JPH101722A - Production of grain oriented silicon steel sheet excellent in magnetic property - Google Patents

Production of grain oriented silicon steel sheet excellent in magnetic property

Info

Publication number
JPH101722A
JPH101722A JP8172794A JP17279496A JPH101722A JP H101722 A JPH101722 A JP H101722A JP 8172794 A JP8172794 A JP 8172794A JP 17279496 A JP17279496 A JP 17279496A JP H101722 A JPH101722 A JP H101722A
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
weight
compound
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8172794A
Other languages
Japanese (ja)
Inventor
Hiroaki Toda
広朗 戸田
Tsutomu Kami
力 上
Keiji Sato
圭司 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP8172794A priority Critical patent/JPH101722A/en
Publication of JPH101722A publication Critical patent/JPH101722A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To increase the magnetic flux density of a steel sheet and to reduce iron loss therein by prescribing an acid soluble Al content and an N content in a slab and coating it with a specified separation agent for annealing. SOLUTION: In the componental compsn. of a silicon steel stock as the object, 0.013 to 0.5wt.% acid soluble Al and 0.004 to 0.012% N are contained, and the ratio of Al/N is regulated to >=3.35. The acid soluble Al and N are required for forming an AlN inhibitor. In the production, after a cold rolled sheet having a final sheet thickness is obtd., decarburizing annealing and the application of a separation agent for annealing are executed, and then, finish annealing is executed. The separation agent for annealing performs important rolls of preventing fusion between steel sheets at the time of the finish annealing, controlling the behavior of the inhibitor components in the vicinity of the surface layer part of ferrite participating in the improvement of its magnetic properties in the process of the annealing and regulating the atmosphere between coil layers. For making better the effects, the separation agent for annealing in which, to 100 pts.wt. MgO, Ti compounds by 0.2 to 10 pts.wt. expressed in terms of Ti and 0.2 to 15 pts.wt. chloride are respectively added is used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、方向性けい素鋼
板の製造方法に関し、特に素材成分及び焼鈍分離剤組成
を工夫することによって磁気特性を大幅に改善しようと
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a grain-oriented silicon steel sheet, and more particularly to a method for improving magnetic properties by devising a material component and an annealing separator composition.

【0002】[0002]

【従来の技術】方向性けい素鋼板は、主として変圧器又
は回転機器等の鉄心材料として使用され、磁気特性とし
て磁束密度が高く、鉄損が小さいことが要求される。
2. Description of the Related Art Grain-oriented silicon steel sheets are mainly used as iron core materials for transformers or rotating equipment, and are required to have high magnetic flux density and small iron loss as magnetic characteristics.

【0003】磁気特性に優れた方向性けい素鋼板を得る
には、{110}〈001〉方位、いわゆるゴス方位に
高度に集積した二次再結晶組織を得ることが必要であ
る。そのため、かかる方向性けい素鋼板の製造方法にお
いては、二次再結晶に必要なインヒビター、例えばMnS
、MnSe、AlN 等を含む方向性けい素鋼スラブを加熱し
て熱間圧延を行った後、必要に応じて焼鈍を行い、1回
又は中間焼鈍を挟む2回以上の冷間圧延によって最終板
厚とし、次いで脱炭焼鈍を行った後、鋼板にMgO を主成
分とする焼鈍分離剤を塗布してから最終仕上焼鈍を行う
ことが一般的となっている。
In order to obtain a grain-oriented silicon steel sheet having excellent magnetic properties, it is necessary to obtain a secondary recrystallized structure highly integrated in a {110} <001> orientation, a so-called Goss orientation. Therefore, in such a method for producing a grain-oriented silicon steel sheet, an inhibitor required for secondary recrystallization, such as MnS
After heating the directional silicon steel slab containing MnSe, MnSe, AlN, etc., and performing hot rolling, annealing is performed if necessary, and the final sheet is subjected to one or two or more cold rollings with intermediate annealing. It is common practice to increase the thickness and then perform decarburizing annealing, then apply an annealing separator containing MgO as a main component to the steel sheet, and then perform final finish annealing.

【0004】上記のインヒビター成分としてAlN を含む
方向性けい素鋼板においては、酸可溶性AlとNとの量が
二次再結晶に大きく影響して、得られる鋼板の磁気特性
を左右することが知られている。そのために、例えば特
開平1−316421号公報、特開平2−8328号公
報、特開平2−209426号公報、特開平2−209
427号公報及び特開平2−243721号公報では、
酸可溶性Alの量(%)を{ (27/14)×N(%) +0.0035}
〜{ (27/14)×N(%) +0.0100}にすることが提案され
ている。また、特開平2−77524号公報、特開平2
−209428号公報、特開平2−213419号公
報、特開平2−243720号公報では、酸可溶性Alの
量(%)を{ (27/14)×N(%) +0.0030}〜{ (27/14)
×N(%) +0.0150}にすることが提案されている。
[0004] In the above-described grain-oriented silicon steel sheet containing AlN as an inhibitor component, it is known that the amount of acid-soluble Al and N greatly affects the secondary recrystallization and affects the magnetic properties of the obtained steel sheet. Have been. For this purpose, for example, JP-A-1-316421, JP-A-2-8328, JP-A-2-209426, JP-A-2-209
No. 427 and JP-A-2-243721,
The amount (%) of acid-soluble Al is {(27/14) × N (%) +0.0035}
It has been proposed to make {{(27/14) × N (%) + 0.0100}. Further, Japanese Patent Application Laid-Open No. 2-77524,
In JP-A-209428, JP-A-2-213419 and JP-A-2-243720, the amount (%) of the acid-soluble Al is expressed as {(27/14) × N (%) + 0.0030} to {(27 /14)
× N (%) + 0.0150 ° is proposed.

【0005】かかる提案された方法では、いずれの場合
も酸可溶性Alの量が提案された式より多いと二次再結晶
が不完全になって細粒が発生し、磁気特性が劣化すると
されていて、また、酸可溶性Alの量が提案された式より
も少ないと、二次再結晶は安定であるが、方向性が劣
り、良好な鉄損値が得られにくいとされている。だから
こそ、これらの方法では酸可溶性Alの量をN量との関係
で所定の範囲に限定しているのであるが、酸可溶性Al量
(%)が{ (27/14)×N(%) +0.0100}付近という、N
に対し相対的に多い量で含有しているときには、たとえ
スラブ段階での分析値ではAl量が限定した範囲内であっ
ても、分析採取位置によるAl、N量の若干の変動、ある
いは中間焼鈍温度や脱炭焼鈍温度など他の途中工程によ
るAl、N量の若干の変動によって、部分的に二次再結晶
不良となり、磁性劣化が生じる場合があり、良好な磁気
特性が得られる範囲は実質的に、より狭いものであっ
た。
In such a proposed method, in any case, when the amount of acid-soluble Al is larger than the proposed formula, secondary recrystallization is incomplete, fine grains are generated, and magnetic properties are deteriorated. If the amount of acid-soluble Al is smaller than the proposed formula, the secondary recrystallization is stable, but the orientation is poor and it is difficult to obtain a good iron loss value. For this reason, in these methods, the amount of acid-soluble Al is limited to a predetermined range in relation to the amount of N, but the amount (%) of acid-soluble Al is {(27/14) × N (%) + 0 .0100}, N
However, when the content is relatively large, even if the analysis value at the slab stage is within the limited range of the Al content, slight variations in the Al and N content depending on the analysis sampling position, or intermediate annealing Due to slight fluctuations in Al and N contents due to other intermediate steps such as temperature and decarburization annealing temperature, secondary recrystallization failure may partially occur and magnetic deterioration may occur. Was narrower.

【0006】一方、方向性けい素鋼板の表面には、特殊
な場合を除いてフォルステライト(Mg2SiO4)質絶縁被膜
が形成されている。かかるフォルステライト質被膜の性
状は製品の磁気特性に影響を及ぼすことから、良好なフ
ォルステライト質被膜を生成させることが重要である。
On the other hand, a forsterite (Mg 2 SiO 4 ) -based insulating film is formed on the surface of the grain-oriented silicon steel sheet except for special cases. Since the properties of the forsterite coating affect the magnetic properties of the product, it is important to form a good forsterite coating.

【0007】ここに、方向性電磁鋼板の製造工程中、一
次再結晶焼鈍に先立って鋼板表面に塗布される焼鈍分離
剤は、その組成が被膜形成及び二次再結晶過程に大きく
影響し、鋼板の磁気特性を左右することから多くの研究
が行われ、その改善が図られてきている。
Here, during the manufacturing process of the grain-oriented electrical steel sheet, the composition of the annealing separator applied to the steel sheet surface prior to the primary recrystallization annealing greatly affects the film formation and the secondary recrystallization process. Much research has been conducted on the influence of the magnetic properties of these materials, and improvements have been made.

【0008】例えば、磁気特性の向上を目的に焼鈍分離
剤中に配合されるMgO 以外の添加物として、特公昭54
−14567号公報に開示されているように、Cu、Sn、
Ni、Coあるいはそれらを含む化合物を0.01〜15重量部
(金属元素として)添加する方法、特開昭60−243
282号公報に開示されているようにTiO2又はTiO を0.
5 〜10重量部とSrS 、SnS 、CuS を0.1 〜5.0 重量部、
又はそれに加えて硝酸アンチモンを0.05〜2.0 重量部添
加する方法、特開昭61−79780号公報に示されて
いるように、コロイド状のSb又はSbを含む化合物または
コロイド状のSnもしくはSnを含む化合物を添加する方法
が知られいてる。
For example, as an additive other than MgO incorporated in an annealing separator for the purpose of improving magnetic properties, Japanese Patent Publication No.
As disclosed in No. 14567, Cu, Sn,
A method of adding 0.01 to 15 parts by weight (as a metal element) of Ni, Co or a compound containing them, JP-A-60-243
TiO 2 or TiO.
5 to 10 parts by weight and 0.1 to 5.0 parts by weight of SrS, SnS and CuS,
Or, in addition thereto, a method of adding 0.05 to 2.0 parts by weight of antimony nitrate, as disclosed in JP-A-61-79780, containing colloidal Sb or a compound containing Sb, or containing colloidal Sn or Sn. Methods for adding compounds are known.

【0009】更に、被膜特性の改善に関しては焼鈍分離
剤中に主成分であるMgO に加えてTiO2等のTi化合物を含
有させる技術が数多く開示されている。例えば特公昭5
1−12451号公報では、Mg化合物100 重量部に対し
Ti化合物が2〜40重量部となるように配合することによ
り、また、特公昭49−29049号公報では、重質低
活性MgO :100 重量部に対して2〜20重量部のTiO2を混
合することより、いずもフォルステライト被膜の均一性
と密着性が向上することが開示されている。更に、特公
昭56−15466号公報では焼鈍分離剤に用いるTiO2
を微細粒とすることにより、Ti化合物からなる黒点状付
着物を消滅させる技術が開示されている。更に、特公昭
57−32716号公報では、フォルステライト質絶縁
被膜を密着性が良くかつ優れた均一性をもって形成され
る方法として、Sr化合物をSr換算で0.1 〜10重量部配合
することが提案されている。
Further, with respect to the improvement of the film properties, many techniques have been disclosed in which an annealing separator contains a Ti compound such as TiO 2 in addition to MgO as a main component. For example, Shoko 5
In JP-A-1-12451, the content of Mg compound is 100 parts by weight.
By mixing the Ti compound in an amount of 2 to 40 parts by weight, Japanese Patent Publication No. 49-29049 discloses that 2 to 20 parts by weight of TiO 2 is mixed with 100 parts by weight of heavy and low-active MgO. It is disclosed that the uniformity and the adhesion of the forsterite film are improved in any case. Furthermore, Japanese Patent Publication No. 56-15466 discloses TiO 2 used as an annealing separator.
There is disclosed a technique for extinguishing black spot-like deposits made of a Ti compound by making fine particles into fine particles. Furthermore, Japanese Patent Publication No. 57-32716 proposes to mix a Sr compound in an amount of 0.1 to 10 parts by weight in terms of Sr as a method for forming a forsterite insulating film with good adhesion and excellent uniformity. ing.

【0010】しかしながら上記の分離剤添加物を適用し
た素材成分は、AlN 系インヒビターを用いる鋼板の場
合、前記のように従来から知られている、二次再結晶が
良好に生じる範囲の酸可溶性Al、Nを含む範囲に納まっ
ていた。そして被膜特性、磁気特性の改善は認められる
ものの、止むことのない被膜特性改善、磁気特性改善の
要求に対して十分に満足できるとはいえなかった。
[0010] However, in the case of a steel sheet using an AlN-based inhibitor, the material component to which the above-mentioned separating agent additive is applied is an acid-soluble Al which is conventionally known as described above in a range where secondary recrystallization is favorably generated. , N. Although improvements in film properties and magnetic properties were observed, it could not be said that the requirements for continuous improvements in film properties and magnetic properties were sufficiently satisfied.

【0011】また、特開平7−188938号公報で
は、板幅方向に伸長した磁束密度の高い巨大結晶粒を得
る目的で、MgO を主体とする焼鈍分離剤中にTl化合物を
配合する技術が開示されている。しかし、二次粒が大き
いため、得られる磁束密度に対して鉄損がやや劣ってい
た。
Japanese Patent Application Laid-Open No. 7-188938 discloses a technique in which a Tl compound is blended into an annealing separator mainly composed of MgO for the purpose of obtaining giant crystal grains having a high magnetic flux density elongated in the sheet width direction. Have been. However, since the secondary grains were large, iron loss was slightly inferior to the obtained magnetic flux density.

【0012】他方、製品の磁気特性を向上させる方法と
して、鋼板表面を鏡面化して低鉄損を得る方法がある。
この鋼板表面を鏡面化する方法では、方向性けい素鋼板
の表面に通常形成されているフォルステライト質絶縁被
膜を除去する必要がある。その除去方法としては酸洗等
の技術が古くからあり、またその後に表面平滑化する方
法としては特開昭64−83620号公報に開示されて
いる化学研磨、電解研磨等がある。しかし、一度生成し
た酸化被膜を除去して更に平滑化することは、酸化膜
(フォルステライト被膜)が除去し難い、生産性が悪い
等の問題点があった。
On the other hand, as a method of improving the magnetic properties of a product, there is a method of obtaining a low iron loss by making a steel plate surface mirror-finished.
In this method of mirror-finishing the surface of a steel sheet, it is necessary to remove the forsterite insulating film usually formed on the surface of the grain-oriented silicon steel sheet. Techniques such as pickling have long been used as a removing method, and methods for smoothing the surface thereafter include chemical polishing and electrolytic polishing disclosed in JP-A-64-83620. However, removing the oxide film once formed and smoothing it further have problems such as difficulty in removing the oxide film (forsterite film) and poor productivity.

【0013】一方、一度生成された酸化被膜を除去する
のではなく、仕上焼鈍時に酸化被膜を生成させない方法
として、米国特許第3785882号明細書に開示され
ているAl2O3 、また、特公昭56−3414号公報に開
示されている含水珪酸塩鉱物粉末等、SiO2と反応しない
焼鈍分離剤を用いる方法がある。この方法は、前述した
生成した酸化被膜を酸洗除去する方法よりは優れてい
る。しかし、この方法では脱炭焼鈍時に生成したSiO2
の酸化物が残存するため、表面を平滑にするには化学研
磨、機械研磨等の処理が必要であった。
On the other hand, Al 2 O 3 disclosed in US Pat. No. 3,785,882 and JP-A No. 3785882 have been disclosed as a method of not forming an oxide film during finish annealing, instead of removing the oxide film once formed. There is a method using an annealing separator which does not react with SiO 2 , such as a hydrated silicate mineral powder disclosed in JP-A-56-3414. This method is superior to the above-described method of removing the generated oxide film by pickling. However, in this method, oxides such as SiO 2 generated during the decarburization annealing remain, so that a treatment such as chemical polishing or mechanical polishing was required to smooth the surface.

【0014】更に、特開昭64−62417号公報、特
開平2−228481号公報に開示される、塩化物を焼
鈍分離剤中に添加し、仕上焼鈍時にMgO とSiO2との反応
を抑制する方法がある。この方法は、それ以前の技術よ
り優れているが、薄い酸化膜が残存する点、得られる表
面粗度が化学研磨を用いた場合よりも粗い点が鉄損低減
の妨げとなっていた。それを改善するために、特開平6
−346247号公報では、Biの塩化物を添加する技術
が開示され、これにより表面の平滑度が従来より良くな
り、鉄損特性が向上したと報告されている。
Further, chloride disclosed in JP-A-64-62417 and JP-A-2-228481 is added to an annealing separator to suppress the reaction between MgO and SiO 2 during finish annealing. There is a way. Although this method is superior to the previous technology, the point that a thin oxide film remains and the obtained surface roughness is rougher than that obtained by using chemical polishing hinders the reduction of iron loss. In order to improve this, Japanese Patent Application Laid-Open
JP-346247A discloses a technique of adding a chloride of Bi, and reports that the surface smoothness is improved as compared with the conventional art, and the iron loss characteristics are improved.

【0015】しかし、上記の鏡面化技術を適用した素材
成分は、AlN 系インヒビターの場合、やはり従来から知
られている、二次再結晶が良好に生じる範囲の酸可溶性
Al、窒素を含む範囲であった。
However, in the case of an AlN-based inhibitor, the material component to which the above-mentioned mirror polishing technique is applied is an acid-soluble material which is well known in the art in a range where secondary recrystallization is favorably generated.
The range included Al and nitrogen.

【0016】[0016]

【発明が解決しようとする課題】この発明は、従来、二
次再結晶が不安定になって細粒が発生し易い、又はほと
んど二次再結晶不良となるような範囲の酸可溶性Al量、
N量の素材を用いても、良好に二次再結晶をさせること
ができるばかりか、これまで最適成分範囲として開示さ
れてきた酸可溶性Al、Nの範囲内では得られなかったよ
うな高磁束密度、低鉄損の製品を製造することのできる
方法を提案することを目的とする。
Conventionally, the present invention provides an acid-soluble Al content in a range such that secondary recrystallization is unstable and fine grains are easily generated or secondary recrystallization is poor.
Even if a material having an N content is used, secondary recrystallization can be favorably performed, and a high magnetic flux which cannot be obtained within the range of acid-soluble Al and N which has been disclosed as the optimum component range so far. It is an object of the present invention to propose a method capable of producing a product having a high density and low iron loss.

【0017】また、この発明の他の目的は、従来、二次
再結晶が不安定になって細粒が発生し易い、又はほとん
ど二次再結晶不良となるような範囲の酸可溶性Al量、N
量の素材を用いても、仕上焼鈍時に鋼板表面の酸化膜を
除去でき、かつ鋼板表面を平滑化して良好に二次再結晶
をさせ、更なる低鉄損の製品を製造することのできる方
法を提案することにある。
Another object of the present invention is to provide an acid-soluble Al content in a range in which secondary recrystallization is unstable and fine particles are easily generated or secondary recrystallization is poor. N
Even if the amount of material is used, it is possible to remove the oxide film on the surface of the steel sheet during finish annealing, and to smooth the steel sheet surface for good secondary recrystallization to produce a product with a further low iron loss. It is to propose.

【0018】[0018]

【課題を解決するための手段】方向性けい素鋼板の製造
にあたり、焼鈍分離剤は、仕上焼鈍時における鋼板間の
融着防止効果を有し、仕上焼鈍中に磁気特性の向上に関
与する地鉄表層部近傍のインヒビター成分の挙動の制御
やコイル層間の雰囲気の制御に重要な役割を果たすとと
もに、この仕上焼鈍により鋼板表面上にフォルステライ
ト被膜が形成される。
In producing a grain-oriented silicon steel sheet, an annealing separator has an effect of preventing fusion between the steel sheets at the time of finish annealing, and has an effect of improving magnetic properties during finish annealing. In addition to playing an important role in controlling the behavior of the inhibitor component in the vicinity of the iron surface layer and controlling the atmosphere between the coil layers, the finish annealing forms a forsterite film on the steel sheet surface.

【0019】発明者らは、このような焼鈍分離剤の特性
を考慮して、素材成分の酸可溶性Al、Nの値を、二次再
結晶が完全で良好な磁気特性が得られると従来から報告
されている範囲に限定せずに、MgO を主成分としてこれ
に種々の副成分を添加配合して実験を重ねた結果、従来
は二次再結晶が不安定になって細粒が発生し易い、ある
いはほとんど完全に二次再結晶不良となる範囲の酸可溶
性Al、N量である素材を用い、かつ焼鈍分離剤中へTl化
合物を低下した場合、極めて磁気特性が向上することを
見出した。
In consideration of the characteristics of the annealing separator, the inventors have determined that the values of the acid-soluble Al and N of the raw material component can be conventionally determined if the secondary recrystallization is complete and good magnetic characteristics can be obtained. Without limiting to the reported range, as a result of repeated experiments with MgO as the main component and various sub-components added and mixed, secondary recrystallization was unstable and fine grains were generated conventionally. It has been found that when a material having an acid-soluble Al or N content within a range that easily or almost completely causes secondary recrystallization failure is used, and the Tl compound is reduced into the annealing separator, the magnetic properties are significantly improved. .

【0020】また、焼鈍分離剤中にBi化合物を併存させ
ることで、一層磁気特性が向上することも見出した。
It has also been found that the coexistence of a Bi compound in the annealing separator further improves the magnetic properties.

【0021】更に、焼鈍分離剤中にTl化合物と塩化物を
併存させることで、仕上焼鈍後の鋼板表面が単に塩化物
を添加する以上に鏡面のように平滑化され、非常に磁気
特性が向上することを見出した。
Further, by coexisting the Tl compound and chloride in the annealing separator, the surface of the steel sheet after finish annealing is smoothened like a mirror surface more than simply adding chloride, and the magnetic properties are greatly improved. I found to do.

【0022】すなわち、この発明の要旨構成は、次のと
おりである。 (1) 酸可溶性Al:0.013 〜0.05wt%及びN:0.004 〜0.
012 wt%を含む方向性けい素鋼板用スラブを熱間圧延し
た後、1回又は中間焼鈍を挟む2回以上の冷間圧延を施
し、次いで脱炭焼鈍を施した後、MgO を主体とする焼鈍
分離剤を塗布してから、最終仕上焼鈍を施す一連の工程
からなる方向性けい素鋼板の製造方法において、上記ス
ラブの酸可溶性Al量及びN量につき、酸可溶性Al(wt
%)≧3.35×N(wt%)とし、かつ上記焼鈍分離剤とし
て、MgO 100 重量部に対しTl化合物をTl換算で0.2 〜10
重量部添加した焼鈍分離剤を塗布することを特徴とする
磁気特性に優れた方向性けい素鋼板の製造方法(第1発
明)
That is, the gist of the present invention is as follows. (1) Acid-soluble Al: 0.013 to 0.05 wt% and N: 0.004 to 0.
Slab for oriented silicon steel sheet containing 012 wt% is hot-rolled, then cold-rolled once or twice or more with intermediate annealing, then decarburized annealing, and then mainly MgO In a method for producing a grain-oriented silicon steel sheet comprising a series of steps of applying an annealing separator and then performing a final finish annealing, the acid-soluble Al (wt.
%) ≧ 3.35 × N (wt%), and as the annealing separator, the Tl compound is 0.2 to 10 in terms of Tl based on 100 parts by weight of MgO.
A method for producing a grain-oriented silicon steel sheet having excellent magnetic properties, characterized by applying an annealing separator added in parts by weight (first invention)

【0023】(2) 第1発明において、焼鈍分離剤が、Mg
O 100 重量部に対しTl化合物をTl換算で0.2 〜10重量
部、塩化物を0.2 〜15重量部、それぞれ添加したもので
ある磁気特性に優れた方向性けい素鋼板の製造方法(第
2発明)。
(2) In the first invention, the annealing separator is Mg.
A method for producing a grain-oriented silicon steel sheet having excellent magnetic properties, wherein 0.2 to 10 parts by weight of a Tl compound and 0.2 to 15 parts by weight of a chloride are added to 100 parts by weight of O, respectively. ).

【0024】(3) 第1発明又は第2発明において、焼鈍
分離剤が、更にBi化合物を、MgO 100重量部に対しBi換
算で0.2 〜10重量部添加したものである磁気特性に優れ
た方向性けい素鋼板の製造方法(第3発明)。
(3) In the first or second invention, the annealing separator is obtained by adding 0.2 to 10 parts by weight, in terms of Bi, of a Bi compound to 100 parts by weight of MgO. A method for producing a silicon nitride steel sheet (third invention).

【0025】[0025]

【発明の実施の形態】以下にこの発明に至った経緯を実
験結果に基づいて説明する。 (実験1) C:0.073 wt%、Si:3.30wt%、sol.Al:
0.032 wt%、N:0.0080wt%、(sol.Al/N=4.0 )、
Mn:0.069 wt%、Se:0.020 wt%、Sb:0.025 wt%を含
有し、残部は実質的にFeの組成からなる方向性けい素鋼
スラブを熱間圧延し、次いで冷間圧延して最終板厚を0.
23mmとした冷延板に、H2-H2O-N2 雰囲気にて840 ℃で12
0 秒間の脱炭焼鈍を施した。その後、表1に示すMgO に
TiO2を6%配合した焼鈍分離剤(条件No. 1)、Tl化合
物を添加したMgO 主体の焼鈍分離剤(条件No. 2〜6)
及びTl化合物とBi化合物とを添加したMgO 主体の焼鈍分
離剤(条件No. 7〜10)をスラリーとして塗布して乾燥
させてから、最終仕上焼鈍は850 ℃で20時間、窒素雰囲
気中で保定し、引き続いて水素75 vol%、窒素25 vol%
の雰囲気中で15℃/hr の昇温速度で1150℃まで昇温する
二次再結晶焼鈍を行い、続いて1200℃の水素雰囲気で5
時間の純化焼鈍を行った。この後、りん酸マグネシウム
とコロイダルシリカを主成分とするコーティングを施し
た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below based on experimental results. (Experiment 1) C: 0.073 wt%, Si: 3.30 wt%, sol.Al:
0.032 wt%, N: 0.0080 wt%, (sol.Al/N=4.0),
A directional silicon steel slab containing 0.069 wt% of Mn, 0.020 wt% of Se, and 0.025 wt% of Sb, with the balance being substantially Fe, is hot-rolled and then cold-rolled to a final Set the thickness to 0.
The cold-rolled sheet which was 23 mm, at 840 ° C. at H 2 -H 2 ON 2 atmosphere 12
Decarburization annealing for 0 seconds was performed. Then, to MgO shown in Table 1,
Annealing separator containing 6% TiO 2 (Condition No. 1), MgO-based annealing separator containing Tl compound (Conditions No. 2 to 6)
And a MgO-based annealing separator containing Tl compound and Bi compound (Condition Nos. 7 to 10) is applied as a slurry and dried, and the final finish annealing is held at 850 ° C for 20 hours in a nitrogen atmosphere. Followed by 75 vol% hydrogen and 25 vol% nitrogen
In the atmosphere of 15 ° C./hr at a heating rate of 1150 ° C., and then in a hydrogen atmosphere of 1200 ° C. for 5 seconds.
Time purification annealing was performed. Thereafter, a coating containing magnesium phosphate and colloidal silica as main components was applied.

【0026】このようにして得られた製品の磁界800 A/
m における磁束密度(B8 値)、1.7 T、50Hzにおける
鉄損(W17/50値)を測定した。これらの測定結果も表1
に併せて示した。
The magnetic field of the product thus obtained is 800 A /
The magnetic flux density (B 8 value) at 1.7 m and the iron loss (W 17/50 value) at 1.7 T and 50 Hz were measured. Table 1 shows the measurement results.
Are also shown.

【0027】[0027]

【表1】 [Table 1]

【0028】表1において条件No. 2〜10はこの発明の
適合例としてTl化合物又はTl化合物とBi化合物とを適量
添加したMgO 系の焼鈍分離剤を用いたものであり、極め
て高磁束密度で低鉄損の特性が得られていることがわか
る。また、Tl化合物単独よりTl化合物とBi化合物とを併
せて用いた方が良好な磁気特性が得られることが分か
る。一方、条件No. 1はTl化合物無添加の比較例である
が、二次再結晶不良であった。
In Table 1, conditions Nos. 2 to 10 are conditions in which an MgO-based annealing separator containing a proper amount of a Tl compound or a Tl compound and a Bi compound is used as an applicable example of the present invention. It can be seen that low iron loss characteristics are obtained. Further, it can be seen that better magnetic properties can be obtained by using the Tl compound and the Bi compound together than by using the Tl compound alone. On the other hand, condition No. 1 was a comparative example in which the Tl compound was not added, but had poor secondary recrystallization.

【0029】図1に条件No. 1、また図2に条件No. 2
を適用した、二次再結晶処理後の鋼板の金属組織写真を
それぞれ示す。これらの図面から分かるように、条件N
o. 1ではほとんど二次再結晶していないのに対して、
条件2では二次再結晶が生じていて、しかも二次再結晶
粒は比較的小さく、過度に粗大化していない。
FIG. 1 shows condition No. 1 and FIG. 2 shows condition No. 2
Each shows a metallographic photograph of the steel sheet after the secondary recrystallization treatment, to which is applied. As can be seen from these drawings, the condition N
o. In the case of 1, there is almost no secondary recrystallization,
Under condition 2, secondary recrystallization has occurred, and the secondary recrystallized grains are relatively small and are not excessively coarse.

【0030】(実験2) C:0.073 wt%、Si:3.30wt
%、sol.Al:0.025 wt%、N:0.0085wt%、(sol.Al/
N=2.94)、Mn:0.069 wt%、Se:0.020 wt%、Sb:0.
025 wt%を含有し、残部は実質的にFeの組成からなる方
向性けい素鋼スラブを熱間圧延し、次いで冷間圧延して
最終板厚0.23mmとした冷延板に、H2-H2O-N2 雰囲気中に
て840 ℃で120 秒間の脱炭焼鈍を施した。その後、表2
に示するMgO にTiO2を6%配合した焼鈍分離剤(条件N
o. 1)、Tl化合物を添加したMgO 主体の焼鈍分離剤(N
o. 2〜6)及びTl化合物とBi化合物とを添加したMgO
主体の焼鈍分離剤(条件No. 7〜10)をスラリーとして
塗布して乾燥させてから、最終仕上焼鈍は850 ℃、20時
間窒素雰囲気中で保定し、引き続いて水素75 vol%、窒
素25 vol%の雰囲気中で15℃/hr の昇温速度で1150℃ま
で昇温する二次再結晶焼鈍を行い、続いて、1200℃の水
素雰囲気で5時間の純化焼鈍を行った。この後、りん酸
マグネシウムとコロイダルシリカを主成分とするコーテ
ィングを施した。このようにして得られた製品の磁界80
0 A/m における磁束密度(B8 値)、1.7 T,50Hzにお
ける鉄損(W17/50値)を測定した。これらの測定結果も
表2に併せて示した。
(Experiment 2) C: 0.073 wt%, Si: 3.30 wt
%, Sol.Al: 0.025 wt%, N: 0.0085 wt%, (sol.Al/
N = 2.94), Mn: 0.069 wt%, Se: 0.020 wt%, Sb: 0.
A hot rolled oriented silicon steel slab containing 025 wt%, with the balance substantially consisting of Fe, then cold rolled into a cold rolled sheet with a final sheet thickness of 0.23 mm, H 2 − Decarburization annealing was performed at 840 ° C. for 120 seconds in an H 2 ON 2 atmosphere. Then, Table 2
Annealing separator containing a combination of TiO 2 6% to Shimesuru MgO (the condition N
o. 1) An annealing separator mainly composed of MgO to which a Tl compound is added (N
o. 2-6) and MgO to which Tl compound and Bi compound are added
After the main annealing separator (conditions Nos. 7 to 10) is applied as a slurry and dried, the final finish annealing is maintained at 850 ° C. for 20 hours in a nitrogen atmosphere, followed by 75 vol% hydrogen and 25 vol nitrogen. %, The temperature was raised to 1150.degree. C. at a rate of 15.degree. C./hr, followed by annealing for purification for 5 hours in a hydrogen atmosphere at 1200.degree. Thereafter, a coating containing magnesium phosphate and colloidal silica as main components was applied. The magnetic field of the product thus obtained is 80
The magnetic flux density at 0 A / m (B 8 value) and the iron loss at 1.7 T, 50 Hz (W 17/50 value) were measured. These measurement results are also shown in Table 2.

【0031】[0031]

【表2】 [Table 2]

【0032】表2において条件No. 2〜10はTl化合物又
はTl化合物とBi化合物とを適量添加したMgO 系の焼鈍分
離剤を用いたものであるが、条件1と比べて磁束密度は
向上するものの、鉄損は増大する場合があるのがわか
る。図3に条件No. 1、また図4に条件No. 2を適用し
た、二次再結晶処理後の鋼板の金属組織写真をそれぞれ
示す。これらの図面から分かるように、条件No. 1は、
ほぼ通常得られる二次再結晶粒の形態であるのに対し
て、条件No. 2では非常に粗大な二次再結晶粒となって
いる。そのために条件No. 2〜10では磁束密度の向上に
比して鉄損が低下しない場合があったと考えられる。
In Table 2, conditions Nos. 2 to 10 use MgO-based annealing separators containing a proper amount of a Tl compound or a Tl compound and a Bi compound, but the magnetic flux density is improved as compared with the condition 1. However, it can be seen that iron loss may increase. FIG. 3 shows a metallographic photograph of the steel sheet after the secondary recrystallization treatment to which the condition No. 1 and the condition No. 2 are applied, respectively. As can be seen from these drawings, condition No. 1
In the condition of condition No. 2, very coarse secondary recrystallized grains are obtained, while the form of the secondary recrystallized grains is almost normally obtained. Therefore, it is considered that there was a case where the iron loss did not decrease in the condition Nos. 2 to 10 as compared with the improvement of the magnetic flux density.

【0033】(実験3) C:0.065 wt%、Si:3.35wt
%、Mn:0.072 wt%、Se:0.018 wt%、Sb:0.026 wt
%、sol.Al:0.01〜0.05wt%、N:0.004 〜0.012 wt%
を含有し、残部は実質的にFeの組成からなる多数の方向
性けい素鋼スラブを熱間圧延し、次いで冷間圧延して最
終板厚0.23mmとした冷延板に、H2-H2O-N2 雰囲気中にて
840 ℃で120 秒の脱炭焼鈍を施した。その後、MgO にTi
O2を6%、Tl2SO4を3重量部配合した焼鈍分離剤をスラ
リーとして塗布して乾燥させてから、最終仕上焼鈍は85
0 ℃、20時間窒素雰囲気中で保定し、引き続いて水素75
vol%、窒素25 vol%の雰囲気中で15℃/hr の昇温速度
で1150℃まで昇温する二次再結晶焼鈍を行い、続いて12
00℃の水素雰囲気で5時間の純化焼鈍を行った。この
後、りん酸マグネシウムとコロイダルシリカを主成分と
するコーティングを施してから、得られた製品の磁束密
度(B8 値)及び鉄損(W17/50値)を測定した。
(Experiment 3) C: 0.065 wt%, Si: 3.35 wt
%, Mn: 0.072 wt%, Se: 0.018 wt%, Sb: 0.026 wt%
%, Sol.Al: 0.01 to 0.05 wt%, N: 0.004 to 0.012 wt%
Containing, the remainder is hot-rolled a number of grain-oriented silicon steel slabs substantially composed of Fe, then cold-rolled into a cold-rolled sheet having a final sheet thickness of 0.23 mm, H 2 -H 2 ON 2 In an atmosphere
Decarburization annealing was performed at 840 ° C for 120 seconds. Then, Ti is added to MgO.
A slurry of an annealing separator containing 6% of O 2 and 3 parts by weight of Tl 2 SO 4 was applied as a slurry and dried.
Hold at 0 ° C for 20 hours in a nitrogen atmosphere.
vol. and 25 vol.% nitrogen, a secondary recrystallization annealing was performed in which the temperature was raised to 1150 ° C at a rate of 15 ° C / hr.
Purification annealing was performed in a hydrogen atmosphere at 00 ° C. for 5 hours. Then, after applying a coating containing magnesium phosphate and colloidal silica as main components, the magnetic flux density (B 8 value) and iron loss (W 17/50 value) of the obtained product were measured.

【0034】スラブの酸可溶性Al、N含有量と、B
8 値:W17/50値との関係を図5に示す。直線ab(sol.
Al/N=3.35)よりもsol.Al(%)/N(%)比が高い
側で高磁束密度、低鉄損が得られているのが分かる。
The acid-soluble Al and N contents of the slab and B
FIG. 5 shows the relationship between the 8 values: W 17/50 value. Straight line ab (sol.
It can be seen that high magnetic flux density and low iron loss are obtained on the side where the sol.Al (%) / N (%) ratio is higher than that of (Al / N = 3.35).

【0035】(実験4) C:0.071 wt%、Si:3.34wt
%、Mn:0.069 wt%、Se:0.019 wt%、Sb:0.025 wt
%、Cu:0.10wt%、sol.Al:0.01〜0.05wt%、N:0.00
4 〜0.012 wt%を含有し、残部は実質的にFeの組成から
なる多数の方向性けい素鋼スラブを熱間圧延し、次いで
冷間圧延により最終板厚を0.23mmとした冷延板に、H2-H
2O-N2 雰囲気中にて840 ℃で120 秒間の脱炭焼鈍を施し
た。その後、MgO にTiO2を6%、Tl2SO4を3重量部、Bi
2O3 を3重量部配合した焼鈍分離剤をスラリーとして塗
布して乾燥させてから、最終仕上焼鈍は850 ℃で20時
間、窒素雰囲気中で保定し、引き続いて水素75 vol%、
窒素25 vol%の雰囲気中で15℃/hr の昇温速度で1150℃
まで焼鈍する二次再結晶焼鈍を行い、続いて1200℃の水
素雰囲気で5時間の純化焼鈍行った。この後、りん酸マ
グネシウムとコロイダルシリカを主成分とするコーティ
ングを施してから、得られた製品の磁束密度(B8 値)
及び鉄損(W17/50値)を測定した。
(Experiment 4) C: 0.071 wt%, Si: 3.34 wt
%, Mn: 0.069 wt%, Se: 0.019 wt%, Sb: 0.025 wt%
%, Cu: 0.10 wt%, sol. Al: 0.01-0.05 wt%, N: 0.00
A number of directional silicon steel slabs containing 4 to 0.012 wt%, with the balance being substantially Fe, are hot-rolled and then cold-rolled into cold-rolled sheets with a final thickness of 0.23 mm. , H 2 -H
Decarburization annealing was performed at 840 ° C. for 120 seconds in a 2 ON 2 atmosphere. Then, 6% of TiO 2 and 3 parts by weight of Tl 2 SO 4 were added to MgO,
After applying and drying an annealing separator containing 3 parts by weight of 2 O 3 as a slurry, final finishing annealing is maintained at 850 ° C. for 20 hours in a nitrogen atmosphere, followed by 75 vol% of hydrogen,
1150 ° C at a rate of 15 ° C / hr in an atmosphere of 25 vol% nitrogen
Secondary recrystallization annealing was performed, followed by annealing for 5 hours in a hydrogen atmosphere at 1200 ° C. Then, after applying a coating mainly composed of magnesium phosphate and colloidal silica, the magnetic flux density of the obtained product (B 8 value)
And iron loss (W 17/50 value).

【0036】スラブの酸可溶性Al、N含有量と、B8
及びW17/50値との関係を図6に示す。同図から、直線a
b(sol.Al(%)/N(%)=3.35)よりもsol.Al
(%)/N(%)比が高い側で高磁束密度、低鉄損が得
られていることが分かる。
FIG. 6 shows the relationship between the acid-soluble Al and N contents of the slab and the B 8 value and W 17/50 value. From the figure, the straight line a
b (sol. Al (%) / N (%) = 3.35)
It can be seen that high magnetic flux density and low iron loss are obtained on the side where the (%) / N (%) ratio is high.

【0037】以上の実験から、酸可溶性Al(sol.Al)を
0.013 〜0.05wt%、Nを0.004 〜0.012 wt%を含む方向
性けい素鋼板用スラブを熱間圧延した後、1回又は中間
焼鈍を挟む2回の冷間圧延を施し、次いで脱炭焼鈍を施
した後、MgO を主体をとする焼鈍分離剤を塗布してか
ら、最終仕上焼鈍を施す一連の工程からなる方向性けい
素鋼板の製造方法において、スラブの含有するNと酸可
溶性Alについて酸可溶性Al(wt%)≧3.35×N(wt%)
とし、かつ上記焼鈍分離剤を塗布する工程において、Mg
O 100 重量部に対しTl化合物をTl換算で0.2 〜10重量
部、より望ましくは更にBi化合物をBi換算で0.2 〜10重
量部を添加して塗布することで、従来より極めて高磁束
密度かつ低鉄損の、フォルステライト被膜を有する方向
性けい素鋼板が製造できることがわかった。
From the above experiments, acid-soluble Al (sol.Al) was
After hot rolling a slab for grain-oriented silicon steel sheet containing 0.013 to 0.05 wt% and N of 0.004 to 0.012 wt%, it is subjected to one or two cold rollings with intermediate annealing, followed by decarburization annealing. After that, an annealing separator mainly composed of MgO is applied, and then a final finish annealing is performed. In a method for producing a grain-oriented silicon steel sheet, N and acid-soluble Al contained in the slab are subjected to acid treatment. Soluble Al (wt%) ≧ 3.35 × N (wt%)
And, in the step of applying the annealing separator, Mg
By adding and adding 0.2 to 10 parts by weight of a Tl compound in terms of Tl, and more preferably 0.2 to 10 parts by weight of a Bi compound in terms of Bi with respect to 100 parts by weight of O, extremely high magnetic flux density and low It was found that a grain-oriented silicon steel sheet having a forsterite coating with iron loss can be manufactured.

【0038】次に、焼鈍分離剤中に塩化物を添加する実
験を行った。 (実験5) C:0.068 wt%、Si:3.25wt%、sol.Al:
0.035 wt%、N:0.0090wt%、(sol.Al/N=3.89)、
Mn:0.072 wt%、Se:0.016 wt%、Sb:0.025 wt%及び
Cu:0.10wt%を含有し、残部は実質的にFeの組成からな
る方向性けい素鋼スラブを熱間圧延し、次いで冷間圧延
して最終板厚を0.23mmとした冷延板に、H2-H2O-N2 雰囲
気にて840 ℃で120 秒間の脱炭焼鈍を施した。その後、
表3に示すMgO 単体の焼鈍分離剤(条件No. 1)、MgO
に塩化物を添加した焼鈍分離剤(条件No. 2〜5)及び
MgO にTl化合物と塩化物とを添加した焼鈍分離剤(条件
No.6〜10)、MgO にTl化合物と塩化物とBi化合物と添
加した焼鈍分離剤(条件No.11〜15)をスラリーとして
塗布して乾燥させてから、最終仕上焼鈍は25%のN2を含
有するH2気流中で15℃/hr の昇温速度で1200℃まで昇温
し、H2雰囲気中で1200℃、5時間行った。この後、鋼板
表面を水洗し、表面状態を観察した。その結果を表3に
併記した。
Next, an experiment was conducted in which chloride was added to the annealing separator. (Experiment 5) C: 0.068 wt%, Si: 3.25 wt%, sol.Al:
0.035 wt%, N: 0.0090 wt%, (sol. Al / N = 3.89),
Mn: 0.072 wt%, Se: 0.016 wt%, Sb: 0.025 wt% and
Cu: 0.10 wt%, the remainder is hot rolled directional silicon steel slab substantially composed of Fe, then cold rolled into a cold rolled sheet with a final thickness of 0.23 mm, Decarburization annealing was performed at 840 ° C. for 120 seconds in an H 2 -H 2 ON 2 atmosphere. afterwards,
As shown in Table 3, MgO simple annealing separator (condition No. 1), MgO
Separating agent with chloride added to (Condition No. 2-5) and
Annealing separating agent (addition of Tl compound and chloride to MgO)
Nos. 6 to 10), an annealing separator (conditions Nos. 11 to 15) in which a Tl compound, a chloride and a Bi compound were added to MgO was applied as a slurry and dried, and the final finish annealing was performed with 25% N The temperature was raised to 1200 ° C. at a heating rate of 15 ° C./hr in an H 2 gas stream containing 2, and the operation was performed at 1200 ° C. for 5 hours in an H 2 atmosphere. Thereafter, the surface of the steel sheet was washed with water and the surface state was observed. The results are shown in Table 3.

【0039】[0039]

【表3】 [Table 3]

【0040】表3において条件No. 1では通常の酸化膜
(フォルステライト被膜)が生成した。また、No. 2〜
5では焼鈍分離剤中に塩化物を添加しても薄い酸化膜が
残存した。これに対して、塩化物とTl化合物又はTl化合
物及びBi化合物とを併存させた焼鈍分離剤を用いた条件
No. 6〜15では、鋼板表面が鏡面化していた。かかる条
件No. 6〜15の試料を歪取り焼鈍後に磁気特性の測定を
した結果を表3に併記したように、極めて高磁束密度で
低鉄損の値が得られていることが分かる。なお、条件N
o. 1〜5は全て二次再結晶不良であったので、値を記
さなかった。
In Table 3, under condition No. 1, a normal oxide film (forsterite film) was formed. No. 2
In No. 5, a thin oxide film remained even when chloride was added to the annealing separator. On the other hand, the condition using an annealing separator in which chloride and a Tl compound or a Tl compound and a Bi compound coexist was used.
In Nos. 6 to 15, the steel plate surface was mirror-finished. As shown in Table 3, the results of the measurement of the magnetic properties after strain relief annealing of the samples of Condition Nos. 6 to 15 are shown, and it can be seen that a value of low iron loss was obtained at an extremely high magnetic flux density. Note that condition N
o. No values were given for all of the samples 1 to 5 because of poor secondary recrystallization.

【0041】(実験6) C:0.070 wt%、Si:3.37wt
%、Mn:0.069 wt%、Se:0.019 wt%、Sb:0.026 wt
%、sol.Al:0.01〜0.05wt%、N:0.004 〜0.012 wt%
を含有し、残部は実質的にFeの組成からなる多数の方向
性けい素鋼スラブを熱間圧延し、次いで冷間圧延して最
終板厚0.23mmとした冷延板に、H2-H2O-N2 雰囲気中にて
840 ℃で120 秒の脱炭焼鈍を施した。その後、MgO にTl
2O3 を3重量部、CaCl2 を2重量部配合した焼鈍分離剤
をスラリーとして塗布して乾燥させてから、最終仕上焼
鈍は850 ℃、20時間窒素雰囲気中で保定し、引き続いて
水素75 vol%、窒素25 vol%の雰囲気中で20℃/hr の昇
温速度で1150℃まで昇温する二次再結晶焼鈍を行い、続
いて1200℃の水素雰囲気で5時間の純化焼鈍を行った。
この後、りん酸マグネシウムとコロイダルシリカを主成
分とするコーティングを施してから、得られた製品の磁
束密度(B8 値)及び鉄損(W17/50値)を測定した。
(Experiment 6) C: 0.070 wt%, Si: 3.37 wt%
%, Mn: 0.069 wt%, Se: 0.019 wt%, Sb: 0.026 wt%
%, Sol.Al: 0.01 to 0.05 wt%, N: 0.004 to 0.012 wt%
Containing, the remainder is hot-rolled a number of grain-oriented silicon steel slabs substantially composed of Fe, then cold-rolled into a cold-rolled sheet having a final sheet thickness of 0.23 mm, H 2 -H 2 ON 2 In an atmosphere
Decarburization annealing was performed at 840 ° C for 120 seconds. Then, Tl is added to MgO
An annealing separator containing 3 parts by weight of 2 O 3 and 2 parts by weight of CaCl 2 was applied as a slurry and dried, and then the final finish annealing was maintained at 850 ° C. for 20 hours in a nitrogen atmosphere. In the atmosphere of 25% vol% and 25% nitrogen, a secondary recrystallization annealing was performed at a heating rate of 20 ° C / hr to 1150 ° C, followed by a purification annealing for 5 hours in a hydrogen atmosphere at 1200 ° C. .
Then, after applying a coating containing magnesium phosphate and colloidal silica as main components, the magnetic flux density (B 8 value) and iron loss (W 17/50 value) of the obtained product were measured.

【0042】スラブの酸可溶性Al、N含有量と、B
8 値:W17/50値との関係を図7に示す。直線ab(sol.
Al/N=3.35)よりもsol.Al(%)/N(%)比が高い
側で高磁束密度、低鉄損が得られているのが分かる。
The acid-soluble Al and N contents of the slab and B
FIG. 7 shows the relationship between the 8 values: W 17/50 value. Straight line ab (sol.
It can be seen that high magnetic flux density and low iron loss are obtained on the side where the sol.Al (%) / N (%) ratio is higher than that of (Al / N = 3.35).

【0043】(実験7) C:0.071 wt%、Si:3.34wt
%、Mn:0.069 wt%、Se:0.019 wt%、Sb:0.025 wt
%、Cu:0.10wt%、sol.Al:0.01〜0.05wt%、N:0.00
4 〜0.012 wt%を含有し、残部は実質的にFeの組成から
なる多数の方向性けい素鋼スラブを熱間圧延し、次いで
冷間圧延により最終板厚を0.23mmとした冷延板に、H2-H
2O-N2 雰囲気中にて840 ℃で120 秒間の脱炭焼鈍を施し
た。その後、MgO にTl2SO4を3重量部、Bi2O3 を3重量
部、MgCl2 を3重量、それぞれ配合した焼鈍分離剤をス
ラリーとして塗布して乾燥させてから、最終仕上焼鈍は
850 ℃で20時間、窒素雰囲気中で保定し、引き続いて水
素75 vol%、窒素25 vol%の雰囲気中で15℃/hr の昇温
速度で1150℃まで焼鈍する二次再結晶焼鈍を行い、続い
て1200℃の水素雰囲気で5時間の純化焼鈍行った。この
後、りん酸マグネシウムとコロイダルシリカを主成分と
するコーティングを施してから、得られた製品の磁束密
度(B8 値)及び鉄損(W17/50値)を測定した。
(Experiment 7) C: 0.071 wt%, Si: 3.34 wt
%, Mn: 0.069 wt%, Se: 0.019 wt%, Sb: 0.025 wt%
%, Cu: 0.10 wt%, sol. Al: 0.01-0.05 wt%, N: 0.00
A number of directional silicon steel slabs containing 4 to 0.012 wt%, with the balance being substantially Fe, are hot-rolled and then cold-rolled into cold-rolled sheets with a final thickness of 0.23 mm. , H 2 -H
Decarburization annealing was performed at 840 ° C. for 120 seconds in a 2 ON 2 atmosphere. Thereafter, 3 parts by weight of Tl 2 SO 4 , 3 parts by weight of Bi 2 O 3, and 3 parts by weight of MgCl 2 were added to MgO, and an annealing separator mixed with each was applied as a slurry and dried, and then the final finish annealing was performed.
Hold at 850 ° C. for 20 hours in a nitrogen atmosphere, and then perform a secondary recrystallization annealing to anneal to 1150 ° C. at a rate of 15 ° C./hr in an atmosphere of 75 vol% hydrogen and 25 vol% nitrogen, Subsequently, purification annealing was performed in a hydrogen atmosphere at 1200 ° C. for 5 hours. Then, after applying a coating containing magnesium phosphate and colloidal silica as main components, the magnetic flux density (B 8 value) and iron loss (W 17/50 value) of the obtained product were measured.

【0044】スラブの酸可溶性Al、N含有量と、B8
及びW17/50値との関係を図8に示す。同図から、直線a
b(sol.Al(%)/N(%)=3.35)よりもsol.Al
(%)/N(%)比が高い側で高磁束密度、低鉄損が得
られていることが分かる。
FIG. 8 shows the relationship between the acid-soluble Al and N contents of the slab and the B 8 value and W 17/50 value. From the figure, the straight line a
b (sol. Al (%) / N (%) = 3.35)
It can be seen that high magnetic flux density and low iron loss are obtained on the side where the (%) / N (%) ratio is high.

【0045】以上の実験から、酸可溶性Al(sol.Al)を
0.013 〜0.05wt%、窒素を0.004 〜0.012 wt%を含む方
向性けい素鋼板用スラブを熱間圧延した後、1回又は中
間焼鈍を挟む2回以上の冷間圧延を施し、次いで脱炭焼
鈍を施したのち、MgO を主体とする焼鈍分離剤を塗布し
てから、最終仕上焼鈍を施す一連の工程からなる方向性
けい素鋼板の製造方法において、酸可溶性Al(%)≧3.
35×窒素(%)とし、かつ上記焼鈍分離剤の塗布工程に
て、MgO 100 重量部に対しTl化合物をTl換算で0.2 〜10
重量部及び塩化物を0.2 〜15重量部、更に必要に応じて
Bi化合物をBi換算で0.2 〜10重量部をそれぞれ添加して
焼鈍分離剤を塗布することで、仕上焼鈍後の鋼板表面が
鏡面のように平滑化された、従来より極めて高磁束密度
かつ低鉄損の方向性けい素鋼板が製造できることが分か
った。
From the above experiments, acid-soluble Al (sol.
After hot rolling a slab for a grain oriented silicon steel sheet containing 0.013 to 0.05 wt% and nitrogen of 0.004 to 0.012 wt%, it is subjected to one or two or more cold rollings with intermediate annealing, and then decarburizing annealing After applying an annealing separator mainly composed of MgO, a method for producing a grain-oriented silicon steel sheet comprising a series of steps of applying a final finish annealing is carried out in an acid-soluble Al (%) ≧ 3.
35 × Nitrogen (%), and in the step of applying the annealing separator, the Tl compound was converted to 0.2 to 10 in terms of Tl based on 100 parts by weight of MgO.
Parts by weight and 0.2 to 15 parts by weight of chloride, further if necessary
By adding the Bi compound in an amount of 0.2 to 10 parts by weight in terms of Bi, and applying the annealing separator, the steel sheet surface after finish annealing is smoothened like a mirror surface. It was found that a loss-oriented silicon steel sheet could be manufactured.

【0046】この発明の対象とするけい素鋼素材の成分
組成については、酸可溶性Al(sol.Al)を0.013 〜0.05
wt%、Nを0.004 〜0.012 wt%含んでその比(sol.Al
(%)/N(%))を3.35以上とする。
Regarding the composition of the silicon steel material to which the present invention is applied, acid-soluble Al (sol.
wt% and N in the ratio of 0.004 to 0.012 wt% (sol.Al
(%) / N (%)) is 3.35 or more.

【0047】酸可溶性Al(sol.Al)及びNは、AlN イン
ヒビターを形成させるために必要である。Al量はN量に
応じて決定され、本発明においては「Sol.Al (%) /N
(%) 」を3.35以上とする。Nは少なすぎるとAlN イン
ヒビター量が不足し、多すぎるとブリスターと呼ばれる
表面欠陥が製品に多発するため、0.004 〜0.012 wt%の
範囲とした。
Acid soluble Al (sol. Al) and N are required to form AlN inhibitors. The amount of Al is determined according to the amount of N. In the present invention, “Sol. Al (%) / N
(%) ”Is 3.35 or more. If the N content is too small, the amount of the AlN inhibitor is insufficient, and if the N content is too large, surface defects called blisters occur frequently in the product. Therefore, the content of N is set in the range of 0.004 to 0.012 wt%.

【0048】上記したAl量及びN量の他は、方向性けい
素鋼板として通常用いられている範囲のものを用いるこ
とができ、例えば、C:0.02〜0.10wt%、Si:2.0 〜4.
5 wt%、Mn:0.02〜0.20wt%を含み、かつS及びSeのう
ち少なくとも一方を単独又と合計量で0.010 〜0.040 wt
%を含む組成が好ましい。その他、必要に応じてSb0.01
〜0.20wt%、Cu:0.02〜0.20wt%、Mo:0.01〜0.05wt
%、Sn:0.02〜0.30wt%、Ge:0.02〜0.30wt%、Ni:0.
01〜0.20wt%を含むことができる。
In addition to the above-mentioned Al content and N content, those in the range usually used as a grain-oriented silicon steel sheet can be used. For example, C: 0.02 to 0.10 wt%, Si: 2.0 to 4.
5 wt%, Mn: 0.02 to 0.20 wt%, and at least one of S and Se alone or in a total amount of 0.010 to 0.040 wt%
% Is preferred. In addition, if necessary, Sb0.01
~ 0.20wt%, Cu: 0.02 ~ 0.20wt%, Mo: 0.01 ~ 0.05wt
%, Sn: 0.02 to 0.30 wt%, Ge: 0.02 to 0.30 wt%, Ni: 0.
01 to 0.20 wt%.

【0049】Cは、熱間圧延時のα−γ変態を利用して
結晶組織の改善を行うために必要な成分であり、0.02wt
%に満たないと良好な一次再結晶組織が得られず、一方
0.10wt%を超えると脱炭が難しくなって脱炭不良となり
磁気特性が劣化するので、0.02〜0.10wt%程度が好まし
い。
C is a component necessary for improving the crystal structure by utilizing the α-γ transformation at the time of hot rolling.
%, A good primary recrystallized structure cannot be obtained.
If it exceeds 0.10 wt%, decarburization becomes difficult, decarburization becomes poor, and magnetic properties deteriorate, so that about 0.02 to 0.10 wt% is preferable.

【0050】Siは、製品の電気抵抗を高め、渦電流損を
低減させる上で必要な成分であり、2.0 wt%に満たない
と最終仕上焼鈍中にα−γ変態によって結晶方位が損な
われ、4.5 wt%を超えると冷延性に問題があるために、
2.0 〜4.5 wt%の程度が好ましい。
Si is a component necessary to increase the electrical resistance of the product and reduce the eddy current loss. If the content is less than 2.0 wt%, the crystal orientation is impaired by α-γ transformation during final finish annealing, If it exceeds 4.5 wt%, there is a problem with cold rolling.
2.0 to 4.5 wt% is preferred.

【0051】MnとSe及び/又はSとは、インヒビターと
して機能するもので、Mn量が0.02%未満又はS,Seの単
独あるいは合計量がト0.010 wt%未満であると、インヒ
ビター機能が不十分であり、一方、Mn量が0.20wt%を超
え又はS,Seの単独あるいは合計量が0.040 wt%を超え
るとスラブ加熱に要する温度が高くなり過ぎて実用的で
はないので、Mnは0.02〜0.20wt%、S又はSeは単独又は
合計量めとして0.010〜0.040 wt%とすることが好まし
い。
Mn and Se and / or S function as an inhibitor. If the amount of Mn is less than 0.02% or the amount of S or Se alone or the total amount is less than 0.010% by weight, the inhibitor function is insufficient. On the other hand, if the amount of Mn exceeds 0.20 wt% or the amount of S or Se alone or the total amount exceeds 0.040 wt%, the temperature required for slab heating becomes too high and is not practical, so that Mn is 0.02 to 0.20%. It is preferable that wt% and S or Se be used alone or in a total amount of 0.010 to 0.040 wt%.

【0052】更に、磁束密度を向上させるために、Sb、
Cu、Ge、Niを添加することが可能である。Sbは、0.20%
を超えると脱炭性か悪くなり、0.01wt%に満たないと効
果がないので0.01〜0.20%が好ましい。Cuは0.20wt%を
超えると酸洗性が悪化し、0.01wt%に満たないと効果が
ないので0.01〜0.20wt%が好ましい。Sn,ゲルマニウム
は0.30wt%を超えると良好な一次再結晶組織が得られ
ず、0.02wt%未満では効果がないので0.02〜0.30%が好
ましい。Niは0.20wt%を超えると熱間強度が低下し、0.
01wt%未満では効果がないので0.01〜0.20wt%が好まし
い。
Further, in order to improve the magnetic flux density, Sb,
Cu, Ge, and Ni can be added. Sb is 0.20%
When the content exceeds 0.01%, the decarburization property becomes poor, and when the content is less than 0.01% by weight, there is no effect. If the content of Cu exceeds 0.20 wt%, the pickling property deteriorates, and if it is less than 0.01 wt%, there is no effect, so 0.01 to 0.20 wt% is preferable. If the content of Sn and germanium exceeds 0.30 wt%, a good primary recrystallization structure cannot be obtained, and if the content is less than 0.02 wt%, there is no effect, so 0.02 to 0.30% is preferable. If Ni exceeds 0.20 wt%, the hot strength decreases, and
If the content is less than 01 wt%, there is no effect, so 0.01 to 0.20 wt% is preferable.

【0053】表面性状を改善するためにMoを添加でき
る。Mo量が0.05wt%を超えると脱炭性が悪くなり、一方
0.01wt%に満たないと効果がないので0.01〜0.05wt%が
好ましい。
Mo can be added to improve the surface properties. If the Mo content exceeds 0.05 wt%, the decarburization property will deteriorate,
If the amount is less than 0.01 wt%, there is no effect, so 0.01 to 0.05 wt% is preferable.

【0054】この発明の対象としている方向性けい素鋼
板の製造工程においては、従来から用いられている製鋼
法で得られた溶鋼を連続鋳造法あるいは造塊法で鋳造
し、必要に応じて分塊圧延工程を挟んでスラブを得、続
いて熱間圧延をし、必要に応じて熱延板焼鈍を行った
後、1回又は中間焼鈍を挟む2回以上の冷間圧延により
最終板厚の冷延板を得る。
In the manufacturing process of the grain-oriented silicon steel sheet, which is the object of the present invention, molten steel obtained by a conventionally used steelmaking method is cast by a continuous casting method or an ingot casting method, and divided if necessary. Obtain a slab across the block rolling process, then hot-roll, and if necessary, perform hot-rolled sheet annealing, and then cold roll the final sheet thickness once or twice or more with intermediate annealing Obtain a cold rolled sheet.

【0055】次いで、脱炭焼鈍及び焼鈍分離剤の塗布を
施すわけであるが、後者は既に述べたこの発明に従う条
件により、Tl化合物をTl換算で0.2 〜10重量部添加した
焼鈍分離剤を用いる。また、この焼鈍分離剤は、MgO 10
0 重量部に対しTl化合物をTl換算で0.2 〜10重量部、塩
化物を0.2 〜15重量部、それぞれ添加した焼鈍分離剤で
あっても良く、更に、MgO 100 重量部に対しTl化合物を
Tl換算で0.2 〜10重量部、Bi化合物をBi換算で0.2 〜10
重量部、それぞれ添加した焼鈍分離剤や、MgO100 重量
部に対しTl化合物をTl換算で0.2 〜10重量部、塩化物を
0.2 〜15重量部及びBi化合物をBi換算で0.2 〜10重量
部、それぞれ添加した焼鈍分離剤であっても良い。
Next, decarburizing annealing and application of an annealing separator are performed. The latter uses an annealing separator in which a Tl compound is added in an amount of 0.2 to 10 parts by weight in terms of Tl under the conditions according to the invention described above. . Also, this annealing separator is made of MgO 10
0 to 10 parts by weight of the Tl compound and 0.2 to 15 parts by weight of chloride, and 0.2 to 15 parts by weight of chloride may be added to the annealing separator, and the Tl compound may be added to 100 parts by weight of MgO.
0.2 to 10 parts by weight in terms of Tl, 0.2 to 10 parts in terms of Bi in Bi compound
Parts by weight, 0.2 to 10 parts by weight of a Tl compound and 100 parts by weight of MgO per 100 parts by weight of the added annealing separator and MgO.
An annealing separator may be added in which 0.2 to 15 parts by weight of the Bi compound and 0.2 to 10 parts by weight of the Bi compound in terms of Bi are added.

【0056】Tl化合物はTl換算でMgO 100 重量部に対し
0.2 重量部に満たないと磁性改善効果がなく、一方10重
量部を超えると、それ以上添加量をましても磁性向上効
果は得られないので、上記の範囲に限定した。塩化物は
MgO 100 重量部に対し0.2 重量部に満たないとTl化合物
との併用で鋼板を鏡面化させる効果にとぼしく、一方15
重量部を超えると仕上焼鈍後の鋼板表面粗度がかえって
粗くなるので、上記の範囲限定した。Bi化合物はBi換算
でMgO 重量部に対し0.2 重量部に満たないと磁性改善効
果が少なく、一方10重量部を超えるとそれ以上添加量を
増しても磁性向上効果は得られないので上記の範囲に限
定した。
The Tl compound was converted to 100 parts by weight of MgO in terms of Tl.
When the amount is less than 0.2 part by weight, the effect of improving magnetism is not obtained. On the other hand, when the amount exceeds 10 parts by weight, the effect of improving magnetism cannot be obtained even if the added amount is further increased. Chloride
If the amount is less than 0.2 parts by weight with respect to 100 parts by weight of MgO, the effect of using a Tl compound together to make the steel sheet mirror-like is remarkable, while 15
If the amount exceeds part by weight, the surface roughness of the steel sheet after finish annealing becomes rather coarse, so the above range is limited. If the Bi compound is less than 0.2 parts by weight of MgO in terms of Bi, the effect of improving the magnetism is small if it is less than 0.2 parts by weight, while if it exceeds 10 parts by weight, the effect of improving the magnetism cannot be obtained even if the added amount is further increased. Limited to.

【0057】この発明におけるTl化合物としては、例え
ばTl2SO4,Tl2O3,TlNO3等が、また、Bi化合物としては、
Bi2O3,Bi2S3,Bi2(NO3)3,Bi2(SO4)3 等が、塩化物として
はMgCl2, CaCl2, KCl 等が使用可能である。
As the Tl compound in the present invention, for example, Tl 2 SO 4 , Tl 2 O 3 , TlNO 3 and the like, and as the Bi compound,
Bi 2 O 3 , Bi 2 S 3 , Bi 2 (NO 3 ) 3 , Bi 2 (SO 4 ) 3 and the like, and chlorides such as MgCl 2 , CaCl 2 and KCl can be used.

【0058】なお、焼鈍分離剤の主成分であるMgO は通
常品で良く、更に磁気特性、被膜特性を改善するために
他のTiO2やSr化合物等を添加しても良い。
It is to be noted that MgO, which is a main component of the annealing separator, may be a normal product, and may further contain other TiO 2 or Sr compound or the like in order to improve magnetic properties and coating properties.

【0059】その後、1000〜1200℃で3〜50時間程度の
二次再結晶焼鈍及び純化焼鈍を行って製品板とする。そ
の後、更にりん酸塩系の絶縁コーティング、好ましくは
張力を付与する絶縁コーティングを施すことは有利であ
る。また、最終冷延後、最終仕上焼鈍後、又は絶縁コー
ティング後に既知の磁区細分化処理を行うことは、更な
る鉄損の低減に有効である。
Thereafter, secondary recrystallization annealing and purification annealing are performed at 1000 to 1200 ° C. for about 3 to 50 hours to obtain a product sheet. Thereafter, it is advantageous to apply a further phosphate-based insulating coating, preferably an insulating coating that imparts tension. Performing a known magnetic domain refining treatment after final cold rolling, final finish annealing, or after insulation coating is effective for further reducing iron loss.

【0060】[0060]

【実施例】【Example】

(実施例1)C:0.075 wt%、Si:3.41wt%、Mn:0.06
7 wt%、Se:0.019 wt%、sol.Al:0.035 wt%、N:0.
095 wt%、(sol.Al/N=3.68)、Sb:0.027 wt%を含
み、残部は実質的にFeの組成からなるけい素鋼スラブ
を、1430℃で30分間加熱後、熱間圧延を施して板厚2.2
mmの熱延板とした。次いで1000℃、1分間の熱延板焼鈍
を施した後、冷間圧延にて板厚1.5 mmとし、更に1100
℃、2分間の中間焼鈍を行った後、冷間圧延を施して最
終板厚0.23mmに仕上げた。次いでH2-H2O-N2 雰囲気中に
て840 ℃、・2分間の脱炭焼鈍を行った。その後、表4
に示す組成の焼鈍分離剤を鋼板表面に塗布してから、85
0 ℃、20時間、窒素雰囲気中で保定し、引き続いて水素
75 vol%、窒素25 vol%の雰囲気中で20℃/hr の昇温速
度で1150℃まで昇温する二次再結晶焼鈍を行い、続いて
1200℃の水素雰囲気中で5時間の純化焼鈍を行った。こ
の後、りん酸マグネシウムとコロイダルシリカを主成分
とするコーティングを施した。
(Example 1) C: 0.075 wt%, Si: 3.41 wt%, Mn: 0.06
7 wt%, Se: 0.019 wt%, sol. Al: 0.035 wt%, N: 0.
A silicon steel slab containing 095 wt%, (sol.Al/N = 3.68), Sb: 0.027 wt% and the balance substantially consisting of Fe was heated at 1430 ° C for 30 minutes, and then hot-rolled. 2.2 thickness
mm hot rolled sheet. Next, after subjecting the hot-rolled sheet to annealing at 1000 ° C. for 1 minute, the sheet was cold-rolled to a thickness of 1.5 mm, and further 1100
After performing intermediate annealing at 2 ° C. for 2 minutes, cold rolling was performed to finish to a final thickness of 0.23 mm. Then, decarburization annealing was performed at 840 ° C. for 2 minutes in an H 2 —H 2 ON 2 atmosphere. Then, Table 4
After applying an annealing separator of the composition shown in
Hold at 0 ° C for 20 hours in a nitrogen atmosphere.
A second recrystallization annealing is performed in an atmosphere of 75 vol% and nitrogen at 25 vol% at a heating rate of 20 ° C / hr to 1150 ° C, followed by annealing.
Purification annealing was performed in a hydrogen atmosphere at 1200 ° C. for 5 hours. Thereafter, a coating containing magnesium phosphate and colloidal silica as main components was applied.

【0061】こうして得られた製品の磁界800 A/m にお
ける磁束密度(B8 値)、1.7 T、50Hzにおける鉄損
(W17/50値)を調査した。これらの結果を表4に併記す
る。この発明に従う条件で良好な磁気特性の製品が得ら
れていることが分かる。
The magnetic flux density (B 8 value) at a magnetic field of 800 A / m and the iron loss at 1.7 T and 50 Hz (W 17/50 value) of the obtained product were investigated. Table 4 also shows these results. It can be seen that a product having good magnetic properties was obtained under the conditions according to the present invention.

【0062】[0062]

【表4】 [Table 4]

【0063】(実施例2)C:0.066 wt%、Si:3.27wt
%、Mn:0.068 wt%、Se:0.021 wt%、sol.Al:0.026
wt%、N:0.075 wt%、(sol.Al/N=3.47)、Sb:0.
025 wt%、Cu:0.10 wt %を含み、残部は実質的にFeの
組成からなるけい素鋼スラブを、1430℃で30分間加熱
後、熱間圧延を施し次いで冷間圧延を施して最終板厚0.
23mmに仕上げた。次いでH2-H2O-N2 雰囲気中にて840
℃、・2分間の脱炭焼鈍を行った。その後、表5に示す
組成の焼鈍分離剤を鋼板表面に塗布してから、850 ℃、
20時間、窒素雰囲気中で保定し、引き続いて水素65 vol
%、窒素35 vol%の雰囲気中で15℃/hr の昇温速度で11
50℃まで昇温する二次再結晶焼鈍を行い、続いて1200℃
の水素雰囲気中で5時間の純化焼鈍を行った。この後、
りん酸マグネシウムとコロイダルシリカを主成分とする
コーティングを施した。
Example 2 C: 0.066 wt%, Si: 3.27 wt
%, Mn: 0.068 wt%, Se: 0.021 wt%, sol.Al: 0.026
wt%, N: 0.075 wt%, (sol. Al / N = 3.47), Sb: 0.
A silicon steel slab containing 025 wt% and Cu: 0.10 wt%, with the balance substantially consisting of Fe, was heated at 1430 ° C. for 30 minutes, hot-rolled, and then cold-rolled to obtain a final sheet. Thickness 0.
Finished to 23mm. Then 840 in H 2 -H 2 ON 2 atmosphere
Decarburization annealing for 2 minutes at ℃. Thereafter, an annealing separator having the composition shown in Table 5 was applied to the surface of the steel sheet.
Hold for 20 hours in a nitrogen atmosphere, followed by 65 vol hydrogen
% And an atmosphere of 35 vol% nitrogen at a heating rate of 15 ° C / hr
Perform secondary recrystallization annealing to raise the temperature to 50 ° C, then 1200 ° C
For 5 hours in a hydrogen atmosphere. After this,
A coating mainly composed of magnesium phosphate and colloidal silica was applied.

【0064】こうして得られた製品について実施例1と
同様の調査を行った。その結果を表5に併記する。この
発明に従う条件で良好な磁気特性の製品が得られている
ことが分かる。
The product thus obtained was subjected to the same investigation as in Example 1. Table 5 also shows the results. It can be seen that a product having good magnetic properties was obtained under the conditions according to the present invention.

【0065】[0065]

【表5】 [Table 5]

【0066】(実施例3)C:0.076 wt%、Si:3.39wt
%、Mn:0.071 wt%、Se:0.020 wt%、sol.Al:0.023
wt%、N:0.065 wt%、(sol.Al/N=3.54)、Sb:0.
025 wt%及びCu:0.10wt%を含み、残部は実質的にFeの
組成からなるけい素鋼スラブを、1430℃で30分間加熱
後、熱間圧延を施し、次いで冷間圧延を施して最終板厚
0.23mmに仕上げた。その後、公知のエッチング法で鋼板
板厚方向に幅150 μm 、深さ20μm の溝を、鋼板の長手
方向に3mm間隔で導入し、磁区細分化処理を行った。次
いでH2-H2O-N2 雰囲気中にて840 ℃、・2分間の脱炭焼
鈍を行った。その後、表6に示す組成の焼鈍分離剤を鋼
板表面に塗布してから、850 ℃、20時間、窒素雰囲気中
で保定し、引き続いて水素80 vol%、窒素20 vol%の雰
囲気中で15℃/hr の昇温速度で1150℃まで昇温する二次
再結晶焼鈍を行い、続いて1200℃の水素雰囲気中で5時
間の純化焼鈍を行った。この後、りん酸マグネシウムと
コロイダルシリカを主成分とするコーティングを施し
た。
Example 3 C: 0.076 wt%, Si: 3.39 wt
%, Mn: 0.071 wt%, Se: 0.020 wt%, sol.Al: 0.023
wt%, N: 0.065 wt%, (sol. Al / N = 3.54), Sb: 0.
A silicon steel slab containing 025 wt% and Cu: 0.10 wt%, with the balance substantially consisting of Fe, was heated at 1430 ° C. for 30 minutes, hot-rolled, and then cold-rolled. Board thickness
Finished to 0.23mm. Thereafter, grooves having a width of 150 μm and a depth of 20 μm were introduced in the thickness direction of the steel sheet at intervals of 3 mm in the longitudinal direction of the steel sheet by a known etching method to perform magnetic domain refining treatment. Then, decarburization annealing was performed at 840 ° C. for 2 minutes in an H 2 —H 2 ON 2 atmosphere. Thereafter, an annealing separator having the composition shown in Table 6 was applied to the surface of the steel sheet, held at 850 ° C. for 20 hours in a nitrogen atmosphere, and subsequently kept at 15 ° C. in an atmosphere of 80 vol% hydrogen and 20 vol% nitrogen. The secondary recrystallization annealing was performed by raising the temperature to 1150 ° C. at a heating rate of / hr, and then the purification annealing was performed in a hydrogen atmosphere at 1200 ° C. for 5 hours. Thereafter, a coating containing magnesium phosphate and colloidal silica as main components was applied.

【0067】こうして得られた製品について実施例1と
同様の調査を行った。その結果を表6に併記する。この
発明に従う条件で良好な磁気特性の製品が得られている
ことが分かる。
The same investigation as in Example 1 was conducted on the product thus obtained. The results are shown in Table 6. It can be seen that a product having good magnetic properties was obtained under the conditions according to the present invention.

【0068】[0068]

【表6】 [Table 6]

【0069】(実施例4)C:0.075 wt%、Si:3.41wt
%、Mn:0.067 wt%、Se:0.019 wt%、sol.Al:0.035
wt%、N:0.095 wt%、(sol.Al/N=3.68)、Sb:0.
027 wt%を含み、残部は実質的にFeの組成からなるけい
素鋼スラブを、1430℃で30分間加熱後、熱間圧延を施し
て板厚2.2 mmの熱延板とした。次いで1000℃、1分間の
熱延板焼鈍を施した後、冷間圧延にて板厚1.5 mmとし、
更に1100℃、2分間の中間焼鈍を行った後、冷間圧延を
施して最終板厚0.23mmに仕上げた。次いでH2-H2O-N2
囲気中にて840 ℃、・2分間の脱炭焼鈍を行った。その
後、表7に示す組成の焼鈍分離剤を鋼板表面に塗布して
から、850 ℃、20時間、窒素雰囲気中で保定し、引き続
いて水素75 vol%、窒素25 vol%の雰囲気中で20℃/hr
の昇温速度で1150℃まで昇温する二次再結晶焼鈍を行
い、続いて1200℃の水素雰囲気中で5時間の純化焼鈍を
行った。この後、りん酸マグネシウムとコロイダルシリ
カを主成分とするコーティングを施した。
Example 4 C: 0.075 wt%, Si: 3.41 wt
%, Mn: 0.067 wt%, Se: 0.019 wt%, sol.Al: 0.035
wt%, N: 0.095 wt%, (sol. Al / N = 3.68), Sb: 0.
A silicon steel slab containing 027 wt% and the balance substantially consisting of Fe was heated at 1430 ° C. for 30 minutes, and then subjected to hot rolling to obtain a hot-rolled sheet having a sheet thickness of 2.2 mm. Next, after subjecting the hot-rolled sheet annealing to 1000 ° C. for 1 minute, the sheet thickness was reduced to 1.5 mm by cold rolling.
Further, after intermediate annealing at 1100 ° C. for 2 minutes, cold rolling was performed to finish to a final thickness of 0.23 mm. Then, decarburization annealing was performed at 840 ° C. for 2 minutes in an H 2 —H 2 ON 2 atmosphere. Thereafter, an annealing separator having the composition shown in Table 7 was applied to the surface of the steel sheet, and kept at 850 ° C. for 20 hours in a nitrogen atmosphere. Subsequently, the steel was kept at 20 ° C. in an atmosphere of 75 vol% hydrogen and 25 vol% nitrogen. / hr
Was carried out at a heating rate of 1150 ° C., followed by purifying annealing in a hydrogen atmosphere at 1200 ° C. for 5 hours. Thereafter, a coating containing magnesium phosphate and colloidal silica as main components was applied.

【0070】こうして得られた製品の磁界800 A/m にお
ける磁束密度(B8 値)、1.7 T、50Hzにおける鉄損
(W17/50値)を調査した。これらの結果を表7に併記す
る。この発明に従う条件で良好な磁気特性の製品が得ら
れていることが分かる。
The magnetic flux density (B 8 value) at a magnetic field of 800 A / m and the iron loss at 1.7 T and 50 Hz (W 17/50 value) of the product thus obtained were investigated. Table 7 also shows these results. It can be seen that a product having good magnetic properties was obtained under the conditions according to the present invention.

【0071】[0071]

【表7】 [Table 7]

【0072】(実施例5)C:0.066 wt%、Si:3.27wt
%、Mn:0.068 wt%、Se:0.021 wt%、sol.Al:0.026
wt%、N:0.075 wt%、(sol.Al/N=3.47)、Sb:0.
025 wt%、Cu:0.10 wt %を含み、残部は実質的にFeの
組成からなるけい素鋼スラブを、1430℃で30分間加熱
後、熱間圧延を施し次いで冷間圧延を施して最終板厚0.
23mmに仕上げた。次いでH2-H2O-N2 雰囲気中にて840
℃、・2分間の脱炭焼鈍を行った。その後、表8に示す
組成の焼鈍分離剤を鋼板表面に塗布してから、850 ℃、
20時間、窒素雰囲気中で保定し、引き続いて水素65 vol
%、窒素35 vol%の雰囲気中で15℃/hr の昇温速度で11
50℃まで昇温する二次再結晶焼鈍を行い、続いて1200℃
の水素雰囲気中で5時間の純化焼鈍を行った。この後、
りん酸マグネシウムとコロイダルシリカを主成分とする
コーティングを施した。
Example 5 C: 0.066 wt%, Si: 3.27 wt%
%, Mn: 0.068 wt%, Se: 0.021 wt%, sol.Al: 0.026
wt%, N: 0.075 wt%, (sol. Al / N = 3.47), Sb: 0.
A silicon steel slab containing 025 wt% and Cu: 0.10 wt%, with the balance substantially consisting of Fe, was heated at 1430 ° C. for 30 minutes, hot-rolled, and then cold-rolled to obtain a final sheet. Thickness 0.
Finished to 23mm. Then 840 in H 2 -H 2 ON 2 atmosphere
Decarburization annealing for 2 minutes at ℃. Thereafter, an annealing separator having the composition shown in Table 8 was applied to the surface of the steel sheet.
Hold for 20 hours in a nitrogen atmosphere, followed by 65 vol hydrogen
% And an atmosphere of 35 vol% nitrogen at a heating rate of 15 ° C / hr
Perform secondary recrystallization annealing to raise the temperature to 50 ° C, then 1200 ° C
For 5 hours in a hydrogen atmosphere. After this,
A coating mainly composed of magnesium phosphate and colloidal silica was applied.

【0073】こうして得られた製品について実施例4と
同様の調査を行った。その結果を表8に併記する。この
発明に従う条件で良好な磁気特性の製品が得られている
ことが分かる。
The product thus obtained was subjected to the same investigation as in Example 4. Table 8 also shows the results. It can be seen that a product having good magnetic properties was obtained under the conditions according to the present invention.

【0074】[0074]

【表8】 [Table 8]

【0075】(実施例6)C:0.076 wt%、Si:3.39wt
%、Mn:0.071 wt%、Se:0.020 wt%、sol.Al:0.023
wt%、N:0.065 wt%、(sol.Al/N=3.54)、Sb:0.
025 wt%、Cu:0.1 を含み、残部は実質的にFeの組成か
らなるけい素鋼スラブを、1430℃で30分間加熱後、熱間
圧延を施し、次いで冷間圧延を施して最終板厚0.23mmに
仕上げた。その後、公知のエッチング法で鋼板板厚方向
に幅150 μm 、深さ20μm の溝を、鋼板の長手方向に3
mm間隔で導入し、磁区細分化処理を行った。次いでH2-H
2O-N2 雰囲気中にて840 ℃、・2分間の脱炭焼鈍を行っ
た。その後、表9に示す組成の焼鈍分離剤を鋼板表面に
塗布してから、850 ℃、20時間、窒素雰囲気中で保定
し、引き続いて水素80 vol%、窒素20 vol%の雰囲気中
で15℃/hr の昇温速度で1150℃まで昇温する二次再結晶
焼鈍を行い、続いて1200℃の水素雰囲気中で5時間の純
化焼鈍を行った。この後、りん酸マグネシウムとコロイ
ダルシリカを主成分とするコーティングを施した。
(Example 6) C: 0.076 wt%, Si: 3.39 wt
%, Mn: 0.071 wt%, Se: 0.020 wt%, sol.Al: 0.023
wt%, N: 0.065 wt%, (sol. Al / N = 3.54), Sb: 0.
A silicon steel slab containing 025 wt%, Cu: 0.1 and the balance substantially consisting of Fe is heated at 1430 ° C. for 30 minutes, subjected to hot rolling, and then subjected to cold rolling to obtain a final thickness. Finished to 0.23mm. After that, a groove having a width of 150 μm and a depth of 20 μm is formed in the longitudinal direction of the steel sheet by a known etching method.
It was introduced at an interval of mm, and a magnetic domain refining treatment was performed. Then H 2 -H
Decarburization annealing was performed at 840 ° C. for 2 minutes in a 2 ON 2 atmosphere. Thereafter, an annealing separator having the composition shown in Table 9 was applied to the surface of the steel sheet, held at 850 ° C. for 20 hours in a nitrogen atmosphere, and subsequently heated at 15 ° C. in an atmosphere of 80 vol% hydrogen and 20 vol% nitrogen. The secondary recrystallization annealing was performed by raising the temperature to 1150 ° C. at a heating rate of / hr, and then the purification annealing was performed in a hydrogen atmosphere at 1200 ° C. for 5 hours. Thereafter, a coating containing magnesium phosphate and colloidal silica as main components was applied.

【0076】こうして得られた製品について実施例4と
同様の調査を行った。その結果を表9に併記する。この
発明に従う条件で良好な磁気特性の製品が得られている
ことが分かる。
The same investigation as in Example 4 was conducted on the product thus obtained. Table 9 also shows the results. It can be seen that a product having good magnetic properties was obtained under the conditions according to the present invention.

【0077】[0077]

【表9】 [Table 9]

【0078】[0078]

【発明の効果】この発明によれば、従来は二次再結晶不
良となっていた如き成分の素材を用いて、磁気特性が極
めて優れた方向性けい素鋼板を安定して生産することが
できる。また、塩化物を添加した焼鈍分離剤を使用する
場合にあっては、仕上焼鈍後の鋼板表面が鏡面のように
平滑化された従来より極めて高磁束密度かつ低鉄損の方
向性けい素鋼板が容易に製造できる。
According to the present invention, it is possible to stably produce a grain-oriented silicon steel sheet having extremely excellent magnetic properties by using a material having a component which has conventionally failed secondary recrystallization. . In addition, when using an annealing separator containing chloride, the oriented silicon steel sheet has a much higher magnetic flux density and lower iron loss than the conventional steel sheet, in which the steel sheet surface after finish annealing is smoothened like a mirror. Can be easily manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Tl化合物を無添加の焼鈍分離剤を用いた場合の
仕上焼鈍後の金属組織写真である。
FIG. 1 is a photograph of a metal structure after finish annealing when an annealing separator containing no Tl compound is used.

【図2】Tl2SO4を3重量部添加した焼鈍分離剤を用いた
場合の仕上焼鈍後の二次再結晶粒を示す金属組織写真で
ある。
FIG. 2 is a microstructure photograph showing secondary recrystallized grains after finish annealing when an annealing separator containing 3 parts by weight of Tl 2 SO 4 is used.

【図3】Tl化合物を無添加の焼鈍分離剤を用いた場合の
仕上焼鈍後の二次再結晶粒を示す金属組織写真である。
FIG. 3 is a metallographic photograph showing secondary recrystallized grains after finish annealing in the case where an annealing separator containing no Tl compound is used.

【図4】Tl2O3 を3重量部添加した焼鈍分離剤を用いた
場合の仕上焼鈍後の二次再結晶粒を示す金属組織写真で
ある。
FIG. 4 is a metallographic photograph showing secondary recrystallized grains after finish annealing when an annealing separator containing 3 parts by weight of Tl 2 O 3 is used.

【図5】Tl化合物を焼鈍分離剤中に添加した場合のスラ
ブに窒素含有量及び酸可溶性Al含有量と製品の磁気特性
との関係を示すグラフである。
FIG. 5 is a graph showing the relationship between the nitrogen content and acid-soluble Al content of a slab and the magnetic properties of a product when a Tl compound is added to an annealing separator.

【図6】Tl化合物とBi化合物を焼鈍分離剤中に添加した
場合のスラブに窒素含有量及び酸可溶性Al含有量と製品
の磁気特性との関係を示すグラフである。
FIG. 6 is a graph showing the relationship between the nitrogen content and acid-soluble Al content of a slab and the magnetic properties of a product when a Tl compound and a Bi compound are added to an annealing separator.

【図7】Tl化合物と塩化物を焼鈍分離剤中に添加した場
合のスラブに窒素含有量及び酸可溶性Al含有量と製品の
磁気特性との関係を示すグラフである。
FIG. 7 is a graph showing the relationship between the nitrogen content and acid-soluble Al content of a slab and the magnetic properties of a product when a Tl compound and a chloride are added to an annealing separator.

【図8】Tl化合物とBi化合物と塩化物とを焼鈍分離剤中
に添加した場合のスラブに窒素含有量及び酸可溶性Al含
有量と製品の磁気特性との関係を示すグラフである。
FIG. 8 is a graph showing the relationship between the nitrogen content and acid-soluble Al content of a slab and the magnetic properties of a product when a Tl compound, a Bi compound, and a chloride are added to an annealing separator.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 酸可溶性Al:0.013 〜0.05wt%及びN:
0.004 〜0.012 wt%を含む方向性けい素鋼板用スラブを
熱間圧延した後、1回又は中間焼鈍を挟む2回以上の冷
間圧延を施し、次いで脱炭焼鈍を施した後、MgO を主体
とする焼鈍分離剤を塗布してから、最終仕上焼鈍を施す
一連の工程からなる方向性けい素鋼板の製造方法におい
て、 上記スラブの酸可溶性Al量及びN量につき、 酸可溶性Al(wt%)≧3.35×N(wt%)とし、かつ上記
焼鈍分離剤として、MgO 100 重量部に対しTl化合物をTl
換算で0.2 〜10重量部添加した焼鈍分離剤を塗布するこ
とを特徴とする磁気特性に優れた方向性けい素鋼板の製
造方法。
1. An acid-soluble Al: 0.013 to 0.05 wt% and N:
A slab for grain-oriented silicon steel containing 0.004 to 0.012 wt% is hot-rolled, cold-rolled once or twice or more with intermediate annealing, then decarburized annealing, and then mainly MgO. A method for producing a grain-oriented silicon steel sheet, comprising a series of steps of applying an annealing separating agent to be subjected to final finish annealing, wherein acid-soluble Al (wt%) ≧ 3.35 × N (wt%), and as the annealing separator, a Tl compound was added to Tg
A method for producing a grain-oriented silicon steel sheet having excellent magnetic properties, characterized by applying an annealing separator added in an amount of 0.2 to 10 parts by weight in conversion.
【請求項2】 焼鈍分離剤が、MgO 100 重量部に対しTl
化合物をTl換算で0.2 〜10重量部、塩化物を0.2 〜15重
量部、それぞれ添加したものである請求項1記載の磁気
特性に優れた方向性けい素鋼板の製造方法。
2. The method according to claim 1, wherein the annealing separator comprises 100 parts by weight of MgO and
2. The process for producing a grain-oriented silicon steel sheet having excellent magnetic properties according to claim 1, wherein the compound is added in an amount of 0.2 to 10 parts by weight in terms of Tl and 0.2 to 15 parts by weight of a chloride.
【請求項3】 焼鈍分離剤が、更にBi化合物を、MgO 10
0 重量部に対しBi換算で0.2 〜10重量部添加したもので
ある請求項1又は2記載の磁気特性に優れた方向性けい
素鋼板の製造方法。
3. An annealing separator further comprises a Bi compound, MgO 10
3. The method for producing a grain-oriented silicon steel sheet having excellent magnetic properties according to claim 1, wherein 0.2 to 10 parts by weight of Bi is added to 0 parts by weight.
JP8172794A 1996-06-13 1996-06-13 Production of grain oriented silicon steel sheet excellent in magnetic property Withdrawn JPH101722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8172794A JPH101722A (en) 1996-06-13 1996-06-13 Production of grain oriented silicon steel sheet excellent in magnetic property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8172794A JPH101722A (en) 1996-06-13 1996-06-13 Production of grain oriented silicon steel sheet excellent in magnetic property

Publications (1)

Publication Number Publication Date
JPH101722A true JPH101722A (en) 1998-01-06

Family

ID=15948491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8172794A Withdrawn JPH101722A (en) 1996-06-13 1996-06-13 Production of grain oriented silicon steel sheet excellent in magnetic property

Country Status (1)

Country Link
JP (1) JPH101722A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107796383A (en) * 2017-10-17 2018-03-13 西北工业大学 Chip-scale rotation modulation formula MEMS silicon micromechanical gyroscopes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107796383A (en) * 2017-10-17 2018-03-13 西北工业大学 Chip-scale rotation modulation formula MEMS silicon micromechanical gyroscopes

Similar Documents

Publication Publication Date Title
EP1992708B1 (en) Process for producing grain-oriented magnetic steel sheet with excellent magnetic property
JP4288054B2 (en) Method for producing grain-oriented silicon steel sheet
KR100442101B1 (en) The method for producing an electromagnetic steel sheet having high magnetic flux density
JP5332134B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet
JP2679944B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JPWO2020203928A1 (en) Directional electrical steel sheet and its manufacturing method
JP5068579B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet
JP3301629B2 (en) Method for producing oriented silicon steel sheet having metallic luster and excellent magnetic properties
JPH07278670A (en) Manufacture of grain-oriented silicon steel sheet with low iron loss
JP3474837B2 (en) Method for manufacturing mirror-oriented unidirectional electrical steel sheet having B8 of 1.91 T or more
JPH10130727A (en) Production of low core loss mirror finished grain oriented silicon steel sheet high in magnetic flux density
JPS60197883A (en) Formation of insulating forsterite film on grain-oriented silicon steel sheet
JP3312000B2 (en) Method for producing grain-oriented silicon steel sheet with excellent coating and magnetic properties
JPH02294428A (en) Production of grain-oriented silicon steel sheet having high magnetic flux density
JP4291733B2 (en) Annealing separator and method for producing grain-oriented electrical steel sheet using the same
JPH101722A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JP7486436B2 (en) Manufacturing method for grain-oriented electrical steel sheet
JP4422384B2 (en) Method for producing grain-oriented electrical steel sheet
JPS633008B2 (en)
JP4427225B2 (en) Method for producing grain-oriented electrical steel sheet
JP2003268451A (en) Method for manufacturing grain-oriented electromagnetic steel sheet with high magnetic flux density and mirror plane
JPH10245667A (en) Production of grain oriented extremely thin silicon steel sheet having ultralow core loss
JP2706020B2 (en) Method for producing grain-oriented silicon steel sheet
JP2002363646A (en) Method for producing specular grain oriented silicon steel sheet having no need of decarburizing annealing
JP3885257B2 (en) Method for producing grain-oriented electrical steel sheet

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20050304