JPH1167675A - High-speed rotary vapor phase thin-film forming device and high-speed rotary vapor phase thin-film forming method using the device - Google Patents

High-speed rotary vapor phase thin-film forming device and high-speed rotary vapor phase thin-film forming method using the device

Info

Publication number
JPH1167675A
JPH1167675A JP9240331A JP24033197A JPH1167675A JP H1167675 A JPH1167675 A JP H1167675A JP 9240331 A JP9240331 A JP 9240331A JP 24033197 A JP24033197 A JP 24033197A JP H1167675 A JPH1167675 A JP H1167675A
Authority
JP
Japan
Prior art keywords
gas
thin film
reactor
substrate holder
film forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9240331A
Other languages
Japanese (ja)
Inventor
Taira Shin
平 辛
Tadashi Ohashi
忠 大橋
Katsuhiro Chagi
勝弘 茶木
Tatsuo Fujii
達男 藤井
Katsuyuki Iwata
勝行 岩田
Shinichi Mitani
慎一 三谷
Yasuaki Honda
恭章 本多
Yusuke Sato
祐輔 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Toshiba Corp
Shibaura Machine Co Ltd
Original Assignee
Toshiba Corp
Toshiba Machine Co Ltd
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Machine Co Ltd, Toshiba Ceramics Co Ltd filed Critical Toshiba Corp
Priority to JP9240331A priority Critical patent/JPH1167675A/en
Priority to US09/137,298 priority patent/US6113705A/en
Priority to KR1019980033713A priority patent/KR100530477B1/en
Priority to TW087113777A priority patent/TW408372B/en
Publication of JPH1167675A publication Critical patent/JPH1167675A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4584Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-speed rotary vapor phase thin film forming device with few occurrences of pollutant by means of uniformly controlling reaction gas flow applied to CVD of the manufacture process of a semiconductor wafer substrate and an epitaxial process, in which high quality is demanded, and to form a thin film whose film thickness is uniform, whose interface characteristic is uniform, and crystal defect is few with CVD and epitaxy through the use of the device. SOLUTION: This device is provided with a rotary substrate holding body 12, where plural reaction gas supply ports 16 are installed at the top of a hollow reaction furnace 10, exhaust ports 15 at the base and a wafer substrate 11 inside and with a rectifying board 17 where plural holes are pierced on an internally upper part. The device supplies reaction gas inside and its vapor phase-grows the thin film on the surface of the wafer substrate 11 on the rotary substrate holding body 12. In such a case, the hollow inner part is divided into upper/ lower parts, whose equivalent inner diameters differ. The upper equivalent inner diameter is smaller than the lower equivalent inner diameter, a lower end B of the upper part and an upper end U of the lower part are connected by the connection part of a prescribed form and the hollow inner part continues. The lower end U (the upper end of the lower part) of the connection part is arranged in a position having a prescribed height difference with the surface of the wafer substrate 11 loaded on the rotary substrate holding body 12.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高速回転気相薄膜
形成装置及びそれを用いる高速回転気相薄膜形成方法に
関し、特に、高品質が要求される半導体ウエハ基板の製
造工程のCVDやエピタキシャル工程に適用される反応
ガス流を均等に制御して汚染物発生の少ない高速回転気
相薄膜形成装置及びそれを用いてCVDやエピタキシャ
ル等により膜厚均一で、且つ、面内特性が均質な結晶欠
陥が少ない薄膜を形成する高速回転気相薄膜形成方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-speed rotary vapor phase thin film forming apparatus and a high-speed rotary vapor phase thin film forming method using the same, and more particularly, to a CVD or epitaxial process in a semiconductor wafer substrate manufacturing process requiring high quality. A high-speed rotating vapor-phase thin film forming apparatus with less contaminant generation by uniformly controlling the reaction gas flow applied to the wafer, and a crystal defect having a uniform film thickness and uniform in-plane characteristics by CVD or epitaxial using the apparatus. The present invention relates to a method for forming a high-speed rotating vapor-phase thin film for forming a thin film having less heat.

【0002】[0002]

【従来の技術】図5は、従来の気相薄膜形成装置の一例
を示す概略説明図である。図5において、一般に円筒状
の反応炉50内の下部には、例えばシリコンウエハ等の
ウエハ基板51を載置する回転基板ホルダ−52、回転
基板ホルダ−52を回転させるための回転軸53及び加
熱用のヒータ54が配設され、回転軸53には回転駆動
するモータ(図示せず)が接続されている。これら回転
基板ホルダー等の回転機構の周囲は、仕切板58で囲ま
れ保護されている。また、反応炉50底部には未反応ガ
ス等を排気する複数の排気口55、55が配設されて排
気制御装置(図示せず)に接続されている。一方、反応
炉50の頂部には炉内に原料ガスやキャリアガスを供給
する複数のガス供給管56、56と円盤状の整流板57
とが配設され、整流板57には、ガスの流れを整える多
数の孔57aが穿設されている。従来の気相薄膜形成装
置は上記のように構成され、モータの回転駆動によって
所定の回転数で回転する回転基板ホルダ−52上に載置
された基板51は、回転しながらヒータ54により所定
温度に加熱される。同時に、反応炉50内には原料ガス
やキャリアガス等の反応ガスを複数のガス供給管56、
56を介して導入しガス運動量や圧力分布を均一化し、
次いで反応炉内のガス流速分布が均一なるように整流板
57の多数の孔57aを通過させ、回転基板ホルダ−5
2上のウエハ基板51に反応ガスを均一に供給して薄膜
を気相成長させている。
2. Description of the Related Art FIG. 5 is a schematic explanatory view showing an example of a conventional vapor phase thin film forming apparatus. In FIG. 5, a rotating substrate holder 52 for mounting a wafer substrate 51 such as a silicon wafer, a rotating shaft 53 for rotating the rotating substrate holder 52, and a heating A heater (not shown) for driving the rotation is connected to the rotating shaft 53. The periphery of the rotating mechanism such as the rotating substrate holder is surrounded and protected by a partition plate 58. A plurality of exhaust ports 55 for exhausting unreacted gas and the like are provided at the bottom of the reaction furnace 50, and are connected to an exhaust control device (not shown). On the other hand, a plurality of gas supply pipes 56 for supplying a raw material gas and a carrier gas into the furnace and a disc-shaped current plate 57
And a number of holes 57a for regulating the gas flow are formed in the current plate 57. The conventional vapor phase thin film forming apparatus is configured as described above, and the substrate 51 placed on the rotating substrate holder 52, which rotates at a predetermined rotation speed by the rotation of the motor, is rotated at a predetermined temperature by the heater 54 while rotating. Heated. At the same time, a reaction gas such as a source gas and a carrier gas is supplied into the reaction furnace 50 by a plurality of gas supply pipes 56,
Introduced via 56 to equalize gas momentum and pressure distribution,
Next, the gas is passed through a number of holes 57a of the current plate 57 so that the gas flow rate distribution in the reaction furnace becomes uniform,
The reaction gas is uniformly supplied to the wafer substrate 51 on the substrate 2 to vapor-grow the thin film.

【0003】上記したような半導体ウエハ上へ薄膜を形
成する気相薄膜形成装置においては、薄膜形成ガスによ
るパーティクルの発生や反応炉内壁への析出物の付着を
防止するため、また、薄膜形成時の不都合により結晶欠
陥が生じないようにして薄膜が均質で且つ膜厚が均一な
薄膜形成のウエハが得られるように各種の提案がなされ
ている。例えば、特開平5−74719号公報では原料
ガスの供給流量を所定に制御して反応炉内の温度変化を
防止することにより結晶欠陥の防止を図っている。特開
平5−90167号公報では薄膜形成時のウエハ基板の
面内温度分布を均一にするように原料ガス量、炉内圧
力、回転基板ホルダの回転数等を所定に制御してスリッ
プの防止を図っている。特開平6−216045号公報
では析出物が生じ易い反応炉内壁の一部に内周面を平滑
に維持して遮蔽管を配設し、薄膜形成操作を行った後の
反応炉洗浄を容易にすると共に、ガス流を層流状態に維
持して均質な薄膜の形成を図るものである。また、特開
平7−50260号公報では、原料ガスやキャリアガス
の反応炉への導入方法を所定にすることにより、ガス運
動量やガス圧を均一にして均一な流速で原料ガス等を基
板上に供給して薄膜厚の均一化を図るものである。
In the vapor phase thin film forming apparatus for forming a thin film on a semiconductor wafer as described above, it is necessary to prevent the generation of particles due to the thin film forming gas and the deposition of deposits on the inner wall of the reactor. Various proposals have been made to prevent the occurrence of crystal defects due to the inconvenience described above and to obtain a thin film-formed wafer having a uniform thin film and a uniform film thickness. For example, in Japanese Patent Application Laid-Open No. Hei 5-74719, the crystal flow is prevented by preventing the temperature change in the reaction furnace by controlling the supply flow rate of the raw material gas to a predetermined value. In Japanese Patent Application Laid-Open No. 5-90167, the amount of source gas, the pressure in the furnace, the number of rotations of the rotating substrate holder, and the like are controlled to a predetermined value so as to make the in-plane temperature distribution of the wafer substrate uniform during thin film formation, thereby preventing slip. I'm trying. In Japanese Patent Application Laid-Open No. 6-216045, a shielding tube is provided on a part of the inner wall of the reactor where precipitates are liable to be formed, while keeping the inner peripheral surface smooth, and the reactor is easily cleaned after performing a thin film forming operation. In addition, the gas flow is maintained in a laminar state to form a uniform thin film. In Japanese Patent Application Laid-Open No. 7-50260, the method of introducing a raw material gas and a carrier gas into a reaction furnace is set to a predetermined value so that the gas momentum and the gas pressure are made uniform and the raw material gas and the like are deposited on the substrate at a uniform flow rate. It is supplied to make the thickness of the thin film uniform.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
各種提案の従来の気相薄膜形成装置においても、薄膜成
長させたウエハ基板で、結晶欠陥が生じたり、パーティ
クル付着等の不都合が十分に防止できるとはいえず、ま
た、特に近年の半導体における超高集積化に伴い、ウエ
ハ基板は、ますます高品質化が要求されるようになった
ことから、薄膜形成ウエハ基板の僅かな欠陥の品質低下
も問題になることが多くなっている。本発明は、このよ
うな従来の気相薄膜形成装置による気相成長薄膜形成で
のウエハ基板の品質低下に鑑み、それらを解決する目的
でなされたものである。発明者らは、先ず、従来の気相
薄膜形成装置で生じている現象について詳細に検討し
た。その結果、反応炉壁にパーティクルが多く付着する
現象が観察され、そのため、メンテナンスサイクルを短
縮することを余儀なくされたり、この反応炉壁に付着し
たパーティクルがウエハ基板に付着し、結晶欠陥の原因
となったり付着パーティクルとして直接にウエハ品質の
低下をもたらす原因となっていることを知見した。
However, even in the conventional vapor phase thin film forming apparatuses proposed in the above-mentioned various proposals, it is possible to sufficiently prevent crystal defects from occurring on the wafer substrate on which the thin film has been grown, and inconveniences such as particle adhesion. However, in particular, with the recent high integration of semiconductors, the quality of wafer substrates has been required to be higher and higher. Is also often a problem. The present invention has been made in view of the deterioration of the quality of a wafer substrate in the formation of a vapor-phase grown thin film using such a conventional vapor-phase thin film forming apparatus, and has been made for the purpose of solving them. The inventors first studied in detail the phenomenon occurring in the conventional vapor phase thin film forming apparatus. As a result, a phenomenon was observed in which a large amount of particles adhered to the reactor wall, which necessitated a reduction in the maintenance cycle, and the particles adhered to the reactor wall adhered to the wafer substrate, causing crystal defects. It has been found that these particles directly cause deterioration of the wafer quality as particles that become discolored or adhered.

【0005】発明者らは、上記知見から、更に、反応炉
壁でのパーティクル多量付着現象の原因を見出すべく、
反応炉内での原料ガス流れ等を検討した。その結果、下
記する現象が反応炉内で生じることが更に明らかになっ
た。即ち、上記のように反応炉頂部より導入され均一
な流速でウエハ基板51上に供給されるシリコン原料ガ
ス等の反応ガスは、ヒータ54により加熱され上部より
高温となっている反応炉50の下部のウエハ基板51近
傍に到達し加熱される。その結果、図5にガス流れ状態
の概略を矢印で示したように、上昇ガス流が生じ、反応
炉壁に沿って反応ガスの舞上り現象が生じ、ガス渦流の
発生が起こる。また、加温された反応ガスが上昇する
ことから、反応炉50内全域の温度も上昇し気相中での
薄膜形成原料ガスの均一核生成が増大し、気相中でのパ
ーティクル発生が増大する。更に、上記ガス渦流が発
生すると、回転基板ホルダ−52上のウエハ基板51の
外周部で反応ガス中のドーパントの再取込が起こるおそ
れがあり、得られるウエハ基板の面内抵抗値分布の不均
一化の原因ともなる。更にまた、ウエハ基板近傍に流
下した反応ガスの反応炉上方への舞上り現象は、ガス渦
流の発生とは別に、回転基板ホルダ−52外周側に、い
わゆる“ガス流の荒れ”といわれるガス流が複雑な流れ
となる乱れが生じることになる。このガス流の荒れが生
じると、排気口55から排出されるべき未反応ガスが反
応して回転基板ホルダ−52外周面に薄膜成分が析出し
たり、その回転基板ホルダ−52外周面に対向する反応
炉壁にパーティクルが付着したりすることになる。
From the above findings, the inventors have further attempted to find the cause of the phenomenon of large amount of particles adhering to the reactor wall.
The raw material gas flow in the reactor was studied. As a result, it has been further clarified that the following phenomenon occurs in the reactor. That is, the reaction gas such as the silicon source gas introduced from the top of the reaction furnace and supplied onto the wafer substrate 51 at a uniform flow rate as described above is heated by the heater 54 and becomes lower in the temperature in the lower part of the reaction furnace 50 than in the upper part. Reaches the vicinity of the wafer substrate 51 and is heated. As a result, as schematically shown by arrows in FIG. 5, a rising gas flow is generated, a rising phenomenon of the reaction gas is caused along the reactor wall, and a gas vortex is generated. In addition, since the heated reaction gas rises, the temperature in the entire region of the reaction furnace 50 also rises, so that uniform nucleation of the raw material gas for forming a thin film in the gas phase increases, and particle generation in the gas phase increases. I do. Further, when the gas vortex is generated, the dopant in the reaction gas may be re-introduced at the outer peripheral portion of the wafer substrate 51 on the rotating substrate holder 52, and the in-plane resistance value distribution of the obtained wafer substrate may not be uniform. It also causes uniformity. Furthermore, the rising phenomenon of the reactant gas flowing down to the vicinity of the wafer substrate to the upper part of the reactor is generated separately from the generation of the gas vortex, on the outer peripheral side of the rotary substrate holder-52, by the so-called "roughness of gas flow". Turbulence, which results in a complicated flow. When the gas flow becomes rough, the unreacted gas to be discharged from the exhaust port 55 reacts and deposits a thin film component on the outer peripheral surface of the rotating substrate holder 52 or faces the outer peripheral surface of the rotating substrate holder 52. Particles may adhere to the reactor wall.

【0006】反応炉内のガス流れ状態は、均質な気相薄
膜を形成する上で重要ファクターであることから、上記
ガスの渦流の発生現象について、更に詳しく検討した。
即ち、後記する比較例において示したように回転基板保
持体52の外側上部に渦流が発生することが明らかとな
った。また、この場合、回転基板保持体軸方向へのガス
流速を約1m/s以上の極めて早い速度としてガス流量
を増大すれば、ガス流が層流化され上記した各種の不都
合を引き起こすガス渦流やガス流の荒れの発生をある程
度抑制可能である。しかし、そのためには大量のキャリ
アガスを流す必要があり、気相薄膜形成装置が大型化し
設備費が嵩み、ランニングコストも増大する。また、排
気部でのガス圧力を減少させることによっても、抑制可
能となる。即ち、理想気体の法則によればガスの圧力と
体積は反比例に変化する。このため炉内圧力を減少させ
ると体積の増大と同様の効果となり、ガス入口の流速
(線速度)が増大することになる。流体力学の運動法則
によれば、圧力によるガス流体の粘性への影響を無視で
きる場合、圧力降下の効果は流量増大の効果と同様であ
る。実際のエピタキシャルで使用する圧力の範囲、10
〜200Torrでは、ガスの粘性変化は小さいと考え
られることから、40Torrの炉内圧力、200リッ
トル/分のガス流状態は、炉内圧20Torr、100
リットル/分のガス流状態と同じである。しかし、この
場合は、低圧部でのガス圧制御が困難である。
Since the state of gas flow in the reactor is an important factor in forming a homogeneous gas phase thin film, the above-mentioned vortex generation phenomenon has been studied in more detail.
That is, it became clear that a vortex is generated on the upper outside of the rotating substrate holder 52 as shown in a comparative example described later. In this case, if the gas flow rate in the axial direction of the rotating substrate holder is increased to an extremely high speed of about 1 m / s or more and the gas flow rate is increased, the gas flow becomes laminar, and the gas vortex flow causing various inconveniences described above. The generation of rough gas flow can be suppressed to some extent. However, for this purpose, a large amount of carrier gas needs to be flowed, which increases the size of the vapor phase thin film forming apparatus, increases equipment costs, and increases running costs. In addition, it can be suppressed by reducing the gas pressure in the exhaust part. That is, according to the ideal gas law, the pressure and volume of the gas change in inverse proportion. Therefore, decreasing the furnace pressure has the same effect as increasing the volume, and increases the flow velocity (linear velocity) at the gas inlet. According to the laws of motion of hydrodynamics, the effect of pressure drop is the same as the effect of increasing flow rate if the effect of pressure on the viscosity of the gas fluid can be neglected. Range of pressure used in actual epitaxial, 10
At ~ 200 Torr, the change in gas viscosity is considered to be small, so that the furnace pressure of 40 Torr and the gas flow state of 200 liter / min are set to the furnace pressure of 20 Torr, 100 Torr / min.
It is the same as the gas flow state of liter / min. However, in this case, it is difficult to control the gas pressure in the low pressure section.

【0007】更に、上記ガス渦流の発生を抑制するため
に反応炉上部の直径を下部に比べ細く絞り込み、高温の
反応ガスが上昇する空間を閉塞することによりガス渦流
の発生を防止することを試みた。しかし、この場合は反
応炉上部等でのパーティクル付着等は防止できるが、下
記する比較例に用いた反応炉上部径を単に細くした気相
薄膜形成装置の概略説明図を示した図8で、例えば、矢
印で図示したように、回転基板ホルダー外側に位置する
反応炉径の拡大部分でガス渦流やガス流の荒れが発生す
ることが知見された。径が拡大する部分でこのガス渦流
やガス流の荒れが生じると、同様に反応炉下部周壁でパ
ーティクルが付着したり、未反応ガスの反応により薄膜
成分の析出が生じる等で問題発生の反応炉部域が変化す
るだけでメンテナンスサイクルが短縮する等の不都合が
同様に生じることも明らかになった。
Furthermore, in order to suppress the generation of the gas vortex, the diameter of the upper part of the reactor is narrowed to be smaller than that of the lower part, and an attempt is made to prevent the generation of the gas vortex by closing the space where the high temperature reaction gas rises. Was. However, in this case, it is possible to prevent particles from adhering to the upper part of the reactor and the like, but FIG. 8 is a schematic explanatory view of a vapor phase thin film forming apparatus in which the diameter of the upper part of the reactor used in the comparative example described below is simply reduced. For example, as shown by an arrow, it has been found that a gas vortex or a rough gas flow occurs at an enlarged portion of the reactor diameter located outside the rotary substrate holder. If this gas vortex or gas flow becomes rough in the area where the diameter increases, the reactor also causes problems such as particles adhering to the lower peripheral wall of the reactor and deposition of thin film components due to the reaction of unreacted gas. It has also been clarified that inconveniences such as shortening of the maintenance cycle also occur when only the area is changed.

【0008】発明者らは上記知見に基づき、前記した薄
層形成ウエハ基板の品質低下や反応炉のメンテナンスサ
イクルの短縮等の不都合の原因が、反応炉内でのガスの
上昇流のガス流の乱れにあることを見出すと共に、その
ガス流の不都合が生じる上部空間部分を欠除させたり閉
塞するのみでなく、径の異なる反応炉の上部と下部との
間に所定位置に曲面状連結部を設けること、また、反応
炉の上部径、下部径及び回転基板ホルダー径の比率を所
定にすることにより、上記した従来の気相薄膜形成装置
における反応炉壁や回転基板ホルダ反応炉下部で外周面
へのパーティクルの多量の付着や薄膜成分の析出、ドー
パントのウエハ外周部での取り込みを防止でき、そのた
めウエハ基板の品質低下を防止できることを見出し本発
明を完成した。即ち、本発明は、シリコン原料ガスの均
一核生成で発生したパーティクルが反応炉周壁で付着し
たり、薄膜成分の回転基板ホルダー外周部や炉内周壁へ
の析出を防止する気相薄膜成長装置を提供し、同時に欠
陥が少なく高品質で均一な薄膜をウエハ基板上に気相成
長させる方法を提供するものである。
[0008] Based on the above findings, the inventors have found that the above-mentioned inconveniences such as the deterioration of the quality of the thin-layer-formed wafer substrate and the shortening of the maintenance cycle of the reactor are caused by the gas flow of the upward flow of the gas in the reactor. In addition to finding that it is in turbulence, not only does the upper space part where the inconvenience of the gas flow occurs is occluded or closed, but also a curved connection part at a predetermined position between the upper and lower parts of the reactor with different diameters By providing a predetermined ratio of the upper diameter, the lower diameter of the reaction furnace, and the diameter of the rotating substrate holder, the outer peripheral surface of the reactor wall or the rotating substrate holder in the lower part of the conventional gas phase thin film forming apparatus described above. The present invention has been found that it is possible to prevent a large amount of particles from adhering to the film, to deposit a thin film component, and to prevent dopant from being taken in at the outer peripheral portion of the wafer, thereby preventing deterioration in the quality of the wafer substrate. That is, the present invention provides a vapor phase thin film growth apparatus that prevents particles generated by uniform nucleation of silicon source gas from adhering on the peripheral wall of the reaction furnace and preventing deposition of thin film components on the outer periphery of the rotating substrate holder and the inner peripheral wall of the furnace. The present invention also provides a method for vapor-phase growing a high-quality and uniform thin film on a wafer substrate with few defects.

【0009】[0009]

【課題を解決するための手段】本発明によれば、中空の
反応炉の頂部に複数の反応ガス供給口、底部に排気口、
内部にウエハ基板を載置する回転基板保持体、及び、内
部上部に複数の孔が穿設された整流板を有し、内部に反
応ガスを供給して回転基板保持体上のウエハ基板表面に
薄膜を気相成長させる気相薄膜形成装置において、前記
反応炉の中空内部が、中心軸を同じくし相当内径が異な
る円筒状上下部に区分され、上部の相当内径が下部の相
当内径より小さく、且つ、上部下端と下部上端とが連結
部により接続され中空内部が連続しており、連結部下端
(下部上端)が前記回転基板保持体上に載置される前記
ウエハ基板表面と所定の高低差を有する位置に配設され
ることを特徴とする高速回転気相薄膜形成装置が提供さ
れる。
According to the present invention, a plurality of reactant gas supply ports are provided at the top of a hollow reactor, and an exhaust port is provided at a bottom thereof.
A rotating substrate holder on which a wafer substrate is placed, and a rectifying plate having a plurality of holes formed in an upper portion of the inside, and a reaction gas is supplied to the inside of the rotating substrate holder to cover the surface of the wafer substrate on the rotating substrate holder. In a vapor phase thin film forming apparatus for vapor-phase growing a thin film, the hollow interior of the reactor is divided into cylindrical upper and lower portions having the same central axis and different equivalent inner diameters, the upper equivalent diameter is smaller than the lower equivalent inner diameter, Further, the upper lower end and the lower upper end are connected by a connecting portion, the hollow interior is continuous, and the lower end of the connecting portion (lower upper end) is a predetermined height difference from the surface of the wafer substrate mounted on the rotating substrate holder. And a high-speed rotating vapor-phase thin film forming apparatus provided at a position having the following.

【0010】上記本発明の高速回転気相薄膜形成装置に
おいて、反応炉の中空内部水平断面が円形で、前記回転
基板保持体が外径(DS )の円形であって、反応炉上部
の内径(D1 )が該外径(DS )の90〜110%で、
且つ、反応炉下部の内径(D2 )が該外径(DS )の1
25%以上であり、前記連結部は下記条件Aを満足する
よう設定されており、反応炉下部上端と回転基板保持体
上に載置されるウエハ基板表面との高低差が外径(D
S )の4%以内であることが好ましい。ここで条件Aと
は、反応炉上部および下部の円筒状部の中心軸を通る平
面による断面上において上部の内径(D1 )と下部の内
径(D2 )との差の1/2をWとしたとき、任意のいず
れの断面においても(1)上部下端は下部上端よりも1
/2W〜Wの範囲内で上方に位置し、(2)連結部は上
部下端と下部上端とを結ぶ線分と、下部上端部から前記
中心軸に垂直に1/2W炉内側に延びる線分と、該線分
に一端を接する半径1/2Wの上部下端方向へ向かう1
/4円弧と、該円弧の他端から上部下端とを結ぶ線分と
から囲まれる領域(図10における斜線で示す領域)内
に実質的に存在し、かつ実質的に、炉内側に凸の形状と
なるよう構成されることである。
[0010] In high speed vapor film forming apparatus of the present invention, a hollow internal horizontal cross-section a circular reactor, wherein the rotating substrate holder is a circular outer diameter (D S), the inner diameter of the reactor upper (D 1) is at 90 to 110% of the outer diameter (D S),
In addition, the inner diameter (D 2 ) of the lower part of the reactor is one of the outer diameter (D S ).
The connecting portion is set to satisfy the following condition A, and the height difference between the upper end of the lower part of the reactor and the surface of the wafer substrate placed on the rotating substrate holder is determined by the outer diameter (D
It is preferably within 4% of S ). Here, the condition A means that a half of the difference between the inner diameter of the upper part (D 1 ) and the inner diameter of the lower part (D 2 ) on a cross section taken along a plane passing through the central axis of the upper and lower cylindrical parts of the reactor is W. In any given cross section, (1) the upper and lower ends are one more than the lower and upper ends.
/ 2W-W is located above in the range, (2) the connecting portion is a line segment connecting the upper lower end and the lower upper end, and a line segment extending from the lower upper end portion to the inside of the 1 / 2W furnace perpendicular to the central axis. And 1 toward the upper and lower ends with a radius of 1/2 W, one end of which is in contact with the line segment.
/ 4 arc and a line segment from the other end of the arc to the upper and lower ends (a region indicated by oblique lines in FIG. 10), and is substantially convex inside the furnace. It is configured to have a shape.

【0011】また、本発明によれば、前記高速回転気相
薄膜形成装置において、回転基板保持体の回転速度を5
00rpm以上として複数の反応ガス供給口から薄膜形
成原料ガス及びキャリアガスからなる反応ガスを供給し
て整流板の孔を通過させてウエハ基板上に流通させるこ
とを特徴とする高速回転気相薄膜形成方法が提供され
る。
Further, according to the present invention, in the high-speed rotating vapor-phase thin-film forming apparatus, the rotating speed of the rotating substrate holder is set to 5 or less.
A high-speed rotating vapor-phase thin-film formation, characterized in that a reaction gas comprising a thin-film forming raw material gas and a carrier gas is supplied from a plurality of reaction gas supply ports at a speed of not less than 00 rpm, and is passed through a hole of a rectifying plate and circulated on a wafer substrate. A method is provided.

【0012】本発明の気相薄膜成長装置は上記のように
構成されて、従来の気相薄膜成長装置における反応炉壁
に沿って生じる反応ガスの舞上り現象によるガス渦流発
生を、上部径を下部径より小さくするという炉形状を変
更して発生空間を欠除させることで抑制できると同時
に、反応炉上部での気相温度の上昇を防止できることか
ら、シリコン等薄膜形成の原料ガスの均一核生成が抑制
され気相中で発生するパーティクルが減少する。そのた
め、パーティクルが反応炉壁に付着することによるメン
テナンスサイクルの短縮化や、ウエハへのパーティクル
付着による結晶欠陥及びウエハの品質低下等が防止され
る。また、ガス渦流の発生抑制は、回転基板ホルダー上
に載置されたウエハ直上のガス流が、ウエハ中心から外
周部へウエハ面に平行に流れることを妨害されることな
く均等となる。そのため基板外周部での気相中のドーパ
ントの再取込が生じることもなく、面内抵抗値分布が均
一な高品質な薄層形成ウエハ基板を得ることができる。
更に、反応炉上部を細くしたことから、比較的少ないキ
ャリアガス量で回転基板保持体軸方向のガス流速を高く
することができ、従来の装置に比しキャリアガス量が低
減される。
The vapor phase thin film growth apparatus of the present invention is configured as described above, and suppresses generation of a gas vortex caused by a reaction gas rising phenomenon generated along a reaction furnace wall in a conventional vapor phase thin film growth apparatus. It can be suppressed by changing the furnace shape to make it smaller than the lower diameter to eliminate the generation space, and at the same time, it can prevent the rise of the gas phase temperature in the upper part of the reactor, so the uniform nucleus of the raw material gas for thin film formation such as silicon Generation is suppressed and particles generated in the gas phase are reduced. Therefore, it is possible to prevent a maintenance cycle from being shortened due to the particles adhering to the reaction furnace wall, and to prevent crystal defects due to the particles adhering to the wafer and deterioration in the quality of the wafer. Further, the generation of the gas vortex is suppressed uniformly without obstructing the flow of the gas just above the wafer placed on the rotating substrate holder from flowing from the center of the wafer to the outer periphery in parallel with the wafer surface. Therefore, a high-quality thin-layer-formed wafer substrate having a uniform in-plane resistance value distribution can be obtained without re-uptake of the dopant in the gas phase at the outer peripheral portion of the substrate.
Furthermore, since the upper part of the reactor is made thinner, the gas flow velocity in the axial direction of the rotating substrate holder can be increased with a relatively small amount of carrier gas, and the amount of carrier gas is reduced as compared with the conventional apparatus.

【0013】また、反応炉の小径の上部下端と大径の下
部上端とを所定の条件と満足する連結部を設けて接続す
ることから、ガス流を円滑にすることができ、且つ、径
拡大が逓増することから、回転基板ホルダー上に発生す
る中心から外周へのガス流れが整流されて、前記した反
応炉上部径を下部より細くすることにより生じる回転基
板ホルダー外周側の径の拡大する下部でのいわゆるガス
流の荒れを抑制することができる。それにより、拡大径
の連結部内壁や反応炉下部へのパーティクル付着や薄膜
形成成分の析出を防止することができる。更に、反応炉
上部径、反応炉下部径及び回転基板保持体直径の比率を
所定とすることから、反応炉内のガスの上昇流を防止し
てパーティクル発生を減少させると共に、ガス渦流やガ
ス流の荒れの発生を防止することができ、更に、炉壁に
付着したパーティクルが回転基板保持体上のウエハ基板
上に落下することを回避することができる。
In addition, since the upper and lower ends of the small diameter and the upper end of the large diameter of the reactor are connected to each other by providing a connecting portion satisfying predetermined conditions, the gas flow can be made smooth and the diameter can be enlarged. Is gradually increased, the gas flow from the center to the outer periphery generated on the rotating substrate holder is rectified, and the diameter of the outer periphery of the rotating substrate holder is increased by making the reactor upper diameter smaller than the lower portion. So-called rough gas flow can be suppressed. As a result, it is possible to prevent particles from adhering to the inner wall of the enlarged diameter connecting portion or the lower part of the reactor and the deposition of thin film forming components. Further, since the ratio of the upper diameter of the reactor, the lower diameter of the reactor, and the diameter of the rotating substrate holder is set to a predetermined value, it is possible to prevent the upward flow of gas in the reactor to reduce the generation of particles, and to reduce gas vortex and gas flow. This makes it possible to prevent the occurrence of roughening, and also to prevent particles adhering to the furnace wall from falling onto the wafer substrate on the rotating substrate holder.

【0014】更にまた、回転基板保持体上のウエハ基板
表面と連結部下端(反応炉下部の上端)とを、回転基板
保持体外径に対する所定比率の高低差を有するようにす
ることから、上部下端が円滑なガス流れを妨害すること
がなく、また、ガスの上昇流を防止でき、ガス渦流やガ
ス流の荒れの発生を防止できる。そのため、結晶欠陥が
なく高品質の薄膜形成ウエハ基板を得ることができる。
また、本発明の高速回転気相薄膜形成方法は、上記の装
置を用いると共に、特に、回転基板保持体の回転速度を
制御して、回転基板保持体上に反応ガス流を層流で均一
に供給できることから、同様に結晶欠陥がなく高品質の
薄膜をウエハ基板上に気相形成することができる。
Further, the wafer substrate surface on the rotating substrate holder and the lower end of the connecting portion (upper end of the lower part of the reaction furnace) have a predetermined difference in height with respect to the outer diameter of the rotating substrate holder. Does not hinder a smooth gas flow, and can prevent the upward flow of the gas, and can prevent the generation of the gas vortex and the rough gas flow. Therefore, it is possible to obtain a high quality thin film formation wafer substrate without crystal defects.
In addition, the method for forming a high-speed rotary vapor phase thin film of the present invention uses the above-described apparatus, and in particular, controls the rotation speed of the rotating substrate holder to uniformly and uniformly react the reactant gas flow on the rotating substrate holder in a laminar flow. Since it can be supplied, similarly, a high-quality thin film having no crystal defects can be vapor-phase-formed on a wafer substrate.

【0015】[0015]

【発明の実施の形態】以下、本発明の一実施例を図面に
基づきに詳細に説明する。但し、本発明は下記実施例に
より制限されるものでない。図1は本発明の気相薄膜成
長装置の一実施例の概略断面説明図である。図1におい
て、反応炉10は中心軸を同じくする円筒状の上部1と
中心軸を同じくする円筒状の下部2とに区分され上部1
が下部2より細く形成される。即ち、上部内径D1 が下
部内径D2 より小さくD1 <D2 である。また、大径の
下部2の上端部Uと小径の上部1の下端部Bとが、連結
部19により接続され、上下部の径は異なるが反応炉の
内部中空間は連続する。この場合、図1で2点鎖線(想
像線)で示したように、上下部が同一径の従来の反応炉
と同様に形成された中空内部に、小径の上部1と連結部
19をライナー壁として設置してもよい。また、反応炉
上部1の側壁面は、通常、下部2の側壁面と平行で、垂
直に形成され、回転基板保持体上面に対し垂直となる。
上部下端Bと下部上端Uとの連結部19は凸面状に形成
され、反応炉上部1内周面域のガス流が下部2の内周面
域へ円滑に導かれることになる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below in detail with reference to the drawings. However, the present invention is not limited by the following examples. FIG. 1 is a schematic sectional explanatory view of one embodiment of a vapor phase thin film growth apparatus of the present invention. In FIG. 1, a reactor 10 is divided into a cylindrical upper part 1 having the same central axis and a cylindrical lower part 2 having the same central axis.
Are formed thinner than the lower part 2. That is, the upper inner diameter D 1 is D 1 <D 2 smaller than the lower inner diameter D 2. The upper end U of the large-diameter lower part 2 and the lower end B of the small-diameter upper part 1 are connected by a connecting part 19, and the inner middle space of the reactor is continuous though the upper and lower parts have different diameters. In this case, as shown by a two-dot chain line (imaginary line) in FIG. 1, a small-diameter upper part 1 and a connecting part 19 are lined with a liner wall inside a hollow formed in the same manner as a conventional reaction furnace having upper and lower parts having the same diameter. It may be installed as. In addition, the side wall surface of the upper portion 1 of the reactor is usually formed parallel to and perpendicular to the side wall surface of the lower portion 2, and is perpendicular to the upper surface of the rotating substrate holder.
The connecting portion 19 between the upper lower end B and the lower upper end U is formed in a convex shape, so that the gas flow in the inner peripheral surface area of the upper part 1 of the reactor is smoothly guided to the inner peripheral surface area of the lower part 2.

【0016】図1において、更に、大径の反応炉下部2
には、ウエハ基板11を載置する回転基板保持体12が
回転軸13により回転自在に支持され配設され、その下
方には回転基板保持体12及びその上に載置されるウエ
ハ基板11とを加熱するヒータ14が配設される。回転
基板保持体12は、その上面に載置されるウエハ基板1
1と連結部19下端とが所定の高低差(H)を有するよ
うに下方に位置して配設される。回転軸13には回転駆
動するモータ(図示せず)が接続されており、これらの
回転機構の周囲は仕切板18により囲まれ、反応ガス等
から保護されている。また、反応炉10底部には未反応
ガス等を排気する複数の排気口15、15が配設され
る。一方、反応炉上部1には、頂部に複数の反応ガス供
給口16、16が配設され、例えばシラン(SiH
4 )、ジクロロシラン(SiH2 Cl2)等の原料ガス
及び水素(H2 )、ヘリウム(He)、アルゴン(A
r)等のキャリアガスの反応ガスが供給される。
In FIG. 1, a lower portion 2 of a large-diameter reactor
A rotating substrate holder 12 on which a wafer substrate 11 is placed is rotatably supported by a rotating shaft 13 and disposed below the rotating substrate holder 12 and a wafer substrate 11 placed thereon. Is provided. The rotating substrate holder 12 is provided on the wafer substrate 1 placed on the upper surface thereof.
1 and the lower end of the connecting portion 19 are disposed below so as to have a predetermined height difference (H). A motor (not shown) for driving the rotation is connected to the rotation shaft 13, and the periphery of these rotation mechanisms is surrounded by a partition plate 18 and protected from reaction gas and the like. Further, a plurality of exhaust ports 15 for exhausting unreacted gas and the like are provided at the bottom of the reactor 10. On the other hand, a plurality of reaction gas supply ports 16, 16 are disposed on the top of the upper part 1 of the reaction furnace.
4 ) Raw material gas such as dichlorosilane (SiH 2 Cl 2 ), hydrogen (H 2 ), helium (He), argon (A
A reaction gas of a carrier gas such as r) is supplied.

【0017】反応炉の上部1の小径D1 、下部2の大径
2 及び回転基板保持体12の直径DS とが、次のよう
な関係にあることが好ましい。(1)D1 が回転基板保
持体12に載置されるウエハ基板11の直径より大き
い。D1 がウエハ直径より小さいと、炉上部1内壁面か
ら脱落したパーティクルが、ウエハ基板に付着し易く、
結果的にLPD(ウエハ表面レーザー散乱体(パーティ
クルを含む))として計測される結晶欠陥が増加するた
めである。また、通常、気相薄膜成長工程で行われるウ
エハ基板外周部の赤外線による非接触温度測定が困難と
なるためである。(2)D1 =0.9DS 〜1.1DS
(D1 /DS 比が0.9〜1.1)で、D2 ≧1.25
S (D2 /DS 比が1.25以上)の比率関係にある
ことが好ましい。D1 /DS 比が0.9より小さいと、
連結部の高低差Hとの関係もあるが上部1の壁面が回転
基板保持体12に載置されたウエハ基板11に近接し過
ぎて炉内壁面から脱落したパーティクルがウエハ基板に
付着し易くなる。そのため、上記D1 がウエハ基板直径
より小さい場合と同様に、LPDとして測定される結晶
欠陥が増加し薄膜形成ウエハ基板の品質が低下するため
である。一方、D1 /DS 比が1.1より大きいと、反
応炉内壁に沿ってガス流が上方への舞上り現象が生じガ
ス渦流の発生が起こる等の不都合があるためである。ま
た、D2 /DS比が1.25より小さいと、回転基板保
持体12外側のガス流の荒れが抑制できないため、回転
基板保持体12外側に対向する反応炉内壁にパーティク
ルが付着したり、未反応ガスが回転基板保持体12の下
方に入り込んで反応して反応炉下部2の内壁に薄膜形成
成分が析出するためである。(3)更に、D2 /D1
が1.2以上(D2 /D1 ≧1.2)であり、D1 とD
2 の反応炉上下部直径差の1/2(D2 −D1 /2)以
上、即ち、下部2の内周壁と上部1の内周壁の間隔距離
Wが0.1D1 以上となるようにする。D2 /D1 比が
1.2より小さい、即ち、Wが0.1D1 より狭くなる
と、反応炉壁に沿ってガス流の上方への舞上り現象が生
じガス渦流が発生し、反応炉上部径を細くしてガス舞上
り現象を防止しガス渦流の発生の抑制効果が低下するた
めである。
The diameter D 1 of the upper 1 of the reactor, the diameter D S of the large diameter D 2 and rotating the substrate holder 12 of the lower 2 is preferably in the following relationship. (1) D 1 is larger than the diameter of the wafer substrate 11 placed on the rotating substrate holder 12. If D 1 is smaller than the wafer diameter, particles that have fallen off from the inner wall surface of the furnace upper part 1 tend to adhere to the wafer substrate,
As a result, crystal defects measured as LPD (wafer surface laser scatterer (including particles)) increase. Further, it is usually difficult to measure the non-contact temperature of the outer peripheral portion of the wafer substrate using infrared rays in the vapor phase thin film growth step. (2) D 1 = 0.9D S ~1.1D S
(D 1 / D S ratio is 0.9 to 1.1) and D 2 ≧ 1.25
It is preferable to have a ratio relationship of D S (D 2 / D S ratio is 1.25 or more). When the D 1 / D S ratio is smaller than 0.9,
Although there is a relationship with the height difference H of the connecting portion, the wall surface of the upper portion 1 is too close to the wafer substrate 11 mounted on the rotating substrate holder 12, and particles dropped from the furnace inner wall surface are likely to adhere to the wafer substrate. . Therefore, because the above-mentioned D 1 is as if smaller than the wafer substrate diameter, the quality of the increased crystal defects measured as LPD film formed wafer substrate is reduced. On the other hand, if the D 1 / D S ratio is larger than 1.1, the gas flow rises along the inner wall of the reaction furnace, causing inconvenience such as generation of a gas vortex. If the D 2 / D S ratio is smaller than 1.25, the gas flow on the outside of the rotating substrate holder 12 cannot be suppressed from being rough, so that particles may adhere to the inner wall of the reactor facing the outside of the rotating substrate holder 12. This is because the unreacted gas enters below the rotating substrate holder 12 and reacts to deposit a thin film forming component on the inner wall of the reactor lower part 2. (3) Further, the ratio of D 2 / D 1 is 1.2 or more (D 2 / D 1 ≧ 1.2), and D 1 and D 1
1/2 of the reactor top and bottom diameter difference of 2 (D 2 -D 1/2) or more, i.e., as gap distance W of the inner peripheral wall and the inner wall of the upper 1 of the lower 2 is 0.1 D 1 or more I do. D 2 / D 1 ratio is smaller than 1.2, i.e., when W is narrower than 0.1 D 1, Mai up phenomenon of upward gas flow the gas vortex flow is generated occurs along the reactor wall, the reactor This is because the upper diameter is made thinner to prevent the gas rising phenomenon and the effect of suppressing the generation of the gas vortex is reduced.

【0018】反応炉の連結部19は反応炉上部および下
部の円筒状部の中心軸を通る平面による断面上において
上部の内径(D1 )と下部の内径(D2 )との差の1/
2をWとしたとき、任意のいずれの断面においても上部
下端Bは下部上端Uよりも1/2W〜Wの範囲内で上方
に位置するように配置される。この距離が1/2Wより
も小さいと後述するHとの関係で回転基板保持体12上
から排出されてくるガスの流動を阻害して乱流の原因と
なる。また、この距離がWよりも大きいと、連結部と保
持体12外周部との距離が相対的に増大することにより
連結部直下部に低圧領域を形成することとなってしまい
保持体12から排出されるガス流と対抗する流れを生じ
させ乱流の原因となる。本発明において、反応炉上部の
下端とは上部の円筒状部が終わる部分すなわち連結部に
よる拡径が開始される直前部分をいう。しかしながら拡
径割合が約10%未満(拡径量/高さ)程度の実質的に
円筒と見做される程度の場合にはその部分も含まれるも
のとする。また、同様に反応炉下部の上端とは、縮径割
合が約10%未満の部分も含むものとする。また、連結
部は上部下端Bと下部上端Uとを結ぶ線分と、下部上端
部から前記中心軸に垂直に1/2W炉内側に延びる線分
と、該線分に一端を接する半径1/2Wの上部下端方向
へ向かう1/4円弧と、該円弧の他端から上部下端とを
結ぶ線分とから囲まれる領域(図10における斜線で示
す領域)内に実質的に存在し、かつ実質的に、炉内側に
凸の形状となるよう構成される。図10(a)に本発明
の連結部19の存在する領域を斜線部で示す。また、図
10の(b)〜(e)に連結部の具体的な例を示す。連
結部の形状がこの範囲をはずれるといずれも低圧となる
部分を生じ乱流を生じることになる。特に円弧部の下側
および下部上端から炉内側延びる線分の下側にはずれる
と後述するHとの関係で回転体から排出されるガスの流
動を阻害して好ましくない。連結部19が実質的にこの
範囲内にある、とは、上部下端近傍あるいは下部上端近
傍でわずかにこの領域からはずれる程度(各々連結部長
の5%未満)であって、連結部両端各々5%を除く中央
部90%がこの範囲内に入っていれば少なくとも本発明
の効果が得られることは確認されており本発明の効果が
得られる範囲内であれば実質的に範囲内である。また、
実質的に凸であるとは、少なくとも上部下端を含む連結
部の大部分にわたって炉内に凸形状であることをいい、
連結部の下部上端と接続する部分近傍のみをさらなる整
流効果を目的として凹部とすることも本発明の範囲内で
ある。この場合にはこの凹部部分のみ上述した領域から
はずれてもよい。
The connecting portion 19 of the reactor is 1 / (1/1) of the difference between the upper inner diameter (D 1 ) and the lower inner diameter (D 2 ) on a cross section taken along a plane passing through the central axis of the upper and lower cylindrical portions of the reactor.
Assuming that 2 is W, the upper lower end B is located above the lower upper end U in a range of 1 / 2W to W in any arbitrary cross section. If this distance is smaller than 1/2 W, the flow of gas discharged from the rotating substrate holder 12 is obstructed due to the relationship with H described later, which causes turbulence. If the distance is larger than W, the distance between the connecting portion and the outer peripheral portion of the holding body 12 relatively increases, so that a low-pressure region is formed immediately below the connecting portion, and the discharge from the holding body 12 is performed. This creates a flow that is opposite to the flow of the generated gas, causing turbulence. In the present invention, the lower end of the upper portion of the reactor refers to a portion where the upper cylindrical portion ends, that is, a portion immediately before the expansion by the connecting portion is started. However, if the diameter expansion ratio is less than about 10% (diameter expansion amount / height) and is considered to be substantially a cylinder, that portion is also included. Similarly, the upper end of the lower part of the reactor also includes a portion whose diameter reduction ratio is less than about 10%. Further, the connecting portion includes a line segment connecting the upper lower end B and the lower upper end U, a line segment extending from the lower upper end portion to the inside of the 1/2 W furnace perpendicular to the central axis, and a radius 1 / It is substantially present in a region surrounded by a 1/4 arc toward the upper and lower ends of the 2W and a line segment connecting the other end of the arc to the upper and lower ends (region indicated by oblique lines in FIG. 10) and substantially. It is configured so as to have a convex shape inside the furnace. FIG. 10A shows a region where the connecting portion 19 of the present invention exists by a shaded portion. FIGS. 10B to 10E show specific examples of the connecting portion. If the shape of the connecting portion deviates from this range, a portion having a low pressure will be generated and turbulence will occur. In particular, it is not preferable that the gas flow from the rotating body is disturbed from the lower side of the arc portion and the lower side of the line segment extending from the upper end of the lower portion to the furnace inside in relation to H described later. The phrase that the connecting portion 19 is substantially within this range means that the connecting portion 19 slightly deviates from this region near the upper lower end or the lower upper end (each less than 5% of the length of the connecting portion), and each end of the connecting portion 5% It has been confirmed that at least 90% of the effect of the present invention can be obtained if 90% of the central portion excluding the above falls within this range, and it is substantially within the range where the effect of the present invention can be obtained. Also,
Substantially convex means that it is convex in the furnace over at least the majority of the connecting portion including the upper and lower ends,
It is also within the scope of the present invention that only the vicinity of the portion connected to the upper end of the lower portion of the connecting portion is formed as a concave portion for the purpose of further rectifying effect. In this case, only the concave portion may deviate from the above-described region.

【0019】また、回転基板保持体12の上面は保持体
12上に載置されるウエハ基板11の表面が、反応炉下
部上端Uより下方でかつ、上端Uと所定の高低差Hを有
するように配置される。この高低差Hは保持体12の直
径(DS )の4%以内の距離、すなわち0.04DS
内であることが好ましい。ウエハ基板11の上面が上端
Uの下方となった場合には保持体12の表面から排出さ
れてくるガスの流れを阻害するため好ましくない。ま
た、高低差Hが0.04DS を越えると、連結部と保持
体12外周部との距離が相対的に増大することになり連
結部直下部に低圧領域を形成することとなってしまい保
持体12から排出されるガス流と対抗する流れを生じさ
せ乱流の原因となる。また、Hの下限は、回転基板保持
体12上部に供給されるガス流の遷移層、即ち、図1に
矢印にて示したように整流板17を経て供給された原料
ガス等のガス流が回転基板保持体12上で中心から外周
辺部方向へのベクトルを有するガス層の厚さ(T)より
大きくなるようにする。この高低差Hが遷移層厚Tより
小さいと、回転基板保持体12上のウエハ基板11の中
心から外周部へのガス流れが、反応炉上部1の下端Bに
より阻害され、反応炉内壁に沿って上方への舞上り現象
が生じガス渦流の発生を助長するため、連結部19や反
応炉下部2の内壁への析出物が多量となるためである。
The upper surface of the rotary substrate holder 12 is such that the surface of the wafer substrate 11 placed on the holder 12 is below the upper end U of the lower part of the reactor and has a predetermined height difference H from the upper end U. Placed in The height difference H is preferably within a distance of 4% of the diameter (D S ) of the holder 12, that is, within 0.04D S. If the upper surface of the wafer substrate 11 is below the upper end U, the flow of the gas discharged from the surface of the holder 12 is undesirably hindered. Further, when the height difference H exceeds 0.04D S, becomes a the distance between the holding member 12 the outer peripheral portion and the connecting portion forms a low pressure area at the junction just below portion will be relatively increased retention It creates a flow that opposes the gas flow exhausted from the body 12 and causes turbulence. The lower limit of H is determined by the transition layer of the gas flow supplied to the upper part of the rotating substrate holder 12, that is, the gas flow such as the source gas supplied through the rectifying plate 17 as shown by the arrow in FIG. The thickness is set to be larger than the thickness (T) of the gas layer having a vector from the center to the outer peripheral portion on the rotating substrate holder 12. When the height difference H is smaller than the transition layer thickness T, the gas flow from the center of the wafer substrate 11 on the rotary substrate holder 12 to the outer peripheral portion is hindered by the lower end B of the upper portion 1 of the reactor, and the gas flows along the inner wall of the reactor. This is because a rising phenomenon occurs to promote the generation of a gas vortex, so that a large amount of precipitates are formed on the connecting portion 19 and the inner wall of the lower portion 2 of the reactor.

【0020】上記の回転基板保持体12上(即ちウエハ
基板11上)でのガス流の遷移層厚さTは、従来から用
いられる一般的な反応炉において、主に反応炉内の雰囲
気ガスの種類、反応炉内圧力、回転基板保持体の回転数
により変化するが、下記式(1)で算出することができ
る。下記式(1)は、流体力学において一般的に示され
るものである。 T=3.22(ν/ω)1/2 (1) (但し、νは反応炉内反応ガスの動粘性係数(mm2
s)を、ωは回転の角速度(rad/s)をそれぞれ表
示する。)この場合、ωは気相薄膜成長装置での薄膜形
成稼働中の最小値を採るものとする。例えば、原料ガス
がシランガス、キャリアガスが水素ガスであり、回転基
板保持体の回転数が500〜2000rpm(52〜2
09rad/s)である場合は、遷移層厚Tは約5〜5
0mmとなる。従って、小径の反応炉上部1の下端Bか
ら上記のT値より大きな高低差で回転基板保持体上面が
位置するように配設することが好ましい。これにより、
ウエハ基板上の中心から外周へのガス流れが円滑となり
炉内壁に薄膜形成原料のパーティクルの付着がなく、ま
た得られる薄膜形成ウエハは結晶相に欠陥が無く、均一
な薄膜が形成される。
The transition layer thickness T of the gas flow on the rotary substrate holder 12 (that is, on the wafer substrate 11) is mainly the value of the atmospheric gas in the reaction furnace in a conventional reaction furnace. It varies according to the type, the pressure in the reactor, and the number of rotations of the rotating substrate holder, but can be calculated by the following equation (1). Equation (1) below is generally expressed in hydrodynamics. T = 3.22 (ν / ω) 1/2 (1) (where ν is the kinematic viscosity coefficient of the reaction gas in the reactor (mm 2 /
s) and ω represents the angular velocity of rotation (rad / s). In this case, ω takes the minimum value during the operation of forming a thin film in the vapor phase thin film growth apparatus. For example, the source gas is a silane gas, the carrier gas is a hydrogen gas, and the rotation speed of the rotating substrate holder is 500 to 2000 rpm (52 to 2 rpm).
09 rad / s), the transition layer thickness T is about 5 to 5
0 mm. Therefore, it is preferable to dispose the upper surface of the rotary substrate holder at a height difference larger than the T value from the lower end B of the upper portion 1 of the small diameter reactor. This allows
The gas flow from the center to the outer periphery of the wafer substrate is smooth, and no particles of the thin film forming material adhere to the inner wall of the furnace, and the obtained thin film forming wafer has no defects in the crystal phase and a uniform thin film is formed.

【0021】上記したように本発明の気相薄膜成長装置
は、反応炉が上下部で区分されて異なる径を有して連続
する中空筒体で、異なる径の上下部を所定の連結部で接
続し連続させる以外は、前記の従来の気相薄膜成長装置
の同一径の中空筒体からなる反応炉とほぼ様にして設
計、製造することができる。また、本発明の気相薄膜成
長装置を用いて行う気相成長方法も従来と同様に行うこ
とができる。例えば、上記のように構成された本発明の
気相薄膜成長装置において、排気口15、15に接続さ
れている排気制御装置により反応炉10内を排気し、炉
内圧力を、例えば原料ガスやキャリアガスの反応ガスで
20〜50torrに調整する。一方、回転基板保持体
12と載置されたウエハ基板11は、モータを稼働し回
転軸13の回転駆動により同時に回転させられる。ま
た、ヒータ14により回転基板保持体12上のウエハ基
板11は、例えば約900〜1200℃に加熱され、同
時に、複数の反応ガス供給口16、16からは流量を所
定に制御しながら原料ガス及びキャリアガスからなる反
応ガスが反応炉10内に供給される。複数の反応ガス供
給口16、16から空間域Sに供給されるガス流は、運
動量や圧力分布が均一化され、更に、整流板17の孔1
7aを通過することにより反応炉内のガス流速分布を均
一にして基板上に供給され、基板上に薄膜を均一に気相
成長させることができる。
As described above, in the vapor phase thin film growth apparatus of the present invention, the reactor is a continuous hollow cylindrical body having different diameters divided into upper and lower portions, and upper and lower portions having different diameters are formed by predetermined connecting portions. Except for connection and continuous connection, it can be designed and manufactured in substantially the same manner as the above-described conventional reactor having a hollow cylindrical body having the same diameter as the vapor phase thin film growth apparatus. Further, a vapor phase growth method using the vapor phase thin film growth apparatus of the present invention can be performed in the same manner as the conventional method. For example, in the vapor phase thin film growth apparatus of the present invention configured as described above, the inside of the reaction furnace 10 is evacuated by the exhaust control device connected to the exhaust ports 15, 15, and the pressure in the furnace is reduced to, for example, the source gas or It is adjusted to 20 to 50 torr with a reactive gas of a carrier gas. On the other hand, the rotating substrate holder 12 and the placed wafer substrate 11 are simultaneously rotated by the rotation of the rotating shaft 13 by operating the motor. The wafer substrate 11 on the rotating substrate holder 12 is heated to, for example, about 900 to 1200 ° C. by the heater 14, and at the same time, while controlling the flow rate from the plurality of reaction gas supply ports 16, the raw material gas and A reaction gas composed of a carrier gas is supplied into the reaction furnace 10. The gas flow supplied from the plurality of reaction gas supply ports 16, 16 to the space S has a uniform momentum and pressure distribution.
By passing the gas through 7a, the gas flow rate in the reaction furnace is made uniform and supplied onto the substrate, whereby the thin film can be uniformly vapor-grown on the substrate.

【0022】[0022]

【実施例】以下、本発明を実施例に基づき更に詳細に説
明する。但し、本発明は下記実施例により制限されるも
のでない。 実施例1、比較例1〜2 前記図1に示した反応炉と同様に中空円筒に構成され、
反応炉上部内径D1 、下部内径D2 、回転基板保持体直
径DS それぞれ表1に示した径を有し、また、連結部下
端と回転基板保持体12上面との高低差Hがそれぞれ表
1に示した高さで、連結部19が図10(e)に示す形
状の円弧状でその曲率半径r及び幅Wがそれぞれ表1に
示したように設計された8インチφウエハ基板処理用反
応炉の気相薄膜形成装置を形成した。このように形成さ
れた各気相薄膜形成装置を用いて、回転基板保持体12
の回転数を2000rpmとして、40Torrの炉内
圧力となるように30リットル/分(標準状態、以下同
様)の水素キャリアガスを流通させて有限要素法を用い
てガス流れ状態を解析した。その解析結果の反応炉の半
径方向におけるガス流線図を図2〜図4にそれぞれ示し
た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in more detail with reference to embodiments. However, the present invention is not limited by the following examples. Example 1, Comparative Examples 1 and 2 Like the reaction furnace shown in FIG.
The reactor inner diameter D 1 , lower inner diameter D 2 , and rotating substrate holder diameter D S have the diameters shown in Table 1, respectively, and the height difference H between the lower end of the connecting portion and the upper surface of the rotating substrate holder 12 is shown in Table 1. 1, the connecting portion 19 is an arc having the shape shown in FIG. 10 (e), and the radius of curvature r and the width W thereof are designed as shown in Table 1, respectively. An apparatus for forming a vapor phase thin film of a reactor was formed. Using each of the vapor phase thin film forming apparatuses formed as described above, the rotating substrate holder 12 is used.
With the rotation speed of 2,000 rpm, a hydrogen carrier gas at a flow rate of 30 liter / min (standard condition, the same applies hereinafter) was passed at a furnace pressure of 40 Torr, and the gas flow state was analyzed using the finite element method. FIGS. 2 to 4 show gas flow diagrams in the radial direction of the reactor as a result of the analysis.

【0023】図2〜4から明らかなように、実施例1
(図2)では、回転基板保持体52上方のガス流がほぼ
層流化され連結部19の下の部分に渦流が発生していな
いことが分かる。実施例1に比較し、高低差Hを大きく
した比較例1(図3)では、連結部の下にガスの渦流が
生じている。実施例1と比較し、上部を小径にした比較
例2(図4)でも、連結部の下にガスの渦流が生じてい
る。さらに表1に示す条件において、原料ガスとしてS
iH4 ガスを0.3リットル/分で、また、ドーパント
としてジボラン(B26 )をH2 ガス中0.1ppm
含有させたガスを0.01リットル/分でそれぞれ表1
に記載の水素ガス(キャリアガス)流量とともに供給
し、回転基板保持体12に載置した8インチφのシリコ
ンウエハ基板上に、B26 ドーパントシリコン薄膜の
気相成長を行った。気相成長薄膜を形成した後、使用し
た気相薄膜成長装置の連結部及び反応炉下部内周壁のパ
ーティクル付着について目視観察した。また、得られた
薄膜形成ウエハ基板面の結晶相の性状についてテンコー
ル社製サーフスキャン6200を用い0.135μm以
上のLPD(ウエハ表面レーザー散乱体)の個数を計測
し、ウエハ当たりの個数を測定した。また形成薄膜の膜
厚を赤外干渉膜厚計により測定し、その最大厚さ(F
max )及び最低厚さ(Fmin )を求め、薄膜厚さの均一
性を(Fmax −Fmin )/(Fmax +Fmin )×100
として算出した。また得られた薄膜形成ウエハ基板の抵
抗値をC−V法を用いて測定し、その最大値(Rmax
及び最低値(Rmin )を求め、ドーパント取込みによる
抵抗値の均一性を(Rmax −Rmin )/(Rmax +R
min )×100として算出した。これらの結果を表1に
併記する。この結果からも、実施例1の反応炉を用いて
形成したウエハ基板上の薄膜が、均一な膜厚を有し面内
抵抗等の特性が均質となることが分かる。
As is apparent from FIGS.
In FIG. 2, it can be seen that the gas flow above the rotating substrate holder 52 is substantially laminar, and no vortex is generated below the connecting portion 19. In Comparative Example 1 (FIG. 3) in which the height difference H was increased as compared with Example 1, a gas vortex occurred below the connecting portion. Compared with the first embodiment, the gas swirl is generated below the connecting portion also in the comparative example 2 (FIG. 4) in which the upper portion has a small diameter. Further, under the conditions shown in Table 1, S
iH 4 gas is 0.3 liter / minute, and diborane (B 2 H 6 ) is 0.1 ppm in H 2 gas as a dopant.
Table 1 shows the contained gas at 0.01 liter / min.
The hydrogen gas (carrier gas) flow rate described in (1) above was supplied, and a B 2 H 6 dopant silicon thin film was vapor-phase grown on an 8-inch φ silicon wafer substrate placed on the rotating substrate holder 12. After the vapor-phase growth thin film was formed, the adhesion of particles to the connection part of the vapor-phase growth apparatus used and the inner peripheral wall of the lower part of the reactor were visually observed. In addition, the number of LPDs (wafer surface laser scatterers) of 0.135 μm or more was measured for the properties of the crystal phase on the obtained thin film-formed wafer substrate surface using a Surfscan 6200 manufactured by Tencor Corporation, and the number per wafer was measured. . The thickness of the formed thin film was measured by an infrared interference thickness meter, and the maximum thickness (F
max ) and the minimum thickness (F min ) are determined, and the uniformity of the thin film thickness is calculated as (F max −F min ) / (F max + F min ) × 100.
It was calculated as Further, the resistance value of the obtained thin film-formed wafer substrate was measured by using the CV method, and the maximum value (R max ) was obtained.
And the minimum value (R min ) is determined, and the uniformity of the resistance value due to the incorporation of the dopant is determined by (R max -R min ) / (R max + R
min ) × 100. These results are also shown in Table 1. This result also indicates that the thin film formed on the wafer substrate using the reactor of Example 1 has a uniform thickness and uniform characteristics such as in-plane resistance.

【0024】比較例3〜4 図5に示した装置とほぼ同様に構成された従来の反応炉
で、実施例1と同様にしてキャリアガスの水素ガスを流
通させて、同様にガス流れ状態を解析した(比較例
3)。その結果、解析で得られた反応炉の半径方向にお
けるガス流線図を図6に示した。図6では、回転基板保
持体52上方のガス流の層流状態も乱れ、外側上部に大
きな渦流が発生している。また同一条件の反応炉内に、
水素ガス流量を200リットル/分に増大した以外は、
比較例3と同様にしてガス流れ状態を解析した(比較例
4)。その結果、解析で得られた反応炉の半径方向にお
けるガス流線図を図7に示した。図7では、回転基板保
持体52上方のガス流が層流状態となり、外側上部に大
きな渦流も消失した。比較例3、4についても実施例1
と同様に薄膜を気相成長させ、その膜の特性について調
べた。結果を表1に併記する。
Comparative Examples 3 and 4 In a conventional reactor constructed substantially in the same manner as the apparatus shown in FIG. 5, hydrogen gas as a carrier gas was passed in the same manner as in Example 1, and the gas flow state was similarly changed. Analyzed (Comparative Example 3). As a result, the gas flow diagram in the radial direction of the reactor obtained by the analysis is shown in FIG. In FIG. 6, the laminar flow state of the gas flow above the rotary substrate holder 52 is also disturbed, and a large vortex is generated on the upper outside. In a reactor under the same conditions,
Except for increasing the hydrogen gas flow to 200 l / min,
The gas flow state was analyzed in the same manner as in Comparative Example 3 (Comparative Example 4). As a result, the gas flow diagram in the radial direction of the reactor obtained by the analysis is shown in FIG. In FIG. 7, the gas flow above the rotating substrate holder 52 is in a laminar flow state, and a large vortex has also disappeared in the upper part on the outside. Comparative Example 3 and Example 4
In the same manner as described above, a thin film was vapor-grown, and the characteristics of the film were examined. The results are also shown in Table 1.

【0025】比較例5 図8に概略断面説明図を示した上部内径を小さくして上
下部の径を異なるようにした気相薄膜成長装置の反応炉
80を用いて実施例1と同様にガス流の解析を行った。
図8の反応炉80は、小径の上部1’と大径の下部2’
の上下部の内径は異なるが、上下部の下端及び上端が高
低差を有することなくほぼ同一水平面に位置して、ほぼ
水平な平面状の連結部89で接続されている以外は実施
例1の気相薄膜成長装置の反応炉と同様に構成されてい
る。図1に示した装置と同様の部材は、一の位の数値を
同一番号として示すか、または同一の符号で示した。反
応炉80において、反応炉上部内径D1 、下部内径D2
及び回転基板保持体直径DS を表1に示した。この反応
炉80内に、実施例1と同様に水素ガスを流通させてガ
ス流れ状態を解析した。その結果、解析で得られた反応
炉の半径方向におけるガス流線図を図9に示した。図9
では、回転基板保持体52上方のガス流の層流状態が乱
れ、外側上部に大きな渦流が発生した。比較例5につい
ても実施例1と同様に薄膜を気相成長させ、その膜の特
性について調べた。結果を表1に併記する。
COMPARATIVE EXAMPLE 5 As shown in FIG. 8, a gas-phase thin-film growth apparatus in which the upper inner diameter is made smaller and the upper and lower diameters are made different from each other in the same manner as in Example 1, Flow analysis was performed.
The reactor 80 of FIG. 8 has a small-diameter upper part 1 ′ and a large-diameter lower part 2 ′.
Although the inner diameters of the upper and lower portions are different, the lower and upper ends of the upper and lower portions are located on substantially the same horizontal plane without a difference in height, and are connected by a substantially horizontal flat connecting portion 89. It is configured similarly to the reaction furnace of the vapor phase thin film growth apparatus. The same members as those in the apparatus shown in FIG. 1 are indicated by the same numeral of the first digit or by the same reference numeral. In reactor 80, the reactor upper inner diameter D 1, the lower inner diameter D 2
And rotating the substrate holder diameter D S shown in Table 1. Hydrogen gas was circulated in the reaction furnace 80 as in Example 1, and the gas flow state was analyzed. As a result, FIG. 9 shows a gas flow diagram in the radial direction of the reactor obtained by the analysis. FIG.
In this case, the laminar flow state of the gas flow above the rotating substrate holder 52 was disturbed, and a large vortex flow was generated on the upper outside. In Comparative Example 5, a thin film was vapor-grown in the same manner as in Example 1, and the characteristics of the film were examined. The results are also shown in Table 1.

【0026】[0026]

【表1】 [Table 1]

【0027】上記実施例及び比較例より明らかなよう
に、反応炉内を上部を小径として異なる径の上下部に2
区分し、それぞれの端部に高低差を設け、所定の連結部
で接続させることにより、ガス流速、即ち、ガス流量を
増大させることなく、回転基板保持体上方のガス流が層
流化されることが分かる。また、反応炉内が同一径の従
来の反応炉の回転基板保持体の外側上部に生じる渦流が
小さくなり、上下部の長さ比率等を所定にすることによ
って渦流を消失させることができることが分かる。この
ため本発明の実施例の反応炉では、上部の整流板から供
給されたガス流が乱流や荒れることなく、回転基板保持
体上に層流状態で流下し、載置されたウエハ基板上に膜
厚が均一で面内特性が均質な薄膜が形成されることが分
かる。
As is clear from the above Examples and Comparative Examples, the inside of the reactor is made smaller with upper and lower parts having different diameters.
By dividing and providing a height difference at each end and connecting at a predetermined connection portion, the gas flow above the rotating substrate holder is made laminar without increasing the gas flow rate, that is, the gas flow rate. You can see that. Further, it can be seen that the vortex generated in the upper portion outside the rotating substrate holder of the conventional reactor having the same diameter in the reactor becomes small, and the vortex can be eliminated by setting the length ratio of the upper and lower portions to a predetermined value. . For this reason, in the reaction furnace of the embodiment of the present invention, the gas flow supplied from the upper straightening plate flows down in a laminar flow state on the rotating substrate holder without turbulence or roughening, and the gas flow supplied on the mounted wafer substrate This shows that a thin film having a uniform thickness and uniform in-plane characteristics is formed.

【0028】[0028]

【発明の効果】本発明の高速回転気相薄膜形成装置は、
反応炉を構成する内径の異なる上下部を曲面形状の連結
部で連続させることにより、反応ガス流を安定して層流
状態で回転基板保持体に載置されるウエハ基板面上に供
給することができ、更に、回転基板保持体の径方向に流
れて外周面側で渦流等の乱れを生じて荒れることなくス
ムーズに流通させ排気口から流出させることができる。
このため、ガス流量を増大させることなく、比較的少な
いガス流量で、且つ、精度よく制御可能な炉内圧の範囲
内で、反応ガスの乱れがなく円滑で均一なスムーズな流
動状態を実現でき、低コストにより膜厚が均一で面内特
性が均質な薄膜を形成できる。
According to the present invention, there is provided a high-speed rotating vapor-phase thin film forming apparatus,
The reaction gas flow can be stably supplied in a laminar flow state onto the surface of the wafer substrate placed on the rotating substrate holder by connecting the upper and lower portions having different inner diameters constituting the reaction furnace with a curved connection portion. Further, the fluid flows in the radial direction of the rotating substrate holder, and turbulence such as eddy currents is generated on the outer peripheral surface side, so that the fluid can flow smoothly without being roughened and flow out from the exhaust port.
Therefore, without increasing the gas flow rate, at a relatively small gas flow rate, and within the range of the furnace pressure that can be accurately controlled, it is possible to realize a smooth, uniform and smooth flow state without disturbance of the reaction gas, A thin film having a uniform thickness and uniform in-plane characteristics can be formed at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の高速回転気相薄膜形成装置の反応炉構
造の概要の一例を示す断面説明図
FIG. 1 is an explanatory cross-sectional view showing an example of the outline of a reactor structure of a high-speed rotating vapor-phase thin film forming apparatus of the present invention.

【図2】本発明の実施例1における反応炉のガス流れの
解析結果のガス流線図
FIG. 2 is a gas flow diagram showing an analysis result of a gas flow in a reactor in Example 1 of the present invention.

【図3】本発明の比較例1における反応炉のガス流れの
解析結果のガス流線図
FIG. 3 is a gas flow diagram showing an analysis result of a gas flow in a reactor in Comparative Example 1 of the present invention.

【図4】本発明の比較例2における反応炉のガス流れの
解析結果のガス流線図
FIG. 4 is a gas flow diagram showing an analysis result of a gas flow in a reactor in Comparative Example 2 of the present invention.

【図5】従来の高速回転気相薄膜形成装置の反応炉構造
の概要の一例を示す断面説明図
FIG. 5 is an explanatory cross-sectional view showing an example of the outline of a reaction furnace structure of a conventional high-speed rotating vapor-phase thin film forming apparatus.

【図6】従来の反応炉を用いた比較例3のガス流れの解
析結果のガス流線図
FIG. 6 is a gas flow diagram showing the result of gas flow analysis of Comparative Example 3 using a conventional reactor.

【図7】従来の反応炉を用いたガス流量を増大した比較
例4のガス流れの解析結果のガス流線図
FIG. 7 is a gas flow diagram showing a gas flow analysis result of Comparative Example 4 in which the gas flow rate was increased using a conventional reactor.

【図8】従来の内径の異なる上下部を有する反応炉構造
の概要の一例を示す断面説明図
FIG. 8 is an explanatory cross-sectional view showing an example of an outline of a conventional reactor structure having upper and lower portions having different inner diameters.

【図9】従来の反応炉を用いた比較例5のガス流れの解
析結果のガス流線図
FIG. 9 is a gas flow diagram showing a result of gas flow analysis of Comparative Example 5 using a conventional reactor.

【図10】本発明の連結部の構造および存在する領域を
示す断面説明図
FIG. 10 is a cross-sectional explanatory view showing the structure of a connecting portion and an existing region according to the present invention;

【符号の説明】[Explanation of symbols]

10、50、80 反応炉 11、51、81 ウエハ基板 12、52、82 回転基板保持体 13、53、83 回転軸 14、54、84 ヒータ 15、55、85 排気口 16、56、86 ガス供給口 17、57、87 整流板 17a、57a、87a 整流孔 18、58、88 回転機構仕切板 19、89 連結部 1、1’ 反応炉上部 2、2’ 反応炉下部 B 上部下端 U 下部上端 D1 反応炉上部内径 D2 反応炉下部内径 DS 回転基板保持体直径 H 連結部下端と回転基板保持体上面との高低差 W W=(D1 −D2 )/210, 50, 80 Reactor 11, 51, 81 Wafer substrate 12, 52, 82 Rotating substrate holder 13, 53, 83 Rotating shaft 14, 54, 84 Heater 15, 55, 85 Exhaust port 16, 56, 86 Gas supply Mouth 17, 57, 87 Rectifying plate 17a, 57a, 87a Rectifying hole 18, 58, 88 Rotating mechanism partition plate 19, 89 Connecting part 1, 1 'Reactor upper part 2, 2' Reactor lower part B Upper lower end U Lower upper end D 1 Inner diameter of upper part of reactor D 2 Inner diameter of lower part of reactor D S Diameter of rotating substrate holder H Height difference between lower end of connecting part and upper surface of rotating substrate holder WW = (D 1 −D 2 ) / 2

フロントページの続き (72)発明者 大橋 忠 神奈川県秦野市曽屋30番地 東芝セラミッ クス株式会社開発研究所内 (72)発明者 茶木 勝弘 神奈川県秦野市曽屋30番地 東芝セラミッ クス株式会社開発研究所内 (72)発明者 藤井 達男 山口県徳山市大字徳山字江口開作8231−5 徳山東芝セラミックス株式会社内 (72)発明者 岩田 勝行 山口県徳山市大字徳山字江口開作8231−5 徳山東芝セラミックス株式会社内 (72)発明者 三谷 慎一 静岡県沼津市大岡2068−3 東芝機械株式 会社沼津事業所内 (72)発明者 本多 恭章 静岡県沼津市大岡2068−3 東芝機械株式 会社沼津事業所内 (72)発明者 佐藤 祐輔 神奈川県川崎市幸区小向東芝町1 株式会 社東芝研究開発センター内Continued on the front page (72) Inventor Tadashi Ohashi 30 Soya, Hadano-shi, Kanagawa Prefecture, Toshiba Ceramics Co., Ltd. (72) Inventor Katsuhiro Chaki 30 Soya, Hadano-shi, Kanagawa Prefecture, Toshiba Ceramics Co., Ltd. (72) Inventor Tatsuo Fujii Inside Tokuyama City, Tokuyama City, Yamaguchi Prefecture Eguchi Kaisaku 8231-5 Tokuyama Toshiba Ceramics Co., Ltd. (72) Inventor Katsuyuki Iwata Tokuyama City, Tokuyama City, Yamaguchi Prefecture Eiji Kaisaku 8231-5 Tokuyama Toshiba Ceramics Co., Ltd. (72) Inventor Shinichi Mitani 2068-3 Ooka, Numazu City, Shizuoka Prefecture Toshiba Machine Co., Ltd. Numazu Office (72) Inventor Yasuaki Honda 2068-3 Ooka, Numazu City, Shizuoka Prefecture Toshiba Machine Co., Ltd. Numazu Office (72) Inventor Yusuke Sato 1 Toshiba-cho, Komukai, Koyuki-ku, Kawasaki-shi, Kanagawa Inside Toshiba R & D Center

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 中空の反応炉の頂部に複数の反応ガス供
給口、底部に排気口、内部にウエハ基板を載置する回転
基板保持体、及び、内部上部に複数の孔が穿設された整
流板を有し、内部に反応ガスを供給して回転基板保持体
上のウエハ基板表面に薄膜を気相成長させる気相薄膜形
成装置において、前記反応炉の中空内部が、中心軸を同
じくし相当内径が異なる円筒状上下部に区分され、上部
の相当内径が下部の相当内径より小さく、且つ、上部下
端と下部上端とが連結部により接続され中空内部が連続
しており、連結部下端(下部上端)が前記回転基板保持
体上に載置される前記ウエハ基板表面と所定の高低差を
有する位置に配設されることを特徴とする高速回転気相
薄膜形成装置。
1. A hollow reaction furnace having a plurality of reaction gas supply ports at the top, an exhaust port at the bottom, a rotating substrate holder on which a wafer substrate is placed, and a plurality of holes at the top inside. In a vapor phase thin film forming apparatus having a current plate and supplying a reaction gas to the inside to vapor-grow a thin film on the surface of a wafer substrate on a rotating substrate holder, the hollow interior of the reaction furnace has the same central axis. The equivalent inner diameter is divided into cylindrical upper and lower portions, the upper equivalent inner diameter is smaller than the lower equivalent inner diameter, the upper lower end and the lower upper end are connected by a connecting portion, and the hollow interior is continuous, and the connecting portion lower end ( A high-speed rotary vapor phase thin film forming apparatus, wherein a lower upper end is disposed at a position having a predetermined height difference from a surface of the wafer substrate mounted on the rotary substrate holder.
【請求項2】 前記反応炉の中空内部水平断面が円形
で、前記回転基板保持体が外径(DS )の円形であっ
て、前記反応炉上部の内径(D1 )が該外径(DS )の
90〜110%で、且つ、前記反応炉下部の内径(D
2 )が該外径(DS)の125%以上であり、前記連結
部は下記条件Aを満足するよう設定されており、前記反
応炉下部上端と前記回転基板保持体上に載置される前記
ウエハ基板表面との高低差(H)が該外径(DS )の4
%以内である請求項1記載の高速回転気相薄膜形成装
置。 条件A:反応炉上部および下部の円筒状部の中心軸を通
る平面による断面上において上部の内径(D1 )と下部
の内径(D2 )との差の1/2をWとしたとき、任意の
いずれの断面においても (1)上部下端は下部上端よりも1/2W〜Wの範囲内
で上方に位置し、 (2)連結部は上部下端と下部上端とを結ぶ線分と、下
部上端部から前記中心軸に垂直に1/2W炉内側に延び
る線分と、該線分に一端を接する半径1/2Wの上部下
端方向へ向かう1/4円弧と、該円弧の他端から上部下
端とを結ぶ線分とから囲まれる領域内に実質的に存在
し、かつ実質的に、炉内側に凸の形状となるよう構成さ
れていること
2. The reactor has a hollow internal horizontal cross section having a circular cross section, the rotating substrate holder having a circular shape having an outer diameter (D S ), and an inner diameter (D 1 ) at an upper portion of the reaction furnace having an outer diameter (D 1 ). 90 to 110% of D S ), and the inner diameter (D
2 ) is 125% or more of the outer diameter (D S ), and the connecting portion is set so as to satisfy the following condition A, and is placed on the upper end of the lower part of the reactor and on the rotating substrate holder. The difference in height (H) from the surface of the wafer substrate is 4 times the outer diameter (D S ).
%. Condition A: When the difference between the inner diameter of the upper part (D 1 ) and the inner diameter of the lower part (D 2 ) on the cross section of a plane passing through the central axis of the upper and lower cylindrical parts of the reactor is W, In any arbitrary cross section, (1) the upper and lower ends are located above the lower and upper ends within a range of 1/2 W to W, and (2) the connecting portion is a line connecting the upper and lower ends and the lower and upper ends. A line segment extending from the upper end portion to the inside of the 1/2 W furnace perpendicular to the center axis, a quarter arc having a radius of 1/2 W, which is in contact with the line segment at an upper end toward the lower end, and an upper end extending from the other end of the arc; Being substantially present in a region surrounded by a line connecting the lower end and being configured to have a substantially convex shape inside the furnace.
【請求項3】 前記請求項1または2記載の高速回転気
相薄膜形成装置において、前記回転基板保持体の回転速
度を500rpm以上として前記複数の反応ガス供給口
から薄膜形成原料ガス及びキャリアガスからなる反応ガ
スを供給して整流板の孔を通過させて前記ウエハ基板上
に流通させることを特徴とする高速回転気相薄膜形成方
法。
3. The high-speed rotating gas-phase thin film forming apparatus according to claim 1, wherein the rotation speed of the rotating substrate holder is set to 500 rpm or more, and the thin film forming raw material gas and the carrier gas are supplied from the plurality of reaction gas supply ports. A high-speed rotating vapor-phase thin film forming method, comprising supplying a reactant gas through the holes of the rectifying plate and flowing the reactant gas over the wafer substrate.
JP9240331A 1997-08-21 1997-08-21 High-speed rotary vapor phase thin-film forming device and high-speed rotary vapor phase thin-film forming method using the device Pending JPH1167675A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP9240331A JPH1167675A (en) 1997-08-21 1997-08-21 High-speed rotary vapor phase thin-film forming device and high-speed rotary vapor phase thin-film forming method using the device
US09/137,298 US6113705A (en) 1997-08-21 1998-08-20 High-speed rotational vapor deposition apparatus and high-speed rotational vapor deposition thin film method
KR1019980033713A KR100530477B1 (en) 1997-08-21 1998-08-20 High-speed rotational vapor defosition apparatus and high-speed rotational vapor deposition thin film forming method
TW087113777A TW408372B (en) 1997-08-21 1998-08-21 High speed rotation vapor phase thin film formation apparatus and the high speed vapor phase thin film formation method using said apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9240331A JPH1167675A (en) 1997-08-21 1997-08-21 High-speed rotary vapor phase thin-film forming device and high-speed rotary vapor phase thin-film forming method using the device

Publications (1)

Publication Number Publication Date
JPH1167675A true JPH1167675A (en) 1999-03-09

Family

ID=17057897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9240331A Pending JPH1167675A (en) 1997-08-21 1997-08-21 High-speed rotary vapor phase thin-film forming device and high-speed rotary vapor phase thin-film forming method using the device

Country Status (4)

Country Link
US (1) US6113705A (en)
JP (1) JPH1167675A (en)
KR (1) KR100530477B1 (en)
TW (1) TW408372B (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009231587A (en) * 2008-03-24 2009-10-08 Nuflare Technology Inc Semiconductor manufacturing equipment and semiconductor manufacturing method
JP2009260291A (en) * 2008-03-24 2009-11-05 Toshiba Corp Epitaxial wafer manufacturing apparatus and manufacturing method
JP2011500961A (en) * 2007-10-11 2011-01-06 バレンス プロセス イクウィップメント,インコーポレイテッド Chemical vapor deposition reactor
JP2011021264A (en) * 2009-07-17 2011-02-03 Ulvac Japan Ltd Film deposition system
JP2011029592A (en) * 2009-06-24 2011-02-10 Toyota Central R&D Labs Inc Surface processing simulation device, controller for surface processing apparatus and surface processing system
US7923355B2 (en) 2007-10-25 2011-04-12 Nuflare Technology, Inc. Manufacturing method for semiconductor device and manufacturing apparatus for semiconductor device
US7967912B2 (en) 2007-11-29 2011-06-28 Nuflare Technology, Inc. Manufacturing apparatus for semiconductor device and manufacturing method for semiconductor device
US20110200749A1 (en) * 2010-02-17 2011-08-18 Kunihiko Suzuki Film deposition apparatus and method
JP2011195346A (en) * 2010-03-17 2011-10-06 Nuflare Technology Inc Film forming apparatus and film forming method
US20120052659A1 (en) * 2010-08-31 2012-03-01 Yoshikazu Moriyama Manufacturing method and apparatus for semiconductor device
JP2012204725A (en) * 2011-03-28 2012-10-22 Toyota Central R&D Labs Inc Surface treatment device
US8524103B2 (en) 2008-12-26 2013-09-03 Nuflare Technology, Inc. Method for manufacturing susceptor
US8597429B2 (en) 2011-01-18 2013-12-03 Nuflare Technology, Inc. Manufacturing apparatus and method for semiconductor device

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6379383B1 (en) 1999-11-19 2002-04-30 Advanced Bio Prosthetic Surfaces, Ltd. Endoluminal device exhibiting improved endothelialization and method of manufacture thereof
AU2002233936A1 (en) 2000-11-07 2002-05-21 Advanced Bio Prosthetic Surfaces, Ltd. Endoluminal stent, self-fupporting endoluminal graft and methods of making same
US6506252B2 (en) 2001-02-07 2003-01-14 Emcore Corporation Susceptorless reactor for growing epitaxial layers on wafers by chemical vapor deposition
WO2003034477A1 (en) * 2001-10-18 2003-04-24 Chul Soo Byun Method and apparatus for chemical vapor ddeposition capable of preventing contamination and enhancing film growth rate
SG101511A1 (en) * 2001-11-12 2004-01-30 Inst Data Storage Vacuum deposition method
JP4995420B2 (en) 2002-09-26 2012-08-08 アドヴァンスド バイオ プロスセティック サーフェシーズ リミテッド High strength vacuum deposited Nitinol alloy film, medical thin film graft material, and method of making same.
US20050178336A1 (en) * 2003-07-15 2005-08-18 Heng Liu Chemical vapor deposition reactor having multiple inlets
US20050011459A1 (en) * 2003-07-15 2005-01-20 Heng Liu Chemical vapor deposition reactor
KR100849929B1 (en) * 2006-09-16 2008-08-26 주식회사 피에조닉스 Apparatus of chemical vapor deposition with a showerhead regulating the injection velocity of reactive gases positively and a method thereof
US20090096349A1 (en) * 2007-04-26 2009-04-16 Moshtagh Vahid S Cross flow cvd reactor
US8216419B2 (en) * 2008-03-28 2012-07-10 Bridgelux, Inc. Drilled CVD shower head
US20080311294A1 (en) * 2007-06-15 2008-12-18 Hideki Ito Vapor-phase growth apparatus and vapor-phase growth method
US8668775B2 (en) * 2007-10-31 2014-03-11 Toshiba Techno Center Inc. Machine CVD shower head
JP4956470B2 (en) * 2007-11-29 2012-06-20 株式会社ニューフレアテクノロジー Semiconductor manufacturing apparatus and semiconductor manufacturing method
JP5603219B2 (en) * 2009-12-28 2014-10-08 キヤノンアネルバ株式会社 Thin film forming equipment
JP5410348B2 (en) * 2010-03-26 2014-02-05 株式会社豊田中央研究所 Surface treatment equipment
JP5732284B2 (en) * 2010-08-27 2015-06-10 株式会社ニューフレアテクノロジー Film forming apparatus and film forming method
JP5736291B2 (en) * 2011-09-28 2015-06-17 株式会社ニューフレアテクノロジー Film forming apparatus and film forming method
US9816184B2 (en) 2012-03-20 2017-11-14 Veeco Instruments Inc. Keyed wafer carrier
JP6158025B2 (en) * 2013-10-02 2017-07-05 株式会社ニューフレアテクノロジー Film forming apparatus and film forming method
CN106030761B (en) 2014-01-27 2019-09-13 威科仪器有限公司 Chip carrier and its manufacturing method for chemical gas-phase deposition system
JP6786307B2 (en) * 2016-08-29 2020-11-18 株式会社ニューフレアテクノロジー Vapor deposition method
CN111052308A (en) * 2017-09-01 2020-04-21 纽富来科技股份有限公司 Vapor phase growth apparatus and vapor phase growth method
KR102420164B1 (en) 2017-09-14 2022-07-12 삼성전자주식회사 Computing system for gas flow simulation and simulation method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61111521A (en) * 1985-08-08 1986-05-29 Toshiba Corp Vertical vapor growth equipment
US5284805A (en) * 1991-07-11 1994-02-08 Sematech, Inc. Rapid-switching rotating disk reactor
JPH06216033A (en) * 1992-11-25 1994-08-05 Toshiba Corp Chemical vapor growth device for semiconductor
TW283250B (en) * 1995-07-10 1996-08-11 Watkins Johnson Co Plasma enhanced chemical processing reactor and method
JPH09190980A (en) * 1996-01-10 1997-07-22 Toshiba Corp Substrate treatment equipment
JPH10177961A (en) * 1996-12-19 1998-06-30 Toshiba Ceramics Co Ltd Vapor growth device and method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011500961A (en) * 2007-10-11 2011-01-06 バレンス プロセス イクウィップメント,インコーポレイテッド Chemical vapor deposition reactor
US7923355B2 (en) 2007-10-25 2011-04-12 Nuflare Technology, Inc. Manufacturing method for semiconductor device and manufacturing apparatus for semiconductor device
US7967912B2 (en) 2007-11-29 2011-06-28 Nuflare Technology, Inc. Manufacturing apparatus for semiconductor device and manufacturing method for semiconductor device
JP2009260291A (en) * 2008-03-24 2009-11-05 Toshiba Corp Epitaxial wafer manufacturing apparatus and manufacturing method
JP2009231587A (en) * 2008-03-24 2009-10-08 Nuflare Technology Inc Semiconductor manufacturing equipment and semiconductor manufacturing method
US8591993B2 (en) 2008-03-24 2013-11-26 Kabushiki Kaisha Toshiba Epitaxial wafer manufacturing apparatus and manufacturing method
US8524103B2 (en) 2008-12-26 2013-09-03 Nuflare Technology, Inc. Method for manufacturing susceptor
JP2011029592A (en) * 2009-06-24 2011-02-10 Toyota Central R&D Labs Inc Surface processing simulation device, controller for surface processing apparatus and surface processing system
JP2011021264A (en) * 2009-07-17 2011-02-03 Ulvac Japan Ltd Film deposition system
US20110200749A1 (en) * 2010-02-17 2011-08-18 Kunihiko Suzuki Film deposition apparatus and method
JP2011195346A (en) * 2010-03-17 2011-10-06 Nuflare Technology Inc Film forming apparatus and film forming method
US20120052659A1 (en) * 2010-08-31 2012-03-01 Yoshikazu Moriyama Manufacturing method and apparatus for semiconductor device
US8951353B2 (en) 2010-08-31 2015-02-10 Nuflare Technology, Inc. Manufacturing method and apparatus for semiconductor device
US8597429B2 (en) 2011-01-18 2013-12-03 Nuflare Technology, Inc. Manufacturing apparatus and method for semiconductor device
JP2012204725A (en) * 2011-03-28 2012-10-22 Toyota Central R&D Labs Inc Surface treatment device

Also Published As

Publication number Publication date
KR19990023725A (en) 1999-03-25
KR100530477B1 (en) 2006-03-09
US6113705A (en) 2000-09-05
TW408372B (en) 2000-10-11

Similar Documents

Publication Publication Date Title
JPH1167675A (en) High-speed rotary vapor phase thin-film forming device and high-speed rotary vapor phase thin-film forming method using the device
EP0854210B1 (en) Vapor deposition apparatus for forming thin film
KR100272848B1 (en) Chemical vapor deposition apparatus
JPH0831758A (en) Vapor growth and device therefor
US20210180208A1 (en) Vapor phase growth apparatus
JP6792083B2 (en) Vapor phase growth device and vapor phase growth method
US8882911B2 (en) Apparatus for manufacturing silicon carbide single crystal
JP5004513B2 (en) Vapor growth apparatus and vapor growth method
JP3414475B2 (en) Crystal growth equipment
US20210381128A1 (en) Vapor phase growth apparatus
JP3570653B2 (en) Vapor phase thin film growth apparatus and vapor phase thin film growth method
KR100490013B1 (en) Vapor deposition apparatus and vapor deposition method
JP3597003B2 (en) Vapor phase growth apparatus and vapor phase growth method
JPH1167674A (en) Apparatus and method for gas phase thin-film growth
WO2020158657A1 (en) Film forming apparatus and film forming method
JP2011066356A (en) Thin film manufacturing device
JP2001140078A (en) Chemical vapor deposition system
JP2004014535A (en) Vapor phase growing device and method therefor and susceptor for holding substrate
JP4236230B2 (en) Susceptor for vapor phase thin film growth apparatus and vapor phase thin film growth apparatus using the susceptor
JP4135543B2 (en) Method for growing silicon carbide crystal
US7060614B2 (en) Method for forming film
JPH0234909A (en) Compound semiconductor vapor growth method and device
JPH0383895A (en) Epitaxial growth device