JPH10172557A - Manufacture of active material for nickel electrode - Google Patents

Manufacture of active material for nickel electrode

Info

Publication number
JPH10172557A
JPH10172557A JP8353510A JP35351096A JPH10172557A JP H10172557 A JPH10172557 A JP H10172557A JP 8353510 A JP8353510 A JP 8353510A JP 35351096 A JP35351096 A JP 35351096A JP H10172557 A JPH10172557 A JP H10172557A
Authority
JP
Japan
Prior art keywords
hydroxide
powder
cobalt
nickel hydroxide
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8353510A
Other languages
Japanese (ja)
Inventor
Masahiro Hirai
正博 平井
Kiyohiko Yoshimura
起世彦 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KANSAI SHOKUBAI KAGAKU KK
Original Assignee
KANSAI SHOKUBAI KAGAKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KANSAI SHOKUBAI KAGAKU KK filed Critical KANSAI SHOKUBAI KAGAKU KK
Priority to JP8353510A priority Critical patent/JPH10172557A/en
Publication of JPH10172557A publication Critical patent/JPH10172557A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently obtain nickel hydroxide powder in which cobalt oxide is formed on the surfaces of particles while the physical property of the nickel hydroxide powder which is a raw material is kept by adding an alkali hydroxide solution to nickel hydroxide powder whose particle surface is covered with cobalt hydroxide, and at the same time hot air is blown to oxidize the cobalt hydroxide. SOLUTION: Nickel hydroxide powder which is a base material is dispersed in a dispersion medium such as water, usually 5-30wt.% slurry is prepared. The mean particle diameter of the nickel hydroxide, although it is variable by applications, is usually 2-50 microns, preferably 5-20 microns. The slurry is heated at 80 deg.C or less, and pH is adjusted to 8-11 by acid or alkali. In pH on the outside of the above range, unfavorably, the particle surface of the nickel hydroxide powder is not coated with cobalt hydroxide, and independent cobalt hydroxide particles are formed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ニッケル電極用活
物質の製造方法に関する。
[0001] The present invention relates to a method for producing an active material for a nickel electrode.

【0002】[0002]

【従来技術】アルカリ二次電池用のニッケル電極は、従
来より、焼結式と非焼結式のものが知られている。焼結
式では、基板グリッドにニッケル粉末スラリーを塗布し
た後、これを焼結して得たニッケル焼結基板に活物質を
含浸させる。この活物質を含浸させる方法として電解含
浸法、化学含浸法等が知られている。例えば、電解含浸
法では、ニッケル焼結基板を硝酸ニッケル溶液中に浸漬
した後、これを負極としてアルカリ溶液中で硝酸塩を水
酸化ニッケルに変化させることにより、水酸化ニッケル
電極を製造する。ところが、これらの含浸法ではいずれ
も、十分な量の活物質をニッケル焼結基板に充填するた
めに、硝酸ニッケルに含浸する工程及び水酸化ニッケル
に変化させる工程を数回繰り返す必要がある。
2. Description of the Related Art Conventionally, sintered and non-sintered nickel electrodes for alkaline secondary batteries have been known. In the sintering method, after a nickel powder slurry is applied to a substrate grid, a nickel sintered substrate obtained by sintering this is impregnated with an active material. As a method for impregnating the active material, an electrolytic impregnation method, a chemical impregnation method, and the like are known. For example, in the electrolytic impregnation method, a nickel hydroxide electrode is manufactured by immersing a nickel sintered substrate in a nickel nitrate solution and then using the substrate as a negative electrode to convert nitrate to nickel hydroxide in an alkaline solution. However, in each of these impregnation methods, the step of impregnating with nickel nitrate and the step of changing to nickel hydroxide need to be repeated several times in order to fill a sufficient amount of the active material into the nickel sintered substrate.

【0003】一方、非焼結式では、活物質となる水酸化
ニッケルのペーストを電極基板に直接充填して製造す
る。この非焼結式の電極では、焼結式のものに比べて利
用率が低いという欠点がある。このため、水酸化ニッケ
ル粉末の粒子表面にさらに水酸化コバルトをコーティン
グする方法も提案されている。この方法によれば、最終
的には導電性の高いコバルト酸化物がコートされるた
め、活物質である水酸化ニッケルの導電性をより高める
ことが可能となる。
On the other hand, in the non-sintering method, an electrode substrate is directly filled with a paste of nickel hydroxide as an active material and manufactured. This non-sintered type electrode has a drawback that the utilization factor is lower than that of the sintered type electrode. For this reason, a method of further coating cobalt hydroxide on the particle surface of the nickel hydroxide powder has been proposed. According to this method, since a cobalt oxide having high conductivity is finally coated, it is possible to further enhance the conductivity of nickel hydroxide as an active material.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、コバル
ト酸化物を形成させる上記方法では、工業的規模で製造
する上において未だ改善の余地がある。
However, there is still room for improvement in the above-mentioned method for forming a cobalt oxide in manufacturing on an industrial scale.

【0005】すなわち、上記方法では、得られた水酸化
ニッケル粉末の粒子どうしが物理的又は化学的に接着す
る場合がある。この場合には、その粉砕工程が必要とな
り、必然的に作業性が低下する。しかも、接着した粉末
粒子どうしを粉砕した場合、接着部分のコバルト酸化物
は剥離してしまい、結果としてコバルト酸化物を完全に
被覆することができない。
That is, in the above method, the particles of the obtained nickel hydroxide powder may be physically or chemically bonded to each other. In this case, the pulverizing step is required, and the workability is inevitably reduced. Moreover, when the bonded powder particles are crushed, the cobalt oxide at the bonded portion is peeled off, and as a result, the cobalt oxide cannot be completely covered.

【0006】従って、本発明は、特に、原料である水酸
化ニッケル粉末の物性を保持したまま、粒子表面にコバ
ルト酸化物が形成された水酸化コバルト粉末を効率的に
製造することを主な目的とする。
Accordingly, it is a main object of the present invention to efficiently produce a cobalt hydroxide powder having a cobalt oxide formed on the particle surface while maintaining the physical properties of the nickel hydroxide powder as a raw material. And

【0007】[0007]

【課題を解決するための手段】本発明者は、上記従来技
術の問題に鑑み鋭意研究を重ねた結果、特定の方法によ
りコバルト酸化物を形成させる場合には、上記目的を達
成できることを見出し、本発明を完成するに至った。
Means for Solving the Problems The present inventor has conducted intensive studies in view of the above-mentioned problems of the prior art, and as a result, has found that the above object can be achieved when cobalt oxide is formed by a specific method. The present invention has been completed.

【0008】すなわち、本発明は、粒子表面に水酸化コ
バルトが被覆された水酸化ニッケル粉末に、水酸化アル
カリ溶液を添加しながら加熱空気を送り込むことにより
上記水酸化コバルトを酸化することを特徴とするニッケ
ル電極用活物質の製造方法に係るものである。
That is, the present invention is characterized in that the above-mentioned cobalt hydroxide is oxidized by feeding heated air to a nickel hydroxide powder having a surface coated with cobalt hydroxide while adding an alkali hydroxide solution. The present invention relates to a method for producing a nickel electrode active material.

【0009】[0009]

【発明の実施の形態】以下、本発明をその実施の形態と
ともに詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail along with its embodiments.

【0010】本発明のアルカリ二次電池用ニッケル電極
の製造方法は、粒子表面に水酸化コバルトが被覆された
水酸化ニッケル粉末に、水酸化アルカリ溶液を添加しな
がら加熱空気を送り込むことによって上記水酸化コバル
トを酸化することを特徴とする。
[0010] The method for producing a nickel electrode for an alkaline secondary battery according to the present invention is characterized in that the heated water is fed to a nickel hydroxide powder having a surface coated with cobalt hydroxide while adding an alkali hydroxide solution thereto. It is characterized by oxidizing cobalt oxide.

【0011】粒子表面に水酸化コバルトが被覆された水
酸化ニッケル粉末は、公知の製造方法で得られるものを
使用でき、例えば以下の方法によって製造したものを用
いることができる。
As the nickel hydroxide powder having a surface coated with cobalt hydroxide, a powder obtained by a known production method can be used. For example, a powder produced by the following method can be used.

【0012】まず、ベースとなる水酸化ニッケル粉末
(原料粉末)を水等の分散媒に分散させ、通常5〜30
重量%程度のスラリー液とする。上記水酸化ニッケル粉
末は公知のものが使用でき、例えば特開平3−2523
18号公報に開示された水酸化ニッケル粉末も使用する
ことができる。また、上記水酸化ニッケル粉末の平均粒
径は、用途等に応じて適宜変更することができるが、通
常2〜50μm程度、好ましくは5〜20μmとすれば
良い。
First, a nickel hydroxide powder (raw material powder) serving as a base is dispersed in a dispersion medium such as water, and usually 5 to 30 minutes.
A slurry liquid of about weight% is used. As the nickel hydroxide powder, known powders can be used.
The nickel hydroxide powder disclosed in Japanese Patent Publication No. 18 can also be used. The average particle size of the nickel hydroxide powder can be appropriately changed depending on the application and the like, but is usually about 2 to 50 μm, preferably 5 to 20 μm.

【0013】次いで、上記スラリー液を常温で又は必要
に応じて加熱(通常80℃以下)し、酸(硫酸等)又は
アルカリ(水酸化ナトリウム等)によってpH8〜11
程度に調整する。pHが上記範囲外となる場合には、水
酸化ニッケル粉末の粒子表面に水酸化コバルトがコート
されないで、独立した水酸化コバルト粒子が形成される
ので好ましくない。
Next, the above-mentioned slurry liquid is heated at room temperature or as required (usually 80 ° C. or lower), and the pH is adjusted to 8 to 11 with an acid (such as sulfuric acid) or an alkali (such as sodium hydroxide).
Adjust to the extent. If the pH is out of the above range, the surface of the particles of the nickel hydroxide powder is not coated with cobalt hydroxide, so that independent cobalt hydroxide particles are formed, which is not preferable.

【0014】上記温度及びpHを保持しつつ、かつ、撹
拌しながら、コバルト(Co)濃度として5〜15重量
%程度の硫酸コバルト溶液及び5〜40重量%程度の水
酸化ナトリウムをともに添加する。なお、本発明では、
水酸化コバルトの析出量は、用途等に応じて適宜調整で
きるが、通常は水酸化ニッケル粉末に対して1〜15重
量%、好ましくは3〜10重量%とする。
While maintaining the above temperature and pH and stirring, a cobalt sulfate solution having a cobalt (Co) concentration of about 5 to 15% by weight and sodium hydroxide of about 5 to 40% by weight are added together. In the present invention,
The amount of cobalt hydroxide deposited can be appropriately adjusted according to the application and the like, but is usually 1 to 15% by weight, preferably 3 to 10% by weight based on the nickel hydroxide powder.

【0015】得られた混合液を遠心分離機等で脱水し、
必要に応じて水洗すれば、水酸化コバルトを含有する水
酸化ニッケル粉末が得られる。この水酸化ニッケルは、
主としてその粒子表面が水酸化コバルトにより被覆され
ている。
The obtained mixture is dehydrated with a centrifuge or the like,
Washing with water as necessary gives a nickel hydroxide powder containing cobalt hydroxide. This nickel hydroxide
Mainly, the particle surface is coated with cobalt hydroxide.

【0016】なお、本発明では、水酸化コバルトでコー
トされた水酸化ニッケル以外にも、カドミウム、亜鉛、
マグネシウム等の単独で又は2種以上併用することによ
り表面コートされた水酸化ニッケルを使用することもで
きる。これらの表面コートも前記の同様の方法で形成さ
せることができる。さらに、表面コートだけでなく、水
酸化ニッケル中にカドミウム、亜鉛等を固溶させたもの
も使用することができる。これらも公知の方法に従って
製造することができる。
In the present invention, in addition to nickel hydroxide coated with cobalt hydroxide, cadmium, zinc,
Nickel hydroxide coated on the surface by using magnesium alone or in combination of two or more kinds can also be used. These surface coats can be formed in the same manner as described above. Further, not only a surface coat but also a solid solution of cadmium, zinc or the like in nickel hydroxide can be used. These can also be manufactured according to a known method.

【0017】次に、上記で得られた水酸化ニッケル(以
下、「コバルト被覆水酸化ニッケル」ともいう)に、水
酸化アルカリ溶液を添加しながら加熱空気を送り込む。
水酸化アルカリとしては、水酸化カリウム、水酸化ナト
リウム等が例示でき、特に水酸化ナトリウムが好まし
い。
Next, heated air is fed into the nickel hydroxide obtained above (hereinafter also referred to as “cobalt-coated nickel hydroxide”) while adding an alkali hydroxide solution.
Examples of the alkali hydroxide include potassium hydroxide and sodium hydroxide, and particularly preferred is sodium hydroxide.

【0018】加熱空気を送る際の条件は、用いるコバル
ト被覆水酸化ニッケル、最終的な用途等によって適宜設
定できる。例えば、加熱空気の温度は、通常70〜15
0℃程度、好ましくは90〜130℃とすれば良い。加
熱空気の送量は、通常10〜50m3/m2・min程
度、好ましくは20〜35m3/m2・minとすれば良
い。
The conditions for sending the heated air can be appropriately set depending on the cobalt-coated nickel hydroxide used, the final use, and the like. For example, the temperature of the heated air is usually 70 to 15
The temperature may be about 0 ° C, preferably 90 to 130 ° C. The feed rate of the heated air may be generally about 10 to 50 m 3 / m 2 · min, preferably 20 to 35 m 3 / m 2 · min.

【0019】加熱空気を送り込む方向は、一次粒子であ
る水酸化ニッケル(ベースとなる水酸化ニッケル)の物
性を維持したままでコバルト酸化物を形成できる限り、
いずれの方向であっても良い。本発明では、特に下方か
ら送り込むことが好ましい。ここで下方とは、原料の真
下から加熱空気を吹き込むことはもちろん、斜め下方向
等も含む。これにより、コバルト被覆水酸化ニッケル粉
末が加熱空気の気流により舞い上がり、場合によっては
流動層を形成して、一次粒子の状態で有効にコバルト酸
化物を形成させることができる。
The direction in which the heated air is fed is as long as the cobalt oxide can be formed while maintaining the physical properties of the primary particles of nickel hydroxide (base nickel hydroxide).
Either direction may be used. In the present invention, it is particularly preferable to feed from below. Here, the term “below” includes not only blowing heated air from directly below the raw material but also obliquely downward. As a result, the cobalt-coated nickel hydroxide powder soars by the air current of the heated air, and in some cases, forms a fluidized bed, so that cobalt oxide can be effectively formed in the state of primary particles.

【0020】上記水酸化アルカリの添加量は、水酸化ア
ルカリの種類、上記条件等により適宜設定できるが、通
常はコバルト被覆水酸化ニッケルに対して2〜20重量
%程度(水酸化アルカリの結晶換算)、好ましくは5〜
10重量%とすれば良い。水酸化アルカリの濃度も適宜
変更できるが、通常10〜45重量%程度、好ましくは
25〜40重量%とすれば良い。
The amount of the alkali hydroxide to be added can be appropriately set depending on the kind of the alkali hydroxide, the above conditions and the like, but is usually about 2 to 20% by weight based on the cobalt-coated nickel hydroxide (in terms of alkali hydroxide crystal). ), Preferably 5-
It may be 10% by weight. Although the concentration of the alkali hydroxide can be changed as appropriate, it is usually about 10 to 45% by weight, preferably 25 to 40% by weight.

【0021】さらに、少なくとも加熱空気が送り込まれ
ている間の上記コバルト被覆水酸化ニッケルにおける保
有水分量も、最終製品の用途等に応じて適宜定めること
ができるが、通常はコバルト被覆水酸化ニッケルに対し
て3〜10重量%程度、好ましくは3〜7重量%とすれ
ば良い。保有水分量は、水酸化アルカリの添加量(噴霧
量)、加熱空気の温度等によって調節することができ
る。加熱空気が送り込まれている間とは、例えば後記の
流動層式乾燥機を用いる場合であれば、主として一次粒
子の流動層が形成されている間をいう。なお、加熱空気
の送り込みが終了した時点では、保有水分量は上記範囲
外(例えば、3重量%未満)となっていても良い。
Further, the amount of water retained in the above-mentioned cobalt-coated nickel hydroxide at least while the heated air is being fed in can be appropriately determined according to the use of the final product and the like. The content may be about 3 to 10% by weight, preferably 3 to 7% by weight. The amount of retained water can be adjusted by the amount of alkali hydroxide added (spray amount), the temperature of heated air, and the like. The period during which the heated air is being fed means, for example, when a fluidized bed dryer described below is used, mainly while a fluidized bed of primary particles is being formed. At the time when the supply of the heated air is completed, the water content may be outside the above range (for example, less than 3% by weight).

【0022】上記水酸化アルカリの添加量又は上記保有
水分量が少なすぎる場合には、粒子表面の水酸化コバル
トが部分的にしか溶けず、高い導電性をもつコバルト酸
化物が形成されない。一方、上記水酸化アルカリの添加
量又は上記保有水分量が多すぎる場合には、造粒化が起
こり、二次粒子が形成されたり、或いはいったん形成さ
れたコバルト酸化物が剥離してしまうおそれがある。
If the added amount of the alkali hydroxide or the water content is too small, the cobalt hydroxide on the particle surface is only partially dissolved, and a cobalt oxide having high conductivity is not formed. On the other hand, if the added amount of the alkali hydroxide or the retained water amount is too large, granulation occurs, and secondary particles may be formed, or the once formed cobalt oxide may be peeled off. is there.

【0023】加熱空気を送り込む際の雰囲気は、コバル
ト酸化物が形成できる限り特に制限されないが、大気中
又は酸化性雰囲気中とすれば良い。
The atmosphere in which the heated air is supplied is not particularly limited as long as the cobalt oxide can be formed, but may be in the air or in an oxidizing atmosphere.

【0024】上記の加熱空気によるコバルト酸化物の形
成は、打錠用顆粒、食品顆粒等の製造(造粒)に用いら
れている公知の流動層式乾燥機を用いて実施することも
できる。上記乾燥機の一例を表す概略図を図1に示す。
乾燥機の内部に投入されたコバルト含有水酸化ニッケル
は、回転円板により発生する加熱空気により舞い上が
り、流動層を形成する。同時に、スプレーノズルより四
方に水酸化アルカリ溶液が噴霧される。本発明において
は、保有水分量を測定するために赤外線水分計を備えて
いることが望ましく、これにより流動層を形成している
状態における保有水分量が前記範囲内となるように温度
等をコントロールすれば良い。乾燥機内部には、図1に
示すように、その状態を管理するためにさらに温度セン
サー、塔内圧力計を設けることが好ましい。なお、保有
水分量の測定方法は、乾燥減量法(JIS K 006
8)に従って行うこともできる。
The formation of the cobalt oxide by the above-mentioned heated air can also be carried out by using a known fluidized-bed dryer used in the production (granulation) of tableting granules, food granules and the like. FIG. 1 is a schematic diagram illustrating an example of the above dryer.
The cobalt-containing nickel hydroxide charged into the dryer flies up due to the heated air generated by the rotating disk and forms a fluidized bed. At the same time, the alkali hydroxide solution is sprayed from the spray nozzles on all sides. In the present invention, it is preferable to provide an infrared moisture meter for measuring the retained moisture content, thereby controlling the temperature and the like so that the retained moisture content in a state where the fluidized bed is formed is within the above range. Just do it. As shown in FIG. 1, it is preferable to further provide a temperature sensor and a pressure gauge in the tower inside the dryer to control the state. In addition, the measuring method of the water content is the drying loss method (JIS K 006).
8).

【0025】コバルト酸化物が形成された水酸化ニッケ
ルを必要に応じて洗浄し、余剰の水酸化アルカリを洗い
落とす。洗浄方法は、公知の方法に従えば良く、例えば
温水(50〜80℃程度)を入れた洗浄缶に上記水酸化
ニッケルを投入し、撹拌することにより実施することが
できる。洗浄後は、遠心分離等の公知の方法により脱水
しても良い。さらに、必要に応じて、乾燥することもで
きる。乾燥温度は、通常80〜120℃程度とすれば良
い。
The nickel hydroxide on which the cobalt oxide has been formed is washed, if necessary, to remove excess alkali hydroxide. The washing method may be in accordance with a known method. For example, the washing can be carried out by charging the above nickel hydroxide into a washing can filled with warm water (about 50 to 80 ° C.) and stirring. After washing, dehydration may be performed by a known method such as centrifugation. Further, if necessary, it can be dried. The drying temperature may be usually about 80 to 120 ° C.

【0026】このようにして得られた水酸化ニッケルの
粉末粒子は、一次粒子の状態でその表面がCo23、C
oOOH等のコバルト酸化物(高次コバルト酸化物)に
よりコートされており、優れた導電性を発揮できる。こ
の粉末の平均粒径は、原料(ベースとなる水酸化ニッケ
ル等)、用いる電池の種類等にもよるが、通常2〜50
μm程度、好ましくは5〜20μmとすれば良い。ま
た、その導電性も、用途等に応じて適宜変更でき、例え
ばニッケル−水素電池の電極用活物質として用いる場合
は、通常30Ω以下、特に10Ω以下とすれば良い。
The nickel hydroxide powder particles obtained in this manner have primary surfaces of Co 2 O 3 , C 2
Coated with a cobalt oxide (higher order cobalt oxide) such as oOOH, it can exhibit excellent conductivity. The average particle size of the powder depends on the raw material (nickel hydroxide serving as a base), the type of battery used, and the like, but is usually 2 to 50.
The thickness may be about μm, preferably 5 to 20 μm. In addition, its conductivity can be appropriately changed depending on the application and the like. For example, when it is used as an active material for an electrode of a nickel-metal hydride battery, it may be usually 30Ω or less, particularly 10Ω or less.

【0027】[0027]

【発明の効果】本発明の製造方法によれば、ベースとな
る水酸化ニッケル粉末の物性(例えば、粒度分布等)を
保ったまま、特に一次粒子の状態のままで、水酸化ニッ
ケル粉末の粒子表面にコバルト酸化物を形成させること
が可能となる。これにより、水酸化ニッケル粉末におい
て、粉砕工程等を必要とせずに比較的容易に優れた導電
性を確保することができる。
According to the production method of the present invention, the nickel hydroxide powder particles are maintained while maintaining the physical properties (eg, particle size distribution) of the base nickel hydroxide powder, particularly in the state of primary particles. It becomes possible to form a cobalt oxide on the surface. Thereby, in the nickel hydroxide powder, excellent conductivity can be relatively easily secured without requiring a pulverizing step or the like.

【0028】本発明の製造方法により得られる水酸化ニ
ッケル粉末は、例えばアルカリ二次電池(ニッケル−水
素電池、ニッケル−カドミウム電池等)における非焼結
式の電極用活物質として有用である。例えば、これをメ
チルセルロース等の結着剤の水溶液と混合して得られた
スラリーを発泡体ニッケル等に充填すれば、水酸化ニッ
ケル電極が得られる。これにより、これら電池の利用率
の向上にも寄与することができる。
The nickel hydroxide powder obtained by the production method of the present invention is useful as a non-sintered electrode active material in, for example, an alkaline secondary battery (a nickel-hydrogen battery, a nickel-cadmium battery, etc.). For example, if a slurry obtained by mixing this with an aqueous solution of a binder such as methyl cellulose is filled in nickel foam or the like, a nickel hydroxide electrode is obtained. As a result, it is possible to contribute to the improvement of the utilization rate of these batteries.

【0029】[0029]

【実施例】以下、実施例及び比較例を示し、本発明の特
徴をより一層明確にする。
EXAMPLES Examples and comparative examples are shown below to further clarify the features of the present invention.

【0030】実施例1 ベースとなる水酸化ニッケル粉末950gを水により2
0重量%スラリー液となるように調整し、その液を75
℃まで昇温した。さらに、このスラリー液をpH9.0
となるように薄い硫酸溶液で調整した。ベースとなる水
酸化ニッケル粉末の粒度分布を測定した結果を図2に示
す。このベースとなる水酸化ニッケルの粉末粒子の顕微
鏡写真を図5及び図6に示す。
Example 1 950 g of nickel hydroxide powder as a base was
0% by weight of the slurry liquid, and
The temperature was raised to ° C. Further, this slurry solution was adjusted to pH 9.0.
Was adjusted with a dilute sulfuric acid solution so that FIG. 2 shows the result of measuring the particle size distribution of the nickel hydroxide powder as a base. Microscopic photographs of the nickel hydroxide powder particles serving as the base are shown in FIGS. 5 and 6.

【0031】次に、pH9.0、温度75℃に保ちなが
ら、スラリー液を激しく攪拌して水酸化ニッケル表面に
水酸化コバルトが5重量%(ベースとなる水酸化ニッケ
ル粉末に対して)析出するように、一定量の硫酸コバル
ト溶液及び水酸化ナトリウム溶液を同時に滴下した。硫
酸コバルト溶液の濃度は10重量%、水酸化ナトリウム
溶液の濃度は25重量%とした。これにより、粒子表面
に水酸化コバルトが被覆された水酸化ニッケルのスラリ
ー液を得た。このコバルト被覆水酸化ニッケルの粒子の
顕微鏡写真を図7に示す。
Next, while maintaining the pH at 9.0 and the temperature at 75 ° C., the slurry liquid is vigorously stirred to deposit 5% by weight of cobalt hydroxide on the nickel hydroxide surface (relative to the base nickel hydroxide powder). Thus, a fixed amount of the cobalt sulfate solution and the sodium hydroxide solution were simultaneously added dropwise. The concentration of the cobalt sulfate solution was 10% by weight, and the concentration of the sodium hydroxide solution was 25% by weight. In this way, a slurry of nickel hydroxide having a surface coated with cobalt hydroxide was obtained. FIG. 7 shows a micrograph of the cobalt-coated nickel hydroxide particles.

【0032】上記スラリー液を遠心分離機で脱水し、図
1に示す流動層式乾燥機に投入した。上記乾燥機の下方
より100℃の加熱空気を送り込み、粉末の乾燥を行っ
た。乾燥が進むにつれて粉末が舞い上がり、乾燥機内部
で粉末が一次粒子の状態で流動層を形成した。この流動
層の中心部に向けて35重量%水酸化ナトリウム溶液を
200g(コバルト被覆水酸化ニッケルに対して7重量
%)噴霧した。この時の粉末の水分を赤外線水分計で測
定しながら、保有水分量が7重量%を保つように、噴霧
速度及び温度をコントロールした。
The slurry was dehydrated by a centrifugal separator and charged into a fluidized bed drier shown in FIG. Heated air at 100 ° C. was sent from below the dryer to dry the powder. As the drying progressed, the powder flew up, and the powder formed a fluidized bed in a state of primary particles inside the dryer. 200 g of a 35% by weight sodium hydroxide solution (7% by weight based on cobalt-coated nickel hydroxide) was sprayed toward the center of the fluidized bed. At this time, while measuring the water content of the powder with an infrared moisture meter, the spraying speed and the temperature were controlled so that the water content was kept at 7% by weight.

【0033】水酸化ナトリウム溶液の噴霧が終了し、粉
末の保有水分量が1重量%以下となった時点で取り出
し、余剰の水酸化ナトリウムを水洗によって取り除い
た。脱水後、100℃で乾燥し、次いで100メッシュ
のフルイで篩い分けした。この際、一次粒子の状態のま
まで酸化されたため、全てがフルイを通過した。最終製
品4gを直径15mmの成型機でプレス(圧力400k
g/cm2)を行い、得られた円柱状の成型体(15φ
×10mm)の抵抗値を測定した結果、1Ωと非常に導
電性の高い材料が得られた。なお、抵抗値の測定は、4
端子直流抵抗計を用い、成型体の上下に端子を接触させ
て行った。
When the spraying of the sodium hydroxide solution was completed and the water content of the powder became 1% by weight or less, the powder was taken out, and excess sodium hydroxide was removed by washing with water. After dehydration, it was dried at 100 ° C. and then sieved with a 100 mesh sieve. At this time, all the particles passed through the sieve because they were oxidized in the state of primary particles. Press 4 g of the final product with a molding machine with a diameter of 15 mm (pressure 400 k
g / cm 2 ) to obtain a cylindrical molded product (15φ
(× 10 mm), a highly conductive material of 1Ω was obtained. The measurement of the resistance value was 4
Using a terminal DC resistance meter, the terminals were brought into contact with the upper and lower sides of the molded body.

【0034】また、得られた水酸化ニッケル粉末の粒度
分布を測定した。その結果を図3に示す。さらに、その
粉末及び粉末粒子の顕微鏡写真を図8及び図9にそれぞ
れ示す。これらの結果より、得られた水酸化ニッケル粉
末は、ベースとなる水酸化ニッケル粉末の物性を維持し
たまま、コバルト酸化物を形成できていることがわか
る。
Further, the particle size distribution of the obtained nickel hydroxide powder was measured. The result is shown in FIG. 8 and 9 show micrographs of the powder and the powder particles, respectively. These results show that the obtained nickel hydroxide powder was able to form a cobalt oxide while maintaining the physical properties of the base nickel hydroxide powder.

【0035】比較例1 ベースとなる水酸化ニッケル表面に水酸化コバルトを被
覆する工程までは実施例1と同様にした。
Comparative Example 1 The procedure of Example 1 was repeated up to the step of coating the surface of the nickel hydroxide serving as a base with cobalt hydroxide.

【0036】これを、実施例1と同様にして、水酸化コ
バルトが被覆された脱水品を流動層式乾燥機に投入し
た。上記乾燥機の下方より100℃の加熱空気を送り込
み、活物質の乾燥を行った。乾燥が進むにつれて粉末が
舞い上がり、乾燥機内部で流動層を形成した。この流動
層の中心部に向けて35重量%水酸化ナトリウム溶液を
600g(コバルト被覆水酸化ニッケルに対して21重
量%)噴霧した。この時の粉末の保有水分量を赤外線水
分計を見ながら7重量%に維持した。
In the same manner as in Example 1, the dehydrated product coated with cobalt hydroxide was put into a fluidized-bed dryer. Heated air at 100 ° C. was sent from below the dryer to dry the active material. As the drying progressed, the powder flew up, forming a fluidized bed inside the dryer. 600 g of a 35% by weight sodium hydroxide solution (21% by weight based on cobalt-coated nickel hydroxide) was sprayed toward the center of the fluidized bed. At this time, the water content of the powder was maintained at 7% by weight while observing the infrared moisture meter.

【0037】水酸化ナトリウム溶液の噴霧が終了し、粉
末の保有水分量が1重量%以下となった時点で取り出
し、余剰の水酸化ナトリウムを水洗して取り除いた。脱
水後、100℃で乾燥し、次いで100メッシュのフル
イで篩い分けしたところ、当初の20重量%の製品がフ
ルイ上に粒子が残っていた。なお、実施例1と同様にし
て、全てフルイを通過した最終製品4gを直径15mm
の成型機でプレスを行い、その成型体の抵抗値を測定し
た結果、1Ωと非常に導電性の高い材料であった。 ま
た、篩い分けする前の水酸化ニッケル粉末の粒度分布を
測定した。その結果を図4に示す。さらに、その粉末の
顕微鏡写真を図10に示す。これらの結果より、得られ
た水酸化ニッケル粉末中に二次粒子も含まれていること
がわかる。
When the spraying of the sodium hydroxide solution was completed and the water content of the powder became 1% by weight or less, the powder was taken out, and excess sodium hydroxide was washed off with water to remove it. After dehydration, the product was dried at 100 ° C., and then sieved with a 100-mesh sieve. As a result, particles of 20% by weight of the original product remained on the sieve. In the same manner as in Example 1, 4 g of the final product that had all passed through the sieve was weighed 15 mm.
As a result of measuring the resistance value of the molded body, it was 1 Ω, which was a very conductive material. The particle size distribution of the nickel hydroxide powder before sieving was measured. FIG. 4 shows the results. FIG. 10 shows a micrograph of the powder. These results indicate that the obtained nickel hydroxide powder also contains secondary particles.

【0038】比較例2 ベースとなる水酸化ニッケル表面に水酸化コバルトを被
覆する工程までは実施例1と同様にした。
Comparative Example 2 The procedure was the same as in Example 1 up to the step of coating the surface of the nickel hydroxide serving as the base with cobalt hydroxide.

【0039】これを、実施例1と同様にして、水酸化コ
バルトが被覆された脱水品を流動層式乾燥機に投入し
た。上記乾燥機の下方より100℃の加熱空気を送り込
み、活物質の乾燥を行った。乾燥が進むにつれて粉末が
舞い上がり、乾燥機内部で流動層を形成した。この流動
層の中心部に向けて10重量%水酸化ナトリウム溶液を
200g(コバルト被覆水酸化ニッケルに対して2重量
%)噴霧した。この時の粉末の保有水分量を赤外線水分
計を見ながら7重量%に維持した。
In the same manner as in Example 1, the dehydrated product coated with cobalt hydroxide was put into a fluidized-bed dryer. Heated air at 100 ° C. was sent from below the dryer to dry the active material. As the drying progressed, the powder flew up, forming a fluidized bed inside the dryer. 200 g of a 10% by weight sodium hydroxide solution (2% by weight based on cobalt-coated nickel hydroxide) was sprayed toward the center of the fluidized bed. At this time, the water content of the powder was maintained at 7% by weight while observing the infrared moisture meter.

【0040】水酸化ナトリウム溶液の噴霧が終了し、粉
末の保有水分量が1重量%以下となった時点で取り出
し、余剰の水酸化ナトリウムを水洗して取り除いた。脱
水後、100℃で乾燥し、次いで100メッシュのフル
イで篩い分けしたところ全てフルイを通過した。実施例
1と同様にして、最終製品4gを直径15mmの成型機
でプレスを行い、その成型体の抵抗値を測定した結果、
200kΩを超えており、非常に導電性の低い材料であ
った。
When the spraying of the sodium hydroxide solution was completed and the water content of the powder became 1% by weight or less, the powder was taken out, and excess sodium hydroxide was removed by washing with water. After dehydration, it was dried at 100 ° C., and then sieved with a 100-mesh sieve, all passed through the sieve. In the same manner as in Example 1, 4 g of the final product was pressed with a molding machine having a diameter of 15 mm, and the resistance value of the molded product was measured.
It exceeded 200 kΩ and was a material with extremely low conductivity.

【0041】また、製品の色は、実施例のものに比べて
茶色を呈していた。このことから、表面の水酸化コバル
トが溶解せずに酸化され、導電性の低い物質が生成して
いることがわかる。
Further, the color of the product was brown compared to that of the example. This indicates that the cobalt hydroxide on the surface is oxidized without being dissolved, and a substance having low conductivity is generated.

【0042】比較例3 ベースとなる水酸化ニッケル表面に水酸化コバルトを被
覆する工程までは実施例1と同様にした。
Comparative Example 3 The procedure of Example 1 was repeated up to the step of coating the surface of the nickel hydroxide serving as a base with cobalt hydroxide.

【0043】これを、実施例1と同様にして、水酸化コ
バルトが被覆された脱水品を流動層式乾燥機に投入し
た。上記乾燥機の下方より100℃の加熱空気を送り込
み、活物質の乾燥を行った。乾燥が進むにつれて粉末が
舞い上がり、乾燥機内部で流動層を形成した。この流動
層の中心部に向けて25重量%水酸化ナトリウム溶液を
280g(コバルト被覆水酸化ニッケルに対して7重量
%)噴霧した。この時の粉末の保有水分量を赤外線水分
計を見ながら12重量%に維持した。
In the same manner as in Example 1, the dehydrated product coated with cobalt hydroxide was put into a fluidized-bed dryer. Heated air at 100 ° C. was sent from below the dryer to dry the active material. As the drying progressed, the powder flew up, forming a fluidized bed inside the dryer. 280 g of a 25% by weight sodium hydroxide solution (7% by weight based on cobalt-coated nickel hydroxide) was sprayed toward the center of the fluidized bed. At this time, the water content of the powder was maintained at 12% by weight while observing the infrared moisture meter.

【0044】水酸化ナトリウム溶液の噴霧が終了し、粉
末の保有水分量が1重量%以下となった時点で取り出
し、余剰の水酸化ナトリウムを水洗して取り除いた。脱
水後、100℃で乾燥し、次いで100メッシュのフル
イで篩い分けしたところ、そのほとんどがフルイ上に残
った。フルイ上に残ったものの顕微鏡写真を図11に示
す。参考のため、実施例1で得られた粉末を同じ倍率で
観察した顕微鏡写真を図12に示す。図11及び図12
より、比較例3の方は、水酸化ニッケル粉末が造粒さ
れ、二次粒子を形成していることがわかる。
When the spraying of the sodium hydroxide solution was completed and the water content of the powder became 1% by weight or less, the powder was taken out, and excess sodium hydroxide was removed by washing with water. After dehydration, it was dried at 100 ° C., and then sieved with a 100-mesh sieve, most of which remained on the sieve. A micrograph of what remained on the screen is shown in FIG. For reference, a micrograph of the powder obtained in Example 1 observed at the same magnification is shown in FIG. 11 and 12
Thus, it can be seen that in Comparative Example 3, the nickel hydroxide powder was granulated to form secondary particles.

【0045】比較例4 ベースとなる水酸化ニッケル表面に水酸化コバルトを被
覆する工程までは実施例1と同様にした。
Comparative Example 4 The procedure was the same as in Example 1 up to the step of coating the surface of nickel hydroxide serving as a base with cobalt hydroxide.

【0046】これを、実施例1と同様にして、水酸化コ
バルトが被覆された脱水品を流動層式乾燥機に投入し
た。上記乾燥機の下方より100℃の加熱空気を送り込
み、活物質の乾燥を行った。乾燥が進むにつれて粉末が
舞い上がり、乾燥機内部で流動層を形成した。この流動
層の中心部に向けて35重量%水酸化ナトリウム溶液を
200g(コバルト被覆水酸化ニッケルに対して7重量
%)噴霧した。この時の粉末の保有水分量を赤外線水分
計を見ながら2重量%に維持した。
In the same manner as in Example 1, a dehydrated product coated with cobalt hydroxide was charged into a fluidized-bed dryer. Heated air at 100 ° C. was sent from below the dryer to dry the active material. As the drying progressed, the powder flew up, forming a fluidized bed inside the dryer. 200 g of a 35% by weight sodium hydroxide solution (7% by weight based on cobalt-coated nickel hydroxide) was sprayed toward the center of the fluidized bed. At this time, the water content of the powder was maintained at 2% by weight while observing the infrared moisture meter.

【0047】水酸化ナトリウム溶液の噴霧が終了し、粉
末の保有水分量が1重量%以下となった時点で取り出
し、余剰の水酸化ナトリウムを水洗して取り除いた。脱
水後、100℃で乾燥し、次いで100メッシュのフル
イで篩い分けしたところ、すべてフルイを通過した。フ
ルイを通過したものを顕微鏡で観察した。その結果を図
13に示す。図13より、アルカリ酸化前の粒子表面の
状態を残していることから、水酸化コバルトが完全に溶
解せず、一部の水酸化コバルトが粒子上に残っているこ
とがわかる。
When the spraying of the sodium hydroxide solution was completed and the water content of the powder became 1% by weight or less, the powder was taken out, and excess sodium hydroxide was removed by washing with water. After dehydration, it was dried at 100 ° C. and then sieved with a 100-mesh sieve, all of which passed through the sieve. What passed through the sieve was observed under a microscope. The result is shown in FIG. FIG. 13 shows that the state of the particle surface before the alkali oxidation is left, so that the cobalt hydroxide is not completely dissolved, and a part of the cobalt hydroxide remains on the particle.

【図面の簡単な説明】[Brief description of the drawings]

【図1】流動層式乾燥機の一例を表す概略図である。FIG. 1 is a schematic view illustrating an example of a fluidized-bed dryer.

【図2】実施例1で用いた原料の水酸化ニッケル粉末の
粒度分布を示す図である。
FIG. 2 is a view showing a particle size distribution of a raw material nickel hydroxide powder used in Example 1.

【図3】実施例1で得られた粉末の粒度分布を示す図で
ある。
FIG. 3 is a view showing the particle size distribution of the powder obtained in Example 1.

【図4】比較例1で得られた粉末の粒度分布を示す図で
ある。
FIG. 4 is a view showing the particle size distribution of the powder obtained in Comparative Example 1.

【図5】実施例1で用いた原料の水酸化ニッケル粉末の
粒子構造を示す写真である。
FIG. 5 is a photograph showing a particle structure of a raw material nickel hydroxide powder used in Example 1.

【図6】実施例1で用いた原料の水酸化ニッケル粉末の
粒子構造を示す写真である。
FIG. 6 is a photograph showing the particle structure of a raw material nickel hydroxide powder used in Example 1.

【図7】実施例1におけるコバルト被覆水酸化ニッケル
粉末の粒子構造を示す写真である。
FIG. 7 is a photograph showing a particle structure of cobalt-coated nickel hydroxide powder in Example 1.

【図8】実施例1で得られた粉末の粒子構造を示す写真
である。
FIG. 8 is a photograph showing the particle structure of the powder obtained in Example 1.

【図9】実施例1で得られた粉末の粒子構造を示す写真
である。
FIG. 9 is a photograph showing the particle structure of the powder obtained in Example 1.

【図10】比較例1で得られた粉末の粒子構造を示す写
真である。
FIG. 10 is a photograph showing the particle structure of the powder obtained in Comparative Example 1.

【図11】比較例3で得られた粉末の粒子構造を示す写
真である。
FIG. 11 is a photograph showing the particle structure of the powder obtained in Comparative Example 3.

【図12】実施例1で得られた粉末の粒子構造を示す写
真である。
FIG. 12 is a photograph showing the particle structure of the powder obtained in Example 1.

【図13】比較例4で得られた粉末の粒子構造を示す写
真である。
FIG. 13 is a photograph showing the particle structure of the powder obtained in Comparative Example 4.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】粒子表面に水酸化コバルトが被覆された水
酸化ニッケル粉末に、水酸化アルカリ溶液を添加しなが
ら加熱空気を送り込むことにより上記水酸化コバルトを
酸化することを特徴とするニッケル電極用活物質の製造
方法。
1. A nickel electrode for a nickel electrode, characterized in that said cobalt hydroxide is oxidized by feeding heated air to a nickel hydroxide powder having a surface coated with cobalt hydroxide while adding an alkali hydroxide solution. Active material manufacturing method.
【請求項2】水酸化アルカリ溶液の添加量を、上記水酸
化ニッケル粉末に対して2〜20重量%とする請求項1
記載の製造方法。
2. The addition amount of the alkali hydroxide solution is 2 to 20% by weight based on the nickel hydroxide powder.
The manufacturing method as described.
【請求項3】少なくとも加熱空気が送り込まれている間
の上記水酸化ニッケル粉末における保有水分量を3〜1
0重量%とする請求項1記載の製造方法。
3. The water content of the nickel hydroxide powder at least during the supply of heated air is 3 to 1
2. The method according to claim 1, wherein the amount is 0% by weight.
【請求項4】加熱空気の温度を70〜150℃とする請
求項1乃至3のいずれかに記載の製造方法。
4. The method according to claim 1, wherein the temperature of the heated air is 70 to 150 ° C.
【請求項5】加熱空気の送量を10〜50m3/m2・m
inとする請求項1乃至3のいずれかに記載の製造方
法。
5. A heating air supply amount of 10 to 50 m 3 / m 2 · m.
The production method according to claim 1, wherein “in” is used.
JP8353510A 1996-12-16 1996-12-16 Manufacture of active material for nickel electrode Pending JPH10172557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8353510A JPH10172557A (en) 1996-12-16 1996-12-16 Manufacture of active material for nickel electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8353510A JPH10172557A (en) 1996-12-16 1996-12-16 Manufacture of active material for nickel electrode

Publications (1)

Publication Number Publication Date
JPH10172557A true JPH10172557A (en) 1998-06-26

Family

ID=18431336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8353510A Pending JPH10172557A (en) 1996-12-16 1996-12-16 Manufacture of active material for nickel electrode

Country Status (1)

Country Link
JP (1) JPH10172557A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005048383A1 (en) * 2002-10-17 2005-05-26 The Gillette Company Method of making an alkaline battery
JP2005276609A (en) * 2004-03-24 2005-10-06 Tdk Corp Composite particle for electrode, electrode, electrochemical element, and manufacturing methods for them
US7252906B2 (en) 2001-02-12 2007-08-07 Lg Chem, Ltd. Positive active material for a lithium secondary battery with higher performance and preparation method of the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7252906B2 (en) 2001-02-12 2007-08-07 Lg Chem, Ltd. Positive active material for a lithium secondary battery with higher performance and preparation method of the same
WO2005048383A1 (en) * 2002-10-17 2005-05-26 The Gillette Company Method of making an alkaline battery
JP2005276609A (en) * 2004-03-24 2005-10-06 Tdk Corp Composite particle for electrode, electrode, electrochemical element, and manufacturing methods for them
JP4552475B2 (en) * 2004-03-24 2010-09-29 Tdk株式会社 Composite particle for electrode, electrode and electrochemical element, and method for producing composite particle for electrode, method for producing electrode, and method for producing electrochemical element

Similar Documents

Publication Publication Date Title
DE69721136T2 (en) Unsintered nickel electrode for alkaline storage battery, alkaline storage battery containing the same, and manufacturing method for such an electrode.
EP2681787B1 (en) Lead-acid batteries and pastes therefor
CN101501790A (en) Nanostructured metal oxides comprising internal voids and methods of use thereof
JPH0973900A (en) Manufacture of nickel electrode active material for alkaline storage battery
CN109768216A (en) A kind of flexible electrode material and its preparation method and application
KR100287778B1 (en) Cathode for hermetic alkaline battery having carbon black-containing gas consumption layer
JPH10172557A (en) Manufacture of active material for nickel electrode
JP2005310580A (en) Non-sintered positive electrode for alkaline storage battery, and alkaline storage battery
JPH05325978A (en) Nickel sintered substrate and manufacture thereof for alkaline storage battery
CN113555555B (en) Negative electrode material, preparation method thereof and lithium ion battery
JPS5916269A (en) Manufacture of positive plate for alkaline battery
JPH11307092A (en) Nickel hydroxide powder for alkaline storage battery positive electrode active material and its manufacture
CN111668469A (en) Positive electrode composite material, preparation method thereof and lithium-sulfur battery
JP2000268820A (en) Manufacture of positive electrode active material for alkaline storage battery
JPS64787B2 (en)
JP2628013B2 (en) Conductive material for hydrogen storage alloy electrode and method for producing the same
JPS6359228B2 (en)
JP2000149940A (en) Process for nickel hydroxide powder
JPS5956361A (en) Manufacture of substrate for alkaline storage battery
JPS5866267A (en) Manufacture of substrate for alkaline storage battery
JPS6266570A (en) Cathode for alkaline storage battery
JP3877563B2 (en) Method for producing positive electrode active material, method for producing positive electrode plate, and method for producing alkaline secondary battery using the same
JPH0714576A (en) Manufacture of unsintered electrode
JPH07120530B2 (en) Method for manufacturing sintered nickel substrate for alkaline battery
JPH11307091A (en) Non-sintered nickel electrode for alkaline storage battery and alkaline storage battery using it