angular velocity of rotation (rad / s), respectively) It is preferable that a part of the connecting portion and the upper surface of the rotating substrate holder are in the same horizontal plane.

【0010】また、本発明によれば、上記の気相成長装
置において、回転基板保持体上部のガス流の遷移層厚
(T)が、前記上部の下端と前記回転基板保持体上面と
の高低差(H)より小さくなるように、前記複数の反応
ガス供給口から薄膜形成原料ガス及びキャリアガスから
なる反応ガスを供給して整流板の孔を通過させて前記ウ
エハ基板上に流通させると同時に、前記連結部の整流ガ
ス流出孔を通過させて整流用ガスを導入することを特徴
とする気相薄膜形成方法が提供される。また、本発明の
気相薄膜成長方法において、前記遷移層厚(T)が、
3.22(ν/ω)1/2 (但し、νは反応ガスの動粘性
係数(mm2 /s)を、ωは回転の角速度(rad/
s)をそれぞれ表示する)により前記高低差(H)より
小さくなるように前記回転基板保持体の回転を制御する
ことができ、前記キャリアガス流速(GC )と前記連結
部の整流ガス流出孔から導入される整流用ガス流速(G
I )の比(GI /GC )が0.05〜2であることが好
ましい。
Further, according to the present invention, in the above-described vapor phase growth apparatus, the transition layer thickness (T) of the gas flow in the upper part of the rotating substrate holder is higher or lower than the lower end of the upper part and the upper surface of the rotating substrate holder. At the same time, a reaction gas composed of a thin film forming raw material gas and a carrier gas is supplied from the plurality of reaction gas supply ports so as to be smaller than the difference (H), and is passed through the holes of the rectifying plate to flow on the wafer substrate. A gas phase thin film forming method is characterized in that a gas for flow straightening is introduced through a flow straightening gas outlet of the connecting portion. Further, in the vapor phase thin film growth method of the present invention, the transition layer thickness (T) is:
3.22 (ν / ω) 1/2 (where ν is the kinematic viscosity coefficient (mm 2 / s) of the reaction gas and ω is the angular velocity of rotation (rad /
s) respectively, the rotation of the rotating substrate holder can be controlled so as to be smaller than the height difference (H), and the carrier gas flow rate (G C ) and the rectifying gas outlet of the connecting portion can be controlled. Gas flow rate (G
It is preferred ratio of I) (G I / G C ) is 0.05 to 2.

【0011】本発明の気相薄膜成長装置は上記のように
構成されて、従来の気相薄膜成長装置における反応炉壁
に沿って生じる反応ガスの舞上り現象によるガス渦流発
生を、上部径を下部径より小さくするという炉形状を変
更して発生空間を欠除させることで抑制できると同時
に、反応炉上部での気相温度の上昇を防止できることか
ら、シリコン等薄膜形成の原料ガスの均一核生成が抑制
され気相中で発生するパーティクルが減少する。そのた
め、パーティクルが反応炉壁に付着しメンテナンスサイ
クルを短縮させたり、ウエハに付着し結晶欠陥の原因と
なったり、直接付着パーティクルとなりウエハの品質を
低下すること等が防止される。また、ガス渦流の発生抑
制は、回転基板ホルダー上に載置されたウエハ直上のガ
ス流が、ウエハ中心から外周部へウエハ面に平行に流れ
ることを妨害されることなく均等となる。そのため基板
外周部での気相中のドーパントの再取込が生じることも
なく、面内抵抗値分布が均一な高品質な薄層形成ウエハ
基板を得ることができる。更に、反応炉上部を細くした
ことから、比較的少ないキャリアガス量で回転基板保持
体軸方向のガス流速を高くすることができ、従来の装置
に比しキャリアガス量が低減される。
The vapor phase thin film growth apparatus of the present invention is configured as described above, and suppresses generation of a gas vortex caused by a reaction gas rising phenomenon generated along a reaction furnace wall in a conventional vapor phase thin film growth apparatus. It can be suppressed by changing the furnace shape to make it smaller than the lower diameter to eliminate the generation space, and at the same time, it can prevent the rise of the gas phase temperature in the upper part of the reactor, so the uniform nucleus of the raw material gas for thin film formation such as silicon Generation is suppressed and particles generated in the gas phase are reduced. Therefore, it is possible to prevent the particles from adhering to the reaction furnace wall and shortening the maintenance cycle, from adhering to the wafer to cause crystal defects, and from directly adhering particles and deteriorating the quality of the wafer. Further, the generation of the gas vortex is suppressed uniformly without obstructing the flow of the gas just above the wafer placed on the rotating substrate holder from flowing from the center of the wafer to the outer periphery in parallel with the wafer surface. Therefore, a high-quality thin-layer-formed wafer substrate having a uniform in-plane resistance value distribution can be obtained without re-uptake of the dopant in the gas phase at the outer peripheral portion of the substrate. Furthermore, since the upper part of the reactor is made thinner, the gas flow velocity in the axial direction of the rotating substrate holder can be increased with a relatively small amount of carrier gas, and the amount of carrier gas is reduced as compared with the conventional apparatus.

【0012】また、反応炉の小径の上部の下端と大径の
下部の上端とを連結する連結部に整流ガス流出孔を配備
して、水素等の整流用ガスを所定流速で流出することが
できることから、回転基板ホルダー上に発生する中心か
ら外周へのガス流れが整流されて、前記した反応炉上部
径を下部より細くすることにより生じる回転基板ホルダ
ー外周側の径の拡大する下部でのいわゆるガス流の荒れ
を抑制することができる。それにより、拡大径の連結部
内壁や反応炉下部へのパーティクル付着や薄膜形成成分
の析出を防止することができる。更に、反応炉上部径、
反応炉下部径及び回転基板保持体直径の比率を所定とす
ることから、反応炉内のガスの上昇流を防止してパーテ
ィクル発生を減少させると共に、ガス渦流やガス流の荒
れの発生を防止することができ、更に、炉壁に付着した
パーティクルが回転基板保持体上のウエハ基板上に落下
することを回避することができる。
In addition, a rectifying gas outflow hole may be provided at a connecting portion connecting the lower end of the upper portion of the small diameter and the upper end of the lower portion of the large diameter of the reactor, so that a rectifying gas such as hydrogen flows out at a predetermined flow rate. Since it is possible, the gas flow from the center to the outer periphery generated on the rotating substrate holder is rectified, and the so-called lower portion in which the diameter of the outer periphery of the rotating substrate holder is increased by making the reactor upper diameter smaller than the lower portion. Roughness of the gas flow can be suppressed. As a result, it is possible to prevent particles from adhering to the inner wall of the enlarged diameter connecting portion or the lower part of the reactor and the deposition of thin film forming components. Furthermore, the reactor upper diameter,
Since the ratio of the lower diameter of the reactor and the diameter of the rotating substrate holder is set to a predetermined value, it is possible to prevent the upward flow of gas in the reactor to reduce the generation of particles, and to prevent the generation of gas vortex and rough gas flow. Further, it is possible to prevent the particles attached to the furnace wall from dropping on the wafer substrate on the rotating substrate holder.

【0013】更にまた、回転基板保持体を、反応炉下部
で連結部の上端である反応炉の上部下端より下方に高低
差を有して配設し、特に、回転基板保持体上面に形成さ
れるガス流の遷移層厚より大きい高低差とすることか
ら、上部下端が円滑なガス流れを妨害することがなく、
また、ガスの上昇流を防止して、ガス渦流やガス流の荒
れが発生することがなく、結晶欠陥がなく高品質の薄膜
形成ウエハ基板を得ることができる。また、本発明の気
相薄膜成長方法は、上記の装置を用いると共に、反応ガ
スの導入流速、連結部からの整流用ガスの流出流速及ぶ
回転基板保持体の回転速度等を制御して、回転基板保持
体上に形成されるガス流の遷移層厚より、回転基板保持
体上面と反応炉上部下部との高低差を大きいすることか
ら、同様に結晶欠陥がなく高品質の薄膜をウエハ基板上
に気相成長させることができる。なお、本発明におい
て、遷移層とは、整流板を経て供給された原料ガス流
が、回転基板保持体上において中心から外周辺部方向へ
のベクトルを有して流れるガス層をいい、遷移層厚は回
転基板保持体上における上記ベクトルを有するガス流の
厚さをいう。
Further, the rotating substrate holder is disposed with a difference in height below the lower end of the reaction furnace, which is the upper end of the connecting portion, at the lower part of the reactor, and is particularly formed on the upper surface of the rotating substrate holder. Since the height difference is larger than the transition layer thickness of the gas flow, the upper and lower ends do not obstruct the smooth gas flow,
Further, by preventing the upward flow of the gas, a gas vortex or a rough gas flow does not occur, and a high-quality thin film-formed wafer substrate having no crystal defects can be obtained. In addition, the vapor phase thin film growth method of the present invention uses the above-described apparatus and controls the rotation speed of the rotating substrate holder by controlling the flow velocity of the reaction gas, the flow velocity of the rectifying gas from the connection part, and the rotation speed. Since the height difference between the upper surface of the rotating substrate holder and the lower part of the reactor is larger than the transition layer thickness of the gas flow formed on the substrate holder, a high-quality thin film with no crystal defects is similarly deposited on the wafer substrate. Vapor phase growth. In the present invention, the transition layer refers to a gas layer in which the source gas flow supplied via the current plate flows with a vector from the center to the outer peripheral direction on the rotating substrate holder. The thickness refers to the thickness of the gas flow having the above vector on the rotating substrate holder.

【0014】[0014]

【発明の実施の形態】以下、本発明の一実施例を図面に
基づきに詳細に説明する。但し、本発明は下記実施例に
より制限されるものでない。図1は本発明の気相薄膜成
長装置の一実施例の概略断面説明図である。図1におい
て、反応炉10は上部1と下部2とに区分され上部1が
下部2より細く形成される。即ち、上部内径D1 が下部
内径D2 より小さくD1 <D2 である。反応炉10を区
分する上下部の各高さH1 及びH2 の比、即ち、区分比
率は特に制限されるものでなく、下部2内に回転基板保
持体等が所定に配設されればよい。通常、H1 /H2
0.5〜2.0である。反応炉10は、大径の下部2の
上端部Uと小径の上部1の下端部Bとが連結部18によ
り接続され、上下部の径は異なるが反応炉の内部中空間
が連続される。また、反応炉上部1の側壁面は、通常、
下部2の側壁面と平行に垂直に形成され、回転基板保持
体上面に対し垂直に形成される。上記の上部下端Bと下
部上端Uとの連結部18は、通常、水平に形成するが、
特に制限されるものでなく傾斜状や曲面状に形成しても
よい。本発明の気相薄膜成長装置の反応炉には、上記連
結部18には整流用ガスを流出するための整流ガス流出
孔18aが複数穿設される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below in detail with reference to the drawings. However, the present invention is not limited by the following examples. FIG. 1 is a schematic sectional explanatory view of one embodiment of a vapor phase thin film growth apparatus of the present invention. In FIG. 1, a reactor 10 is divided into an upper part 1 and a lower part 2, and the upper part 1 is formed thinner than the lower part 2. That is, the upper inner diameter D 1 is D 1 <D 2 smaller than the lower inner diameter D 2. The ratio between the heights H 1 and H 2 of the upper and lower parts of the reactor 10, that is, the division ratio is not particularly limited, as long as a rotating substrate holder or the like is provided in the lower part 2 in a predetermined manner. Good. Usually, H 1 / H 2 =
0.5 to 2.0. In the reactor 10, the upper end U of the large-diameter lower portion 2 and the lower end B of the small-diameter upper portion 1 are connected by a connecting portion 18, and the inner space of the reactor is continuous although the upper and lower portions have different diameters. Also, the side wall surface of the reactor upper part 1 is usually
The lower substrate 2 is formed perpendicular to the side wall surface and perpendicular to the upper surface of the rotating substrate holder. The connecting portion 18 between the upper lower end B and the lower upper end U is usually formed horizontally,
It is not particularly limited, and may be formed in an inclined shape or a curved shape. In the reactor of the vapor phase thin film growth apparatus of the present invention, a plurality of rectification gas outlet holes 18a for rectifying gas to flow out are formed in the connecting portion 18.

【0015】図1において、更に、大径の反応炉下部2
には、ウエハ基板11を載置する回転基板保持体12が
回転軸13により回転自在に支持され配設され、その下
方には回転基板保持体12及びその上に載置されるウエ
ハ基板11とを加熱するヒータ14が配設される。回転
基板保持体12は、上面が反応炉上部下端Bより所定の
高低差(H)を有して下方に位置して配設される。回転
軸13には回転駆動するモータ(図示せず)が接続され
る。また、反応炉10底部には未反応ガス等を排気する
複数の排気口15、15が配設される。一方、反応炉上
部1には、頂部に複数の反応ガス供給口16、16が配
設され、例えばシラン(SiH4 )、ジクロロシラン
(SiH2 Cl2 )等の原料ガス及び水素(H2 )、ヘ
リウム(He)、アルゴン(Ar)等のキャリアガスの
反応ガスが供給される。反応炉上部1内の上方は頂部と
所定の空間域Sを保持して複数の孔17aが穿設された
円盤状の整流板17が、供給ガスが偏流路を形成するこ
とがないように反応炉上部の内周面に密接して配備され
る。
In FIG. 1, a large-diameter reactor lower part 2
A rotating substrate holder 12 on which a wafer substrate 11 is placed is rotatably supported by a rotating shaft 13 and disposed below the rotating substrate holder 12 and a wafer substrate 11 placed thereon. Is provided. The rotating substrate holder 12 is disposed so that the upper surface is located below the lower end B of the reactor with a predetermined height difference (H). The rotating shaft 13 is connected to a motor (not shown) for rotationally driving. Further, a plurality of exhaust ports 15 for exhausting unreacted gas and the like are provided at the bottom of the reactor 10. On the other hand, a plurality of reaction gas supply ports 16 and 16 are provided at the top of the upper part of the reaction furnace 1, for example, a raw material gas such as silane (SiH 4 ) and dichlorosilane (SiH 2 Cl 2 ) and hydrogen (H 2 ). , Helium (He), argon (Ar), or other carrier gas. Above the upper part of the reactor upper part 1, a disk-shaped rectifying plate 17 having a plurality of holes 17a formed therein while holding a top part and a predetermined space area S reacts so that the supply gas does not form a deviated flow path. It is arranged close to the inner peripheral surface of the furnace upper part.

【0016】上記連結部18に穿設された整流ガス流出
孔18aからは、未反応ガスの排気口15、15への流
れを円滑に行うために整流用ガスが流出される。整流用
ガスとしては、一般に上記キャリアガスが用いられ、通
常、反応炉頂部のガス供給口16、16から供給される
キャリアガスと同一のガスが流出される。これにより反
応ガスがウエハ基板11に達し薄膜成長に供された後、
未反応ガスがガス渦流やガス流の荒れを生じることなく
回転基板保持体12外周側から円滑に流通して排気口1
5、15から排出することができる。整流ガス流出孔1
8aへの整流用ガスの導入は、各整流ガス流出孔18a
から均等に整流用ガスが流出されればよく特に制限され
ない。例えば、整流ガス流出孔18a毎に導入管を配備
してそれぞれ各別に整流用ガスを導入することもでき
る。また、図1に示したように、連結部18上に整流ガ
ス流出孔18aを気密に包囲して、整流ガス供給口Iを
有する整流ガス導入空間部19を配設し、整流ガス導入
空間部19に整流用ガスを供給してもよい。この場合、
整流ガス供給口I’を有する整流ガス導入空間部19’
のように、反応炉上部1の外周面全域を包囲して反応炉
10の上部を二重環形状に形成し、中空内部を反応炉上
部1とし、中空環状部を整流ガス導入空間部とすること
もできる。この二重環形状は、反応炉の製造上簡便であ
り好ましい。
A rectifying gas is discharged from a rectifying gas outlet hole 18a formed in the connecting portion 18 in order to smoothly flow the unreacted gas to the exhaust ports 15, 15. As the rectifying gas, the above-mentioned carrier gas is generally used, and usually, the same gas as the carrier gas supplied from the gas supply ports 16 at the top of the reactor is discharged. As a result, after the reaction gas reaches the wafer substrate 11 and is provided for thin film growth,
The unreacted gas flows smoothly from the outer peripheral side of the rotating substrate holder 12 without causing a gas swirl or a rough gas flow, and the exhaust port 1
5 and 15 can be discharged. Rectifying gas outlet 1
The rectifying gas is introduced into each rectifying gas outlet 18a.
There is no particular limitation as long as the rectifying gas flows out of the tank uniformly. For example, an introduction pipe can be provided for each rectifying gas outlet 18a, and rectifying gas can be separately introduced. Further, as shown in FIG. 1, a rectifying gas introduction space 19 having a rectification gas supply port I is provided on the connecting portion 18 so as to hermetically surround the rectification gas outlet 18a. A rectifying gas may be supplied to 19. in this case,
Rectifying gas introduction space 19 'having a rectifying gas supply port I'
The upper portion of the reactor 10 is formed in a double ring shape surrounding the entire outer peripheral surface of the upper portion 1 of the reactor as described above, the hollow interior is defined as the reactor upper portion 1, and the hollow annular portion is defined as the rectifying gas introduction space. You can also. This double ring shape is preferable because it is simple in the production of the reactor.

【0017】本発明の気相薄膜成長装置は、上記のよう
に回転基板保持体12は、その上面が反応炉上部1の下
端Bより下方で所定の高低差Hを有する。この高低差H
は、通常、回転基板保持体12上部に供給されるガス流
の遷移層、即ち、図1に矢印にて示したように整流板1
7を経て供給された原料ガス等のガス流が回転基板保持
体12上で中心から外周辺部方向へのベクトルを有する
ガス層の厚さ(T)より大きくなるようにする。この高
低差Hが遷移層厚Tより小さいと、回転基板保持体12
上のウエハ基板11の中心から外周部へのガス流れが、
反応炉上部1の下端Bにより阻害され、反応炉内壁に沿
って上方への舞上り現象が生じガス渦流の発生を助長す
るため、連結部18や反応炉下部2の内壁への析出物が
多量となるためである。また、回転基板保持体12上面
は、反応炉上部1と下部2の連結部18と同一水平面内
にあることが好ましい。
In the vapor phase thin film growth apparatus of the present invention, the upper surface of the rotary substrate holder 12 has a predetermined height difference H below the lower end B of the upper part 1 of the reactor as described above. This height difference H
Is a transition layer of the gas flow supplied to the upper part of the rotating substrate holder 12, that is, the current plate 1 as shown by the arrow in FIG.
The gas flow of the source gas or the like supplied through 7 is made larger than the thickness (T) of the gas layer having a vector from the center to the outer peripheral portion on the rotating substrate holder 12. If the height difference H is smaller than the transition layer thickness T, the rotating substrate holder 12
The gas flow from the center of the upper wafer substrate 11 to the outer periphery is
It is obstructed by the lower end B of the upper part 1 of the reactor, and a rising phenomenon occurs along the inner wall of the reactor to promote the generation of a gas vortex, so that a large amount of precipitates are formed on the connecting part 18 and the inner wall of the lower part 2 of the reactor. This is because Further, it is preferable that the upper surface of the rotating substrate holder 12 be in the same horizontal plane as the connecting portion 18 between the upper part 1 and the lower part 2 of the reactor.

【0018】上記の回転基板保持体12上でのガス流の
遷移層厚さTは、従来から用いられる一般的な反応炉に
おいて、主に反応炉内の雰囲気ガスの種類、反応炉内圧
力、回転基板保持体の回転数により変化するが、下記式
(1)で算出することができる。下記式(1)は、流体
力学において一般的に示されるものである。 T=3.22(ν/ω)1/2 (1) (但し、νは反応炉内反応ガスの動粘性係数(mm2
s)を、ωは回転の角速度(rad/s)をそれぞれ表
示する。)この場合、ωは気相薄膜成長装置での薄膜形
成稼働中の最小値を採るものとする。例えば、原料ガス
がシランガス、キャリアガスが水素ガスであり、回転基
板保持体の回転数が500〜2000rpm(52〜2
09rad/s)である場合は、遷移層厚Tは約5〜5
0mmとなる。従って、小径の反応炉上部1の下端Bか
ら上記のT値より大きな高低差Hで回転基板保持体上面
が位置するように配設することが好ましい。これによ
り、ウエハ基板上の中心から外周へのガス流れが円滑と
なり炉内壁に薄膜形成原料のパーティクルの付着がな
く、また得られる薄膜形成ウエハは結晶相に欠陥が無
く、均一な薄膜が形成される。
The transition layer thickness T of the gas flow on the rotating substrate holder 12 is mainly determined by the type of atmospheric gas in the reactor, the pressure in the reactor, Although it changes depending on the number of rotations of the rotating substrate holder, it can be calculated by the following equation (1). Equation (1) below is generally expressed in hydrodynamics. T = 3.22 (ν / ω) 1/2 (1) (where ν is the kinematic viscosity coefficient of the reaction gas in the reactor (mm 2 /
s) and ω represents the angular velocity of rotation (rad / s). In this case, ω takes the minimum value during the operation of forming a thin film in the vapor phase thin film growth apparatus. For example, the source gas is a silane gas, the carrier gas is a hydrogen gas, and the rotation speed of the rotating substrate holder is 500 to 2000 rpm (52 to 2 rpm).
09 rad / s), the transition layer thickness T is about 5 to 5
0 mm. Therefore, it is preferable that the upper surface of the rotating substrate holder is located at a height difference H larger than the T value from the lower end B of the upper portion 1 of the small diameter reactor. As a result, the gas flow from the center to the outer periphery on the wafer substrate is smooth, and there is no adhesion of the particles of the thin film forming raw material on the inner wall of the furnace, and the obtained thin film forming wafer has no defects in the crystal phase and a uniform thin film is formed. You.

【0019】また、本発明の気相薄膜成長装置の異なる
径を有する上下部からなる反応炉において、反応炉上部
1の小径D1 、下部2の大径D2 、回転基板保持体12
の直径DS とが、それぞれ下記のような比率関係にある
ことが好ましい。例えば、D1 がウエハ直径より大き
く、(1)D2 /D1 比が1.2以上(D2 /D1
1.2)である。D1 がウエハ直径より小さいと、炉上
部1内壁面から脱落したパーティクルが、回転基板保持
体12上に載置したウエハ基板に付着し易く、結果的に
LPD(ウエハ表面レーザー散乱体(パーティクルを含
む))として計測される結晶欠陥が増加するためであ
る。また、通常気相薄膜成長工程で行われるウエハ基板
外周部の赤外線による非接触温度測定が困難となるため
である。一方、D2 /D1 比が1.2より小さいと、反
応炉壁に沿ってガス流の上方への舞上り現象が生じガス
渦流が発生し、反応炉上部径を細くしてガス舞上り現象
を防止しガス渦流の発生の抑制効果が低下するためであ
る。
Further, in the vapor phase thin film growth apparatus according to the present invention, in the reactor having upper and lower parts having different diameters, the small diameter D 1 of the upper part of the reactor, the large diameter D 2 of the lower part 2 , the rotating substrate holder 12
The diameter D S of, preferably in the respective proportional relationship as follows. For example, D 1 is larger than the wafer diameter, and (1) the D 2 / D 1 ratio is 1.2 or more (D 2 / D 1
1.2). If D 1 is smaller than the wafer diameter, particles that have fallen from the inner wall surface of the furnace upper part 1 are likely to adhere to the wafer substrate placed on the rotating substrate holder 12, and as a result, LPD (wafer surface laser scatterer (particles This is because the number of crystal defects measured as (included)) increases. Another reason is that it is difficult to measure the non-contact temperature of the peripheral portion of the wafer substrate using infrared rays, which is usually performed in the vapor phase thin film growth step. On the other hand, when the ratio D 2 / D 1 is smaller than 1.2, a gas flow upwards along the reactor wall and a gas vortex is generated, thereby reducing the diameter of the upper portion of the reactor and causing the gas to rise. This is because the phenomenon is prevented and the effect of suppressing the generation of the gas vortex is reduced.

【0020】(2)D1 /DS 比が0.7〜1.2
(0.7≦D1 /DS ≦1.2)にある。D1 /DS
が0.7より小さいと、上部1の壁面が回転基板保持体
12上に載置されたウエハ基板に近接し過ぎて炉内壁面
から脱落したパーティクルがウエハ基板に付着し易くな
る。そのため、上記D1 がウエハ基板直径より小さい場
合と同様に、LPDとして測定される結晶欠陥が増加し
薄膜形成ウエハ基板の品質が低下するためである。一
方、D1 /DS 比が1.2より大きいと、D2 /D1
が1.2より小さい場合と同様に、反応炉内壁に沿って
ガス流が上方への舞上り現象が生じガス渦流の発生が起
こる等の不都合があるためである。(3)D2/DS
が1.2以上(D2 /DS ≧1.2)である。D2 /D
S 比が1.2より小さいと、回転基板保持体12外側の
ガス流の荒れが抑制できないため、回転基板保持体12
外側に対向する反応炉内壁にパーティクルが付着した
り、未反応ガスが回転基板保持体12の下方で反応して
反応炉下部2の内壁に薄膜形成成分が析出するためであ
る。
[0020] (2) D 1 / D S ratio is 0.7 to 1.2
(0.7 ≦ D 1 / D S ≦ 1.2). When the D 1 / D S ratio is smaller than 0.7, the particles that have fallen off from the inner wall of the furnace adhere to the wafer substrate because the wall surface of the upper part 1 is too close to the wafer substrate placed on the rotating substrate holder 12. It will be easier. Therefore, because the above-mentioned D 1 is as if smaller than the wafer substrate diameter, the quality of the increased crystal defects measured as LPD film formed wafer substrate is reduced. On the other hand, when the D 1 / D S ratio is larger than 1.2, the gas flow rises upward along the inner wall of the reactor as in the case where the D 2 / D 1 ratio is smaller than 1.2. This is because there is a disadvantage such as generation of a gas vortex. (3) The D 2 / D S ratio is 1.2 or more (D 2 / D S ≧ 1.2). D 2 / D
If the S ratio is less than 1.2, the roughness of the gas flow outside the rotating substrate holder 12 cannot be suppressed.
This is because particles adhere to the inner wall of the reaction furnace facing the outside or unreacted gas reacts below the rotating substrate holder 12 to deposit a thin film forming component on the inner wall of the lower part 2 of the reaction furnace.

【0021】上記したように本発明の気相薄膜成長装置
は、反応炉が上下部で区分されて異なる径を有して連続
する中空筒体で、異なる径の上下部の連結部に整流ガス
流出孔を有し、且つ、各部材を上記した所定に配設する
以外は、前記の従来の気相薄膜成長装置の同一径の中空
筒体からなる反応炉とほぼ様にして設計、製造すること
ができる。また、本発明の気相薄膜成長装置を用いて行
う気相成長方法も同様に行うことができる。上記のよう
に構成された本発明の気相薄膜成長装置において、排気
口15、15に接続されている排気制御装置により反応
炉10内を排気し、炉内圧力、例えば原料ガスやキャリ
アガスの反応ガスで20〜50torrに調整する。一
方、回転基板保持体12はモータを稼働し回転軸13の
回転駆動により回転し、その上のウエハ基板11が同時
に回転させられると同時に、ヒータ14により回転基板
保持体12上のウエハ基板11は、例えば約900〜1
200℃に加熱される。また同時に、複数の反応ガス供
給口16、16からは流量を所定に制御しながら原料ガ
ス及びキャリアガスからなる反応ガスを反応炉10内に
供給する。複数の反応ガス供給口16、16から空間域
Sに供給されるガス流は、運動量や圧力分布が均一化さ
れ、更に、整流板17の孔17aを通過することにより
反応炉内のガス流速分布を均一にして基板上に供給さ
れ、基板上に薄膜を均一に気相成長させることができ
る。本発明の気相薄膜成長装置においては、上記反応ガ
スの供給と同時に、連結部18の整流ガス流出口18a
から整流用ガスとして通常キャリアガスと同一ガスを流
出する。
As described above, in the vapor phase thin film growth apparatus of the present invention, the reaction furnace is a continuous hollow cylindrical body having different diameters divided into upper and lower portions, and rectifying gas is connected to the upper and lower connecting portions of different diameters. Except for having an outflow hole and arranging the respective members in the above-described predetermined manner, the design and manufacture are performed in substantially the same manner as the reaction furnace having the same diameter hollow cylinder of the conventional vapor phase thin film growth apparatus described above. be able to. A vapor phase growth method using the vapor phase thin film growth apparatus of the present invention can be similarly performed. In the vapor phase thin film growth apparatus of the present invention configured as described above, the inside of the reaction furnace 10 is evacuated by the exhaust control device connected to the exhaust ports 15, 15, and the pressure in the furnace, for example, the source gas or carrier gas. The reaction gas is adjusted to 20 to 50 torr. On the other hand, the rotating substrate holder 12 is rotated by the rotation of the rotating shaft 13 by operating the motor, and the wafer substrate 11 thereon is simultaneously rotated. At the same time, the wafer substrate 11 on the rotating substrate holder 12 is For example, about 900-1
Heat to 200 ° C. At the same time, a reaction gas composed of a source gas and a carrier gas is supplied into the reaction furnace 10 from the plurality of reaction gas supply ports 16 while controlling the flow rate to a predetermined value. The gas flow supplied to the space region S from the plurality of reaction gas supply ports 16 and 16 has a uniform momentum and pressure distribution, and furthermore, a gas flow distribution in the reaction furnace is obtained by passing through the holes 17 a of the current plate 17. Is supplied onto the substrate so that the thin film can be uniformly vapor-phase grown on the substrate. In the vapor phase thin film growth apparatus of the present invention, the rectifying gas outlet 18a
As a rectifying gas, the same gas as the normal carrier gas flows out.

【0022】この場合、反応ガス供給口16からの反応
ガス流速(GC )と連結部18の整流ガス流出孔から導
入される整流用ガス流速(GI )の比(GI /GC )が
0.05〜2(0.05≦GI /GC ≦2)となるよう
に流出することが好ましい。GI /GC が0.05未満
であると、回転基板保持体12外側に位置する反応炉下
部の径の拡大部分でガス流の荒れが生じるため好ましく
ない。また、GI /GC が2を超えると、同様に回転基
板保持体12外側の径拡大部分でのガス流速が早くなり
すぎ、回転基板保持体12上での回転基板保持体12中
心から外周への円滑なガス流れを阻害するため、均一厚
で均質な薄膜成長ができず好ましくない。反応ガス供給
口からの反応ガスとの比率GI /GC が上記範囲内で整
流用ガスを連結部18の整流ガス流出孔18aより流出
することにより、回転基板保持体上の反応ガスの流れ及
び回転基板保持体外周側から反応炉下部中空間への未反
応ガスの流れが、ガス渦流やガス流れ荒れを生じること
なく円滑に行われる。これにより、結晶欠陥が少なく均
質な高品質の薄膜形成ウエハ基板を得ることができる。
In this case, the ratio (G I / G C ) of the flow rate (G C ) of the reaction gas from the reaction gas supply port 16 to the flow rate (G I ) of the rectifying gas introduced from the rectifying gas outlet of the connecting portion 18. There it is preferable to flow out so that 0.05~2 (0.05 ≦ G I / G C ≦ 2). If G I / G C is less than 0.05, the gas flow becomes rough at a portion where the diameter of the lower portion of the reactor located outside the rotary substrate holder 12 is increased, which is not preferable. If G I / G C exceeds 2, the gas flow rate at the enlarged diameter portion on the outside of the rotary substrate holder 12 is similarly too high, and the center of the rotary substrate holder 12 on the rotary substrate Since a smooth gas flow to the substrate is hindered, a uniform thickness and uniform thin film cannot be grown, which is not preferable. The rectifying gas flows out of the rectifying gas outlet hole 18a of the connecting portion 18 when the ratio G I / G C with the reactive gas from the reactive gas supply port is within the above range. In addition, the flow of the unreacted gas from the outer periphery of the rotating substrate holder to the lower space in the reactor is smoothly performed without causing gas vortex or gas flow roughness. This makes it possible to obtain a uniform high-quality thin-film-formed wafer substrate having few crystal defects.

【0023】上記連結部に設けられる整流ガス流出孔の
配置は、上方へのガスの舞上りによるガス渦流の発生と
反応炉の径拡大部でのガス流の荒れの発生を防止できれ
ばよく、反応炉の容量、反応ガスの種類、反応ガス流
速、回転基板保持体の回転速度等反応条件に応じて適宜
選択することができ、特に制限されるものでない。通
常、図1の矢印で示した整流ガス流れのように、ガス流
出速度が均等に分布するように連結部18全域に同一径
の流出孔を均等に配置する。また、整流用ガスの流出速
度分布に勾配をもたせるために、整流ガス流出孔の孔径
が所定の分布で孔径を変化させて配置してもよい。例え
ば、図2に示す気相薄膜成長装置の他の実施例の模式図
において、連結部28の整流ガス流出孔28aからの整
流ガスの流れを矢印で示したように、連結部からの整流
ガス流速が反応炉下部2の内周壁側で速く中心側で遅く
なるように流速分布に勾配を有するように流出させるこ
とができる。なお、図2において、図1に示した装置と
同様の部材は、一の位の数値を同一にして付すか、又は
同一の符号で示した(以下、同様とする)。上記のよう
な内周壁側から中心方向へ流速が遅くなる整流用ガス流
に勾配を持たせるためには、例えば、図3の連結部28
部分の平面模式図に示したように整流ガス流出孔28a
を配置することができる。即ち、流出孔を内周壁側に多
く中心側に少なく配置して穿設する方式である。このよ
うに整流用ガスを所定の流速勾配を有するように流出す
ることにより、ガス渦流やガス流の荒れの発生を防止し
反応ガスの流れを整流して、未反応ガスを反応炉下部か
ら円滑に排気するために効果的である。
The arrangement of the straightening gas outflow holes provided in the above-mentioned connecting portion is only required to prevent generation of a gas vortex due to rising of the gas upward and generation of a rough gas flow in the enlarged diameter portion of the reactor. It can be appropriately selected according to reaction conditions such as the capacity of the furnace, the type of the reaction gas, the flow rate of the reaction gas, the rotation speed of the rotating substrate holder, and is not particularly limited. Normally, like the rectified gas flow indicated by the arrow in FIG. 1, outflow holes having the same diameter are uniformly arranged over the entire connecting portion 18 so that the gas outflow speed is evenly distributed. Further, in order to provide a gradient in the outflow velocity distribution of the rectifying gas, the rectifying gas outflow holes may be arranged so that the hole diameters are changed in a predetermined distribution. For example, in the schematic diagram of another embodiment of the vapor phase thin film growth apparatus shown in FIG. 2, the flow of the rectifying gas from the rectifying gas outlet hole 28a of the connecting portion 28 is indicated by an arrow, as shown by an arrow. The flow can be discharged so as to have a gradient in the flow velocity distribution so that the flow velocity is high on the inner peripheral wall side of the lower part of the reactor 2 and slow on the central side. In FIG. 2, the same members as those in the apparatus shown in FIG. 1 are given the same numerical values in the first place, or are denoted by the same reference numerals (the same applies hereinafter). In order to give a gradient to the rectifying gas flow whose flow velocity becomes slower from the inner peripheral wall side toward the center as described above, for example, the connecting portion 28 shown in FIG.
As shown in the schematic plan view of FIG.
Can be arranged. In other words, a method is used in which a large number of outflow holes are provided on the inner peripheral wall side and less provided on the center side. By flowing the rectifying gas in such a manner as to have a predetermined flow velocity gradient, it is possible to prevent the generation of a gas vortex or a rough gas flow, rectify the flow of the reaction gas, and smoothly flow the unreacted gas from the lower part of the reactor. It is effective for exhausting.

【0024】本発明において、整流用ガスの流出方向は
特に制限されない。通常、上記の図1及び図2に示した
ように回転基板保持体面に垂直に流出させる。しかし、
必要に応じて垂直方向以外の方向に流出することもでき
る。即ち、連結部に整流ガス流出孔を回転基板保持体の
回転軸に平行な垂直方向でなく角度を有するように穿設
させることにより、その整流ガス流出孔から整流用ガス
を回転基板保持体の回転軸に対して所定角度で流出させ
ることができる。例えば、図4は連結部領域の一例の拡
大部分断面説明図である。図4において、連結部48の
整流ガス流出孔48aは、反応炉の内周壁方向へ所定角
度で傾斜して穿設されている。整流ガス流出孔48aか
らの整流ガスは、内周壁方向へ回転軸から遠ざかるよう
に流出する。このような整流ガス流出孔構造は、回転体
近傍のガス流れを荒ささないため好ましい。この場合の
傾斜角度は、通常、回転基板保持体の回転軸に対し約1
0〜80度で反応炉の内周壁方向へ傾斜させる。回転軸
方向へ傾斜させた場合は回転体近傍から掃き出されたガ
ス流れを荒すため好ましくない。
In the present invention, the flow direction of the rectifying gas is not particularly limited. Usually, as shown in FIG. 1 and FIG. But,
If necessary, it can flow out in a direction other than the vertical direction. In other words, by rectifying gas outflow holes in the connecting portion so as to have an angle instead of a vertical direction parallel to the rotation axis of the rotating substrate holder, the rectifying gas flows out of the rectifying gas outflow holes of the rotating substrate holder. It can be discharged at a predetermined angle with respect to the rotation axis. For example, FIG. 4 is an enlarged partial cross-sectional explanatory view of an example of the connecting portion region. In FIG. 4, the straightening gas outlet hole 48a of the connecting portion 48 is formed so as to be inclined at a predetermined angle toward the inner peripheral wall of the reactor. The rectifying gas from the rectifying gas outlet hole 48a flows away from the rotation axis in the direction of the inner peripheral wall. Such a straightening gas outlet hole structure is preferable because the gas flow near the rotating body is not roughened. In this case, the inclination angle is usually about 1 to the rotation axis of the rotating substrate holder.
It is inclined at 0 to 80 degrees toward the inner peripheral wall of the reactor. It is not preferable to incline in the direction of the rotation axis because the gas flow swept out from the vicinity of the rotating body is roughened.

【0025】また、整流用ガスを回転基板保持体の回転
方向と一致して流出させてもよい。例えば、図5は、円
環状連結部58の整流ガス流出孔58aを周方向に所定
角度で傾斜させ穿設した連結部部分の一例を一部切欠い
て示した斜視模式図である。図5において、ガス流入面
の整流ガス流出孔58aの孔口58Xから周方向に傾斜
して裏面のガス流出面の孔口58Yに連通するように穿
設されている。整流ガス流出孔58aからの整流用ガス
は、回転基板保持体の回転と同一の周方向に流出する。
この整流ガス流出孔構造は、回転体近傍のガス流れを荒
さないため好ましい。この場合の傾斜角度も、通常、連
結部のガス流入面に対し約10〜80度で周方向に傾斜
させる。更に、整流ガス流出孔を周方向に傾斜すると同
時に径の中心方向にも傾斜させて、回転基板保持体の回
転方向に整流用ガスを流出することもできる。図6は円
環状連結部68の整流ガス流出孔68aを周方向及び円
環中心方向に所定角度で傾斜させ穿設した連結部部分の
一例を示した平面模式図である。図6において、ガス流
入面6Fの整流ガス流出孔68aの孔口68Xから周方
向及び円環中心方向に傾斜して裏面のガス流出面の孔口
68Yに連通するように穿設されている。整流ガス流出
孔68aから整流用ガスは、回転基板保持体の回転方向
と同一方向に回転するように流出する。この整流ガス流
出孔構造は、回転体近傍のガス流れを荒さないため好ま
しい。この場合の傾斜角度は、通常、連結部のガス流入
面に対し約10〜80度で、且つ、周方向に対し約10
〜80度に傾斜させる。
The rectifying gas may be caused to flow out in the same direction as the rotating direction of the rotating substrate holder. For example, FIG. 5 is a schematic perspective view in which an example of a connection portion formed by inclining a straightening gas outlet hole 58a of the annular connection portion 58 at a predetermined angle in a circumferential direction is partially cut away. In FIG. 5, a hole is formed in the gas inflow surface 58A of the rectifying gas outflow hole 58a so as to be inclined in the circumferential direction so as to communicate with the hole 58Y of the gas outflow surface on the back surface. The rectifying gas from the rectifying gas outlet hole 58a flows out in the same circumferential direction as the rotation of the rotating substrate holder.
This straightening gas outlet hole structure is preferable because the gas flow near the rotating body is not roughened. The inclination angle in this case is also generally inclined in the circumferential direction at about 10 to 80 degrees with respect to the gas inflow surface of the connecting portion. Further, the rectifying gas outflow hole can be inclined in the circumferential direction and at the same time in the center direction of the diameter so that the rectifying gas can flow out in the rotating direction of the rotating substrate holder. FIG. 6 is a schematic plan view showing an example of a connecting portion in which the straightening gas outflow hole 68a of the annular connecting portion 68 is inclined at a predetermined angle in the circumferential direction and the center of the annular shape. In FIG. 6, a hole is formed in the gas inflow surface 6F so as to be inclined from the opening 68X of the rectifying gas outflow hole 68a in the circumferential direction and the center of the annular shape so as to communicate with the opening 68Y in the gas outflow surface on the back surface. The rectifying gas flows out from the rectifying gas outlet hole 68a so as to rotate in the same direction as the rotation direction of the rotating substrate holder. This straightening gas outlet hole structure is preferable because the gas flow near the rotating body is not roughened. In this case, the inclination angle is usually about 10 to 80 degrees with respect to the gas inflow surface of the connecting portion, and about 10 degrees with respect to the circumferential direction.
Tilt to ~ 80 degrees.

【0026】[0026]

【実施例】【Example】

実施例1〜3 前記図1に示した反応炉と同様に中空円筒に構成され、
反応炉上部内径D1 、下部内径D2 及び回転基板保持体
直径DS がそれぞれ表1に示した径を有し、また、上部
下端Bと回転基板保持体上面とが表1に示した高低差H
を有するように配設した気相成長装置を用いた。原料ガ
スとしてSiH4 ガスを、キャリアガスとしてH2 ガス
を、また、ドーパントとしてジボラン(B26 )をH
2 ガス中0.1ppm含有させたガスを、それぞれ表1
に示した流量で供給すると共に、連結部からキャリアガ
スと同じH2 ガスを整流用ガスとして表1に示した流量
で垂直方向に均一に流出した。反応ガス流速(m/s)
と整流用ガス流速(m/s)との比(GI /Gc )、反
応温度、反応圧力及び回転基板保持体の回転数を表1に
併せて示した。
Examples 1 to 3 are formed in a hollow cylinder similarly to the reaction furnace shown in FIG.
The upper inner diameter D 1 , lower inner diameter D 2, and rotating substrate holder diameter D S of the reactor have the diameters shown in Table 1, respectively, and the upper lower end B and the upper surface of the rotating substrate holder have the heights shown in Table 1. Difference H
The vapor phase growth apparatus provided so that it may have was used. SiH 4 gas is used as a source gas, H 2 gas is used as a carrier gas, and diborane (B 2 H 6 ) is used as a dopant.
Table 1 lists the gases contained in the two gases at 0.1 ppm.
And the same H 2 gas as the carrier gas was flowed out of the connection portion in the vertical direction at the flow rate shown in Table 1 as a rectifying gas. Reaction gas flow rate (m / s)
Table 1 also shows the ratio (G I / G c ) of the flow rate to the rectifying gas (m / s), the reaction temperature, the reaction pressure, and the number of rotations of the rotating substrate holder.

【0027】表1に示した気相成長条件下でシリコンウ
エハ上にB26 ドーパントシリコン薄膜の気相成長を
行った。気相成長薄膜を形成した後、使用した気相薄膜
成長装置の連結部及び反応炉下部内周壁のパーティクル
付着を目視観察し、その多少を表1に示した。また、得
られた薄膜形成ウエハ基板面の結晶相の性状についてテ
ンコール社製サーフスキャン6200を用い0.135
μm以上のLPD(ウエハ表面レーザー散乱体)の個数
を計測し、その結果をウエハ当たりの個数として表1に
示した。また、形成薄膜の膜厚を赤外干渉膜厚計により
測定し、その最大厚さ(Fmax )及び最低厚さ(F
min )を求め、薄膜厚さの均一性を(Fmax−Fmin
/(Fmax +Fmin )×100として算出して表1に示
した。また、得られた薄膜形成ウエハ基板の抵抗値をC
−V法を用いて測定し、その最大値(Rmax )及び最低
値(Rmin )を求め、ドーパント取込みによる抵抗値の
均一性を(Rmax −Rmin )/(Rmax +Rmin )×1
00として算出して表1に示した。
A B 2 H 6 dopant silicon thin film was grown on a silicon wafer under the vapor growth conditions shown in Table 1. After the vapor-phase growth thin film was formed, the adhesion of particles to the connection part of the vapor-phase growth apparatus used and the inner peripheral wall of the lower part of the reactor were visually observed. Further, the properties of the crystal phase on the surface of the obtained thin film-formed wafer substrate were measured at 0.135 using a Surfscan 6200 manufactured by Tencor Corporation.
The number of LPDs (laser scatterers on the wafer surface) of μm or more was measured, and the results are shown in Table 1 as the number per wafer. The thickness of the formed thin film was measured by an infrared interference thickness meter, and the maximum thickness (F max ) and the minimum thickness (F max ) were measured.
min ) and determine the uniformity of the thin film thickness by ( Fmax- Fmin ).
/ Calculated as (F max + F min) × 100 are shown in Table 1. The resistance value of the obtained thin film-formed wafer substrate is represented by C
The maximum value (R max ) and the minimum value (R min ) are determined using the -V method, and the uniformity of the resistance value due to the incorporation of the dopant is determined by (R max -R min ) / (R max + R min ) × 1
The calculated values are shown in Table 1.

【0028】[0028]

【表1】 [Table 1]

【0029】比較例1〜2 整流用ガスを表1に示したように極少量(比較例1)ま
たは大量(比較例2)に連結部から流出した以外は、実
施例1の反応炉と同様に構成された気相薄膜成長装置を
用い、実施例1と同様にしてシリコンウエハ上にB2
6 ドーパントシリコン薄膜の気相成長を行った。その
後、装置内の観察及び得られた薄膜形成ウエハ基板につ
いて同様に測定した結果を表1に示した。
Comparative Examples 1 and 2 Same as the reactor of Example 1 except that the rectifying gas was discharged from the connection part in a very small amount (Comparative Example 1) or a large amount (Comparative Example 2) as shown in Table 1. Using a vapor phase thin film growth apparatus configured as described above, B 2 H
Vapor-phase growth of 6- dopant silicon thin film was performed. Thereafter, the results of observation in the apparatus and measurement of the obtained thin film-formed wafer substrate in the same manner are shown in Table 1.

【0030】比較例3〜13 図7に概略断面説明図を示した気相薄膜成長装置の反応
炉70を用いて実施例1と同様にウエハ基板上にシリコ
ン薄膜を気相成長させた。図7において、反応炉70
は、小径の上部1’と大径の下部2’の上下部の内径が
異なり、上下部を接続する連結部78に整流ガス流出孔
が設けられていない以外は実施例1の気相薄膜成長装置
の反応炉と全く同様に構成されている。図1に示した装
置と同様の部材は、一の位の数値を同一番号として示す
か、または同一の符号で示した。反応炉70において、
反応炉上部内径D1 、下部内径D2 及び回転基板保持体
直径DS の比率を表2及び表3に示したように変化さ
せ、実施例1と同様にしてシリコンウエハ上にB26
ドーパントシリコン薄膜の気相成長を行った。その後、
装置内の観察及び得られた薄膜形成ウエハ基板について
同様に測定した結果を表2、表3及び表4に示した。
Comparative Examples 3 to 13 In the same manner as in Example 1, a silicon thin film was vapor-phase-grown on a wafer substrate using a reaction furnace 70 of a vapor-phase thin-film growth apparatus whose schematic sectional explanatory view is shown in FIG. Referring to FIG.
The vapor phase thin film growth of Example 1 except that the inner diameter of the upper and lower portions of the upper portion 1 'of the small diameter and the lower portion 2' of the large diameter are different, and the connecting portion 78 connecting the upper and lower portions is not provided with a rectifying gas outflow hole. It is configured exactly like the reactor of the device. The same members as those in the apparatus shown in FIG. 1 are indicated by the same numeral of the first digit or by the same reference numeral. In the reaction furnace 70,
The ratio of the upper inner diameter D 1 , lower inner diameter D 2, and rotating substrate holder diameter D S of the reactor was changed as shown in Tables 2 and 3, and B 2 H 6 was deposited on the silicon wafer in the same manner as in Example 1.
Vapor-phase growth of a dopant silicon thin film was performed. afterwards,
Tables 2, 3 and 4 show the results of observations in the apparatus and the same measurements performed on the obtained thin film-formed wafer substrates.

【0031】[0031]

【表2】 [Table 2]

【0032】[0032]

【表3】 [Table 3]

【0033】比較例14〜15 前記図8に示した従来の気相薄膜成長装置の反応炉と同
様に、即ち、上下部に区分がなく上下同径で連結部の無
い反応炉80と同様に構成された反応炉を用い、表4に
示した実施例1と同様の気相成長反応条件下でシリコン
ウエハ表面上にB26 ドーパントシリコン薄膜を形成
した。その後、装置内の観察及び得られた薄膜形成ウエ
ハ基板について同様に測定した結果を表4に示した。
Comparative Examples 14 and 15 As in the case of the reactor of the conventional vapor phase thin film growth apparatus shown in FIG. Using the reactor thus constructed, a B 2 H 6 dopant silicon thin film was formed on the silicon wafer surface under the same gas phase growth reaction conditions as in Example 1 shown in Table 4. Thereafter, the results of observation in the apparatus and measurement of the obtained thin film-formed wafer substrate in the same manner are shown in Table 4.

【0034】[0034]

【表4】 [Table 4]

【0035】上記実施例及び比較例より明らかなよう
に、反応炉を径の異なる上下部に区分し上下部の径が拡
大する連結部から整流用ガスを所定に流出させることに
より、得られる薄膜形成ウエハ基板表面の結晶相のLP
D個数も、100以下で同一条件で従来の気相成長装置
を用いた比較例14に比し、約1/300以下に低減さ
れることが分かる。更に、形成される薄膜厚の均一性が
1以下で極めて均一な薄膜が形成されることが明らかで
ある。また、抵抗値の均一性も4.4以下と結晶相の欠
陥のなさと共にドーパントの再取込みも防止され均質な
薄膜が形成されることも分かる。また、比較例15のよ
うに従来の装置でキャリアガス流量を大量に流通させた
場合は、膜厚は比較的均一でLPDも少なく結晶相も比
較的良好であるが、抵抗値の均一性が劣り、回転基板保
持体の外周側でガス流の荒れが生じたことが推定でき
る。また、反応炉下部で析出物が多く炉のメンテナンス
サイクルが短縮されることが予測できる。
As is clear from the above Examples and Comparative Examples, the thin film obtained by dividing the reaction furnace into upper and lower portions having different diameters and allowing the rectifying gas to flow out from the connecting portion where the diameters of the upper and lower portions are increased is obtained. LP of the crystalline phase on the surface of the formed wafer substrate
It can be seen that the number of D is also reduced to about 1/300 or less as compared with Comparative Example 14 using the conventional vapor phase growth apparatus under the same conditions at 100 or less. Further, it is clear that a very uniform thin film is formed when the uniformity of the formed thin film is 1 or less. Further, it can be seen that the uniformity of the resistance value is 4.4 or less, and there is no defect in the crystal phase, and also the re-incorporation of the dopant is prevented and a uniform thin film is formed. Also, when a large amount of carrier gas is circulated by the conventional apparatus as in Comparative Example 15, the film thickness is relatively uniform, the LPD is small and the crystal phase is relatively good, but the uniformity of the resistance value is low. Inferiorly, it can be estimated that the gas flow was rough on the outer peripheral side of the rotating substrate holder. Further, it can be predicted that the amount of precipitates is large at the lower part of the reactor, and the maintenance cycle of the reactor is shortened.

【0036】一方、比較例3〜13のように、上下部の
径が異なり区分された反応炉を用いた場合でも、連結部
からの整流用ガスの流出を行わない場合は、実施例と同
様の径比率の比較例3においては、従来の通常のキャリ
アガス流量の場合(比較例14)より、膜均一性、抵抗
値均一性、LPD個数、反応炉下部の析出物量の多少の
いずれも優れるものであるが、整流用ガスを流出した実
施例に比して低下していることが明らかである。また、
炉上下部の径と回転基板保持体の直径との比率を各種変
化させた場合でも、実施例に比して良好な結果を得るこ
とができないことが分かる。なお、下部径を上部径に比
し3〜4倍に大きくした比較例8及び9においては比較
的良好な薄膜が形成されるが、装置寸法が大きくなりす
ぎる等の不都合があり、また、連結部での析出物があり
結晶相の欠陥が多少増加し、反応炉のメンテナンスサイ
クルも短縮されることから好ましくない。また、反応炉
の上部下端Bと回転基板保持体上面との高低差を5mm
と近接させた比較例12においては、LPD個数が著し
く増加し、結晶相の欠陥、薄膜厚の均一性、抵抗値の均
一性が著しく損なわれることが分かる。
On the other hand, even in the case of using a reaction furnace in which the diameters of the upper and lower portions are different from each other as in Comparative Examples 3 to 13, when the outflow of the rectifying gas from the connecting portion is not performed, the same as in the example. In Comparative Example 3 having a diameter ratio of (1), all of the film uniformity, the uniformity of the resistance value, the number of LPDs, and the amount of deposits in the lower part of the reactor are superior to the case of the conventional normal carrier gas flow rate (Comparative Example 14). However, it is clear that it is lower than the embodiment in which the rectifying gas is discharged. Also,
It can be seen that even when the ratio between the diameter of the furnace upper and lower portions and the diameter of the rotating substrate holder is variously changed, good results cannot be obtained as compared with the embodiment. In Comparative Examples 8 and 9 in which the lower diameter was increased three to four times as compared with the upper diameter, a relatively good thin film was formed. However, there were inconveniences such as an excessively large device size. This is not preferable because there are precipitates in the part, the defects in the crystal phase slightly increase, and the maintenance cycle of the reactor is shortened. The height difference between the upper lower end B of the reaction furnace and the upper surface of the rotating substrate holder is 5 mm.
It can be seen that in Comparative Example 12, where the number of LPDs was significantly increased, the number of LPDs was significantly increased, and the defects of the crystal phase, the uniformity of the thin film thickness, and the uniformity of the resistance value were significantly impaired.

【0037】更に、比較例1〜2によれば、本発明の気
相薄膜成長装置の反応炉を用いて、連結部からの整流用
ガスの流速が反応ガスの流速に比して少ない場合は、得
られる薄膜は比較的良好であるのに対し、反応ガスの3
倍の流出量ではLPD個数が著しく増加し、連結部の析
出物はないが反応炉下部での析出量が増大し、得られる
薄膜性状も低下することが分かる。なお、上記実施例及
び比較例における遷移層厚Tは、上記式(1)によりω
=209rad/s、ν=6608〜8811mm2
sを導入した算出値が18〜21mmであった。
Further, according to Comparative Examples 1 and 2, when the flow rate of the rectifying gas from the connecting portion is smaller than the flow rate of the reaction gas using the reactor of the vapor phase thin film growth apparatus of the present invention, , While the resulting thin film is relatively good,
It can be seen that at twice the outflow, the number of LPDs increases remarkably, and there is no precipitate at the connection portion, but the amount of deposition at the lower part of the reactor increases, and the properties of the obtained thin film also decrease. Note that the transition layer thickness T in the above Examples and Comparative Examples is ω by the above equation (1).
= 209 rad / s, v = 6608-8811 mm 2 /
The calculated value in which s was introduced was 18 to 21 mm.

【0038】[0038]

【発明の効果】本発明の気相薄膜成長装置は、反応炉を
小径の上部と大径の下部とで上下部を区分し上部下端と
下部上端を接合して中空内部空間を連続させて構成し、
反応ガスの上昇空間が欠除することから、反応ガスの上
方への舞上り現象を防止できる。また、そのため反応ガ
スの温度上昇も抑止でき、原料ガスの均一核生成が抑制
され、気相中で発生するパーティクルが減少する。従っ
て、反応炉壁に付着しメンテナンスサイクルを短縮させ
たり、ウエハに付着し結晶欠陥の原因となるパーティク
ルが減少することから、高品質の薄膜形成ウエハ基板を
製造することができる。また、上下部接合の連結部にガ
ス流出孔を設け、反応ガスと同時に整流用ガスを流出さ
せ、反応炉下部の排気口へのガス流れを整流に安定化す
ることから、ウエハ基板を載置する回転基板保持体上の
ガス渦流の発生を防止すると共に、その外周側で反応ガ
ス流が乱流となりガス流の荒れを防止でき、連結部は反
応炉下部での析出物を防止することでき、反応炉のメン
テナンスサイクルを長期に維持できる。結局、本発明の
気相薄膜成長装置による気相薄膜成長は、反応炉内のガ
ス流れをパーティクルの発生もなく、乱流や偏流を生じ
ることなく安定に維持して、炉内壁へのパーティクルの
付着もなく、ウエハへの付着パーティクルの増加を防止
して結晶欠陥がなく高品質で膜厚が均一な薄膜形成ウエ
ハ基板を得ることができ、高集積化用として好適なウエ
ハを得ることができる。
According to the vapor phase thin film growth apparatus of the present invention, the reactor is divided into an upper part and a lower part with a small-diameter upper part and a large-diameter lower part. And
Since the rising space of the reaction gas is omitted, the upward rising phenomenon of the reaction gas can be prevented. In addition, temperature rise of the reaction gas can be suppressed, uniform nucleation of the source gas is suppressed, and particles generated in the gas phase are reduced. Therefore, a high-quality thin-film-formed wafer substrate can be manufactured because particles that adhere to the reaction furnace wall and shorten the maintenance cycle or particles that adhere to the wafer and cause crystal defects are reduced. In addition, a gas outlet hole is provided at the connection part of the upper and lower joints, and a rectifying gas flows out simultaneously with the reaction gas, stabilizing the gas flow to the exhaust port at the bottom of the reactor, so that the wafer substrate is placed. In addition to preventing the generation of gas vortices on the rotating substrate holder, the reaction gas flow becomes turbulent on the outer peripheral side and the gas flow can be prevented from becoming rough, and the connection part can prevent precipitation at the bottom of the reactor. The maintenance cycle of the reactor can be maintained for a long time. After all, the vapor phase thin film growth by the vapor phase thin film growth apparatus of the present invention maintains the gas flow in the reactor stably without generation of particles, turbulence and drift, and particles on the furnace inner wall. It is possible to obtain a high-quality, uniform-thickness thin-film-formed wafer substrate without crystal defects without adhesion, preventing an increase in particles attached to the wafer, and obtaining a wafer suitable for high integration. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の気相薄膜成長装置の一実施例の概略断
面説明図
FIG. 1 is a schematic sectional explanatory view of one embodiment of a vapor phase thin film growth apparatus of the present invention.

【図2】本発明の気相薄膜成長装置の他の実施例のガス
流れを示す断面模式図
FIG. 2 is a schematic sectional view showing a gas flow of another embodiment of the vapor phase thin film growth apparatus of the present invention.

【図3】図2の気相薄膜成長装置における連結部の平面
模式図
FIG. 3 is a schematic plan view of a connecting portion in the vapor phase thin film growth apparatus of FIG. 2;

【図4】本発明の気相薄膜成長装置の他の実施例におけ
る連結部領域の断面模式図
FIG. 4 is a schematic cross-sectional view of a connection region in another embodiment of the vapor phase thin film growth apparatus of the present invention.

【図5】本発明の気相薄膜成長装置の他の実施例におけ
る連結部の一部切欠き斜視模式図
FIG. 5 is a partially cutaway perspective schematic view of a connecting portion in another embodiment of the vapor phase thin film growth apparatus of the present invention.

【図6】本発明の気相薄膜成長装置の他の実施例におけ
る連結部の平面模式図
FIG. 6 is a schematic plan view of a connecting portion in another embodiment of the vapor phase thin film growth apparatus of the present invention.

【図7】本発明の比較例に用いた気相薄膜成長装置の概
略断面説明図
FIG. 7 is a schematic sectional explanatory view of a vapor phase thin film growth apparatus used in a comparative example of the present invention.

【図8】従来の気相薄膜成長装置の一例の概略断面説明
FIG. 8 is a schematic cross-sectional explanatory view of an example of a conventional vapor phase thin film growth apparatus.

【符号の説明】[Explanation of symbols]

10、20、70、80 反応炉 11、21、41、51、71、81 ウエハ基板 12、22、42 52、72、82 回転基板保持体 13、23、43、73、83 回転軸 14、24、44 74、84 ヒータ 15、25、75、85 排気口 16、26、76、86 ガス供給口 17、27、77、87 整流板 17a、27a、77a、87a 整流孔 18、28、78 連結部 18a、28a、78a 整流ガス流出孔 19、19’、29 整流ガス導入空間 1、1’ 反応炉上部 2、2’ 反応炉下部 S 空間部 B 上部下端 U 下部上端 I、I’ 整流ガス導入口 D1 反応炉上部内径 D2 反応炉下部内径 DS 回転基板保持体直径10, 20, 70, 80 Reactor 11, 21, 41, 51, 71, 81 Wafer substrate 12, 22, 42 52, 72, 82 Rotating substrate holder 13, 23, 43, 73, 83 Rotating shaft 14, 24 , 44 74, 84 Heater 15, 25, 75, 85 Exhaust port 16, 26, 76, 86 Gas supply port 17, 27, 77, 87 Rectifier plate 17a, 27a, 77a, 87a Rectifier hole 18, 28, 78 Connecting portion 18a, 28a, 78a Rectifying gas outlets 19, 19 ', 29 Rectifying gas introduction space 1, 1' Reactor upper part 2, 2 'Reactor lower part S Space part B Upper lower end U Lower upper end I, I' Rectifying gas inlet D 1 inner diameter of reactor upper part D 2 inner diameter of lower reactor DS S diameter of rotating substrate holder

───────────────────────────────────────────────────── フロントページの続き (72)発明者 辛 平 神奈川県秦野市曽屋30番地 東芝セラミッ クス株式会社開発研究所内 (72)発明者 藤井 達男 山口県徳山市大字徳山字江口開作8231−5 徳山東芝セラミックス株式会社内 (72)発明者 岩田 勝行 山口県徳山市大字徳山字江口開作8231−5 徳山東芝セラミックス株式会社内 (72)発明者 三谷 慎一 静岡県沼津市大岡2068−3 東芝機械株式 会社沼津事業所内 (72)発明者 本多 恭章 静岡県沼津市大岡2068−3 東芝機械株式 会社沼津事業所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shindaira 30 Soya, Hadano-shi, Kanagawa Toshiba Ceramics Co., Ltd. (72) Inventor Tatsuo Fujii 8231-5 Eguchi Kaisaku Tokuyama, Tokuyama City, Tokuyama City, Yamaguchi Prefecture Tokuyama Toshiba Ceramics Co., Ltd. (72) Inventor Katsuyuki Iwata Tokuyama City, Yamaguchi Prefecture Tokuyama, Eguchi Kaisaku 8231-5 Tokuyama Toshiba Ceramics Co., Ltd. (72) Inventor Shinichi Mitani 2068-3 Ooka, Numazu City, Shizuoka Prefecture Toshiba Machine Co., Ltd. Numazu Office (72) Inventor Yasuaki Honda 2068-3 Ooka, Numazu City, Shizuoka Prefecture Toshiba Machine Corporation Numazu Office

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 中空の反応炉の頂部に複数の反応ガス供
給口、底部に排気口、内部にウエハ基板を載置する回転
基板保持体、及び、内部上部に複数の孔が穿設された整
流板を有し、内部に反応ガスを供給して回転基板保持体
上のウエハ基板表面に薄膜を気相成長させる気相成長装
置において、前記反応炉の中空内部が、相当内径が異な
る上下部に区分され、上部の相当内径が下部の相当内径
より小さく、且つ、上部下端と下部上端とが連結部によ
り接続され中空内部が連続すると共に、該連結部に整流
ガス流出孔を有し、前記回転基板保持体が反応炉下部内
の該上部下端より所定の高低差を有して下方に位置して
配設されることを特徴とする気相薄膜成長装置。
1. A hollow reaction furnace having a plurality of reaction gas supply ports at the top, an exhaust port at the bottom, a rotating substrate holder on which a wafer substrate is placed, and a plurality of holes at the top inside. In a vapor phase growth apparatus having a rectifying plate and supplying a reaction gas to the inside to vapor-grow a thin film on the surface of a wafer substrate on a rotating substrate holder, the hollow interior of the reaction furnace has upper and lower portions having substantially different inner diameters. The upper equivalent diameter is smaller than the lower equivalent diameter, and the upper lower end and the lower upper end are connected by a connecting portion, the hollow interior is continuous, and the connecting portion has a rectifying gas outflow hole, An apparatus for growing a vapor phase thin film, wherein a rotating substrate holder is disposed below a lower end of the upper portion of the lower portion of the reactor with a predetermined height difference.
【請求項2】 更に、前記連結部上に、前記整流ガス流
出孔を気密に包囲してなる空間部が配設され、該空間部
に整流ガス供給口を有する請求項1記載の気相薄膜成長
装置。
2. The gas-phase thin film according to claim 1, further comprising a space portion airtightly surrounding the rectifying gas outlet hole on the connecting portion, and having a rectifying gas supply port in the space portion. Growth equipment.
【請求項3】 前記上部の側面が前記回転基板保持体上
面に対し垂直である請求項1または2記載の気相薄膜成
長装置。
3. The vapor phase thin film growth apparatus according to claim 1, wherein the upper side surface is perpendicular to the upper surface of the rotating substrate holder.
【請求項4】 前記空間部と上部とが二重環状に形成さ
れており、前記空間部の外側面が連結部を介して前記下
部上端に連続する請求項3記載の気相薄膜形成装置。
4. The vapor phase thin film forming apparatus according to claim 3, wherein the space portion and the upper portion are formed in a double annular shape, and an outer surface of the space portion is connected to the upper end of the lower portion via a connecting portion.
【請求項5】 前記反応炉中空内部の水平断面が円形で
あって、前記上部直径(D1 )が、前記ウエハ基板の直
径より大であり、且つ、前記回転基板保持体が円形でそ
の直径(DS )との比(D1 /DS )が0.7〜1.2
である請求項1〜4のいずれか記載の気相薄膜成長装
置。
5. The horizontal cross section of the inside of the reactor hollow is circular, the upper diameter (D 1 ) is larger than the diameter of the wafer substrate, and the rotating substrate holder is circular and has a diameter (D S) and the ratio of (D 1 / D S) is 0.7 to 1.2
The apparatus for growing a vapor phase thin film according to any one of claims 1 to 4, wherein
【請求項6】 前記上部直径(D1 )と前記下部直径
(D2 )との比(D2/D1 )が1.2以上である請求
項5記載の気相薄膜成長装置。
6. The vapor phase thin film growth apparatus according to claim 5, wherein a ratio (D 2 / D 1 ) between the upper diameter (D 1 ) and the lower diameter (D 2 ) is 1.2 or more.
【請求項7】 前記下部直径(D2 )と前記回転基板保
持体直径(DS )との比(D2 /DS )が1.2以上で
ある請求項5または6記載の気相薄膜成長装置。
7. The vapor phase thin film of the lower diameter (D 2) and the rotating substrate holder diameter (D S) and the ratio of (D 2 / D S) is according to claim 5 or 6, wherein at least 1.2 Growth equipment.
【請求項8】 前記上部下端と回転基板保持体との高低
差(H)が、該回転基板保持体上面上のガス流の遷移層
厚(T)より大である請求項1〜7のいずれか記載の気
相薄膜成長装置。
8. The method according to claim 1, wherein a height difference (H) between the upper and lower ends and the rotating substrate holder is larger than a transition layer thickness (T) of a gas flow on the upper surface of the rotating substrate holder. Or a vapor phase thin film growth apparatus according to any one of the preceding claims.
【請求項9】 前記遷移層厚(T)が3.22(ν/
ω)1/2 (但し、νは反応炉内雰囲気ガスの動粘性係数
(mm2 /s)を、ωは回転の角速度(rad/s)を
それぞれ表示する)による算出値である請求項8記載の
気相薄膜成長装置。
9. The transition layer thickness (T) is 3.22 (ν /
ω) 1/2 (where ν represents the kinematic viscosity coefficient (mm 2 / s) of the atmosphere gas in the reactor and ω represents the angular velocity of rotation (rad / s), respectively). The vapor phase thin film growth apparatus according to the above.
【請求項10】 前記連結部の一部と前記回転基板保持
体上面とが、同一水平面内にある請求項1〜9のいずれ
か記載の気相薄膜成長装置。
10. The vapor phase thin film growth apparatus according to claim 1, wherein a part of the connecting portion and an upper surface of the rotating substrate holder are in the same horizontal plane.
【請求項11】 前記1〜7のいずれか記載の気相成長
装置において、前記回転基板保持体上部のガス流の遷移
層厚(T)が、前記上部下端と前記回転基板保持体上面
との高低差(H)より小さくなるように、前記複数の反
応ガス供給口から薄膜形成原料ガス及びキャリアガスか
らなる反応ガスを供給して整流板の孔を通過させて前記
ウエハ基板上に流通させると同時に、前記連結部の整流
ガス流出孔を通過させて整流用ガスを導入することを特
徴とする気相薄膜形成方法。
11. The vapor-phase growth apparatus according to any one of 1 to 7, wherein a transition layer thickness (T) of a gas flow above the rotary substrate holder is between a lower end of the upper portion and an upper surface of the rotary substrate holder. A reactant gas composed of a thin film forming raw material gas and a carrier gas is supplied from the plurality of reactant gas supply ports so as to be smaller than the height difference (H), and is passed through the holes of the rectifying plate to flow on the wafer substrate. At the same time, a rectifying gas is introduced through the rectifying gas outlet of the connecting portion to introduce a rectifying gas.
【請求項12】 前記遷移層厚(T)が、3.22(ν
/ω)1/2 (但し、νは反応ガスの動粘性係数(mm2
/s)を、ωは回転の角速度(rad/s)をそれぞれ
表示する)により前記高低差(H)より小さくなるよう
に前記回転基板保持体の回転を制御する請求項11記載
の気相薄膜成長方法。
12. The transition layer thickness (T) is 3.22 (ν
/ Ω) 1/2 (where ν is the kinematic viscosity coefficient of the reaction gas (mm 2
/ S), and ω denotes the angular velocity of rotation (rad / s), respectively), and controls the rotation of the rotating substrate holder so as to be smaller than the height difference (H). Growth method.
【請求項13】 前記キャリアガス流速(GC )と前記
連結部の整流ガス流出孔から導入される整流用ガス流速
(GI )の比(GI /GC )が0.05〜2である請求
項11または12記載の気相薄膜成長方法。
13. A ratio (G I / G C ) of the carrier gas flow rate (G C ) to the flow rate (G I ) of the rectification gas introduced from the rectification gas outlet of the connecting portion is 0.05 to 2. The method for growing a vapor phase thin film according to claim 11 or 12.
JP35438096A 1996-12-19 1996-12-19 Vapor phase thin film growth apparatus and vapor phase thin film growth method Expired - Lifetime JP3570653B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP35438096A JP3570653B2 (en) 1996-12-19 1996-12-19 Vapor phase thin film growth apparatus and vapor phase thin film growth method
EP97122056A EP0854210B1 (en) 1996-12-19 1997-12-15 Vapor deposition apparatus for forming thin film
US08/991,407 US6059885A (en) 1996-12-19 1997-12-16 Vapor deposition apparatus and method for forming thin film
TW086119399A TW434696B (en) 1996-12-19 1997-12-17 Vapor deposition apparatus and method for forming thin film
KR1019970069899A KR100490238B1 (en) 1996-12-19 1997-12-17 Meteorological thin film growth apparatus and meteorological thin film growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35438096A JP3570653B2 (en) 1996-12-19 1996-12-19 Vapor phase thin film growth apparatus and vapor phase thin film growth method

Publications (2)

Publication Number Publication Date
JPH10177959A true JPH10177959A (en) 1998-06-30
JP3570653B2 JP3570653B2 (en) 2004-09-29

Family

ID=18437173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35438096A Expired - Lifetime JP3570653B2 (en) 1996-12-19 1996-12-19 Vapor phase thin film growth apparatus and vapor phase thin film growth method

Country Status (1)

Country Link
JP (1) JP3570653B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110200749A1 (en) * 2010-02-17 2011-08-18 Kunihiko Suzuki Film deposition apparatus and method
JP2011198840A (en) * 2010-03-17 2011-10-06 Nuflare Technology Inc Film forming apparatus and film forming method
JP2012049339A (en) * 2010-08-27 2012-03-08 Nuflare Technology Inc Film deposition apparatus and film deposition method
JP2012204725A (en) * 2011-03-28 2012-10-22 Toyota Central R&D Labs Inc Surface treatment device
US9243326B2 (en) 2010-03-26 2016-01-26 Kabushiki Kaisha Toyota Chuo Kenkyusho Surface treatment apparatus
CN115505903A (en) * 2022-09-30 2022-12-23 楚赟精工科技(上海)有限公司 Gas injection mechanism, manufacturing method thereof and gas phase reaction device
CN115572958A (en) * 2022-09-30 2023-01-06 楚赟精工科技(上海)有限公司 Gas conveying assembly and gas phase reaction device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110200749A1 (en) * 2010-02-17 2011-08-18 Kunihiko Suzuki Film deposition apparatus and method
JP2011198840A (en) * 2010-03-17 2011-10-06 Nuflare Technology Inc Film forming apparatus and film forming method
US9243326B2 (en) 2010-03-26 2016-01-26 Kabushiki Kaisha Toyota Chuo Kenkyusho Surface treatment apparatus
JP2012049339A (en) * 2010-08-27 2012-03-08 Nuflare Technology Inc Film deposition apparatus and film deposition method
JP2012204725A (en) * 2011-03-28 2012-10-22 Toyota Central R&D Labs Inc Surface treatment device
CN115505903A (en) * 2022-09-30 2022-12-23 楚赟精工科技(上海)有限公司 Gas injection mechanism, manufacturing method thereof and gas phase reaction device
CN115572958A (en) * 2022-09-30 2023-01-06 楚赟精工科技(上海)有限公司 Gas conveying assembly and gas phase reaction device
CN115572958B (en) * 2022-09-30 2023-08-11 楚赟精工科技(上海)有限公司 Gas conveying assembly and gas phase reaction device
CN115505903B (en) * 2022-09-30 2024-01-30 楚赟精工科技(上海)有限公司 Gas injection mechanism, manufacturing method thereof and gas phase reaction device

Also Published As

Publication number Publication date
JP3570653B2 (en) 2004-09-29

Similar Documents

Publication Publication Date Title
KR100490238B1 (en) Meteorological thin film growth apparatus and meteorological thin film growth method
JPH1167675A (en) High-speed rotary vapor phase thin-film forming device and high-speed rotary vapor phase thin-film forming method using the device
KR100435119B1 (en) Apparatus for processing individual wafers
JPH0831758A (en) Vapor growth and device therefor
JP7365761B2 (en) Vapor phase growth equipment
TWI801457B (en) Tantalum carbide coated carbon material, manufacturing method thereof, and member for apparatus for manufacturing semiconductor single crystal
JPWO2019044440A1 (en) Vapor phase growth apparatus and vapor phase growth method
JP2020530527A (en) Equipment and methods for improving uniformity in thermochemical vapor deposition (CVD)
WO2019044392A1 (en) Vapor-phase deposition method
JPH10177959A (en) Vapor thin film growth device and method
KR20010111027A (en) A method for growing a thin film in gaseous phase, and apparatus for growing a thin film in gaseous phase adapted to conducting the above method
US20210381128A1 (en) Vapor phase growth apparatus
TWI754765B (en) Inject assembly for epitaxial deposition processes
JP2002016008A (en) Method and device for vapor phase growth of thin film
JP3597003B2 (en) Vapor phase growth apparatus and vapor phase growth method
JPH1167674A (en) Apparatus and method for gas phase thin-film growth
KR100490013B1 (en) Vapor deposition apparatus and vapor deposition method
CN115928050A (en) Cross-flow type film deposition reactor
KR20190009533A (en) Method and apparatus for manufacturing epitaxial wafer
JPH0547669A (en) Vapor growth apparatus
JP2020161544A (en) Film-forming apparatus and film-forming method
JP3050970B2 (en) Vapor growth method
JP7440666B2 (en) Vapor phase growth apparatus and vapor phase growth method
WO2022130926A1 (en) Vapor-phase growth apparatus and vapor-phase growth method
JP3115058B2 (en) Vapor phase growth method, vapor phase growth apparatus, and fine particle generation apparatus

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040617

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040618

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080702

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080702

Year of fee payment: 4

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080702

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080702

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term