JPH10172552A - Hydrogen storage alloy powder and its manufacture - Google Patents

Hydrogen storage alloy powder and its manufacture

Info

Publication number
JPH10172552A
JPH10172552A JP8327173A JP32717396A JPH10172552A JP H10172552 A JPH10172552 A JP H10172552A JP 8327173 A JP8327173 A JP 8327173A JP 32717396 A JP32717396 A JP 32717396A JP H10172552 A JPH10172552 A JP H10172552A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
alloy powder
oxide layer
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8327173A
Other languages
Japanese (ja)
Other versions
JP3485738B2 (en
Inventor
Hiroshi Nakamura
宏 中村
Tomokazu Yoshida
智一 吉田
Shuichi Suzuki
修一 鈴木
Shin Fujitani
伸 藤谷
Ikuro Yonezu
育郎 米津
Koji Nishio
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP32717396A priority Critical patent/JP3485738B2/en
Publication of JPH10172552A publication Critical patent/JPH10172552A/en
Application granted granted Critical
Publication of JP3485738B2 publication Critical patent/JP3485738B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hydrogen storage alloy powder excellent in electrochemical activity and in particular, having a high initial activity and to establish a method for manufacturing such alloy powder. SOLUTION: In hydrogen storage alloy powder, an oxide layer 2 prepared to an oxygen concentration effective to enhancement of the activity of hydrogen storage alloy is formed at the facial part of each hydrogen storage alloy particle 1. The mean oxygen concentration of the oxide layer 2 is 0.1-2.0wt.% of the total alloy particles. In manufacturing this hydrogen storage alloy powder, the fabricated alloy powder is subjected to a heating process at a temp. over 600 deg.C and below its melting point in an atmosphere with the oxygen partial pressure being over 0.01 Pa, and thereby the oxide layer 2 is formed at the facial part of each hydrogen storage alloy particle 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えばニッケル−
水素電池の電極(負極)の材料として用いる水素吸蔵合金
粉末、及び該粉末を用いて作製される水素吸蔵合金電極
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention
The present invention relates to a hydrogen storage alloy powder used as a material of an electrode (negative electrode) of a hydrogen battery, and a hydrogen storage alloy electrode manufactured using the powder.

【0002】[0002]

【従来の技術】一般に、ニッケル−水素電池の負極とし
て用いられる水素吸蔵合金電極は、所定成分の水素吸蔵
合金塊を粉砕した後、これによって得られた粉末に結着
剤を加え、電極形状に成形することによって作製され
る。ここで、水素吸蔵合金の均質化を図るべく、合金粉
末に対し、真空中或いは不活性ガス中にて800℃〜1
000℃の熱処理が施される。又、初期活性化を図るた
め、電池封口後、50℃以上の高温で充放電を繰り返す
化成処理が施される。
2. Description of the Related Art In general, a hydrogen-absorbing alloy electrode used as a negative electrode of a nickel-hydrogen battery is prepared by pulverizing a hydrogen-absorbing alloy lump having a predetermined component, adding a binder to the powder obtained thereby, and forming the electrode into a shape. It is produced by molding. Here, in order to homogenize the hydrogen storage alloy, the alloy powder is heated to 800 ° C. to 1 ° C. in a vacuum or in an inert gas.
A heat treatment at 000 ° C. is performed. Further, in order to achieve initial activation, a chemical conversion treatment in which charging and discharging are repeated at a high temperature of 50 ° C. or more is performed after the battery is sealed.

【0003】[0003]

【発明が解決しようとする課題】ところで、ニッケル−
水素電池においては、電池容量の増大を図るべく、AB
5型或いはAB2型の希土類系の水素吸蔵合金、例えばM
m−Ni系や、Laを含むZr−Ni系の水素吸蔵合金から
負極を作製することが行なわれている。
SUMMARY OF THE INVENTION By the way, nickel
In the case of hydrogen batteries, AB
Type 5 or AB 2 type rare earth hydrogen storage alloys such as M
2. Description of the Related Art A negative electrode is manufactured from an m-Ni-based or La-containing Zr-Ni-based hydrogen storage alloy.

【0004】しかしながら、希土類系の水素吸蔵合金は
一般に活性化が困難であるため、ニッケル−水素電池の
製造において、化成処理に多くの回数の充放電が必要と
なる問題があった。そこで、本発明の目的は、電気化学
的活性に優れ、特に初期活性化度の高い水素吸蔵合金粉
末及び水素吸蔵合金電極、並びにそれらの製造方法を提
供することである。
However, it is generally difficult to activate a rare-earth hydrogen storage alloy, and there has been a problem that a large number of times of charge and discharge are required for the chemical conversion treatment in the production of a nickel-hydrogen battery. Then, an object of the present invention is to provide a hydrogen storage alloy powder and a hydrogen storage alloy electrode which are excellent in electrochemical activity and particularly high in initial activation degree, and a method for producing them.

【0005】[0005]

【課題を解決する為の手段】本発明に係る水素吸蔵合金
粉末は、水素吸蔵合金粒子(1)の表層部に、水素吸蔵合
金の活性向上に有効な酸素濃度に規定された酸化物層
(2)を形成したことを特徴とする。具体的には、酸化物
層(2)の平均酸素濃度が水素吸蔵合金粒子全体の0.1
重量%以上、2.0重量%以下であるとき、水素吸蔵合
金の活性が向上する。又、本発明に係る水素吸蔵合金電
極は、上記酸化物層(2)が形成された水素吸蔵合金粒子
(1)からなる水素吸蔵合金粉末を、導電性基体に充填し
て作製されるものである。
The hydrogen-absorbing alloy powder according to the present invention comprises an oxide layer having a specified oxygen concentration effective for improving the activity of the hydrogen-absorbing alloy, on the surface layer of the hydrogen-absorbing alloy particles (1).
(2) is formed. Specifically, the average oxygen concentration of the oxide layer (2) is 0.1% of the whole hydrogen storage alloy particles.
When the content is at least 2.0% by weight, the activity of the hydrogen storage alloy is improved. Further, the hydrogen storage alloy electrode according to the present invention is a hydrogen storage alloy particle on which the oxide layer (2) is formed.
It is produced by filling the conductive substrate with the hydrogen storage alloy powder of (1).

【0006】一般に、水素吸蔵合金電極を負極に用いた
アルカリ二次電池においては、水素吸蔵合金の表面がア
ルカリ電解液と接触することにより、合金表面では気相
反応と電気化学的反応が同時に進行する。即ち、水素圧
力及び温度の関係では、水素が水素吸蔵合金に吸蔵さ
れ、或いは水素吸蔵合金から水素が放出される(気相反
応)。一方、電圧及び電流の関係では、電圧の印加(充
電)によって、水の電気分解で生じた水素が水素吸蔵合
金に吸蔵され、電流の取り出し(放電)によって、水素が
酸化されて水となる(電気化学的反応)。
Generally, in an alkaline secondary battery using a hydrogen storage alloy electrode as a negative electrode, a gas phase reaction and an electrochemical reaction proceed simultaneously on the alloy surface when the surface of the hydrogen storage alloy comes into contact with an alkaline electrolyte. I do. That is, in the relationship between the hydrogen pressure and the temperature, hydrogen is stored in the hydrogen storage alloy, or hydrogen is released from the hydrogen storage alloy (gas phase reaction). On the other hand, in the relationship between voltage and current, by application of voltage (charging), hydrogen generated by electrolysis of water is occluded in the hydrogen storage alloy, and by taking out current (discharging), hydrogen is oxidized to water ( Electrochemical reaction).

【0007】上述の如く、アルカリ二次電池において
は、水素吸蔵合金表面における気相反応と電気化学的反
応とが相俟って水素の吸放出、従って充放電が行なわれ
るため、合金表面の性質が重要となる。上記本発明の水
素吸蔵合金電極を負極に用いたアルカリ二次電池におい
ては、水素吸蔵合金粒子(1)の表層部に形成された酸化
物層(2)がアルカリ電解液と接触し、電解液は、酸化物
層(2)を透過して、水素吸蔵合金粒子(1)の表面に接触
することになる。ここで、酸化物層(2)は多孔質であっ
て、水素の吸放出は酸化物層(2)を介して自由に行なわ
れる。
As described above, in an alkaline secondary battery, the gas phase reaction and the electrochemical reaction on the surface of the hydrogen storage alloy cause the absorption and release of hydrogen, and thus the charging and discharging, and thus the properties of the alloy surface Is important. In the alkaline secondary battery using the hydrogen storage alloy electrode of the present invention as a negative electrode, the oxide layer (2) formed on the surface layer of the hydrogen storage alloy particles (1) comes into contact with the alkaline electrolyte, Is transmitted through the oxide layer (2) and comes into contact with the surface of the hydrogen storage alloy particles (1). Here, the oxide layer (2) is porous and hydrogen can be freely absorbed and released through the oxide layer (2).

【0008】一般に水素吸蔵合金を酸化させて得られる
酸化物層(2)は、水素との親和性が高いばかりでなく、
酸化物層(2)と電解液の界面における表面張力が小さい
ため、水素吸蔵合金粒子(1)の表面に対する電解液の濡
れ性を改善する効果を発揮する。この結果、水素吸蔵合
金粒子(1)表面の電解液との接触面積が実質的に拡大す
ることなる。又、酸化物層(2)は、水素のみならず、酸
素との親和性も高く、これらのガスに対して高い触媒効
果を発揮する。
In general, an oxide layer (2) obtained by oxidizing a hydrogen storage alloy not only has a high affinity for hydrogen, but also has a high affinity for hydrogen.
Since the surface tension at the interface between the oxide layer (2) and the electrolyte is small, the effect of improving the wettability of the electrolyte on the surface of the hydrogen storage alloy particles (1) is exhibited. As a result, the contact area of the surface of the hydrogen storage alloy particles (1) with the electrolytic solution is substantially increased. Further, the oxide layer (2) has a high affinity not only for hydrogen but also for oxygen, and exhibits a high catalytic effect on these gases.

【0009】上記の接触面性の拡大及び触媒効果によっ
て、前述のアルカリ二次電池における気相反応及び電気
化学的反応が促進され、水素吸蔵合金の活性が向上する
ことになる。
[0009] By the above-mentioned expansion of the contact surface property and the catalytic effect, the gas phase reaction and the electrochemical reaction in the alkaline secondary battery are promoted, and the activity of the hydrogen storage alloy is improved.

【0010】本発明に係る水素吸蔵合金粉末の製造にお
いては、水素吸蔵合金粉末を作製した後、該水素吸蔵合
金粉末に、酸素分圧が0.01Pa以上の雰囲気中で、
600℃以上且つ水素吸蔵合金粉末の融点を越えない温
度による加熱処理を施す。又、本発明に係る水素吸蔵合
金電極の製造においては、上記の方法によって得られた
水素吸蔵合金粒子(1)を含む合金粉末を導電性基体に充
填し、電極形成に成形する。
In the production of the hydrogen storage alloy powder according to the present invention, after the hydrogen storage alloy powder is produced, the hydrogen storage alloy powder is applied to the hydrogen storage alloy powder in an atmosphere having an oxygen partial pressure of 0.01 Pa or more.
Heat treatment is performed at a temperature of 600 ° C. or higher and not exceeding the melting point of the hydrogen storage alloy powder. In the production of the hydrogen storage alloy electrode according to the present invention, an alloy powder containing the hydrogen storage alloy particles (1) obtained by the above method is filled in a conductive substrate and formed into an electrode.

【0011】仮に、上記本発明に水素吸蔵合金粉末の製
造において、酸素分圧を0.01Paよりも低く設定す
ると、酸素原子は水素吸蔵合金粒子(1)の表層部に十分
に浸入せず、目的の酸素濃度を有する酸化物層(2)は得
られない。又、仮に雰囲気温度を600℃よりも低く設
定したときも、酸素原子は水素吸蔵合金粒子(1)の表層
部に十分に浸入せず、目的の酸素濃度を有する酸化物層
(2)は得られない。そこで、酸素分圧を0.01Pa以
上、雰囲気温度を600℃以上且つ水素吸蔵合金粉末の
融点を越えない温度に設定することによって、水素吸蔵
合金粒子(1)の表層部には、水素吸蔵合金の活性向上に
有効な酸素濃度、即ち、平均酸素濃度が水素吸蔵合金粒
子全体の0.1重量%以上、2.0重量%以下に規定され
た酸化物層(2)が形成されることになる。
If the oxygen partial pressure is set lower than 0.01 Pa in the production of the hydrogen storage alloy powder according to the present invention, oxygen atoms do not sufficiently penetrate into the surface layer of the hydrogen storage alloy particles (1). An oxide layer (2) having the desired oxygen concentration cannot be obtained. Also, even if the ambient temperature is set lower than 600 ° C., the oxygen atoms do not sufficiently penetrate into the surface layer of the hydrogen storage alloy particles (1), and the oxide layer having the target oxygen concentration
(2) cannot be obtained. Therefore, by setting the oxygen partial pressure to 0.01 Pa or more, the atmosphere temperature to 600 ° C. or more, and the temperature not exceeding the melting point of the hydrogen storage alloy powder, the surface layer of the hydrogen storage alloy particles (1) has the hydrogen storage alloy particles. An oxide layer (2) whose effective oxygen concentration for improving the activity of the hydrogen storage alloy particles is defined to be 0.1% by weight or more and 2.0% by weight or less of the whole hydrogen storage alloy particles. Become.

【0012】[0012]

【発明の効果】本発明に係る水素吸蔵合金粉末及びその
製造方法によれば、電気化学的活性に優れ、特に初期活
性化度の高い水素吸蔵合金粉末及び水素吸蔵合金電極が
得られる。
According to the hydrogen storage alloy powder and the method for producing the same according to the present invention, it is possible to obtain a hydrogen storage alloy powder and a hydrogen storage alloy electrode having excellent electrochemical activity and particularly high initial activation degree.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施の形態につ
き、図面に沿って具体的に説明する。本発明に係る水素
吸蔵合金粉末は、図1に示す如く水素吸蔵合金粒子(1)
の表層部に酸化物層(2)を形成したものである。ここで
水素吸蔵合金粒子(1)は、AB5型の希土類系水素吸蔵
合金であるMmNi3.2CoMn0.5Al0.3、AB5型の
希土類系水素吸蔵合金であるZrNi1.20.2Mn0.6
やZrLa0.05Ni1.20.2Mn0.6等からなり、その
表層部には、厚さ100Å〜1000Åの酸化物層(2)
が形成されている。尚、水素吸蔵合金粒子の表面が空気
或いは電解液と接触して自然に形成される酸化膜は、厚
さが20Å〜30Å程度であって、上記酸化物層(2)と
は厚さの点で異なる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be specifically described below with reference to the drawings. The hydrogen storage alloy powder according to the present invention comprises hydrogen storage alloy particles (1) as shown in FIG.
The oxide layer (2) is formed on the surface layer portion of (1). Wherein the hydrogen storage alloy particles (1), ZrNi 1.2 V 0.2 Mn 0.6 MmNi 3.2 CoMn 0.5 Al 0.3 is AB 5 type rare earth hydrogen storage alloy is AB 5 type rare earth hydrogen storage alloy
Or ZrLa 0.05 Ni 1.2 V 0.2 Mn 0.6 or the like, and the surface layer has an oxide layer (2) having a thickness of 100 to 1000 °.
Are formed. The oxide film formed naturally when the surface of the hydrogen storage alloy particles comes into contact with air or an electrolytic solution has a thickness of about 20 ° to 30 °, and is different from the oxide layer (2) in thickness. Different.

【0014】酸化物層(2)は図2に示す如く、その厚さ
Tの範囲内において酸素の通過が可能であると共に、水
素吸蔵合金粒子(1)の中心部における酸素濃度を1とし
た場合に、水素吸蔵合金粒子(1)との界面における相対
酸素濃度は約2となり、更に酸化物層(2)の厚さ範囲内
で、表面に向かって相対酸素濃度が増大している。そし
て、酸化物層(2)の厚さ範囲内における平均的な酸素濃
度は、水素吸蔵合金粒子全体の0.1重量%〜2.0重
量%の範囲に設定されている。
As shown in FIG. 2, the oxide layer (2) is capable of passing oxygen within the range of its thickness T and has an oxygen concentration of 1 at the center of the hydrogen storage alloy particles (1). In this case, the relative oxygen concentration at the interface with the hydrogen storage alloy particles (1) is about 2, and the relative oxygen concentration increases toward the surface within the thickness range of the oxide layer (2). The average oxygen concentration in the thickness range of the oxide layer (2) is set in the range of 0.1% by weight to 2.0% by weight of the whole hydrogen storage alloy particles.

【0015】図3は、上記の水素吸蔵合金粉末を負極材
料として用いたニッケル−水素二次電池の構造を表わし
ており、正極(11)、負極(12)、セパレータ(13)、正極リ
ード(14)、負極リード(15)、正極外部端子(16)、負極缶
(17)、封口蓋(18)等から密閉構造のニッケル−水素二次
電池が構成されている。正極(11)及び負極(12)は、セパ
レータ(13)を介して渦巻き状に巻き取られた状態で、負
極缶(17)内に収容されており、正極(11)は正極リード(1
4)を介して封口蓋(18)に、又負極(12)は負極リード(15)
を介して負極缶(17)に接続されている。負極缶(17)と封
口蓋(18)との接合部には、絶縁性のパッキング(20)が装
着されて電池の密閉化が為されている。正極外部端子(1
6)と封口蓋(18)との間にはコイルスプリング(19)が設け
られる。該コイルスプリング(19)は、電池内圧が異常に
上昇した時に圧縮されて、電池内部のガスを大気中に放
出するものである。
FIG. 3 shows the structure of a nickel-hydrogen secondary battery using the above-mentioned hydrogen storage alloy powder as a negative electrode material. The positive electrode (11), the negative electrode (12), the separator (13), and the positive electrode lead ( 14), negative electrode lead (15), positive external terminal (16), negative electrode can
(17) A nickel-hydrogen secondary battery having a sealed structure is constituted by the sealing lid (18) and the like. The positive electrode (11) and the negative electrode (12) are housed in a negative electrode can (17) in a state of being spirally wound via a separator (13), and the positive electrode (11) is a positive electrode lead (1).
4) to the sealing lid (18), and the negative electrode (12) to the negative electrode lead (15).
Is connected to the negative electrode can (17). An insulating packing (20) is attached to the joint between the negative electrode can (17) and the sealing lid (18) to hermetically seal the battery. Positive external terminal (1
A coil spring (19) is provided between 6) and the sealing lid (18). The coil spring (19) is compressed when the internal pressure of the battery rises abnormally, and releases the gas inside the battery to the atmosphere.

【0016】上記ニッケル−水素二次電池の製造におい
ては、図4に示す如く、先ず、前述の組成を有する水素
吸蔵合金のインゴットを作製した後、これを粒径5μm
〜500μmに粉砕して、水素吸蔵合金粉末を作製する
(工程P1)。次に、水素吸蔵合金粉末を、酸素分圧が
0.01Pa〜12Paの雰囲気中、600℃〜100
0℃の温度で4時間〜8時間の加熱処理を施す(工程P
2)。これによって、水素吸蔵合金粒子(1)の表層部に
は、平均素濃度が水素吸蔵合金粒子全体の0.1重量%
〜2.0重量%であって、厚さが100Å〜1000Å
の酸化物層(2)が形成されることになる。
In the manufacture of the nickel-hydrogen secondary battery, as shown in FIG. 4, first, an ingot of a hydrogen storage alloy having the above-mentioned composition is prepared, and then this is ingoted to a particle size of 5 μm.
Pulverized to ~ 500 μm to produce hydrogen storage alloy powder
(Step P1). Next, the hydrogen storage alloy powder was placed in an atmosphere having an oxygen partial pressure of 0.01 Pa to 12 Pa at 600 ° C. to 100 ° C.
A heat treatment is performed at a temperature of 0 ° C. for 4 to 8 hours (step P
2). As a result, the surface element of the hydrogen storage alloy particles (1) has an average elemental concentration of 0.1% by weight of the entire hydrogen storage alloy particles.
2.02.0% by weight and the thickness is 100Å-1000Å
The oxide layer (2) is formed.

【0017】その後、図3に示すニッケル−水素二次電
池を組み立てる(工程P3)。先ず、工程P2を経て得ら
れた水素吸蔵合金粉末と、PTFEなどの結着剤の水溶
液とを混合して、ペーストを調整し、該ペーストをニッ
ケル鍍金を施したパンチングメタルからなる基体の両面
に塗布し、室温で乾燥を施した後、所定寸法に切断し
て、水素吸蔵合金電極を作製する。そして、該水素吸蔵
合金電極を負極に用いて、図3に示す構造の正極支配型
ニッケル−水素電池(例えば電池容量1000mAh)を
作製する。尚、正極としては焼結式ニッケル極を、セパ
レータとしては耐アルカリ性の不織布を、又電解液とし
ては30重量%水酸化カリウム水溶液を用いることが出
来る。
Thereafter, the nickel-hydrogen secondary battery shown in FIG. 3 is assembled (step P3). First, a paste is prepared by mixing the hydrogen storage alloy powder obtained through the step P2 with an aqueous solution of a binder such as PTFE, and the paste is applied to both surfaces of a base made of punching metal plated with nickel. After being applied and dried at room temperature, it is cut into predetermined dimensions to produce a hydrogen storage alloy electrode. Then, using the hydrogen storage alloy electrode as a negative electrode, a positive electrode-dominated nickel-hydrogen battery (for example, a battery capacity of 1000 mAh) having a structure shown in FIG. 3 is manufactured. Incidentally, a sintered nickel electrode can be used as the positive electrode, an alkali-resistant nonwoven fabric can be used as the separator, and a 30% by weight aqueous solution of potassium hydroxide can be used as the electrolytic solution.

【0018】上記ニッケル−水素二次電池においては、
水素吸蔵合金粒子(1)の酸化物層(2)が電解液と接触し
て、電解液が酸化物層(2)を浸透し、水素吸蔵合金粒子
(1)の表面を濡らすことになる。ここで、酸化物層(2)
は、水素との親和性が高いばかりでなく、酸化物層(2)
と電解液の界面における表面張力が小さいため、水素吸
蔵合金粒子(1)の表面に対する電解液の濡れ性を改善す
る効果を発揮する。これによって、水素吸蔵合金粒子
(1)表面の電解液との接触面積が実質的に拡大すること
なる。又、酸化物層(2)は、水素のみならず、酸素との
親和性も高く、これらのガスに対して高い触媒効果を発
揮する。この結果、図2に示す如く電池内で起こる気相
反応及び電気化学的反応が促進されて、水素吸蔵合金の
初期活性化度が改善されるのである。
In the above nickel-hydrogen secondary battery,
The oxide layer (2) of the hydrogen storage alloy particles (1) comes into contact with the electrolyte, and the electrolyte penetrates the oxide layer (2), and the hydrogen storage alloy particles
The surface of (1) will be wetted. Here, the oxide layer (2)
Has not only a high affinity for hydrogen but also an oxide layer (2)
Since the surface tension at the interface between the electrolyte and the electrolyte is small, the effect of improving the wettability of the electrolyte to the surface of the hydrogen storage alloy particles (1) is exhibited. With this, the hydrogen storage alloy particles
(1) The contact area of the surface with the electrolytic solution is substantially increased. Further, the oxide layer (2) has a high affinity not only for hydrogen but also for oxygen, and exhibits a high catalytic effect on these gases. As a result, as shown in FIG. 2, the gas phase reaction and the electrochemical reaction occurring in the battery are promoted, and the initial activation degree of the hydrogen storage alloy is improved.

【0019】図5乃至図7は、上記本発明の効果を確認
するために行なった実験の結果を表わしている。実験に
は、図5乃至図7中に示す各組成の水素吸蔵合金粉末を
対象として、図5乃至図7中に示す種々の加熱条件の下
で熱処理を施し、これによって得られた水素吸蔵合金粉
末を用いて試験電極を作製し、該試験電極を負極とする
試験セルを組み立てた。そして、該試験セルを用いて充
放電を繰り返し、放電容量を測定した。各図中の合金酸
素濃度は、酸化物層に含まれる酸素の粒子全体に対する
重量比、即ち酸化物層の酸素濃度の平均値(重量%)を表
わしている。初期容量は、充放電の繰返しの中で得られ
た1サイクル目の放電容量であり、最大容量は、充放電
の繰り返しの中で得られた最大の放電容量である。又、
活性化度は、最大容量に対する1サイクル目の放電容量
の比率(%)、即ち初期活性化度を表わしている。
FIGS. 5 to 7 show the results of experiments performed to confirm the effects of the present invention. In the experiment, the hydrogen storage alloy powder having each composition shown in FIGS. 5 to 7 was subjected to heat treatment under various heating conditions shown in FIGS. 5 to 7, and the obtained hydrogen storage alloy was obtained. A test electrode was prepared using the powder, and a test cell using the test electrode as a negative electrode was assembled. Then, charge and discharge were repeated using the test cell, and the discharge capacity was measured. The alloy oxygen concentration in each figure represents the weight ratio of oxygen contained in the oxide layer to the whole particles, that is, the average value (% by weight) of the oxygen concentration in the oxide layer. The initial capacity is the discharge capacity of the first cycle obtained during the repetition of charge and discharge, and the maximum capacity is the maximum discharge capacity obtained during the repetition of charge and discharge. or,
The degree of activation indicates the ratio (%) of the discharge capacity in the first cycle to the maximum capacity, that is, the initial degree of activation.

【0020】図5は、3種類の水素吸蔵合金(組成:M
mNi3.2CoMn0.5Al0.3、ZrNi1.20.2Mn
0.6、及びZrLa0.05Ni1.20.2Mn0.6)につい
て、種々の酸素分圧での加熱処理によって得られた水素
吸蔵合金の特性を比較したものである。図中の加熱処理
無しのサンプルA−5、B−5及びC−5は、夫々水素
吸蔵合金粉末を表面が酸化されるのに充分な時間空気中
に放置したものであって、粒子表面には自然酸化による
酸化物層が形成されている。何れのサンプルも、粒径は
50μm、加熱温度は800℃、加熱時間は4時間であ
る。
FIG. 5 shows three types of hydrogen storage alloys (composition: M
mNi 3.2 CoMn 0.5 Al 0.3 , ZrNi 1.2 V 0.2 Mn
0.6 and ZrLa 0.05 Ni 1.2 V 0.2 Mn 0.6 ) comparing the properties of hydrogen storage alloys obtained by heat treatment at various oxygen partial pressures. Samples A-5, B-5, and C-5 without heat treatment in the figure were obtained by leaving the hydrogen storage alloy powder in air for a time sufficient for the surface to be oxidized. Has an oxide layer formed by natural oxidation. Each sample has a particle size of 50 μm, a heating temperature of 800 ° C., and a heating time of 4 hours.

【0021】何れの組成のサンプルにおいても、酸素分
圧に応じて合金酸素濃度が増大している。例えば、組成
MmNi3.2CoMn0.5Al0.3については、サンプル
A−1〜A−3とサンプルA−4との対比から、合金酸
素濃度0.1〜2.0%で大きな活性化度が得られてい
る。但し、合金酸素濃度が2.0%を越えると、活性化
度は減少傾向となった。又、合金酸素濃度が0.1%未
満では、酸素分圧0.005Paで熱処理を行なったサ
ンプルA−4の活性化度が0.06%であり、熱処理無
しのサンプルA−5の活性化度が0.05%であって、
両者に大きな差はなく、同程度の電極特性となってい
る。
In each sample, the alloy oxygen concentration increases in accordance with the oxygen partial pressure. For example, with respect to the composition MmNi 3.2 CoMn 0.5 Al 0.3 , a large degree of activation was obtained at an alloy oxygen concentration of 0.1 to 2.0% from the comparison between Samples A-1 to A-3 and Sample A-4. I have. However, when the alloy oxygen concentration exceeded 2.0%, the degree of activation tended to decrease. When the alloy oxygen concentration is less than 0.1%, the activation degree of sample A-4 heat-treated at an oxygen partial pressure of 0.005 Pa is 0.06%, and the activation of sample A-5 without heat treatment is performed. Degree is 0.05%,
There is no significant difference between the two, and the electrode characteristics are comparable.

【0022】組成ZrNi1.20.2Mn0.6の水素吸蔵
合金や、組成ZrLa0.05Ni1.20.2Mn0.6の水素
吸蔵合金についても、夫々サンプルB−1〜B−3とサ
ンプルB−4及びB−5との対比、及びサンプルC−1
〜C−3とサンプルC−4及びC−5との対比から、上
記組成MmNi3.2CoMn0.5Al0.3の水素吸蔵合金
と同様の傾向が顕れていることがわかる。
With respect to the hydrogen storage alloy having the composition ZrNi 1.2 V 0.2 Mn 0.6 and the hydrogen storage alloy having the composition ZrLa 0.05 Ni 1.2 V 0.2 Mn 0.6 , Samples B-1 to B-3, Samples B-4 and B-5 are respectively provided. And sample C-1
From the comparison between C-3 and Samples C-4 and C-5, it can be seen that the same tendency as that of the hydrogen storage alloy having the composition MmNi 3.2 CoMn 0.5 Al 0.3 is apparent.

【0023】合金酸素濃度が0.1%未満の場合、酸化
物層は、十分な表面積拡大効果及び触媒効果を発揮せ
ず、合金酸素濃度が2.0%を越える場合、酸化物層の
電気的絶縁性が高くなって、電極としての機能が損なわ
れることになる。従って、水素吸蔵合金の組成に拘わら
ず、酸化物層の合金酸素濃度は、0.1%〜2.0%の範
囲に設定することが、活性化向上の上で好ましいと言え
る。
When the alloy oxygen concentration is less than 0.1%, the oxide layer does not exhibit a sufficient surface area enlargement effect and catalytic effect, and when the alloy oxygen concentration exceeds 2.0%, the oxide layer As a result, the insulating properties are increased, and the function as an electrode is impaired. Therefore, regardless of the composition of the hydrogen storage alloy, it can be said that setting the alloy oxygen concentration of the oxide layer in the range of 0.1% to 2.0% is preferable from the viewpoint of improving the activation.

【0024】図6(a)は、MmNi3.2CoMn0.5Al
0.3合金について、熱処理時の酸素分圧を0.002Pa
から12Paまで変化させたときの特性を比較したもの
である。酸素分圧に応じて合金酸素濃度が0.09%か
ら2%まで増大しているが、初期活性化度は、合金酸素
濃度が0.1%〜2%の範囲で、従来の水素吸蔵合金粒
子の活性化度を上回る値が得られており、0.23%〜
0.98%の範囲で更に高い値が得られ、0.98%で最
大値が得られている。従って、MmNi3.2CoMn0.5
Al0.3合金については、酸化物層の合金酸素濃度を0.
1%〜2.0%の範囲に設定し、更には0.23%〜0.
98%の範囲に設定することが好ましいと言える。
FIG. 6A shows MmNi 3.2 CoMn 0.5 Al
For 0.3 alloy, the oxygen partial pressure during heat treatment is 0.002 Pa
Is a comparison of characteristics when the pressure is changed from to 12 Pa. Although the alloy oxygen concentration increases from 0.09% to 2% according to the oxygen partial pressure, the initial activation degree is within the range of 0.1% to 2% for the conventional hydrogen storage alloy. A value exceeding the degree of activation of the particles was obtained, and 0.23% to
Higher values are obtained in the range of 0.98%, and the maximum value is obtained at 0.98%. Therefore, MmNi 3.2 CoMn 0.5
For the Al0.3 alloy, the alloy oxygen concentration of the oxide layer was set to 0.
It is set in the range of 1% to 2.0%, and further, 0.23% to 0.2%.
It can be said that it is preferable to set the range to 98%.

【0025】図6(b)は、MmNi3.2CoMn0.5Al
0.3合金について、加熱時間を2時間、8時間、24時
間の3種類に変えたときの特性を比較したものである。
加熱時間に応じて合金酸素濃度が0.26%から2.14
%まで増大しているが、初期活性化度は、何れの場合
も、従来の水素吸蔵合金粒子の活性化度を上回る値が得
られており、特に8時間の場合に最大値が得られてい
る。従って、加熱時間は2時間〜24時間に設定すれば
よく、特に8時間に設定することが好ましいと言える。
FIG. 6 (b) shows MmNi 3.2 CoMn 0.5 Al
For the 0.3 alloy, the characteristics are compared when the heating time is changed to three types of 2 hours, 8 hours, and 24 hours.
Alloy oxygen concentration from 0.26% to 2.14 depending on heating time
%, The initial activation degree is higher than the activation degree of the conventional hydrogen storage alloy particles in any case, and the maximum value is obtained particularly in the case of 8 hours. I have. Therefore, the heating time may be set to 2 hours to 24 hours, and it is particularly preferable to set the heating time to 8 hours.

【0026】又、図7(a)は、MmNi3.2CoMn0.5
Al0.3合金について、水素吸蔵合金粒子の粒径を50
0μmから5μmに変化させると共に、加熱時の酸素分
圧を0.1Paと0.005Paに変えたときの特性を比
較したものである。水素吸蔵合金粒子の粒径に拘わら
ず、酸素分圧が0.1Paのときに、十分な大きさの活
性化度が得られている。この結果から明らかな様に、水
素吸蔵合金粒子の粒径に拘わらず、酸素分圧を適切な大
きさ(例えば0.1Pa)に設定することにより、従来の
水素吸蔵合金粒子よりも高い活性化度を得ることが出来
る。
FIG. 7A shows MmNi 3.2 CoMn 0.5
For Al 0.3 alloy, the particle size of the hydrogen storage alloy particles 50
This is a comparison of the characteristics when changing from 0 μm to 5 μm and changing the oxygen partial pressure during heating between 0.1 Pa and 0.005 Pa. Regardless of the particle size of the hydrogen storage alloy particles, a sufficient degree of activation is obtained when the oxygen partial pressure is 0.1 Pa. As is evident from the results, regardless of the particle size of the hydrogen storage alloy particles, by setting the oxygen partial pressure to an appropriate value (for example, 0.1 Pa), the activation is higher than that of the conventional hydrogen storage alloy particles. You can get a degree.

【0027】更に図7(b)は、MmNi3.2CoMn0.5
Al0.3合金について、加熱時間を400℃から100
0℃まで変化させたときの特性を比較したものである。
加熱温度が400℃の場合、合金酸素濃度は0.09%
と、0.1%を下回っており、活性化度の改善は僅かで
あるが、加熱温度が600℃〜1000℃の範囲では、
目的とする合金酸素濃度(0.1%〜2%)が得られてお
り、活性化度を大きく向上させることが可能である。
尚、加熱温度が1000℃を越えて、水素吸蔵合金の融
点(約1200℃)に近づくと、酸化物層を形成するため
の熱処理としての効果が低下することになる。
FIG. 7B shows MmNi 3.2 CoMn 0.5
For Al 0.3 alloy, the heating time is 400 ° C to 100 ° C.
This is a comparison of characteristics when the temperature is changed to 0 ° C.
When the heating temperature is 400 ° C, the alloy oxygen concentration is 0.09%
And less than 0.1%, the improvement of the degree of activation is slight, but when the heating temperature is in the range of 600 ° C to 1000 ° C,
The desired alloy oxygen concentration (0.1% to 2%) is obtained, and the degree of activation can be greatly improved.
When the heating temperature exceeds 1000 ° C. and approaches the melting point of the hydrogen storage alloy (about 1200 ° C.), the effect of the heat treatment for forming the oxide layer decreases.

【0028】以上の結果から、水素吸蔵合金粒子(1)の
酸化物層(2)の平均酸素濃度を、0.1%以上、2.0%
以下の範囲に設定することによって、活性向上が可能で
あることが裏付けられる。又、水素吸蔵合金粒子(1)の
表層部に酸化物層(2)を形成する際の酸素分圧を0.0
1Pa以上に設定し、且つ、加熱温度を600℃〜10
00℃の範囲に設定することによって、上記酸素濃度を
有する酸化物層(2)が形成され、これによって活性向上
が可能であることが裏づけれる。
From the above results, the average oxygen concentration of the oxide layer (2) of the hydrogen storage alloy particles (1) was adjusted to 0.1% or more and 2.0% or more.
The setting within the following range supports that the activity can be improved. The oxygen partial pressure at the time of forming the oxide layer (2) on the surface layer of the hydrogen storage alloy particles (1) was set at 0.0.
It is set to 1 Pa or more, and the heating temperature is 600 ° C. to 10 ° C.
By setting the temperature in the range of 00 ° C., an oxide layer (2) having the above-mentioned oxygen concentration is formed, which confirms that the activity can be improved.

【0029】上記実施の形態の説明は、本発明を説明す
るためのものであって、特許請求の範囲に記載の発明を
限定し、或は範囲を減縮する様に解すべきではない。
又、本発明の各部構成は上記実施の形態に限らず、特許
請求の範囲に記載の技術的範囲内で種々の変形が可能で
あることは勿論である。
The description of the above embodiment is for the purpose of describing the present invention, and should not be construed as limiting the invention described in the claims or reducing the scope thereof.
In addition, the configuration of each part of the present invention is not limited to the above-described embodiment, and it goes without saying that various modifications can be made within the technical scope described in the claims.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る水素吸蔵合金粉末において、水素
吸蔵合金粒子の表層部に酸化物層が形成されている様子
を表わす拡大断面図である。
FIG. 1 is an enlarged cross-sectional view showing a state in which an oxide layer is formed on a surface portion of a hydrogen storage alloy particle in a hydrogen storage alloy powder according to the present invention.

【図2】酸化物層の相対酸素濃度の分布を説明する図で
ある。
FIG. 2 is a diagram illustrating a distribution of a relative oxygen concentration of an oxide layer.

【図3】ニッケル−水素二次電池の断面図である。FIG. 3 is a sectional view of a nickel-hydrogen secondary battery.

【図4】本発明に係る水素吸蔵合金電極の製造方法を表
わす工程図である。
FIG. 4 is a process chart showing a method for manufacturing a hydrogen storage alloy electrode according to the present invention.

【図5】本発明の効果を実証するために行なった実験の
結果を表わす図表である。
FIG. 5 is a table showing the results of experiments performed to demonstrate the effects of the present invention.

【図6】同上の他の図表である。FIG. 6 is another chart of the above.

【図7】同上の更に他の図表である。FIG. 7 is still another chart of the above.

【符号の説明】[Explanation of symbols]

(1) 水素吸蔵合金粒子 (2) 酸化物層 (11) 正極 (12) 負極 (13) セパレータ (1) Hydrogen storage alloy particles (2) Oxide layer (11) Positive electrode (12) Negative electrode (13) Separator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤谷 伸 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 米津 育郎 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shin Fujitani 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Ikuro Yonezu 2-chome Keihanhondori, Moriguchi-shi, Osaka No. 5 Sanyo Electric Co., Ltd. (72) Inventor Koji Nishio 2-5-5 Keihan Hondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 水素吸蔵合金粒子(1)の表層部に、水素
吸蔵合金の活性向上に有効な酸素濃度に規定された酸化
物層(2)を形成した水素吸蔵合金粉末。
1. A hydrogen storage alloy powder in which an oxide layer (2) having a specified oxygen concentration effective for improving the activity of the hydrogen storage alloy is formed on the surface layer of the hydrogen storage alloy particles (1).
【請求項2】 酸化物層(2)に含まれる酸素の平均濃度
は、水素吸蔵合金粒子全体の0.1重量%以上、2.0重
量%以下である請求項1に記載の水素吸蔵合金粉末。
2. The hydrogen storage alloy according to claim 1, wherein the average concentration of oxygen contained in the oxide layer (2) is 0.1% by weight or more and 2.0% by weight or less of the whole hydrogen storage alloy particles. Powder.
【請求項3】 水素吸蔵合金粉末を作製した後、該水素
吸蔵合金粉末に、酸素分圧が0.01Pa以上の雰囲気
中で、600℃以上且つ水素吸蔵合金粉末の融点を越え
ない温度による加熱処理を施すことを特徴とする水素吸
蔵合金粉末の製造方法。
3. After preparing the hydrogen storage alloy powder, the hydrogen storage alloy powder is heated in an atmosphere having an oxygen partial pressure of 0.01 Pa or higher at a temperature of 600 ° C. or higher and not exceeding the melting point of the hydrogen storage alloy powder. A method for producing a hydrogen-absorbing alloy powder, characterized by performing a treatment.
【請求項4】 水素吸蔵合金粒子(1)を含む合金粉末を
導電性基体に充填してなる水素吸蔵合金電極において、
水素吸蔵合金粒子(1)の表層部には、水素吸蔵合金の活
性向上に有効な酸素濃度に規定された酸化物層(2)が形
成されていることを特徴とする水素吸蔵合金電極。
4. A hydrogen storage alloy electrode comprising a conductive substrate filled with an alloy powder containing hydrogen storage alloy particles (1),
A hydrogen storage alloy electrode, characterized in that an oxide layer (2) having an oxygen concentration specified to be effective for improving the activity of the hydrogen storage alloy is formed on the surface layer of the hydrogen storage alloy particles (1).
【請求項5】 酸化物層(2)に含まれる酸素の平均濃度
は、水素吸蔵合金粒子全体の0.1重量%以上、2.0重
量%以下である請求項4に記載の水素吸蔵合金電極。
5. The hydrogen storage alloy according to claim 4, wherein the average concentration of oxygen contained in the oxide layer (2) is 0.1% by weight or more and 2.0% by weight or less of the whole hydrogen storage alloy particles. electrode.
【請求項6】 水素吸蔵合金粉末を作製する第1工程
と、これによって得られた水素吸蔵合金粉末に、酸素分
圧が0.01Pa以上の雰囲気中で、600℃以上であ
って、且つ水素吸蔵合金粉末の融点を越えない温度によ
る加熱処理を施す第2工程と、熱処理の施された水素吸
蔵合金粉末を導電性基体に充填して電極形状に成形する
第3工程とを有する水素吸蔵合金電極の製造方法。
6. A first step of preparing a hydrogen storage alloy powder, and applying a hydrogen storage alloy powder obtained at 600 ° C. or higher in an atmosphere having an oxygen partial pressure of 0.01 Pa or higher to a hydrogen storage alloy powder. A hydrogen storage alloy having a second step of performing a heat treatment at a temperature not exceeding the melting point of the storage alloy powder and a third step of filling the conductive base with the heat-treated hydrogen storage alloy powder and forming the same into an electrode shape Manufacturing method of electrode.
JP32717396A 1996-12-06 1996-12-06 Method for producing hydrogen storage alloy powder and hydrogen storage alloy electrode used for negative electrode for nickel-hydrogen secondary battery Expired - Fee Related JP3485738B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32717396A JP3485738B2 (en) 1996-12-06 1996-12-06 Method for producing hydrogen storage alloy powder and hydrogen storage alloy electrode used for negative electrode for nickel-hydrogen secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32717396A JP3485738B2 (en) 1996-12-06 1996-12-06 Method for producing hydrogen storage alloy powder and hydrogen storage alloy electrode used for negative electrode for nickel-hydrogen secondary battery

Publications (2)

Publication Number Publication Date
JPH10172552A true JPH10172552A (en) 1998-06-26
JP3485738B2 JP3485738B2 (en) 2004-01-13

Family

ID=18196129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32717396A Expired - Fee Related JP3485738B2 (en) 1996-12-06 1996-12-06 Method for producing hydrogen storage alloy powder and hydrogen storage alloy electrode used for negative electrode for nickel-hydrogen secondary battery

Country Status (1)

Country Link
JP (1) JP3485738B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6475664B1 (en) * 1999-09-09 2002-11-05 Canon Kabushiki Kaisha Alkali rechargeable batteries and process for the production of said rechargeable batteries
JP2009206038A (en) * 2008-02-29 2009-09-10 Sanyo Electric Co Ltd Hydrogen storage alloy electrode, method for manufacturing hydrogen storage alloy electrode and alkali accumulating battery
CN107838419A (en) * 2017-12-02 2018-03-27 桂林理工大学 One kind is modified AB using bis-Schiff base surface3The method of type hydrogen storage alloy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6475664B1 (en) * 1999-09-09 2002-11-05 Canon Kabushiki Kaisha Alkali rechargeable batteries and process for the production of said rechargeable batteries
JP2009206038A (en) * 2008-02-29 2009-09-10 Sanyo Electric Co Ltd Hydrogen storage alloy electrode, method for manufacturing hydrogen storage alloy electrode and alkali accumulating battery
CN107838419A (en) * 2017-12-02 2018-03-27 桂林理工大学 One kind is modified AB using bis-Schiff base surface3The method of type hydrogen storage alloy

Also Published As

Publication number Publication date
JP3485738B2 (en) 2004-01-13

Similar Documents

Publication Publication Date Title
US5043233A (en) Hydrogen-absorbing alloy electrode for use in an alkaline storage cell and its manufacturing method
KR100502871B1 (en) Hydrogen storage alloy powder and method of manufacturing the same
JP3485738B2 (en) Method for producing hydrogen storage alloy powder and hydrogen storage alloy electrode used for negative electrode for nickel-hydrogen secondary battery
JP3010724B2 (en) Hydrogen storage alloy electrode for batteries
JP2002033116A (en) Alkaline storage battery
JPH08264174A (en) Hydrogen storage alloy cathode and its preparation
JP2733231B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH0212765A (en) Manufacture of hydrogen storage electrode
JP3136738B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2642144B2 (en) Method for producing hydrogen storage electrode
JP3432847B2 (en) Hydrogen storage alloy electrode
JP2994704B2 (en) Manufacturing method of hydrogen storage alloy electrode
USRE34471E (en) Hydrogen-absorbing alloy electrode for use in an alkaline storage cell and its manufacturing method
JP2966493B2 (en) Manufacturing method of hydrogen storage alloy electrode
US6270547B1 (en) Hydrogen absorbing alloy electrode and process for fabricating same
JP3184607B2 (en) Metal oxide / hydrogen battery
JP2001035526A (en) Nickel hydrogen storage battery
JP3222902B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPS62295353A (en) Enclosed type nickel-hydrogen storage battery
JPH10168504A (en) Hydrogen storage material electrode and its production
JPH11260358A (en) Hydrogen storing alloy electrode and manufacture thereof
JPH04237951A (en) Manufacture of nickel electrode for alkaline storage battery
JP2000353520A (en) Alkaline storage battery
JPH06231761A (en) Nickel-hydrogen secondary battery
JPH08203512A (en) Manufacture of alkaline secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071024

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091024

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101024

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101024

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101024

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101024

Year of fee payment: 7

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101024

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101024

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101024

Year of fee payment: 7

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101024

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101024

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees