JP2002016008A - Method and device for vapor phase growth of thin film - Google Patents

Method and device for vapor phase growth of thin film

Info

Publication number
JP2002016008A
JP2002016008A JP2000198338A JP2000198338A JP2002016008A JP 2002016008 A JP2002016008 A JP 2002016008A JP 2000198338 A JP2000198338 A JP 2000198338A JP 2000198338 A JP2000198338 A JP 2000198338A JP 2002016008 A JP2002016008 A JP 2002016008A
Authority
JP
Japan
Prior art keywords
gas
thin film
section
film
phase growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000198338A
Other languages
Japanese (ja)
Other versions
JP4450299B2 (en
Inventor
Shuji Torihashi
修治 鳥觜
Tadashi Ohashi
忠 大橋
Katsuyuki Iwata
勝行 岩田
Shinichi Mitani
慎一 三谷
Kunihiko Suzuki
邦彦 鈴木
Hidenori Takahashi
英則 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd, Toshiba Ceramics Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP2000198338A priority Critical patent/JP4450299B2/en
Publication of JP2002016008A publication Critical patent/JP2002016008A/en
Application granted granted Critical
Publication of JP4450299B2 publication Critical patent/JP4450299B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve utilization efficiency deposition gases, particularly a gaseous starting material at formation of a thin film on a semiconductor substrate by vapor phase growth, and in addition, to reduce the clogging of an exhaust pipe with an unreacted gaseous starting material by improving the utilization efficiency of the gaseous starting material. SOLUTION: In a vapor phase growth method for the thin film, a reaction furnace in which the space between the internal wall surface of the top section of the furnace and a straightening plate is divided into at least two concentric zones, by using the center of a wafer substrate 3 as a center of effort and gas supply ports 6 and 7 are respectively installed to the zones is used, and of the deposition gases, the gaseous starting material and a dopant-containing gas are made to nearly vertically flow down, from the inner most zone of the concentric zones and only a carrier gas is made to flow down from the outermost zone.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、薄膜気相成長方
法、及び薄膜気相成長装置に関し、より詳細には、原料
ガス、ドーパントガス等の成膜用ガスの有効利用性に優
れ、かつ、排気管閉塞等の不都合が発生しない改良され
た薄膜気相成長方法とその方法に用いられる薄膜気相成
長装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film vapor deposition method and a thin film vapor deposition apparatus, and more particularly, to an excellent utilization of a film forming gas such as a source gas and a dopant gas, and The present invention relates to an improved thin film vapor phase growth method which does not cause inconvenience such as exhaust pipe blockage, and a thin film vapor phase growth apparatus used in the method.

【0002】[0002]

【従来の技術】一般に、半導体基板面上に薄膜を気相成
長させるCVD法等に用いる薄膜気相成長装置は、大別
して薄膜成長炉系統とガス供給系統とからなる。例え
ば、図3にエピタキシャル薄膜気相成長装置の一例を概
略断面図として示すように、薄膜成長炉系統は、石英チ
ャンバ1内に、ガス整流板4、ヒータ(図示せず)及び
半導体基板3を保持するサセプタ2及びガス排気管(図
示せず)等からなる。そしてまた、前記サセプタ2には
通常回転機構が設けられ被処理半導体基板3を載置して
その中心を軸に所定回転速度で回転するように構成され
ている。
2. Description of the Related Art In general, a thin film vapor phase growth apparatus used for a CVD method for vapor phase growth of a thin film on a semiconductor substrate surface is roughly divided into a thin film growth furnace system and a gas supply system. For example, as shown in FIG. 3 as an example of a schematic sectional view of an epitaxial thin film vapor phase growth apparatus, a thin film growth furnace system includes a gas rectifying plate 4, a heater (not shown), and a semiconductor substrate 3 in a quartz chamber 1. It comprises a susceptor 2 to be held and a gas exhaust pipe (not shown). In addition, the susceptor 2 is usually provided with a rotation mechanism, on which the semiconductor substrate 3 to be processed is placed and rotated at a predetermined rotation speed about the center thereof.

【0003】前記薄膜成長炉系統にはガス供給系統に接
続されたガス供給口6が複数、石英チャンバ1上部に設
けられており、ガス供給口6より原料ガス等の成膜用ガ
ス9aが供給される。薄膜気相成長においては、通常、
成長させようとする薄膜成分を含む原料ガス及び形成薄
膜の比抵抗制御のためのドーパントをキャリアである水
素ガスで希釈したものを薄膜成長炉内に供給する。
The thin film growth furnace system is provided with a plurality of gas supply ports 6 connected to a gas supply system above the quartz chamber 1, and supplies a film forming gas 9 a such as a source gas from the gas supply ports 6. Is done. In thin film vapor phase growth,
A source gas containing a thin film component to be grown and a dopant diluted with a hydrogen gas as a carrier for controlling a specific resistance of a formed thin film are supplied into a thin film growth furnace.

【0004】[0004]

【発明が解決しようとする課題】ところで、図3に示し
たような従来装置を用いた薄膜気相成長においては、薄
膜気相成長炉頂部より供給される原料ガスは、半導体基
板面の面積よりも広い範囲、通常、炉内全域に供給され
る。そのため、半導体基板外周部に供給された原料ガス
の利用効率は低く、これがひいては全原料ガスの利用効
率を低下させる原因となっている。また、未利用のガス
は炉内壁面や排気管内等で反応してパーティクルを発生
させたり排気管を閉塞させる原因ともなっている。
By the way, in the thin film vapor deposition using the conventional apparatus as shown in FIG. 3, the source gas supplied from the top of the thin film vapor deposition furnace is smaller than the area of the semiconductor substrate surface. Is also supplied to a wide area, usually the entire furnace. For this reason, the utilization efficiency of the source gas supplied to the outer peripheral portion of the semiconductor substrate is low, which causes a reduction in the utilization efficiency of all the source gases. Unused gas reacts on the inner wall surface of the furnace or in the exhaust pipe to generate particles or block the exhaust pipe.

【0005】本発明は、上記技術的課題を解決するため
になされたものであり、半導体基板上に薄膜を気相成長
させるにあたり、成膜用ガス、特に、原料ガスの利用効
率を向上させることができる薄膜気相成長方法及び薄膜
気相成長装置を提供することを目的とする。また、原料
ガスの利用効率向上により、未反応原料ガスによる排気
管のつまりを減少させることができる薄膜気相成長方法
及び薄膜気相成長装置を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above technical problems, and it is an object of the present invention to improve the utilization efficiency of a film forming gas, in particular, a raw material gas in vapor phase growth of a thin film on a semiconductor substrate. It is an object of the present invention to provide a thin film vapor phase growth method and a thin film vapor phase growth apparatus capable of performing the above. It is another object of the present invention to provide a thin film vapor phase growth method and a thin film vapor phase growth apparatus capable of reducing clogging of an exhaust pipe due to unreacted raw material gas by improving utilization efficiency of a raw material gas.

【0006】[0006]

【課題を解決するための手段】上記技術的課題を解決す
るためになされた薄膜気相成長方法は、成長させるべき
薄膜の成分を含む原料ガス、薄膜層の抵抗率を制御する
ためのドーパントを含むガス及びキャリアガスから成る
成膜用ガスを、円筒状の反応炉の頂部に設けられた複数
のガス供給口から整流板を介して流下させ、下方に配備
された回転式サセプタ上に載置した半導体基板に接触さ
せて該基板面上に薄膜を気相成長させる方法において、
前記反応炉として、頂部内壁面と整流板との間隙が、前
記載置ウエハ基板の中心点を対応中心とする同心円状に
少なくとも2区画に区分され、且つ、各区画の夫々にガ
ス供給口が配設された構造のものを用い、前記成膜用ガ
スのうち、原料ガスとドーパントを含むガスを前記同心
円区画の最内区画部からほぼ垂直に流下させ、最外区画
部からは前記キャリアガスのみを流下させることを特徴
としている。
In order to solve the above-mentioned technical problems, a thin film vapor phase growth method comprises a source gas containing a component of a thin film to be grown, and a dopant for controlling the resistivity of the thin film layer. The gas for film formation comprising the gas containing the carrier gas and the carrier gas flows down from a plurality of gas supply ports provided at the top of the cylindrical reactor through a straightening plate, and is mounted on a rotary susceptor provided below. In the method of vapor-phase growing a thin film on the substrate surface by contacting the semiconductor substrate,
As the reaction furnace, a gap between the top inner wall surface and the rectifying plate is divided into at least two sections concentrically with the center point of the wafer substrate as a corresponding center, and a gas supply port is provided in each section. A gas containing a raw material gas and a dopant among the film forming gases is allowed to flow substantially vertically from the innermost section of the concentric section, and the carrier gas is discharged from the outermost section. It is characterized by only flowing down.

【0007】ここで、前記同心円区画の最内区画部の直
径が、前記半導体基板の直径をDとしたとき、0.2D
〜1.17Dの範囲にあることが望ましい。また、前記
各区画の夫々から供給される各成膜用ガスの単位面積あ
たりの供給量の各供給部位における差が25%以下であ
ることが望ましい。
Here, the diameter of the innermost section of the concentric section is 0.2D, where D is the diameter of the semiconductor substrate.
It is desirably in the range of 1.11.17D. Further, it is desirable that the difference in the supply amount per unit area of the film-forming gas supplied from each of the sections at each supply portion is 25% or less.

【0008】また、上記技術的課題を解決するためにな
された薄膜気相成長装置は、円筒状反応炉の頂部に複数
のガス供給口、底部に排気口、内部にウエハ基板を載置
する回転式サセプタ、及び内部上部にガス整流板を備
え、原料ガス、ドーパントガス及びキャリアガスから成
る成膜用ガスを、前記ガス供給口から整流板を介して炉
内を流下させ、下方の回転式サセプタ上に載置したウエ
ハ基板に薄膜を気相成長させる薄膜気相成長装置におい
て、前記反応炉は、頂部内壁と整流板との間隙が隔壁に
より前記載置ウエハ基板の中心点に対応中心を有する同
心円状に少なくとも2区画に区分され、各区画の夫々に
ガス供給口が配設されていることを特徴としている。
Further, a thin film vapor phase growth apparatus made to solve the above technical problem has a plurality of gas supply ports at the top of a cylindrical reactor, an exhaust port at the bottom, and a rotary for mounting a wafer substrate inside. A gas rectifying plate in the upper part of the inside, a film forming gas composed of a source gas, a dopant gas and a carrier gas is allowed to flow down the furnace from the gas supply port through the rectifying plate, and the lower rotary susceptor In the thin film vapor phase epitaxy apparatus for vapor-phase growing a thin film on a wafer substrate mounted thereon, in the reactor, a gap between a top inner wall and a rectifying plate has a center corresponding to a center point of the mounted wafer substrate by a partition wall. It is characterized in that it is concentrically divided into at least two sections, and a gas supply port is provided in each section.

【0009】ここで、前記同心円区画の最内区画部の直
径が、前記半導体基板の直径をDとしたとき、0.2D
〜1.17Dの範囲にあることが望ましい。また、前記
各区画の夫々から供給される各成膜用ガスの単位面積あ
たりの供給量の各供給部位における差が25%以下であ
ることが望ましい。
Here, the diameter of the innermost section of the concentric section is 0.2D, where D is the diameter of the semiconductor substrate.
It is desirably in the range of 1.11.17D. Further, it is desirable that the difference in the supply amount per unit area of the film-forming gas supplied from each of the sections at each supply portion is 25% or less.

【0010】更に、前記隔壁が、反応炉頂部内壁と整流
板との間から更に整流板を越えて下方に延び、異なる区
画からの成膜反応ガスが整流板流出後もすぐには混合さ
れないように構成されていることが望ましい。更にま
た、前記ガス供給口には、前記成膜反応ガスの流量を調
整変更して供給する手段が接続されていることが望まし
い。
Further, the partition extends downward from between the inner wall of the reactor top and the straightening plate further beyond the straightening plate, so that the film forming reaction gas from a different section is not immediately mixed even after flowing out of the straightening plate. It is desirable to be constituted. Furthermore, it is desirable that a means for adjusting and changing the flow rate of the film forming reaction gas be supplied to the gas supply port.

【0011】本発明は、薄膜気相成長炉の上部から反応
ガス、ドーパントガス、キャリアガス等の成膜用ガスを
下方の回転するサセプタ上に載置された半導体基板面に
向けて流下させ、反応により、該基板面上に所定の薄膜
を形成させる薄膜気相成長において、円筒状炉頂部にあ
る成膜用ガス供給部を、例えば、隔壁を設ける等によ
り、同心円状に2区画以上に区分し、その最内区画部
(中央部)から、例えば、SiH4 等の反応ガスを供給
し、その最外区画部からはキャリアガスのみを流下さ
せ、反応ガスをできる限り有効に反応に利用し、炉内に
残留する未反応ガスを極力減少させることにより、排気
管系統の閉塞トラブルを抑制する点を特徴とする。
According to the present invention, a film forming gas such as a reaction gas, a dopant gas, and a carrier gas is caused to flow downward from a top of a thin film vapor phase growth furnace toward a semiconductor substrate surface mounted on a rotating susceptor below. In the thin film vapor phase growth in which a predetermined thin film is formed on the substrate surface by the reaction, the film forming gas supply unit at the top of the cylindrical furnace is concentrically divided into two or more sections by, for example, providing partition walls. Then, a reaction gas such as SiH 4 is supplied from the innermost compartment (central portion), and only the carrier gas flows down from the outermost compartment, so that the reaction gas is used as efficiently as possible for the reaction. In addition, it is characterized in that the unreacted gas remaining in the furnace is reduced as much as possible, thereby suppressing an exhaust pipe system blockage trouble.

【0012】即ち、本発明では、例えばSiH4 等の有
効成分を含む反応ガスは、炉内を上方からほぼ垂直に、
回転する半導体基板面の中心部に向けて流下し、該面中
心部に衝突し、ここで90°方向を転換して回転する半
導体基板面に沿って、その遠心力により面中心部より周
辺部に向けて広がり、この間に反応して該面に薄膜を形
成する。
That is, in the present invention, a reaction gas containing an active ingredient, for example, SiH 4 , is substantially vertical from above in the furnace,
It flows down toward the center of the rotating semiconductor substrate surface and collides with the center of the surface. Here, the direction is changed by 90 ° and the peripheral portion is moved from the center of the surface by the centrifugal force to the peripheral portion. And react during this time to form a thin film on the surface.

【0013】従って、従来の薄膜気相成長装置のよう
に、反応ガスが半導体基板よりも広い範囲、通常、炉内
全体に供給されることがなく、原料ガスの利用効率を向
上させることができ、また、未反応ガスが炉内下部や排
気管内等で反応して反応物が管壁内面に付着し、排気管
等を閉塞させる等の不都合の発生を抑制することができ
る。
Therefore, unlike the conventional thin film vapor phase growth apparatus, the reaction gas is not supplied to a wider area than the semiconductor substrate, usually to the whole inside of the furnace, and the utilization efficiency of the source gas can be improved. In addition, it is possible to suppress the occurrence of inconvenience such as the unreacted gas reacting in the lower part of the furnace, the exhaust pipe, or the like, and the reactant adheres to the inner surface of the pipe wall, thereby closing the exhaust pipe or the like.

【0014】特に、前記同心円区画の最内区画部の直径
が、前記半導体基板の直径をDとしたとき、0.2D〜
1.17Dの範囲にあることが望ましい。同心円区画の
最内区画部の直径が、0.2D未満の場合には、反応ガ
スが半導体基板全面に行きわたらないため、好ましくな
く、また1.17Dを越える場合には、未利用反応ガス
が生ずるため好ましくない。
In particular, when the diameter of the innermost section of the concentric section is D, the diameter of the semiconductor substrate is 0.2D to 0.2D.
It is desirable to be in the range of 1.17D. If the diameter of the innermost section of the concentric section is less than 0.2D, the reaction gas does not spread over the entire surface of the semiconductor substrate, which is not preferable. It is not preferable because it occurs.

【0015】また、前記各区画の夫々から供給される各
成膜用ガスの単位面積あたりの供給量の各供給部位にお
ける差が25%以下であることが望ましい。この差が大
き過ぎると、それぞれの部位での成膜速度差が大きくな
り、膜厚分布が不均一となる。この差が25%以下であ
る場合には、膜厚分布も許容範囲内となるため、好まし
い。望ましくは、この差が10%以下であることが望ま
しい。
Further, it is desirable that the difference in the supply amount per unit area of each film-forming gas supplied from each of the sections at each supply portion is 25% or less. If this difference is too large, the difference between the film forming speeds at each site becomes large, and the film thickness distribution becomes non-uniform. When the difference is 25% or less, the film thickness distribution is also within an allowable range, which is preferable. Desirably, this difference is not more than 10%.

【0016】また、本発明の方法に使用される薄膜気相
成長装置としては、2以上に区分された各区画領域から
供給される原料ガスの供給量、ドーパントガスの供給量
及び水素ガス等のキャリアガスの供給量を調節する調整
変更手段が設けられていることが好ましく、これにより
半導体基板上に所望の均等厚さの均質薄膜を形成するこ
とができる。
The thin film vapor phase growth apparatus used in the method of the present invention includes a supply amount of a source gas, a supply amount of a dopant gas, and a supply amount of a hydrogen gas supplied from each of two or more divided regions. It is preferable to provide an adjustment changing means for adjusting the supply amount of the carrier gas, whereby a uniform thin film having a desired uniform thickness can be formed on the semiconductor substrate.

【0017】特に、上記した理由により、前記同心円区
画の最内区画部の直径が、前記半導体基板の直径をDと
したとき、0.2D〜1.17Dの範囲にあることが望
ましく、前記各区画の夫々から供給される各成膜用ガス
の単位面積あたりの供給量の各供給部位における差(変
動幅)が25%以下に制御可能に構成されることが好ま
しい。
In particular, for the above-mentioned reason, when the diameter of the innermost section of the concentric section is D, the diameter of the innermost section is preferably in the range of 0.2D to 1.17D. It is preferable that the difference (variation width) of the supply amount per unit area of each film-forming gas supplied from each of the sections at each supply portion is controllable to 25% or less.

【0018】また、異なる区画から供給されたガスが、
整流板流出後もすぐには混合されず、望ましくは半導体
基板面上の近傍に達するまでに互いに混ざり合うことが
ないように、前記区画、例えば隔壁を、反応炉頂部内壁
と整流板との間から更に整流板を越えて下方に延長して
構成することがより好ましい。更に、前記ガス供給口に
は、前記成膜反応ガスの流量を調整変更して供給する手
段が接続されていることが望ましく、変動幅を極力少な
くすることができる。
Further, the gas supplied from the different compartments is
The compartments, for example, partitions, are placed between the reactor top inner wall and the rectifying plate so that they are not mixed immediately after the rectifying plate flows out, and desirably do not mix with each other until reaching the vicinity on the semiconductor substrate surface. It is more preferable to further extend downward beyond the current plate. Further, it is desirable that a means for adjusting and changing the flow rate of the film forming reaction gas be supplied to the gas supply port, so that the fluctuation width can be minimized.

【0019】このように構成された本発明の薄膜気相成
長装置を用いた本発明の薄膜気相成長方法は、通常の方
法と同様の条件、例えば、10乃至500Torr程度
の減圧条件にも充分好適に適用でき、かつ、エピタキシ
ャル結晶膜形成を含む単結晶膜形成反応にも好適に適用
できる。
The thin-film vapor deposition method of the present invention using the thin-film vapor-phase growth apparatus of the present invention having the above-mentioned structure can be performed under the same conditions as those of the ordinary method, for example, under reduced pressure conditions of about 10 to 500 Torr. The present invention can be suitably applied to a single crystal film forming reaction including the formation of an epitaxial crystal film.

【0020】[0020]

【発明の実施の形態】以下に本発明を図面を参照してよ
り具体的に説明する。図1は、本発明の薄膜気相成長方
法で使用する薄膜気相成長装置の一実施形態の断面構造
を示す概略図であり、図2は、別の形態例を示す概略図
である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below more specifically with reference to the drawings. FIG. 1 is a schematic view showing a cross-sectional structure of an embodiment of a thin film vapor phase growth apparatus used in the thin film vapor phase growth method of the present invention, and FIG. 2 is a schematic view showing another embodiment.

【0021】本発明の薄膜気相成長装置である図1及び
図2の装置において、装置の主要部を構成する反応炉
は、ほぼ円筒形状の通常石英製のチャンバー1からな
り、上部に、炉内に原料ガス、ドーパントガス、キャリ
アガス等の成膜用ガスを供給するガス供給口6、7、8
と、ガスの流れを整える複数の貫通孔を形成した整流板
4が配置され、その下方に、半導体基板3を載置する座
を上面に備えたサセプタ2と、該サセプタ2を回転させ
るための回転軸2a、座に載置されたウエハ基板3を加
熱する加熱用ヒータ(図示せず)が配設され、チャンバ
ー1下部(通常底部近傍)には、前記回転軸2aを回転
駆動させるモータ(図示せず)と、チャンバー1内の未
反応ガスを含む排ガスの排気口(図示せず)とその制御
装置(図示せず)が接続された構成を有している。
In the apparatus shown in FIGS. 1 and 2 which is a thin film vapor phase growth apparatus of the present invention, a reaction furnace which constitutes a main part of the apparatus comprises an almost cylindrical chamber 1 usually made of quartz, and a furnace Gas supply ports 6, 7, 8 for supplying a film forming gas such as a source gas, a dopant gas, and a carrier gas therein.
And a rectifying plate 4 having a plurality of through-holes for adjusting the flow of gas, a susceptor 2 having a seat on the top surface on which a semiconductor substrate 3 is mounted, and a susceptor 2 for rotating the susceptor 2. A heating heater (not shown) for heating the rotating shaft 2a and the wafer substrate 3 placed on the seat is provided, and a motor (rotationally driving the rotating shaft 2a) is provided below the chamber 1 (usually near the bottom). (Not shown), an exhaust port (not shown) for exhaust gas containing unreacted gas in the chamber 1 and a control device (not shown) for the exhaust gas.

【0022】本発明の薄膜気相成長方法で用いる装置の
特徴は、反応炉チャンバー1の頂部内壁と整流板4との
間隙が、隔壁5により載置半導体基板3の中心点を対応
中心とする同心円状に複数区画に区分され、各区画の夫
々にガス供給口6,7、8等が配設され、かつ、好まし
くは、ガス供給口に成膜反応ガス流量、組成のうち少な
くとも一方を調整変更して供給できる手段が接続されて
いる点にある。
The feature of the apparatus used in the thin film vapor phase growth method of the present invention is that the gap between the top inner wall of the reactor chamber 1 and the rectifying plate 4 is set to correspond to the center point of the mounted semiconductor substrate 3 by the partition wall 5. It is divided into a plurality of sections concentrically, and gas supply ports 6, 7, 8 and the like are provided in each section, and preferably, at least one of the flow rate and the composition of the film forming reaction gas is adjusted in the gas supply ports. The point is that the means that can be changed and supplied is connected.

【0023】本発明の薄膜気相成長においては、図1、
図2の装置の場合、ガス供給口6からは、成長させるべ
き薄膜の成分を含む原料ガスと薄膜層の抵抗率を制御す
るためのドーパントを含むガス9bとが供給される。
In the thin film vapor deposition of the present invention, FIG.
In the case of the apparatus shown in FIG. 2, a gas supply port 6 supplies a source gas containing a component of a thin film to be grown and a gas 9b containing a dopant for controlling the resistivity of the thin film layer.

【0024】前記原料ガスの有効成分としては、具体的
には、シリコン(Si)単結晶薄膜形成の場合は、シラ
ンガス(SiH4 )やジクロロシランガス(SiH2
2)等が用いられる。ドーパントガスとしては、例え
ば、ジボラン(B26 )等を水素ガス等のキャリアガ
スで50乃至200ppm程度の濃度に希釈したものが
用いられる。そして、この原料ガス及びドーパントガス
は、最内区画域内に設置された整流板4により整流され
て上方より半導体基板3の中央部に向かってほぼ垂直に
流下し、基板表面の中心部に達し、該基板表面上で、外
周方向に向きを変えて流れる。
As an effective component of the source gas, specifically, in the case of forming a silicon (Si) single crystal thin film, silane gas (SiH 4 ) or dichlorosilane gas (SiH 2 C
l 2 ) and the like are used. As the dopant gas, for example, a gas obtained by diluting diborane (B 2 H 6 ) or the like with a carrier gas such as hydrogen gas to a concentration of about 50 to 200 ppm is used. Then, the source gas and the dopant gas are rectified by the rectifying plate 4 provided in the innermost partitioned area, flow down almost vertically toward the center of the semiconductor substrate 3 from above, and reach the center of the substrate surface, On the surface of the substrate, it flows while changing its direction in the outer peripheral direction.

【0025】その際において、前記サセプタ2上に載置
された半導体基板3はサセプタと共に、通常、500乃
至3000rpmの回転速度で回転しているため、前記
基板表面の中心部に達した原料ガス及びドーパントガス
は、その遠心力により均等に外周方向に拡散しながら半
導体基板面に沿って流れ、反応により該面上に薄膜層を
形成してゆく。
At this time, since the semiconductor substrate 3 mounted on the susceptor 2 is rotated together with the susceptor at a rotation speed of usually 500 to 3000 rpm, the source gas and the source gas reaching the center of the substrate surface are removed. The dopant gas flows along the surface of the semiconductor substrate while being uniformly diffused in the outer peripheral direction by the centrifugal force, and forms a thin film layer on the surface by the reaction.

【0026】一方、ガス供給口7、8からは、水素ガス
等のキャリアガス10が供給され、該ガスは、同様に夫
々対応する区画内に設けられた整流板4により整流さ
れ、上方よりウエハ基板外周部、その外延側に向かって
流下する。
On the other hand, a carrier gas 10 such as hydrogen gas is supplied from gas supply ports 7 and 8, and the gas is similarly rectified by rectifying plates 4 provided in the corresponding sections, and the wafer is supplied from above. It flows down toward the outer peripheral portion of the substrate and its outer side.

【0027】本発明の薄膜気相成長装置においては、図
1、2に示すように、前記隔壁5が反応炉頂部内壁と整
流板との間から更に整流板4を越えて下方に延びた延長
部5aを備えていることが特に好ましい。特に図2に示
す形態のものは、異なる区画からのガス、即ち、供給口
6と供給口7,8から供給された成分を異にする各成膜
用ガスが整流板4流出後もすぐには混合されることがな
い。そのため、薄膜形成に際して膜厚、面内抵抗率の均
一化に優れた効果を奏するだけでなく、炉内を垂下する
ガス流の乱流化が抑制されるため、結果的にパーティク
ル発生を低減できる利点をも有する。
In the thin film vapor phase growth apparatus of the present invention, as shown in FIGS. 1 and 2, the partition wall 5 extends downward from the space between the inner wall of the reactor top and the straightening plate further beyond the straightening plate 4. It is particularly preferable to provide the portion 5a. In particular, in the embodiment shown in FIG. 2, gases from different compartments, that is, each film-forming gas having a different component supplied from the supply port 6 and the supply ports 7 and 8 are supplied immediately after flowing out of the current plate 4. Are never mixed. Therefore, when forming a thin film, not only an excellent effect of uniformizing the film thickness and the in-plane resistivity is obtained, but also the turbulence of the gas flow hanging down in the furnace is suppressed, and as a result, particle generation can be reduced. It also has advantages.

【0028】本発明において、最内区画領域では、その
直径が、被処理半導体基板の直径をDとしたとき、0.
2D〜1.17Dの範囲、より好ましくは、0.2〜
0.5Dの範囲にあることが原料ガス等の有効利用性改
善の観点から好ましい。同心円区画の最内区画部の直径
が、0.2D未満の場合には、反応ガスが半導体基板全
面に行きわたらないため、好ましくなく、また1.17
Dを越える場合には、未利用反応ガスが生ずるため好ま
しくない。
In the present invention, when the diameter of the innermost partitioned area is D, where D is the diameter of the semiconductor substrate to be processed.
2D to 1.17D, more preferably 0.2 to
It is preferable to be in the range of 0.5D from the viewpoint of improving the effective utilization of the raw material gas and the like. When the diameter of the innermost section of the concentric section is less than 0.2D, the reaction gas does not spread over the entire surface of the semiconductor substrate, which is not preferable.
If it exceeds D, it is not preferable because unused reaction gas is generated.

【0029】また、本発明の薄膜気相成長装置において
は、前記隔壁を交換することによって、前記区画領域を
可変できるように構成されていることが、処理される半
導体基板の径、形成すべき薄膜の種類、所望膜厚、所望
の形成膜特性等種々の所望用件に対応して適宜最適成膜
条件を設定できる観点からより好ましい。
Further, in the thin film vapor phase growth apparatus of the present invention, the partitioning area can be changed by exchanging the partition walls. It is more preferable from the viewpoint that optimum film forming conditions can be appropriately set in accordance with various desired requirements such as a type of a thin film, a desired film thickness, and desired formed film characteristics.

【0030】更に、2以上に区分された供給口から供給
される原料ガスの供給量を調節する調整変更手段、ドー
パントガスの供給量を調節する調整変更手段、水素ガス
等のキャリアガス供給量を調節する調整変更手段が設け
られていることがより好ましく、これにより半導体基板
上により均等な厚さのより均質な薄膜を形成することが
できる。特に、各成膜用ガスの供給量を調節する調整変
更手段によって、前記各区画の夫々から供給される各成
膜用ガスの単位面積あたりの供給量の各供給部位におけ
る差(変動幅)が25%以下に制御することが好まし
い。
Further, the adjusting and changing means for adjusting the supply amount of the source gas supplied from the two or more divided supply ports, the adjusting and changing means for adjusting the supply amount of the dopant gas, and the supply amount of the carrier gas such as hydrogen gas. It is more preferable to provide an adjustment changing means for adjusting, so that a more uniform thin film having a more uniform thickness can be formed on the semiconductor substrate. In particular, the difference (variation width) of the supply amount per unit area of the film formation gas supplied from each of the sections at each supply portion is adjusted by the adjustment changing means for adjusting the supply amount of each film formation gas. It is preferable to control it to 25% or less.

【0031】本発明の方法において、薄膜形成に用いる
基板としては、典型的にはシリコンウエハであるが、炭
化珪素基板等のシリコン以外の半導体基板も使用でき
る。更に、前記半導体基板上に形成される薄膜はシリコ
ン膜が最も一般的であるがその他の薄膜、例えばGaA
s膜等でもよく、また、該薄膜は、単結晶膜、多結晶
膜、エピタキシャル結晶膜の何れでも支障なく適用され
得る。本発明で上記気相成長に用いる成膜ガスとして
は、通常のCVD薄膜成長法による薄膜形成で用いる成
膜用ガスが、特に限定されることなく使用でき、このよ
うな成膜ガスとして、例えば、シリコン薄膜形成の場
合、シリコン成分を含む原料ガス、ドーパント、キャリ
アガスから成る成膜反応ガスを挙げることができる。
In the method of the present invention, the substrate used for forming the thin film is typically a silicon wafer, but a semiconductor substrate other than silicon, such as a silicon carbide substrate, can also be used. Furthermore, the thin film formed on the semiconductor substrate is most commonly a silicon film, but other thin films, for example, GaAs
An s film or the like may be used, and the thin film may be applied to any of a single crystal film, a polycrystalline film, and an epitaxial crystal film without any trouble. As a film forming gas used in the vapor phase growth in the present invention, a film forming gas used for forming a thin film by a normal CVD thin film growth method can be used without particular limitation. As such a film forming gas, for example, In the case of forming a silicon thin film, a film forming reaction gas composed of a source gas containing a silicon component, a dopant, and a carrier gas can be used.

【0032】上記原料ガスのシリコン成分としてはSi
4 、Si26 、SiHCl3 、SiCl4 、等を例
示でき、ドーパントガスとしては、B26 の硼素化合
物、PH3 のリン化合物の他AsH3 等を例示できる。
また、キャリアガスとしては一般に水素ガスAr等が使
用される。このように構成された本発明の薄膜気相成長
装置を用いた本発明の薄膜気相成長方法は、通常の方法
と同様の条件、例えば、10乃至500Torr程度の
減圧条件にも充分好適に適用できる。
The silicon component of the source gas is Si
H 4 , Si 2 H 6 , SiHCl 3 , SiCl 4 , and the like can be exemplified. As the dopant gas, a boron compound of B 2 H 6 , a phosphorus compound of PH 3 , and AsH 3 can be exemplified.
In addition, a hydrogen gas Ar or the like is generally used as a carrier gas. The thin film vapor phase growth method of the present invention using the thin film vapor phase growth apparatus of the present invention configured as described above can be suitably applied to the same conditions as ordinary methods, for example, under reduced pressure conditions of about 10 to 500 Torr. it can.

【0033】[0033]

【実施例】[実施例1]図1に示した薄膜気相成長装置
を用い、ガス供給口6(最内部区画:内径D350m
m)から成膜ガス50リットル/min(原料ガス;S
iH4 1.5リットル/min、ドーパント;B26
0.4ppb、残部キャリアガス:H2 )を、また、ガ
ス供給口8(中間部区画)からキャリアガス(H2 )2
4リットル/minを、及び、ガス供給口7(最外部区
画)からキャリアガス(H2 )30リットル/minを
夫々供給した。このときの、最内部区画の流速(整流板
4の直下の流速)は0.052リットル/cm2 ・mi
nであり、中間部区画の流速(整流板4の直下の流速)
は0.057リットル/cm2 ・minであり、最外部
区画の流速(整流板4の直下の流速)は0.052リッ
トル/cm2 ・minであった。また、気相成長温度1
000℃、気相成長圧力20torr、ホルダー回転数
1500rpmの操作条件下に、直径300mmのシリ
コンウエハ基板上に薄膜を成長させる操作を繰り返し
(約3000回、期間3ヶ月間)実施した。そしてこの
間の平均成膜速度、原料ガス利用効率及びメンテナンス
回数を測定記録した。得られた結果を表1に示した。
[Example 1] A gas supply port 6 (innermost section: inner diameter D350m) using the thin film vapor phase growth apparatus shown in FIG.
m) to 50 liter / min of film forming gas (source gas; S
iH 4 1.5 l / min, dopant: B 2 H 6
0.4 ppb, the remaining carrier gas: H 2 ), and the carrier gas (H 2 ) 2 from the gas supply port 8 (intermediate section).
4 liter / min and carrier gas (H 2 ) 30 liter / min were supplied from the gas supply port 7 (outermost section). At this time, the flow velocity in the innermost section (flow velocity immediately below the current plate 4) is 0.052 liter / cm 2 · mi.
n, the flow velocity in the middle section (flow velocity just below the current plate 4)
Was 0.057 l / cm 2 · min, and the flow rate in the outermost section (flow rate immediately below the current plate 4) was 0.052 l / cm 2 · min. In addition, vapor phase growth temperature 1
The operation of growing a thin film on a silicon wafer substrate having a diameter of 300 mm was repeated (about 3000 times, for a period of 3 months) under the operating conditions of 000 ° C., a vapor growth pressure of 20 torr, and a holder rotation speed of 1500 rpm. During this period, the average film forming rate, the raw material gas use efficiency, and the number of maintenance times were measured and recorded. Table 1 shows the obtained results.

【0034】なお、平均成膜速度(μm/min)は、
ウエハ面内の膜厚を測定し平均を求め、該平均値を成膜
時間で割ることによって、得られる。また、原料ガス利
用効率を求めるには、まず次式によって堆積レートを求
める。 堆積レート(μm3 /min)=ウエハ面積(mm2
/10-6×成膜(成長)速度(μm/min) この式から求められる堆積レートを単位(mol/mi
n)換算し、次式から原料ガス利用効率を求める。 原料ガス利用効率=堆積レートを単位(mol/mi
n)/原料ガス使用量(mol/min)×100 更に、メンテナンス回数とは、炉内の分解クリーニング
回数を意味し、堆積物により排気圧が管理値より外れた
状態になった時にメンテナンスが必要とし、その回数を
カウントした。
The average film forming speed (μm / min) is
It is obtained by measuring the film thickness in the wafer surface, obtaining an average, and dividing the average value by the film formation time. Further, in order to obtain the source gas utilization efficiency, first, the deposition rate is obtained by the following equation. Deposition rate (μm 3 / min) = wafer area (mm 2 )
/ 10 −6 × film formation (growth) rate (μm / min) The deposition rate determined from this equation is expressed in units (mol / mi).
n) Convert and calculate the source gas utilization efficiency from the following equation. Source gas utilization efficiency = unit of deposition rate (mol / mi)
n) / Amount of raw material gas used (mol / min) × 100 Further, the number of maintenance means the number of times of decomposition and cleaning in the furnace, and maintenance is required when the exhaust pressure falls outside the control value due to deposits. And the number was counted.

【0035】[実施例2及び実施例4]実施例1におい
て、ガス供給口6、8、7(図1参照)から夫々供給す
る各ガスの流量を表1に記載した値に変更した以外は実
施例1と同様にして薄膜成長操作を実施し、実施例1と
同様に評価した。その結果を表1に示す。このときの、
実施例2における最内部区画の流速(整流板4の直下の
流速)は0.051リットル/cm2 ・minであり、
中間部区画の流速(整流板4の直下の流速)は0.05
1リットル/cm2 ・minであり、最外部区画の流速
(整流板4の直下の流速)は0.051リットル/cm
2 ・minであった。
Embodiment 2 and Embodiment 4 In Embodiment 1, except that the flow rate of each gas supplied from the gas supply ports 6, 8, and 7 (see FIG. 1) was changed to the values shown in Table 1. A thin film growth operation was performed in the same manner as in Example 1, and evaluation was performed in the same manner as in Example 1. Table 1 shows the results. At this time,
The flow rate of the innermost section (flow rate immediately below the current plate 4) in Example 2 was 0.051 liter / cm 2 · min,
The flow velocity in the middle section (flow velocity immediately below the current plate 4) is 0.05
1 liter / cm 2 · min, and the flow rate in the outermost section (flow rate immediately below the current plate 4) is 0.051 liter / cm.
It was 2 min.

【0036】同様に、実施例3における最内部区画の流
速(整流板4の直下の流速)は0.064リットル/c
2 ・minであり、中間部区画の流速(整流板4の直
下の流速)は0.045リットル/cm2 ・minであ
り、最外部区画の流速(整流板4の直下の流速)は0.
050リットル/cm2 ・minであった。また、実施
例4における最内部区画の流速(整流板4の直下の流
速)は0.035リットル/cm2 ・minであり、中
間部区画の流速(整流板4の直下の流速)は0.015
リットル/cm2 ・minであり、最外部区画の流速
(整流板4の直下の流速)は0.036リットル/cm
2 ・minであった。
Similarly, the flow rate in the innermost section (flow rate immediately below the current plate 4) in Example 3 is 0.064 liter / c.
m 2 · min, the flow rate in the middle section (flow rate immediately below the current plate 4) is 0.045 liter / cm 2 · min, and the flow rate in the outermost section (flow rate immediately below the current plate 4) is 0. .
It was 050 liter / cm 2 · min. In Example 4, the flow rate in the innermost section (flow rate immediately below the flow straightening plate 4) was 0.035 liter / cm 2 · min, and the flow rate in the middle section (flow rate immediately below the flow straightening plate 4) was 0. 015
Liter / cm 2 · min, and the flow rate in the outermost section (flow rate immediately below the current plate 4) is 0.036 liter / cm 2
It was 2 min.

【0037】[参考例1]参考例1において、ガス供給
口6、8、7(図1参照)から夫々供給する各ガスの流
量を表2に記載した値に変更した以外は実施例1と同様
にして薄膜成長操作を実施し、実施例1と同様に評価し
た。その結果を表2に示す。このときの、参考例1にお
ける最内部区画の流速(整流板4の直下の流速)は0.
142リットル/cm2 ・minであり、中間部区画の
流速(整流板4の直下の流速)は0.028リットル/
cm2 ・minであり、最外部区画の流速(整流板4の
直下の流速)は0.027リットル/cm2 ・minで
あった。
REFERENCE EXAMPLE 1 The same procedures as in Reference Example 1 were carried out except that the flow rates of the respective gases supplied from the gas supply ports 6, 8, and 7 (see FIG. 1) were changed to the values shown in Table 2. A thin film growth operation was performed in the same manner, and evaluation was performed in the same manner as in Example 1. Table 2 shows the results. At this time, the flow velocity in the innermost section (the flow velocity immediately below the current plate 4) in Reference Example 1 is 0.5.
142 liters / cm 2 · min, and the flow rate in the middle section (flow rate immediately below the current plate 4) is 0.028 liters / cm 2 · min.
cm 2 · min, and the flow rate in the outermost section (flow rate immediately below the current plate 4) was 0.027 liter / cm 2 · min.

【0038】[比較例1及び比較例2]図3に示した従
来の薄膜成長装置(比較例1)、図4に示すようにガス
供給口6の内径を450mmとし、中間供給口8を除い
た薄膜成長装置(比較例2)を夫々用い、その供給口か
ら、表1の比較例1,比較例2の欄に記載された流量の
ガスを供給した以外は実施例1と同様の条件で薄膜成長
反応を実施した。その結果を表2に示す。なお、このと
きの、比較例1における最内部区画の流速(整流板4の
直下の流速)は0.051リットル/cm2 ・minで
あり、比較例2における最内部区画の流速(整流板4の
直下の流速)は0.050リットル/cm2 ・minで
あり、最外部区画の流速(整流板4の直下の流速)は
0.054リットル/cm2・minであった。
[Comparative Example 1 and Comparative Example 2] The conventional thin film growth apparatus (Comparative Example 1) shown in FIG. 3 has an inner diameter of a gas supply port 6 of 450 mm as shown in FIG. Each of the thin film growth apparatuses (Comparative Example 2) was used, and a gas having a flow rate described in the column of Comparative Example 1 and Comparative Example 2 of Table 1 was supplied from the supply port under the same conditions as in Example 1. A thin film growth reaction was performed. Table 2 shows the results. At this time, the flow velocity of the innermost section (the flow rate immediately below the current plate 4) in Comparative Example 1 was 0.051 liter / cm 2 · min, and the flow rate of the innermost section (the current plate 4 Was just 0.050 liter / cm 2 · min, and the flow rate of the outermost section (the flow rate just below the current plate 4) was 0.054 liter / cm 2 · min.

【0039】[0039]

【表1】 [Table 1]

【0040】[0040]

【表2】 [Table 2]

【0041】表1、2から、実施例1〜4、参考例1の
原料ガス利用率が従来装置用いた比較例に比べて向上し
ていることが認められた。特に、最内区画領域では、そ
の直径が、処理されるウエハの直径をDとしたとき、
0.2D〜1.17Dの範囲(実施例1〜4)の範囲に
あることが原料ガス等の有効利用性改善の観点から好ま
しいことが認められた。更に、成膜速度の点を考慮すれ
ば、実施例3、4にように、ウエハの直径をDとしたと
き、0.2D〜0.5Dの範囲にあることが好ましいこ
とが認められた。
From Tables 1 and 2, it was confirmed that the raw material gas utilization in Examples 1 to 4 and Reference Example 1 was improved as compared with the comparative example using the conventional apparatus. In particular, in the innermost section area, when the diameter of the wafer to be processed is D,
It was recognized that it was preferable to be in the range of 0.2D to 1.17D (Examples 1 to 4) from the viewpoint of improving the effective utilization of the raw material gas and the like. Further, in consideration of the film forming rate, it was recognized that the diameter is preferably in the range of 0.2D to 0.5D when the diameter of the wafer is D as in Examples 3 and 4.

【0042】「実施例4」次に、実施例2の条件を基に
して、夫々のガス供給区画から供給するガス流速のバラ
ツキ(流速分布)と形成膜の厚さのバラツキ(膜厚分
布)との関係を調べた。各ガスの供給量は、表3に示す
とおりであり、このときの実施例2、参考例1における
各区画の流速は上記した通りである。また、参考例2に
おける、最内部区画の流速(整流板4の直下の流速)は
0.051リットル/cm2 ・minであり、中間部区
画の流速(整流板4の直下の流速)は0.051リット
ル/cm2 ・minであり、最外部区画の流速(整流板
4の直下の流速)は0.051リットル/cm2 ・mi
nであった。
Example 4 Next, based on the conditions of Example 2, variations in the flow velocity of the gas supplied from each gas supply section (flow velocity distribution) and variations in the thickness of the formed film (thickness distribution). And examined the relationship. The supply amounts of the respective gases are as shown in Table 3, and the flow rates of the respective sections in Example 2 and Reference Example 1 at this time are as described above. In Reference Example 2, the flow rate in the innermost section (flow rate immediately below the current plate 4) was 0.051 liter / cm 2 · min, and the flow rate in the middle section (flow rate immediately below the current plate 4) was 0. 0.051 liter / cm 2 · min, and the flow rate in the outermost section (flow rate immediately below the current plate 4) is 0.051 liter / cm 2 · mi.
n.

【0043】同様に、参考例3における、最内部区画の
流速(整流板4の直下の流速)は0.051リットル/
cm2 ・minであり、中間部区画の流速(整流板4の
直下の流速)は0.047リットル/cm2 ・minで
あり、最外部区画の流速(整流板4の直下の流速)は
0.038リットル/cm2 ・minであった。また、
参考例4における、最内部区画の流速(整流板4の直下
の流速)は0.0510リットル/cm2 ・minであ
り、中間部区画の流速(整流板4の直下の流速)は0.
0679リットル/cm2 ・minであり、最外部区画
の流速(整流板4の直下の流速)は0.0400リット
ル/cm2 ・minであった。また、膜厚は、フーリエ
変換赤外分光装置(FTIR)を使用した装置により測
定を行った。
Similarly, in Reference Example 3, the flow rate in the innermost section (flow rate immediately below the current plate 4) was 0.051 liter /
cm 2 · min, the flow rate in the middle section (flow rate immediately below the current plate 4) is 0.047 liter / cm 2 · min, and the flow rate in the outermost section (flow rate immediately below the current plate 4) is 0. 0.038 liter / cm 2 · min. Also,
In Reference Example 4, the flow rate in the innermost section (flow rate immediately below the current plate 4) was 0.0510 liter / cm 2 · min, and the flow rate in the middle section (flow rate immediately below the current plate 4) was 0.
0679 l / cm 2 · min, and the flow rate in the outermost section (flow rate immediately below the current plate 4) was 0.0400 l / cm 2 · min. The film thickness was measured by an apparatus using a Fourier transform infrared spectrometer (FTIR).

【0044】そして得られた測定結果から、下記式
(1)及び(2)に基づいて、ガス流速分布及び膜厚分
布を算出した。 ガス流速分布=(各区画ガス流速最大値−最小値)/(各区画ガス流速最大 値+最小値)×100 …(1) 膜厚分布=(膜厚最大値−膜厚最小値)/(膜厚最大値+膜厚最小値)…( 2) その結果を表3に示す。
From the obtained measurement results, the gas flow velocity distribution and the film thickness distribution were calculated based on the following equations (1) and (2). Gas flow rate distribution = (Maximum value of each section gas flow rate−Minimum value) / (Maximum value of each section gas flow rate + Minimum value) × 100 (1) Film thickness distribution = (Maximum value of film thickness−Minimum value of film thickness) / ( (Film thickness maximum value + film thickness minimum value) (2) The results are shown in Table 3.

【0045】[0045]

【表3】 [Table 3]

【0046】表3の実施例2、参考例2、参考例3か
ら、供給するガスの流速分布(バラツキ)がない場合に
良好な均等膜が得られることが認められる。なお、参考
例1、4に示すようにカス流速分布が25%を越える
と、膜厚分布が5%(規格値)を越えるため、不良品と
される。したがって、ガス流速部分は25%以下が好ま
しい。
From Example 2, Reference Example 2, and Reference Example 3 in Table 3, it is recognized that a good uniform film can be obtained when there is no flow velocity distribution (variation) of the supplied gas. As shown in Reference Examples 1 and 4, when the flow rate distribution of scum exceeds 25%, the film thickness distribution exceeds 5% (standard value), and is regarded as defective. Therefore, the gas flow rate portion is preferably 25% or less.

【0047】[0047]

【発明の効果】以上詳述したように、同心円状に2区画
以上に区分され、かつ、各区画の夫々にガス供給口が配
設された構造の薄膜気相成長装置を用い、原料ガスとド
ーパントを含むガスを前記同心円区画の最内区画部から
ほぼ垂直に被処理半導体基板面の中心部に向けて流下さ
せ、最外区画部からは前記キャリアガスのみを流下させ
ることにより、原料ガスの利用効率を顕著に向上させる
ことができると共に未反応ガスの減少により、排気管の
閉塞等のトラブルを減少させることができる。
As described in detail above, the source gas and the raw material gas are used by using a thin film vapor phase growth apparatus having a structure in which two or more sections are concentrically divided and a gas supply port is provided in each section. By causing the gas containing the dopant to flow almost vertically from the innermost section of the concentric section toward the center of the surface of the semiconductor substrate to be processed, and from the outermost section to flow only the carrier gas, the source gas The utilization efficiency can be remarkably improved and troubles such as clogging of an exhaust pipe can be reduced due to a decrease in unreacted gas.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の薄膜気相成長方法で使用する薄膜気相
成長装置の一実施形態の断面構造を示した概略図であ
る。
FIG. 1 is a schematic diagram showing a cross-sectional structure of one embodiment of a thin film vapor phase growth apparatus used in a thin film vapor phase growth method of the present invention.

【図2】本発明の薄膜気相成長方法で使用する薄膜気相
成長装置の他の形態の断面構造を示した概略図である。
FIG. 2 is a schematic diagram showing a cross-sectional structure of another embodiment of a thin film vapor phase growth apparatus used in the thin film vapor phase growth method of the present invention.

【図3】従来の薄膜気相成長装置の断面構造を示した概
略図である。
FIG. 3 is a schematic view showing a cross-sectional structure of a conventional thin film vapor deposition apparatus.

【図4】比較例2において用いた薄膜気相成長装置を示
す概略断面図である。
FIG. 4 is a schematic sectional view showing a thin film vapor phase growth apparatus used in Comparative Example 2.

【符号の説明】[Explanation of symbols]

1 チャンバー 2 サセプタ 3 半導体基板 4 ガス整流板 5 隔壁 6 ガス供給口 7 ガス供給口 8 ガス供給口 9a 成膜ガス 9b 原料ガスとドーパントガス 10 キャリアガス Reference Signs List 1 chamber 2 susceptor 3 semiconductor substrate 4 gas rectifying plate 5 partition 6 gas supply port 7 gas supply port 8 gas supply port 9a deposition gas 9b source gas and dopant gas 10 carrier gas

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大橋 忠 神奈川県秦野市曽屋30番地 東芝セラミッ クス株式会社開発研究所内 (72)発明者 岩田 勝行 神奈川県秦野市曽屋30番地 東芝セラミッ クス株式会社開発研究所内 (72)発明者 三谷 慎一 静岡県沼津市大岡2068−3 東芝機械株式 会社内 (72)発明者 鈴木 邦彦 静岡県沼津市大岡2068−3 東芝機械株式 会社内 (72)発明者 高橋 英則 静岡県沼津市大岡2068−3 東芝機械株式 会社内 Fターム(参考) 4K030 AA06 AA17 BA29 CA04 EA03 FA10 GA06 JA01 JA05 KA05 LA15 5F045 AA06 AB02 AB10 AC01 AC05 AF02 AF03 BB02 BB10 BB15 DP03 DP28 DQ04 EE17 EE20 EF15  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tadashi Ohashi, 30 Soya, Hadano-shi, Kanagawa Toshiba Ceramics Co., Ltd. (72) Inventor Katsuyuki Iwata 30 Soya, Hadano-shi, Kanagawa Toshiba Ceramics Co., Ltd. In-house (72) Inventor Shinichi Mitani 2068-3 Ooka Numazu-shi, Shizuoka Toshiba Machine Co., Ltd. (72) Inventor Kunihiko Suzuki 2068-3 Ooka, Numazu-shi, Shizuoka Toshiba Machine Co., Ltd. (72) Inventor Hidenori Takahashi Shizuoka 2068-3 Ooka, Numazu-shi F-term (reference) 4K030 AA06 AA17 BA29 CA04 EA03 FA10 GA06 JA01 JA05 KA05 LA15 5F045 AA06 AB02 AB10 AC01 AC05 AF02 AF03 BB02 BB10 BB15 DP03 DP28 DQ04 EE17 EE20 EF15

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 成長させるべき薄膜の成分を含む原料ガ
ス、薄膜層の抵抗率を制御するためのドーパントを含む
ガス及びキャリアガスから成る成膜用ガスを、円筒状の
反応炉の頂部に設けられた複数のガス供給口から整流板
を介して流下させ、下方に配備された回転式サセプタ上
に載置した半導体基板に接触させて該基板面上に薄膜を
気相成長させる方法において、 前記反応炉として、頂部内壁面と整流板との間隙が、前
記載置ウエハ基板の中心点を対応中心とする同心円状に
少なくとも2区画に区分され、且つ、各区画の夫々にガ
ス供給口が配設された構造のものを用い、前記成膜用ガ
スのうち、原料ガスとドーパントを含むガスを前記同心
円区画の最内区画部からほぼ垂直に流下させ、最外区画
部からは前記キャリアガスのみを流下させることを特徴
とする薄膜気相成長方法。
A film forming gas comprising a source gas containing a component of a thin film to be grown, a gas containing a dopant for controlling the resistivity of a thin film layer, and a carrier gas is provided at the top of a cylindrical reactor. A method of causing a thin film to flow down from a plurality of gas supply ports through a rectifying plate and contacting a semiconductor substrate mounted on a rotary susceptor provided below to vapor-phase grow a thin film on the substrate surface. As a reaction furnace, the gap between the top inner wall surface and the rectifying plate is divided into at least two sections concentrically with the center point of the wafer substrate described above as a corresponding center, and a gas supply port is provided in each section. Of the film forming gas, a gas containing a source gas and a dopant is allowed to flow almost vertically from the innermost section of the concentric section, and only the carrier gas flows from the outermost section. Let down Thin film vapor-phase growth method, characterized in that.
【請求項2】 前記同心円区画の最内区画部の直径が、
前記半導体基板の直径をDとしたとき、0.2D〜1.
17Dの範囲にあることを特徴とする請求項1に記載の
薄膜気相成長方法。
2. The diameter of the innermost section of the concentric section is:
When the diameter of the semiconductor substrate is D, 0.2D-1.
The method of claim 1, wherein the thickness is in the range of 17D.
【請求項3】 前記各区画の夫々から供給される各成膜
用ガスの単位面積あたりの供給量の各供給部位における
差が25%以下であることを特徴とする請求項1または
請求項2に記載の薄膜気相成長方法。
3. The difference between the supply amount of each film-forming gas supplied from each of the sections and the supply amount per unit area at each supply portion is 25% or less. 3. The thin film vapor phase growth method according to item 1.
【請求項4】 円筒状反応炉の頂部に複数のガス供給
口、底部に排気口、内部にウエハ基板を載置する回転式
サセプタ、及び内部上部にガス整流板を備え、原料ガ
ス、ドーパントガス及びキャリアガスから成る成膜用ガ
スを、前記ガス供給口から整流板を介して炉内を流下さ
せ、下方の回転式サセプタ上に載置したウエハ基板に薄
膜を気相成長させる薄膜気相成長装置において、 前記反応炉は、頂部内壁と整流板との間隙が隔壁により
前記載置ウエハ基板の中心点に対応中心を有する同心円
状に少なくとも2区画に区分され、各区画の夫々にガス
供給口が配設されていることを特徴とする薄膜気相成長
装置。
4. A source gas, a dopant gas, comprising a plurality of gas supply ports at the top of a cylindrical reactor, an exhaust port at the bottom, a rotary susceptor for mounting a wafer substrate inside, and a gas rectifying plate at the top inside. And a film forming gas comprising a carrier gas flowing down the furnace from the gas supply port via a flow straightening plate, and vapor-phase growing a thin film on a wafer substrate mounted on a rotary susceptor below. In the apparatus, the reaction furnace may be divided into at least two sections in a concentric circle having a center corresponding to a center point of the wafer substrate, wherein a gap between a top inner wall and a rectifying plate is separated by a partition, and a gas supply port is provided for each section. A thin film vapor phase growth apparatus, wherein:
【請求項5】 前記同心円区画の最内区画部の直径が、
前記半導体基板の直径をDとしたとき、0.2D〜1.
17Dの範囲にあることを特徴とする請求項3に記載の
薄膜気相成長装置。
5. The diameter of the innermost section of the concentric section is:
When the diameter of the semiconductor substrate is D, 0.2D-1.
The apparatus according to claim 3, wherein the apparatus is in a range of 17D.
【請求項6】 前記各区画の夫々から供給される各成膜
用ガスの単位面積あたりの供給量の各供給部位における
差が25%以下であることを特徴とする請求項4または
請求項5に記載の薄膜気相成長装置。
6. The difference in the supply amount per unit area of each film-forming gas supplied from each of the sections at each supply portion is 25% or less. 3. The thin-film vapor deposition apparatus according to item 1.
【請求項7】 前記隔壁が、反応炉頂部内壁と整流板と
の間から更に整流板を越えて下方に延び、異なる区画か
らの成膜反応ガスが整流板流出後もすぐには混合されな
いように構成されていることを特徴とする請求項4乃至
請求項6のいずれかに記載の薄膜気相成長装置。
7. The partition wall extends downward from between the inner wall of the reactor top and the straightening plate further beyond the straightening plate, so that the film forming reaction gas from a different section is not immediately mixed even after flowing out of the straightening plate. 7. The thin-film vapor deposition apparatus according to claim 4, wherein the apparatus is configured as follows.
JP2000198338A 2000-06-30 2000-06-30 Thin film vapor deposition method and thin film vapor deposition apparatus Expired - Fee Related JP4450299B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000198338A JP4450299B2 (en) 2000-06-30 2000-06-30 Thin film vapor deposition method and thin film vapor deposition apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000198338A JP4450299B2 (en) 2000-06-30 2000-06-30 Thin film vapor deposition method and thin film vapor deposition apparatus

Publications (2)

Publication Number Publication Date
JP2002016008A true JP2002016008A (en) 2002-01-18
JP4450299B2 JP4450299B2 (en) 2010-04-14

Family

ID=18696516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000198338A Expired - Fee Related JP4450299B2 (en) 2000-06-30 2000-06-30 Thin film vapor deposition method and thin film vapor deposition apparatus

Country Status (1)

Country Link
JP (1) JP4450299B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007251078A (en) * 2006-03-20 2007-09-27 Nuflare Technology Inc Vapor phase epitaxial growth device
JP2009152521A (en) * 2007-11-29 2009-07-09 Nuflare Technology Inc Apparatus for manufacturing semiconductor device and method for manufacturing semiconductor device
JP2009231587A (en) * 2008-03-24 2009-10-08 Nuflare Technology Inc Semiconductor manufacturing equipment and semiconductor manufacturing method
JP2012044195A (en) * 2011-09-22 2012-03-01 Nuflare Technology Inc Vapor-phase epitaxial method
JP2012190903A (en) * 2011-03-09 2012-10-04 Toshiba Corp Vapor phase epitaxial growth device, and vapor phase epitaxial growth method
US8597429B2 (en) 2011-01-18 2013-12-03 Nuflare Technology, Inc. Manufacturing apparatus and method for semiconductor device
WO2014103657A1 (en) * 2012-12-26 2014-07-03 信越半導体株式会社 Eccentricity evaluation method and method for manufacturing epitaxial wafer
JP2015073000A (en) * 2013-10-02 2015-04-16 株式会社ニューフレアテクノロジー Deposition device and deposition method
US9243326B2 (en) 2010-03-26 2016-01-26 Kabushiki Kaisha Toyota Chuo Kenkyusho Surface treatment apparatus
JP2019057668A (en) * 2017-09-22 2019-04-11 株式会社東芝 Film deposition apparatus and film deposition method
US10745824B2 (en) 2016-11-16 2020-08-18 Nuflare Technology, Inc. Film forming apparatus

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007251078A (en) * 2006-03-20 2007-09-27 Nuflare Technology Inc Vapor phase epitaxial growth device
JP2009152521A (en) * 2007-11-29 2009-07-09 Nuflare Technology Inc Apparatus for manufacturing semiconductor device and method for manufacturing semiconductor device
JP2009231587A (en) * 2008-03-24 2009-10-08 Nuflare Technology Inc Semiconductor manufacturing equipment and semiconductor manufacturing method
US9243326B2 (en) 2010-03-26 2016-01-26 Kabushiki Kaisha Toyota Chuo Kenkyusho Surface treatment apparatus
US8597429B2 (en) 2011-01-18 2013-12-03 Nuflare Technology, Inc. Manufacturing apparatus and method for semiconductor device
US8835331B2 (en) 2011-03-09 2014-09-16 Kabushiki Kaisha Toshiba Vapor-phase growing apparatus and vapor-phase growing method
JP2012190903A (en) * 2011-03-09 2012-10-04 Toshiba Corp Vapor phase epitaxial growth device, and vapor phase epitaxial growth method
JP2012044195A (en) * 2011-09-22 2012-03-01 Nuflare Technology Inc Vapor-phase epitaxial method
WO2014103657A1 (en) * 2012-12-26 2014-07-03 信越半導体株式会社 Eccentricity evaluation method and method for manufacturing epitaxial wafer
JP2014127595A (en) * 2012-12-26 2014-07-07 Shin Etsu Handotai Co Ltd Eccentricity evaluation method and manufacturing method of epitaxial wafer
JP2015073000A (en) * 2013-10-02 2015-04-16 株式会社ニューフレアテクノロジー Deposition device and deposition method
US10745824B2 (en) 2016-11-16 2020-08-18 Nuflare Technology, Inc. Film forming apparatus
JP2019057668A (en) * 2017-09-22 2019-04-11 株式会社東芝 Film deposition apparatus and film deposition method

Also Published As

Publication number Publication date
JP4450299B2 (en) 2010-04-14

Similar Documents

Publication Publication Date Title
EP0854210B1 (en) Vapor deposition apparatus for forming thin film
CN1906326B (en) Thermal chemical vapor deposition of silicon nitride
JPH1167675A (en) High-speed rotary vapor phase thin-film forming device and high-speed rotary vapor phase thin-film forming method using the device
JPH0831758A (en) Vapor growth and device therefor
JP2002016008A (en) Method and device for vapor phase growth of thin film
KR100765866B1 (en) A method for growing a thin film in gaseous phase, and apparatus for growing a thin film in gaseous phase adapted to conducting the above method
JP7365761B2 (en) Vapor phase growth equipment
TW200527511A (en) Chemical vapor deposition apparatus and film deposition method
JP3517808B2 (en) Vapor phase growth method and apparatus
CN107546101A (en) A kind of epitaxial growth method
JP4484185B2 (en) Chemical vapor deposition method for silicon semiconductor substrate
JP2602298B2 (en) Vapor phase growth equipment
JP3570653B2 (en) Vapor phase thin film growth apparatus and vapor phase thin film growth method
JPS62263629A (en) Vapor growth device
JP3731844B2 (en) Vapor thin film growth apparatus and vapor thin film growth method using the same
JP3597003B2 (en) Vapor phase growth apparatus and vapor phase growth method
JP2009135238A (en) Vapor deposition apparatus and vapor deposition method
JPH10177961A (en) Vapor growth device and method
JPH1167674A (en) Apparatus and method for gas phase thin-film growth
EP1371087B1 (en) A device for epitaxially growing objects by cvd
JP2001140078A (en) Chemical vapor deposition system
JPH0547669A (en) Vapor growth apparatus
JP2004134625A (en) Method and apparatus for manufacturing semiconductor device
JPH1050615A (en) Single wafer processing gas-phase growth device
JP2004014535A (en) Vapor phase growing device and method therefor and susceptor for holding substrate

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060605

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070405

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100121

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100121

R150 Certificate of patent or registration of utility model

Ref document number: 4450299

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140205

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees