JP3050970B2 - Vapor growth method - Google Patents

Vapor growth method

Info

Publication number
JP3050970B2
JP3050970B2 JP3278238A JP27823891A JP3050970B2 JP 3050970 B2 JP3050970 B2 JP 3050970B2 JP 3278238 A JP3278238 A JP 3278238A JP 27823891 A JP27823891 A JP 27823891A JP 3050970 B2 JP3050970 B2 JP 3050970B2
Authority
JP
Japan
Prior art keywords
substrate
gas
vapor phase
phase growth
reaction furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3278238A
Other languages
Japanese (ja)
Other versions
JPH0590167A (en
Inventor
俊光 大嶺
裕輔 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3278238A priority Critical patent/JP3050970B2/en
Publication of JPH0590167A publication Critical patent/JPH0590167A/en
Application granted granted Critical
Publication of JP3050970B2 publication Critical patent/JP3050970B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、半導体等の製造に用い
られる気相成長装置による気相成長方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vapor phase growth method using a vapor phase growth apparatus used for manufacturing semiconductors and the like.

【0002】[0002]

【従来の技術】反応炉内にガス(原料ガス、キャリアガ
ス等)を供給し、反応炉内に配置した基板ホルダ上に載
置され加熱手段により加熱されると共に、回転手段で回
転される基板に薄膜を気相成長させる気相成長装置で
は、一般に基板が小径(例えば直径が2〜3インチ以
下)の場合には、基板の面内温度分布がほぼ均一状態に
なるので、スリップ等が発生することはなかった。
2. Description of the Related Art A gas (raw material gas, carrier gas, etc.) is supplied into a reaction furnace, and is placed on a substrate holder disposed in the reaction furnace, heated by a heating means, and rotated by a rotating means. In a vapor phase growth apparatus for growing a thin film in a vapor phase, in general, when the substrate has a small diameter (for example, a diameter of 2 to 3 inches or less), the in-plane temperature distribution of the substrate becomes almost uniform, so that a slip or the like occurs. I never did.

【0003】ところで、近年、作業効率の向上やコスト
低減等のために、径の大きい(例えば5インチ以上)基
板が一般的に使用されるようになってきた。
In recent years, substrates having a large diameter (for example, 5 inches or more) have been generally used in order to improve work efficiency and reduce costs.

【0004】[0004]

【発明が解決しようとする課題】ところが、基板の径が
大きくなると、ガスの流量変化や加熱手段による加熱状
態の変化等によって、基板の面内温度分布に不均一が生
じやすくなる。
However, as the diameter of the substrate increases, the in-plane temperature distribution of the substrate tends to become non-uniform due to a change in the gas flow rate or a change in the heating state by the heating means.

【0005】基板の面内温度分布に不均一が生じると、
単結晶基板(Si基板等)にスリップ等の転位が発生
し、デバイス特性を悪化させる現象が発生する。
When the in-plane temperature distribution of the substrate becomes non-uniform,
Dislocation such as slip occurs in a single crystal substrate (such as a Si substrate), and a phenomenon that degrades device characteristics occurs.

【0006】スリップは、高温状態(例えば1000℃
以上)の基板に面内温度分布の不均一が発生することに
よって、降伏値を越える応力が発生して、結晶格子に沿
ってすべり変形を生じる現象である。
[0006] The slip is in a high temperature state (for example, 1000 ° C).
The above-mentioned phenomenon is a phenomenon in which non-uniformity of the in-plane temperature distribution occurs in the substrate, so that a stress exceeding the yield value is generated and slip deformation occurs along the crystal lattice.

【0007】本発明は上記した課題を解決する目的でな
され、CVDで本質的に存在する流体による伝熱の不均
一を解消することで基板の面内温度分布を均一にし、ス
リップ等の発生を防止して高品質な薄膜を気相成長させ
ることができる気相成長方法を提供しようとするもので
ある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and has an object to eliminate the non-uniformity of heat transfer due to a fluid which is essentially present in CVD, thereby making the temperature distribution in the plane of the substrate uniform and suppressing the occurrence of slip and the like. It is an object of the present invention to provide a vapor phase growth method capable of preventing a high quality thin film from being vapor phase grown.

【0008】[0008]

【課題を解決するための手段】前記した課題を解決する
ために本発明に係る気相成長方法は、圧力調整手段で成
長圧力が調整される反応炉内にガス流量制御手段により
原料ガスを供給し、前記反応炉内に配置した基板ホルダ
上に載置され加熱手段により加熱されると共に、回転駆
動手段で回転される基板に薄膜を気相成長させる気相成
長装置において、気相成長時に、
In order to solve the above-mentioned problems, a vapor phase growth method according to the present invention supplies a source gas by a gas flow rate control means into a reactor whose growth pressure is adjusted by a pressure adjustment means. And, while being mounted on a substrate holder placed in the reaction furnace and heated by a heating means, in a vapor phase growth apparatus for vapor phase growth of a thin film on a substrate rotated by a rotary drive means, during the vapor phase growth,

【0009】[0009]

【数2】 (Equation 2)

【0010】ただし、Q:基板ホルダ面積当りの供給ガ
ス体積流量、r:基板ホルダ半径(回転最大半径)、
P:反応炉内圧力、ω:基板回転角速度、T:反応炉内
温度、M:ガスの平均分子量、R:ガス定数、μ:温度
Tにおける供給ガスの粘度 の条件を満たすようにして前記基板上に薄膜を気相成長
させることを特徴としている。
Here, Q: volume flow rate of supply gas per substrate holder area, r: substrate holder radius (rotation maximum radius),
P: reaction furnace pressure, ω: substrate rotation angular velocity, T: reaction furnace temperature, M: average molecular weight of gas, R: gas constant, μ: viscosity of supply gas at temperature T. It is characterized in that a thin film is vapor-phase grown thereon.

【0011】[0011]

【作用】反応炉内に供給するガスの流量を、回転する基
板ホルダが発生させる流量におおむね近く設定すること
によって、流体が基板から奪う熱量を基板面内で均一に
することができる(即ち、基板の面内温度分布が均一に
なる)。
By setting the flow rate of the gas supplied into the reaction furnace to be substantially close to the flow rate generated by the rotating substrate holder, the amount of heat taken by the fluid from the substrate can be made uniform within the substrate surface (ie, The in-plane temperature distribution of the substrate becomes uniform).

【0012】そして、本発明者は、基板の面内温度分布
の均一化のために鋭意研究を重ねた結果、気相成長時に
下記の条件を満たす時に、スリップの発生が抑制される
ことが判明した。
The present inventors have conducted intensive studies for uniforming the in-plane temperature distribution of the substrate. As a result, it has been found that the occurrence of slip is suppressed when the following conditions are satisfied during the vapor phase growth. did.

【0013】[0013]

【数3】 (Equation 3)

【0014】ただし、Q:基板ホルダ面積当りの供給ガ
ス体積流量、r:基板ホルダ半径(回転最大半径)、
P:反応炉内圧力、ω:基板回転角速度、T:反応炉内
温度、M:ガスの平均分子量、R:ガス定数、μ:温度
Tにおける供給ガスの粘度 この式の意味するところは、分母である回転体に誘起さ
れる流量と分子である供給ガス流量の比であり、これが
1なら両者は等しい。
Here, Q is the volume flow rate of the supplied gas per substrate holder area, r is the radius of the substrate holder (the maximum radius of rotation),
P: reaction furnace pressure, ω: substrate rotation angular velocity, T: reaction furnace temperature, M: average molecular weight of gas, R: gas constant, μ: viscosity of supply gas at temperature T This formula means the denominator Is the ratio between the flow rate induced in the rotating body and the flow rate of the supply gas as the molecule. If this is 1, both are equal.

【0015】よって、本発明では上記した条件を満足す
るようにして気相成長を行うことにより、基板の面内温
度分布を均一化してスリップの発生を防止することがで
きる。
Therefore, in the present invention, by performing the vapor phase growth so as to satisfy the above conditions, the in-plane temperature distribution of the substrate can be made uniform and the occurrence of slip can be prevented.

【0016】[0016]

【実施例】以下、本発明を図示の一実施例に基づいて詳
細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail based on one embodiment shown in the drawings.

【0017】図1は、本実施例に係る気相成長装置を示
す概略図である。この図に示すように、反応炉1内の上
部には、円盤状の整流板2と、ガス供給管3を介して反
応炉1内にガス(原料、キャリアガス等)を供給するガ
ス流量制御装置4が配設されており、反応炉1内の下部
には、基板(本実施例では直径が5インチのシリコン基
板)5を載置する基板ホルダ(本実施例では直径が6イ
ンチ)6と、基板ホルダ6を着脱自在に支持する回転軸
7と、基板ホルダ6および基板5を加熱するヒータ8が
配設されている。
FIG. 1 is a schematic diagram showing a vapor phase growth apparatus according to this embodiment. As shown in this figure, a gas flow rate control for supplying gas (raw material, carrier gas, etc.) into the reactor 1 via a gas supply pipe 3 is provided above the reactor 1 in a disk-shaped current plate 2. An apparatus 4 is provided, and a substrate holder (6 inches in diameter in this embodiment) 6 on which a substrate (a silicon substrate having a diameter of 5 inches in this embodiment) 5 is placed at a lower portion in the reaction furnace 1. And a rotating shaft 7 for detachably supporting the substrate holder 6 and a heater 8 for heating the substrate holder 6 and the substrate 5.

【0018】整流板2には、複数の小径孔2aが形成さ
れており、開口率は例えば0.1に設定されている。ま
た、整流板2は、基板5から十分離して(例えば5cm以
上)配置されている。ガス供給管3は、整流板2の上方
で反応炉1の上部側面に配置されている。
A plurality of small-diameter holes 2a are formed in the current plate 2, and the aperture ratio is set to, for example, 0.1. In addition, the rectifying plate 2 is disposed sufficiently separated from the substrate 5 (for example, 5 cm or more). The gas supply pipe 3 is arranged on the upper side surface of the reactor 1 above the current plate 2.

【0019】また、反応炉1の外側下部には、回転軸7
を回転駆動する回転駆動装置9と、回転駆動装置9の回
転駆動を制御する回転駆動制御装置10と、排気管11
を介して反応炉1内の圧力調整および未反応ガス等を排
気する排気装置12と、反応炉1内で生成される粉等を
捕集するフィルタ13が配設されている。
A rotating shaft 7 is provided at a lower portion of the outside of the reactor 1.
Drive device 9 for rotating the drive, a rotation drive control device 10 for controlling the rotation drive of the rotation drive device 9, and an exhaust pipe 11
An exhaust device 12 for adjusting the pressure in the reaction furnace 1 and exhausting unreacted gas and the like through the air, and a filter 13 for collecting powder and the like generated in the reaction furnace 1 are provided.

【0020】ピッチ8には、ヒータ電源14と、温度制
御装置15と、基板5の温度を測定する放射温度計等の
温度計16が接続されており、温度計16は、反応炉1
の上部側面の整流板2の下方に形成した石英窓17の外
側に配設されている。
The pitch 8 is connected to a heater power supply 14, a temperature control device 15, and a thermometer 16 such as a radiation thermometer for measuring the temperature of the substrate 5. The thermometer 16 is connected to the reaction furnace 1.
It is disposed outside a quartz window 17 formed below the current plate 2 on the upper side surface of the plate.

【0021】本実施例に係る気相成長装置は上記のよう
に構成されており、排気装置12で反応炉1内を排気し
て反応炉内圧力を所定の圧力(例えば38Torr)に調整
し、ヒータ8によって基板ホルダ6を加熱して基板5を
所定温度(例えば1000℃)に上昇させると共に、回
転駆動装置9の回転駆動により基板5を所定の回転数
(例えば800rpm )で回転させ、ガス供給制御装置4
からガス供給管3を介して反応炉1内に、整流板2の小
径孔2aを通して原料ガス(例えばSiH2 Cl2 )を
キャリアガス(例えばH2 )と共に供給することによっ
て、基板5上に半導体薄膜が気相成長する。
The vapor phase growth apparatus according to this embodiment is configured as described above. The inside of the reactor 1 is evacuated by the exhaust unit 12 to adjust the pressure in the reactor to a predetermined pressure (for example, 38 Torr). The substrate holder 6 is heated by the heater 8 to raise the temperature of the substrate 5 to a predetermined temperature (for example, 1000 ° C.), and the substrate 5 is rotated at a predetermined rotation speed (for example, 800 rpm) by the rotational drive of the rotary drive device 9 to supply gas. Control device 4
Into the reactor 1 through the gas supply pipe 3, by feeding with raw material gas through the small diameter hole 2a of the current plate 2 (e.g. SiH 2 Cl 2) carrier gas (e.g., H 2), a semiconductor on a substrate 5 The thin film grows in vapor phase.

【0022】そして、本発明では上記した気相成長装置
によって気相成長を行う時に、下記に示す条件を満たす
ようにする。
In the present invention, the following conditions are satisfied when performing the vapor phase growth using the above-described vapor phase growth apparatus.

【0023】[0023]

【数4】 (Equation 4)

【0024】ただし、Q:基板ホルダ面積当りの供給ガ
ス体積流量、r:基板ホルダ半径(回転最大半径)、
P:反応炉内圧力、ω:基板回転角速度、T:ガス入口
温度と基板温度の平均温度(Κ)、M:ガスの平均分子
量、R:ガス定数、μ:温度Tにおける供給ガスの粘度 上記した条件を満足するように運転条件を設定すると、
基板面内の温度境界層の厚みがおおむね均一になって、
基板面内の温度分布が均一化された。
Here, Q: volume flow rate of supply gas per substrate holder area, r: substrate holder radius (maximum rotation radius),
P: pressure in the reactor, ω: substrate rotational angular velocity, T: average temperature of gas inlet temperature and substrate temperature (Κ), M: average molecular weight of gas, R: gas constant, μ: viscosity of supply gas at temperature T When the operating conditions are set to satisfy the conditions
The thickness of the temperature boundary layer in the plane of the substrate becomes substantially uniform,
The temperature distribution in the substrate surface was made uniform.

【0025】図2は、上記した条件で基板5に発生する
スリップ量を示す実験結果である。尚、この時の基板5
の直径は5インチで基板5を載置する基板ホルダ6の直
径は6インチであるが、計算上の半径rは2.5インチ
(6.3cm)である。また、ガス(SiH2 Cl2 )と
水素ガスの平均分子量Mとガス定数Rは、それぞれ2×
10-3kg/mol と8.31J/mol ・k であり、Tは8
00℃(1073K)である。
FIG. 2 is an experimental result showing the amount of slip generated on the substrate 5 under the above conditions. At this time, the substrate 5
Is 5 inches and the diameter of the substrate holder 6 on which the substrate 5 is placed is 6 inches, but the calculated radius r is 2.5 inches (6.3 cm). The average molecular weight M and the gas constant R of the gas (SiH 2 Cl 2 ) and the hydrogen gas are 2 ×
10 −3 kg / mol and 8.31 J / mol · k, and T is 8
00 ° C (1073K).

【0026】図2に示した実験結果から明らかなよう
に、
As is clear from the experimental results shown in FIG.

【0027】[0027]

【数5】 (Equation 5)

【0028】が0.3〜1.7、望ましくは0.5〜
1.5の範囲にあればスリップ発生量が大幅に減少し、
0.8程度の時はスリップの発生量がほとんど零になっ
た。
Is from 0.3 to 1.7, preferably from 0.5 to 1.7
If it is in the range of 1.5, the amount of slip generation is greatly reduced,
At about 0.8, the amount of slip was almost zero.

【0029】尚、図2に示した実験結果は、基板温度は
一定温度(1000℃)にして、各測定点では供給ガス
体積流量Q、反応炉内圧力P、基板回転角速度ωのうち
いずれかを任意に変化させた時の状態を示しており、例
えばスリップ発生量がほとんど零になる位置(図の1番
下の測定点)では、供給ガス体積流量Qは9×10-3
3 /sec 、反応炉内圧力Pは1×104 Pa(0.1at
m )、基板回転角速度ωは84rad/s (800rpm )で
ある。これは、
The experimental results shown in FIG. 2 indicate that the substrate temperature was kept at a constant temperature (1000 ° C.) and that at each measurement point, any one of the supply gas volume flow rate Q, the reactor pressure P, and the substrate rotation angular velocity ω was used. Is arbitrarily changed. For example, at a position where the slip generation amount becomes almost zero (the lowest measurement point in the figure), the supply gas volume flow rate Q is 9 × 10 −3 m.
3 / sec, the pressure P in the reactor is 1 × 10 4 Pa (0.1 at
m), and the substrate rotational angular velocity ω is 84 rad / s (800 rpm). this is,

【0030】[0030]

【数6】 (Equation 6)

【0031】が同じ値となる他の圧力,流量,回転数の
組合せでも同様にスリップ発生量はほとんど極小とな
る。
In other combinations of the pressure, the flow rate and the number of revolutions having the same value, the slip generation amount becomes almost minimal.

【0032】また、直径が2インチの基板(基板ホルダ
の直径は3インチ程度)で前記同様の実験を行った場合
では、基板の面内温度分布がほぼ均一であったので、ス
リップはどの領域でもほとんど発生しなかった。
Further, in the case where the same experiment as described above was performed on a substrate having a diameter of 2 inches (the diameter of the substrate holder was about 3 inches), the in-plane temperature distribution of the substrate was almost uniform. But it hardly occurred.

【0033】また、直径が4インチ程度(基板ホルダの
直径は5インチ程度)よりも大きい基板であれば、前記
した条件を満たすようにすることによって、スリップ発
生量を大幅に低減することができた。
Further, if the substrate has a diameter larger than about 4 inches (the diameter of the substrate holder is about 5 inches), by satisfying the above-mentioned conditions, the amount of slip can be greatly reduced. Was.

【0034】[0034]

【発明の効果】以上、実施例に基づいて具体的に説明し
たように本発明によれば、径が大きな基板に気相成長を
行う場合でも、基板の面内温度分布の均一化を図ること
ができるので、基板にスリップ等が発生することが防止
され、高品質の薄膜を得ることができる。
As described above, according to the present invention, even when vapor phase growth is performed on a substrate having a large diameter, the in-plane temperature distribution of the substrate can be made uniform. Therefore, occurrence of slip or the like on the substrate can be prevented, and a high-quality thin film can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例に係る気相成長装置を示す概略
図である。
FIG. 1 is a schematic view showing a vapor phase growth apparatus according to an embodiment of the present invention.

【図2】本発明に係る気相成長方法による基板のスリッ
プ発生量の変化を示す図である。
FIG. 2 is a diagram showing a change in the amount of slip generated on a substrate by a vapor phase growth method according to the present invention.

【符号の説明】[Explanation of symbols]

1 反応炉 2 整流板 4 ガス流量制御装置 5 基板 6 基板ホルダ 8 ヒータ 9 回転駆動装置 10 回転駆動制御装置 12 排気装置 15 温度制御装置 DESCRIPTION OF SYMBOLS 1 Reaction furnace 2 Rectifier plate 4 Gas flow control device 5 Substrate 6 Substrate holder 8 Heater 9 Rotation drive device 10 Rotation drive control device 12 Exhaust device 15 Temperature control device

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 21/205 H01L 21/31 H01L 21/365 C23C 16/00 - 16/56 ──────────────────────────────────────────────────続 き Continued on the front page (58) Fields surveyed (Int. Cl. 7 , DB name) H01L 21/205 H01L 21/31 H01L 21/365 C23C 16/00-16/56

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 圧力調整手段で成長圧力が調整される反
応炉内にガス流量制御手段により原料ガスを供給し、前
記反応炉内に配置した基板ホルダ上に載置され加熱手段
により加熱されると共に、回転駆動手段で回転される基
板に薄膜を気相成長させる気相成長装置において、気相
成長時に、 【数1】 ただし、Q:基板ホルダ面積当りの供給ガス体積流量、
r:基板ホルダ半径(回転最大半径)、P:反応炉内圧
力、ω:基板回転角速度、T:反応炉内温度(入口ガス
と基板温度の平均)、M:ガスの平均分子量、R:ガス
定数、 μ:温度Tにおける供給ガスの粘度 の条件を満たすようにして前記基板上に薄膜を気相成長
させることを特徴とする気相成長方法。
1. A source gas is supplied by a gas flow rate control means into a reaction furnace whose growth pressure is adjusted by a pressure adjustment means, placed on a substrate holder arranged in the reaction furnace, and heated by a heating means. At the same time, in a vapor phase growth apparatus for vapor phase growth of a thin film on a substrate rotated by a rotation driving means, Here, Q is the supply gas volume flow rate per substrate holder area,
r: substrate holder radius (rotation maximum radius), P: reaction furnace pressure, ω: substrate rotation angular velocity, T: reaction furnace temperature (average of inlet gas and substrate temperature), M: average molecular weight of gas, R: gas A constant, μ: vapor phase growth of a thin film on the substrate so as to satisfy a condition of viscosity of supply gas at temperature T.
【請求項2】 前記基板ホルダの直径は、4インチ以上
であることを特徴とする請求項1記載の気相成長方法。
2. The vapor phase growth method according to claim 1, wherein the diameter of the substrate holder is 4 inches or more.
JP3278238A 1991-09-30 1991-09-30 Vapor growth method Expired - Fee Related JP3050970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3278238A JP3050970B2 (en) 1991-09-30 1991-09-30 Vapor growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3278238A JP3050970B2 (en) 1991-09-30 1991-09-30 Vapor growth method

Publications (2)

Publication Number Publication Date
JPH0590167A JPH0590167A (en) 1993-04-09
JP3050970B2 true JP3050970B2 (en) 2000-06-12

Family

ID=17594548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3278238A Expired - Fee Related JP3050970B2 (en) 1991-09-30 1991-09-30 Vapor growth method

Country Status (1)

Country Link
JP (1) JP3050970B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6022806A (en) * 1994-03-15 2000-02-08 Kabushiki Kaisha Toshiba Method of forming a film in recess by vapor phase growth
JPH10177961A (en) * 1996-12-19 1998-06-30 Toshiba Ceramics Co Ltd Vapor growth device and method
EP0854210B1 (en) * 1996-12-19 2002-03-27 Toshiba Ceramics Co., Ltd. Vapor deposition apparatus for forming thin film
US9285172B2 (en) 2009-04-29 2016-03-15 Westinghouse Electric Company Llc Modular plate and shell heat exchanger

Also Published As

Publication number Publication date
JPH0590167A (en) 1993-04-09

Similar Documents

Publication Publication Date Title
CN111621851B (en) Silicon carbide crystal growth device and method
EP0784106B1 (en) Epitaxial growth method
TW200936802A (en) Vapor phase growth apparatus and vapor phase growth method
CN102668033A (en) Semiconductor thin-film manufacturing method, seminconductor thin-film manufacturing apparatus, susceptor, and susceptor holding tool
JP7083732B2 (en) Tantalum Carbide Coated Carbon Material and Parts for Semiconductor Single Crystal Manufacturing Equipment
CN100468631C (en) Susceptor
JP2556621B2 (en) Method for forming silicon carbide film
JP6967403B2 (en) Vapor deposition method
JP3068914B2 (en) Vapor phase growth equipment
JP3491436B2 (en) Method for producing silicon carbide single crystal
JP3050970B2 (en) Vapor growth method
JPH11157988A (en) Device for growing crystal and growth of crystal
JPS6090894A (en) Vapor phase growing apparatus
TW202117063A (en) Apparatus and process of epitaxial growth (1)
JP4484185B2 (en) Chemical vapor deposition method for silicon semiconductor substrate
JP4443689B2 (en) Film forming method and film forming apparatus
JP2783041B2 (en) Vapor phase silicon epitaxial growth equipment
JP3570653B2 (en) Vapor phase thin film growth apparatus and vapor phase thin film growth method
JP2003183098A (en) METHOD AND APPARATUS FOR PRODUCING SiC SINGLE CRYSTAL
JP2550024B2 (en) Low pressure CVD equipment
JPH0959085A (en) Growing of single crystal and single crystal growing apparatus
JPH10177961A (en) Vapor growth device and method
JPS61199629A (en) Epitaxial growth device for semiconductor
JP2013016562A (en) Vapor-phase growth method
JP7392526B2 (en) Method for manufacturing silicon carbide single crystal substrate

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees