JP2003268451A - Method for manufacturing grain-oriented electromagnetic steel sheet with high magnetic flux density and mirror plane - Google Patents

Method for manufacturing grain-oriented electromagnetic steel sheet with high magnetic flux density and mirror plane

Info

Publication number
JP2003268451A
JP2003268451A JP2002071426A JP2002071426A JP2003268451A JP 2003268451 A JP2003268451 A JP 2003268451A JP 2002071426 A JP2002071426 A JP 2002071426A JP 2002071426 A JP2002071426 A JP 2002071426A JP 2003268451 A JP2003268451 A JP 2003268451A
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
grain
flux density
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002071426A
Other languages
Japanese (ja)
Other versions
JP4422385B2 (en
Inventor
Yoshiyuki Ushigami
義行 牛神
Hiroyasu Fujii
浩康 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002071426A priority Critical patent/JP4422385B2/en
Publication of JP2003268451A publication Critical patent/JP2003268451A/en
Application granted granted Critical
Publication of JP4422385B2 publication Critical patent/JP4422385B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve iron loss by enhancing the integration of the crystal orientation in a grain-oriented electromagnetic steel sheet with a mirror plane. <P>SOLUTION: In a process for manufacturing the grain-oriented electromagnetic steel sheet, which cold-rolls a steel strip containing, by mass, 0.8-4.8% Si, 0.003-0.1% C, 0.012-0.05% acid-soluble Al, and N≤0.01%, decarburization anneals it, applies a separation agent for annealing on it, and finishing anneals it, a method for manufacturing the grain-oriented electromagnetic steel sheet with high magnetic flux density and the mirror plane is characterized by carrying out the decarburization annealing in an atmosphere having such a degree of oxidation as not forming Fe-based oxides, to form an oxide layer mainly consisting of silica on a steel sheet surface, and then applying the separation agent for annealing mainly consisting of alumina, and by adding a boron compound to the agent. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、主として変圧器そ
の他の電気機器等の鉄心として利用される一方向性電磁
鋼板の製造方法に関するものである。特に、その表面を
効果的に仕上げ、かつ磁束密度を高めることにより、鉄
損特性の向上を図るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a grain-oriented electrical steel sheet mainly used as an iron core of a transformer or other electric equipment. In particular, the iron loss characteristics are improved by effectively finishing the surface and increasing the magnetic flux density.

【0002】[0002]

【従来の技術】方向性電磁鋼板は、磁気鉄心として多く
の電気機器に用いられている。方向性電磁鋼板はSiを
0.8〜4.8%含有し、製品の結晶粒の方位を{11
0}<001>方位に高度に集積させた鋼板である。そ
の磁気特性として磁束密度が高く(B8 値で代表され
る)、鉄損が低い(W17/50 値で代表される)ことが要
求される。特に最近では、省エネルギーの見地から電力
損失の低減に対する要求が高まっている。
2. Description of the Related Art Grain-oriented electrical steel sheets are used as magnetic iron cores in many electric devices. The grain-oriented electrical steel sheet contains Si in an amount of 0.8 to 4.8%, and has a crystal grain orientation of {11
It is a steel plate highly integrated in the 0} <001> direction. The magnetic properties are required to have a high magnetic flux density (represented by B8 value) and a low iron loss (represented by W17 / 50 value). Particularly in recent years, there has been an increasing demand for reduction of power loss from the viewpoint of energy saving.

【0003】この要求にこたえ、方向性電磁鋼板の鉄損
を低減させる手段として、磁区を細分化する技術が開発
された。積み鉄心の場合、仕上げ焼鈍後の鋼板にレーザ
ービームを照射して局部的な微少歪を与えることにより
磁区を細分化して鉄損を低減させる方法が、例えば特開
昭58−26405号公報に開示されている。しかしな
がらこれらの磁区の動きを観察すると、鋼板表面のグラ
ス被膜の凹凸によりピン止めされ、動かない磁区も存在
していることが分かった。従って、方向性電磁鋼板の鉄
損値を更に低減させるためには、磁区細分化と合わせて
磁区の動きを阻害する鋼板表面のグラス被膜の凹凸によ
るピン止め効果をなくすことが重要であると考えられ
る。
In response to this demand, a technique for subdividing magnetic domains has been developed as a means for reducing the iron loss of grain-oriented electrical steel sheets. In the case of a laminated iron core, a method of irradiating a steel beam after finish annealing with a laser beam to locally apply a minute strain to subdivide a magnetic domain to reduce iron loss is disclosed in, for example, JP-A-58-26405. Has been done. However, by observing the movement of these magnetic domains, it was found that there were magnetic domains that were pinned due to the unevenness of the glass coating on the surface of the steel sheet and did not move. Therefore, in order to further reduce the iron loss value of the grain-oriented electrical steel sheet, it is important to eliminate the pinning effect due to the unevenness of the glass coating on the surface of the steel sheet that inhibits the movement of the magnetic domain together with the subdivision of the magnetic domain. To be

【0004】そのためには、磁区の動きを阻害する鋼板
表面のグラス被膜を形成させない事が有効である。その
手段として、焼鈍分離剤として粗大高純アルミナを用い
ることによりグラス被膜を形成させない方法が、例えば
米国特許第3785882号に開示されている。しかし
ながら、この方法では表面直下の介在物をなくすことが
できず、鉄損の向上代はW15/60 で高々2%に過ぎな
い。
For that purpose, it is effective not to form a glass coating on the surface of the steel sheet which hinders the movement of magnetic domains. As a means for this, a method of forming a glass film by using coarse and highly pure alumina as an annealing separator is disclosed in, for example, US Pat. No. 3,785,882. However, with this method, the inclusions just below the surface cannot be eliminated, and the improvement margin of iron loss is only 2% at W15 / 60.

【0005】この表面直下の介在物を制御し、かつ表面
の鏡面化を達成する方法として、仕上げ焼鈍後に化学研
磨或いは電解研磨を行う方法が、例えば特開昭64−8
3620号公報に開示されている。しかしながら、化学
研磨・電解研磨等の方法は、研究室レベルでの少試料の
材料を加工することは可能であるが、工業的規模で行う
には薬液の濃度管理、温度管理、公害設備の付与等の点
で大きな問題があり、いまだ実用化されるに至っていな
い。
As a method of controlling the inclusions just below the surface and achieving a mirror surface of the surface, a method of performing chemical polishing or electrolytic polishing after finish annealing is disclosed in, for example, Japanese Patent Laid-Open No. 64-8.
It is disclosed in Japanese Patent No. 3620. However, chemical polishing, electrolytic polishing, etc. can process a small amount of material at the laboratory level, but for industrial scale processing, chemical concentration control, temperature control, and provision of pollution equipment are required. There is a big problem in terms of such things, and it has not yet been put to practical use.

【0006】一方、鉄損を向上させるためには結晶粒の
方位集積度を高めることが有効であり、そのその方法と
して田口・坂倉(特公昭40−15644号公報)、小
松等(特公昭62−45285号公報)等により、イン
ヒビターとしてAlの窒化物を使用する方法が開示され
ている。しかしながら、アルミナを焼鈍分離剤とする前
記米国特許第3785882号の方法を、Alの窒化物
をインヒビターとするこれらの方法に適用した場合、二
次再結晶が不安定になってしまい、鉄損の向上を達成で
きない。
On the other hand, in order to improve iron loss, it is effective to increase the degree of orientational integration of crystal grains, and as a method therefor, Taguchi / Sakakura (Japanese Patent Publication No. 40-15644), Komatsu et al. (Japanese Patent Publication No. 62). -45285 gazette) etc., the method of using the nitride of Al as an inhibitor is disclosed. However, when the method of US Pat. No. 3,785,882 using alumina as an annealing separator is applied to these methods using Al nitride as an inhibitor, secondary recrystallization becomes unstable, and iron loss Cannot achieve improvement.

【0007】本発明者らは、これらの問題点すなわち、
(1)田口・坂倉(特公昭40−15644号公報)、
小松等(特公昭62−45285号公報)等の、Alの
窒化物をインヒビターとして使用する高磁束密度材の二
次再結晶が不安定であること、及び(2)表面下の介在
物が存在することを解決する方策の検討を行った。
The present inventors have found these problems, namely,
(1) Taguchi and Sakakura (Japanese Patent Publication No. 40-15644),
Secondary recrystallization of high magnetic flux density materials such as Komatsu et al. (Japanese Patent Publication No. 62-45285) using Al nitrides as inhibitors is unstable, and (2) subsurface inclusions are present. The measures to solve the problem were examined.

【0008】その結果、グラス被膜を形成させない場合
では、仕上げ焼鈍中においてAlの窒化物インヒビター
が急激に弱体化することが、二次再結晶が不安定になる
原因であることをつきとめた。その対処方策を鋭意検討
し、脱炭焼鈍の露点を制御し、脱炭焼鈍時に形成される
酸化層においてFe系酸化物(Fe2 SiO4 、FeO
等)を形成させないこと、このような酸化層を形成させ
た脱炭焼鈍板を、アルミナを主成分とする焼鈍分離剤を
水スラリー状で塗布、もしくは静電塗布法等によりドラ
イ・コートすることにより二次再結晶を安定化させると
共に、仕上げ焼鈍後の表面を鏡面状に仕上げて鉄損を大
きく低下させることができることを見いだした(特開平
7−118750号公報)。また、鋼中に界面偏析元素
を添加して二次再結晶前にこれらの元素を表面に濃化さ
せることが、インヒビターを制御して二次再結晶挙動を
安定化することに有効であることを見いだした(特開平
6−256850号公報)。
As a result, it was found that the secondary recrystallization becomes unstable due to the rapid weakening of the Al nitride inhibitor during the finish annealing when the glass film is not formed. By carefully studying the countermeasures against this, the dew point of decarburization annealing is controlled, and Fe-based oxides (Fe 2 SiO 4 , FeO) are formed in the oxide layer formed during decarburizing annealing.
Etc. are not formed, and the decarburized annealed plate on which such an oxide layer is formed is coated with an annealing separator containing alumina as a main component in the form of a water slurry, or is dry-coated by an electrostatic coating method or the like. It was found that the secondary recrystallization can be stabilized by this method and the surface after finish annealing can be mirror-finished to greatly reduce the iron loss (Japanese Patent Laid-Open No. 7-118750). Also, it is effective to add interfacial segregation elements to the steel and concentrate these elements on the surface before secondary recrystallization in order to control the inhibitor and stabilize the secondary recrystallization behavior. Was found (JP-A-6-256850).

【0009】[0009]

【発明が解決しようとする課題】本発明は更に、アルミ
ナを主成分とする焼鈍分離剤の添加物を調整することに
より、二次再結晶による結晶方位の集積度を高め、製品
の鉄損の向上を達成する方法を提供するものである。
The present invention further enhances the degree of integration of crystal orientation due to secondary recrystallization by adjusting the additive of the annealing separator containing alumina as a main component, thereby reducing the iron loss of the product. It provides a way to achieve improvement.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するため
に本発明は下記の構成を要旨とする。 (1)質量で、 Si:0.8〜4.8%、 C :0.003〜0.1%、 酸可溶性Al:0.012〜0.05%、 N≦0.01% を含有する鋼帯を冷延・脱炭焼鈍後、焼鈍分離剤を塗布
し仕上げ焼鈍を施す方向性電磁鋼板の製造方法におい
て、脱炭焼鈍をFe系酸化物の形成しない酸化度の雰囲
気ガス中で行い、鋼板表面にシリカを主成分とする酸化
層を形成させた後に、アルミナを主成分とする焼鈍分離
剤を塗布すること、及びこの焼鈍分離剤中に硼素化合物
を添加することを特徴とする磁束密度の高い鏡面方向性
電磁鋼板の製造方法。 (2)Sn或いはSbまたはそれらの化合物の一種もし
くは複数種を焼鈍分離剤に添加することを特徴とする前
項(1)記載の磁気特性の良好な鏡面方向性電磁鋼板の
製造方法。 (3)鋼中元素としてSnまたはSbを質量で0.03
〜0.15%添加することを特徴とする前記(1)また
は(2)記載の磁気特性の良好な鏡面方向性電磁鋼板の
製造方法。 (4)焼鈍分離剤の仕上げ焼鈍時の持ち込み水分を1.
5%以下とすることを特徴とする前記(1)乃至(3)
のいずれか1項に記載の磁気特性の良好な鏡面方向性電
磁鋼板の製造方法。 (5)仕上焼鈍工程の1000〜1100℃の二次再結
晶温度域の加熱速度を20℃/hr以下として、この温
度域で二次再結晶させることを特徴とする前記(1)乃
至(4)のいずれか1項に記載の磁束密度の高い鏡面方
向性電磁鋼板の製造方法。
In order to solve the above problems, the present invention has the following structures. (1) By mass, contains Si: 0.8 to 4.8%, C: 0.003 to 0.1%, acid-soluble Al: 0.012 to 0.05%, N ≦ 0.01%. After cold rolling and decarburizing annealing of a steel strip, in a method for producing a grain-oriented electrical steel sheet in which an annealing separator is applied and finish annealing is performed, decarburizing annealing is performed in an atmosphere gas having an oxidation degree that does not form an Fe-based oxide, A magnetic flux density characterized by applying an annealing separator containing alumina as a main component after forming an oxide layer containing silica as a main component on the surface of a steel sheet, and adding a boron compound into the annealing separator. Of high specular grain oriented electrical steel sheet. (2) The method for producing a specular grain-oriented electrical steel sheet having good magnetic properties according to the above (1), characterized in that one or more of Sn or Sb or a compound thereof is added to the annealing separator. (3) Sn or Sb as an element in steel is 0.03 by mass.
~ 0.15% is added, The method for producing a specular grain-oriented electrical steel sheet having good magnetic properties according to the above (1) or (2). (4) The amount of water brought in during the finish annealing of the annealing separator is 1.
5% or less, the above (1) to (3)
2. A method for producing a specular grain-oriented electrical steel sheet having good magnetic properties according to any one of 1. (5) In the finish annealing step, the heating rate in the secondary recrystallization temperature range of 1000 to 1100 ° C. is set to 20 ° C./hr or less, and the secondary recrystallization is performed in this temperature range, (1) to (4) The manufacturing method of the mirror-oriented grain-oriented electrical steel sheet with high magnetic flux density of any one of 1).

【0011】[0011]

【発明の実施の形態】以下、本発明を詳細に説明する。
質量で、Si:3.3%、Mn:0.1%、C:0.0
6%、S:0.007%、酸可溶性Al:0.028
%、N:0.008%の珪素鋼スラブを1150℃で加
熱した後、板厚2.0mmに熱延した。この熱延板を1
120℃で2分間焼鈍した後、最終板厚0.22mmに
冷延した。この冷延板を雰囲気ガスの酸化度(P H2 O
/P H2 ):0.1の湿潤ガス中で830℃で脱炭焼鈍
を施した。その後、アンモニア窒化により窒素量が0.
02%になるように窒化処理を施した。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below.
By mass, Si: 3.3%, Mn: 0.1%, C: 0.0
6%, S: 0.007%, acid-soluble Al: 0.028
%, N: 0.008% of a silicon steel slab was heated at 1150 ° C., and then hot rolled to a plate thickness of 2.0 mm. This hot rolled sheet 1
After annealing at 120 ° C. for 2 minutes, it was cold-rolled to a final plate thickness of 0.22 mm. This cold-rolled sheet was subjected to an atmospheric gas oxidation degree (PH 2 O
/ P H 2 ): Decarburization annealing was performed at 830 ° C. in a wet gas of 0.1. After that, the amount of nitrogen was reduced to 0.
A nitriding treatment was performed so that the content was 02%.

【0012】これらの試料にアルミナを主成分とする焼
鈍分離剤にB2 3 を0〜3%添加し、水スラリー状で
塗布・乾燥した。乾燥後の塗布量は20g/m2 であっ
た。仕上げ焼鈍は酸化度(P H2 O /P H2 ):0.0
0016の窒素−水素混合ガス雰囲気中で、10℃/h
rで1200℃まで加熱し、酸化度(P H2 O /P
H2 ):0.000039の水素ガスに切り替え120
0℃で5時間焼鈍した。これらの試料について、張力コ
ーテイング処理とレーザー照射による磁区細分化処理を
行った後の製品の磁束密度(B8 )を図1に示す。
To these samples, 0 to 3% of B 2 O 3 was added to an annealing separator containing alumina as a main component, and the resulting mixture was applied and dried in the form of a water slurry. The coating amount after drying was 20 g / m 2 . Finishing annealing has an oxidation degree (P H 2 O / P H 2 ): 0.0
10 ° C./h in a nitrogen-hydrogen mixed gas atmosphere of 0016
heating to 1200 ° C at r, and the degree of oxidation (P H 2 O / P
H 2 ): switch to 0.000039 hydrogen gas 120
Annealed at 0 ° C for 5 hours. FIG. 1 shows the magnetic flux densities (B8) of the products obtained by subjecting these samples to the tension coating treatment and the magnetic domain refinement treatment by laser irradiation.

【0013】図1より、B2 3 を0〜0.2%添加、
特に0.5%以上添加することにより、製品の磁束密度
(B8 )が向上していることがわかる。二次再結晶に影
響を及ぼすB2 3 の影響を鋭意を調査したところ、二
次再結晶温度域である1000℃において鋼中のB量が
増加して、マトリックスの粒成長抑制効果が強化してい
ることが確認された。従って磁束密度(B8 )が向上し
たのは、焼鈍分離剤に添加したB2 3 が分解し、分解
したSが鋼中に侵入しインヒビター効果を強化したため
と推測される。
From FIG. 1, 0 to 0.2% of B 2 O 3 was added,
In particular, it is understood that the magnetic flux density (B8) of the product is improved by adding 0.5% or more. When the effect of B 2 O 3 on the secondary recrystallization was investigated, the amount of B in the steel increased in the secondary recrystallization temperature range of 1000 ° C. and the grain growth suppression effect of the matrix was strengthened. It was confirmed that Thus magnetic flux density (B8) was improved, the B 2 O 3 was added to annealing separator decomposed decomposed S is presumed to be due to enhanced penetration and the inhibitor effect in the steel.

【0014】次に本発明の実施形態を述べる。基本的な
製造法としては、磁束密度(B8 )が高い製品を製造で
きる、小松等による(Al、Si)Nを主インヒビター
として用いる低温スラブに基づく製造法(例えば特公昭
62−45285号公報)、または田口・坂倉等による
AlNとMnSを主インヒビターとして用いる高温スラ
ブ加熱に基づく製造法(例えば特公昭40−15644
号公報)を適用すれば良い。
Next, an embodiment of the present invention will be described. As a basic manufacturing method, a manufacturing method based on a low temperature slab using (Al, Si) N by Komatsu et al. As a main inhibitor capable of manufacturing a product having a high magnetic flux density (B8) (eg Japanese Patent Publication No. 62-48585). , Or Taguchi / Sakakura et al., A manufacturing method based on high-temperature slab heating using AlN and MnS as main inhibitors (for example, Japanese Patent Publication No. 40-15644).
Issue).

【0015】Siは電気抵抗を高め、鉄損を下げるうえ
で重要な元素である。含有量が4.8%を超えると、冷
間圧延時に材料が割れ易くなり圧延が不可能となる。一
方、Si量を下げると仕上げ焼鈍時にα→γ変態を生
じ、結晶の方向性が損なわれるので、実質的に結晶の方
向性に影響を及ぼさない0.8%を下限とする。
Si is an important element for increasing electric resistance and reducing iron loss. If the content exceeds 4.8%, the material tends to crack during cold rolling, making rolling impossible. On the other hand, if the amount of Si is reduced, α → γ transformation occurs during finish annealing, and the crystal orientation is impaired. Therefore, the lower limit is 0.8%, which does not substantially affect the crystal orientation.

【0016】Cは、残留すると製品特性(鉄損)の低下
を引き起こすので、0.003%以下に抑えることが必
要である。しかしながら、製鋼段階でC量を低くすると
熱延板の結晶組織に粗大な{100}伸長粒が存在し、
二次再結晶に悪影響を及ぼす。また、析出物や一次再結
晶集合組織制御の観点からも、Cはある程度製鋼段階で
添加することが必要である。従って、製鋼段階では0.
003%以上、好ましくはα/γ変態が生じる0.02
%以上添加することが望ましい。一方、0.1%より多
く添加しても、上述の結晶組織、析出物等への影響はほ
ぼ飽和し、脱炭に必要な時間が長くなるので、0.1%
を上限とする。
When C remains, it causes deterioration of product characteristics (iron loss), so it is necessary to suppress C to 0.003% or less. However, if the C content is lowered in the steelmaking stage, coarse {100} elongated grains are present in the crystal structure of the hot rolled sheet,
It adversely affects secondary recrystallization. Further, from the viewpoint of controlling precipitates and primary recrystallization texture, it is necessary to add C to some extent in the steelmaking stage. Therefore, in the steelmaking stage,
003% or more, preferably 0.02 in which α / γ transformation occurs
% Or more is desirable. On the other hand, even if added in excess of 0.1%, the effects on the crystal structure, precipitates, etc. described above are almost saturated and the time required for decarburization becomes long, so 0.1%
Is the upper limit.

【0017】酸可溶性Alは、Nと結合してAlNまた
は(Al、Si)Nとして、インヒビターとして機能す
るために必須の元素である。磁束密度が高くなる0.0
12〜0.05%を限定範囲とする。
Acid-soluble Al is an essential element for binding to N to function as AlN or (Al, Si) N as an inhibitor. Higher magnetic flux density 0.0
The range is 12 to 0.05%.

【0018】Nは、製鋼時に0.01%超添加するとブ
リスターとよばれる鋼板中の空孔を生じるので、0.0
1%を上限とする。
When N is added in excess of 0.01% during steelmaking, N causes vacancies in the steel sheet called blisters, so 0.0
The upper limit is 1%.

【0019】Mn,Sは、田口・坂倉等による高温スラ
ブ加熱に基づく製造法では、MnSとしてインヒビター
として機能するために必須の元素である。磁束密度が高
くなる、Mn:0.03〜0.15%、S:0.01〜
0.05%を限定範囲とする。また、Sは小松等による
(Al、Si)Nを主インヒビターとして用いる低温ス
ラブに基づく製造法では、磁気特性に悪影響を及ぼすの
で、0.015%以下とすることが望ましい。
Mn and S are essential elements to function as MnS as an inhibitor in the manufacturing method based on high temperature slab heating by Taguchi, Sakakura and others. Higher magnetic flux density, Mn: 0.03 to 0.15%, S: 0.01 to
The limiting range is 0.05%. In addition, S is desirable to be 0.015% or less because it adversely affects the magnetic properties in a manufacturing method based on a low temperature slab using (Al, Si) N as a main inhibitor by Komatsu et al.

【0020】Sn,Sbは、鋼板表面に偏析して仕上げ
焼鈍中のインヒビターの分解を抑制し、磁束密度の高い
製品を安定して製造することに有効な元素である。0.
03〜0.15%添加することが望ましい。この下限値
未満ではインヒビターの分解抑制効果が少なく、実質的
な磁束密度向上効果が得られない。またこの上限値を超
えるとインヒビターの分解抑制効果が飽和すると共に、
小松等による(Al、Si)Nを主インヒビターとして
用いる低温スラブに基づく製造法においては、鋼板中へ
の窒化処理が難しくなり、二次再結晶が不安定になる場
合が生じる。
Sn and Sb are elements effective in segregating on the surface of the steel sheet to suppress decomposition of the inhibitor during finish annealing and to stably produce a product having a high magnetic flux density. 0.
It is desirable to add 03 to 0.15%. Below this lower limit, the inhibitory decomposition inhibiting effect is small, and a substantial magnetic flux density improving effect cannot be obtained. Moreover, when exceeding this upper limit, the inhibitory effect of inhibitor decomposition is saturated, and
In the manufacturing method based on a low temperature slab that uses (Al, Si) N as a main inhibitor by Komatsu et al., Nitriding into a steel sheet becomes difficult, and secondary recrystallization may become unstable.

【0021】Crは脱炭焼鈍の酸化層を改善し、グラス
被膜形成に有効な元素として、必要あれば0.03〜
0.2%添加することが望ましい。その他、微量のB,
Bi,Cu,Se,Pb,Ti,Mo等を鋼中に含有す
ることは、本発明の主旨を損なうものではない。
Cr improves the oxide layer of decarburization annealing and is an effective element for forming a glass film, and if necessary, 0.03 to
It is desirable to add 0.2%. In addition, a small amount of B,
The inclusion of Bi, Cu, Se, Pb, Ti, Mo, etc. in the steel does not impair the gist of the present invention.

【0022】上記成分の溶鋼は、通常の工程により熱延
板とされるか、もしくは溶鋼を連続鋳造して薄帯とす
る。前記熱延板または連続鋳造薄帯はただちに、もしく
は短時間焼鈍を経て冷間圧延される。上記焼鈍は750
〜1200℃の温度域で30秒〜30分間行われ、この
焼鈍は製品の磁気特性を高めるために有効である。従っ
て、望む製品の特性レベルとコストを勘案して採否を決
めるとよい。冷間圧延は、一回もしくは中間焼鈍を施す
複数の冷間圧延により所定の最終板厚とする。製品の磁
束密度(B8)を高めるためには、基本的には前記特公
昭40−15644号公報に開示されているように、最
終冷延圧下率80%以上とすれば良い。
The molten steel having the above components is formed into a hot-rolled sheet by a usual process, or the molten steel is continuously cast into a ribbon. The hot-rolled sheet or the continuously cast ribbon is immediately or cold-rolled after annealing for a short time. The above annealing is 750
The annealing is performed in a temperature range of ~ 1200 ° C for 30 seconds to 30 minutes, and this annealing is effective for enhancing the magnetic properties of the product. Therefore, it is advisable to decide whether or not to accept the product in consideration of the characteristic level and cost of the desired product. The cold rolling is performed once or by a plurality of cold rolling processes in which intermediate annealing is performed to obtain a predetermined final plate thickness. In order to increase the magnetic flux density (B8) of the product, basically, as disclosed in Japanese Patent Publication No. 40-15644, the final cold rolling reduction should be 80% or more.

【0023】冷間圧延後の材料は、鋼中に含まれる炭素
を除去するために湿水素雰囲気中で脱炭焼鈍を行う。こ
の脱炭焼鈍において、Fe系の酸化物(Fe2 Si
4 ,FeO等の低級酸化物)を形成させない低い酸化
度で焼鈍を行うことが、表面の鏡面化を達成する上で必
須の要件である。例えば、通常脱炭焼鈍が行われる80
0〜850℃の温度域においては、雰囲気ガスの酸化度
(P H2 O /P H2 ):0.15以下に調整することに
より、Fe系酸化物の生成を抑制することができる。但
し、あまりに酸化度を下げると脱炭速度が遅くなってし
まう。この両者を勘案すると、この温度域においては雰
囲気ガスの酸化度(P H2 O /P H2 ):0.01〜
0.15の範囲が好ましい。
The material after cold rolling is subjected to decarburization annealing in a wet hydrogen atmosphere in order to remove carbon contained in steel. In this decarburization annealing, Fe-based oxide (Fe 2 Si
Annealing at a low degree of oxidation that does not form lower oxides such as O 4 and FeO is an essential requirement for achieving a mirror-finished surface. For example, 80 where decarburization annealing is usually performed
In the temperature range of 0 to 850 ° C., the generation of Fe-based oxides can be suppressed by adjusting the oxidation degree of the atmospheric gas (P H 2 O / P H 2 ): 0.15 or less. However, if the degree of oxidation is lowered too much, the decarburization rate will become slow. Considering both of them, in this temperature range, the degree of oxidation of the atmospheric gas (PH 2 O / PH 2 ): 0.01 to
The range of 0.15 is preferable.

【0024】この脱炭焼鈍板に、(Al、Si)Nを主
インヒビターとして用いる製造法(例えば特公昭62−
45285号公報)においては、窒化処理を施す。この
窒化処理の方法は特に限定するものではなく、アンモニ
ア等の窒化能のある雰囲気ガス中で行う方法等がある。
量的には0.005%以上、望ましくはN/酸可溶性A
lの比率が2/3以上となるように窒化すれば良い。
A manufacturing method using (Al, Si) N as a main inhibitor for this decarburized annealed plate (see, for example, Japanese Patent Publication No. 62-
No. 45285), a nitriding treatment is performed. The method of this nitriding treatment is not particularly limited, and there is a method of performing it in an atmosphere gas having a nitriding ability such as ammonia.
Quantitatively 0.005% or more, preferably N / acid soluble A
Nitriding may be performed so that the ratio of l is 2/3 or more.

【0025】これらの脱炭焼鈍板を、アルミナを主成分
とする焼鈍分離剤を水スラリーで塗布、もしくは静電塗
布法等によりドライ・コートし、コイル状に巻きとる。
その際に、アルミナを主成分とする焼鈍分離剤の持ち込
み水分を1.5%以下とすることが、二次再結晶の安定
化及び表面の鏡面化を達成する上で有効である。水スラ
リーで塗布・乾燥する際に、焼鈍分離剤の塗布乾燥後の
持ち込み水分を制御するためには、アルミナのBET
値、粒径等と共に、水スラリーにする際の水温、攪拌時
間等を管理すれば良い。
These decarburized and annealed sheets are coated with an annealing separator containing alumina as a main component in a water slurry or dry coated by an electrostatic coating method and wound into a coil.
At that time, it is effective to bring the moisture content of the annealing separating agent containing alumina as the main component to 1.5% or less in order to stabilize the secondary recrystallization and achieve the mirror surface. When coating and drying with water slurry, BET of alumina is used to control the water content brought in after coating and drying of the annealing separator.
The water temperature, stirring time, and the like when making the water slurry may be managed together with the value, particle size, and the like.

【0026】焼鈍分離剤としては、特願2001−22
0228号に開示されているように、BET比表面積を
制御したアルミナとマグネシアを一定比率範囲で混合し
た粉体を焼鈍分離剤として用いることは、表面の鏡面化
を促進するうえで有効な方法である。また、鋼板との密
着性不足が懸念されたり、あるいはスラリー状態での沈
降に問題が生じるようであれば、必要に応じて増粘剤な
どを添加しても良い。
As an annealing separator, Japanese Patent Application No. 2001-22
As disclosed in No. 0228, using a powder obtained by mixing alumina and magnesia having a controlled BET specific surface area in a certain ratio range as an annealing separator is an effective method for promoting the mirroring of the surface. is there. Further, if there is a concern that the adhesion to the steel sheet is insufficient, or if there is a problem in sedimentation in a slurry state, a thickener or the like may be added as necessary.

【0027】この焼鈍分離剤中に硼素化合物を添加する
ことが、本発明の要件である。焼鈍分離剤中に添加した
硼素化合物は仕上げ焼鈍中に分解し、分解した硼素は鋼
中に侵入してインヒビターとして作用して、磁束密度
(B8 )を向上させると考えられる。硼素化合物として
は、B2 3 ,H3 BO3 ,Na2 4 7 ,Na2
4 7 ・10H2 O等の化合物を用いればよい。これら
の硼素化合物を複数種添加して使用することもできる。
アルミナを焼鈍分離剤の主成分として用いる場合には、
鋼板表面にフォルステライト被膜等が形成されないの
で、添加したBが効率よく鋼板中に侵入する。
A boron compound is added to this annealing separator.
That is the requirement of the present invention. Added in annealing separator
Boron compounds decompose during finish annealing, and decomposed boron is steel.
Invades inside and acts as an inhibitor, magnetic flux density
It is thought to improve (B8). As a boron compound
Is B2O3, H3BO3, Na2BFourO7, Na2B
FourO7・ 10H2A compound such as O may be used. these
It is also possible to add and use a plurality of boron compounds.
When using alumina as the main component of the annealing separator,
No forsterite film is formed on the steel plate surface
Thus, the added B efficiently penetrates into the steel sheet.

【0028】磁束密度を向上させるためには、添加した
硼素化合物がB量として鋼板に対して0.0005%以
上となる量添加すれば良い。添加量の上限については特
に制限するものではないが、0.004%程度添加する
とその効果は飽和してしまう。また、あまり多く添加す
ると仕上げ焼鈍の二次再結晶完了温度が高くなりすぎる
ために、1000〜1100℃の二次再結晶温度域の加
熱速度を遅くして二次再結晶完了温度の調整を行う必要
がある。これらを勘案すると、硫化物はS量として鋼板
に0.0005〜0.004%となる量添加することが
好ましい。
In order to improve the magnetic flux density, the added boron compound should be added in an amount such that the B content is 0.0005% or more with respect to the steel sheet. The upper limit of the amount added is not particularly limited, but the effect will be saturated if about 0.004% is added. Further, if too much is added, the secondary recrystallization completion temperature of finish annealing becomes too high, so the heating rate in the secondary recrystallization temperature range of 1000 to 1100 ° C. is slowed to adjust the secondary recrystallization completion temperature. There is a need. Taking these into consideration, it is preferable to add sulfide as an S content in an amount of 0.0005 to 0.004% to the steel sheet.

【0029】更に、SnまたはSb及びそれらの化合物
の一種もしくは複数種を焼鈍分離剤に添加することも、
有効な方策である。Sn、及びSbが表面に偏析すると
脱窒素のバリアーになり、AlN,(Al,Si)N等
のAlの窒化物インヒビターが二次再結晶温度域まで安
定化するためであると考えられる。
Furthermore, one or more of Sn or Sb and their compounds may be added to the annealing separator.
This is an effective measure. It is considered that when Sn and Sb segregate on the surface, they serve as a denitrification barrier, and Al nitride inhibitors such as AlN and (Al, Si) N stabilize to the secondary recrystallization temperature range.

【0030】この脱炭焼鈍板を積層して仕上げ焼鈍を施
し、二次再結晶と窒化物の純化を行う。二次再結晶を特
開平2ー258929号公報に開示される様に一定の温
度で保持するか、または加熱速度を制御する等の手段に
より二次再結晶を所定の温度域で行わせることは、製品
の磁束密度(B8 )を高めるうえで有効である。
The decarburized and annealed sheets are laminated and finish annealed to carry out secondary recrystallization and purification of the nitride. It is possible to maintain the secondary recrystallization at a constant temperature as disclosed in JP-A-2-258929, or to perform the secondary recrystallization within a predetermined temperature range by means such as controlling the heating rate. , Is effective in increasing the magnetic flux density (B8) of the product.

【0031】二次再結晶完了後、窒化物等の純化と表面
酸化膜の還元を行うために、100%水素で1100℃
以上の温度で焼鈍する。この場合、雰囲気ガスの露点は
低い方が好ましい。仕上げ焼鈍後、表面に張力コーテイ
ング処理を行い、必要に応じてレーザー照射等の磁区細
分化処理を施す。
After the completion of the secondary recrystallization, in order to purify nitrides and reduce the surface oxide film, 1100 ° C. with 100% hydrogen.
Anneal at the above temperature. In this case, it is preferable that the dew point of the atmospheric gas is low. After the finish annealing, the surface is subjected to tension coating treatment and, if necessary, magnetic domain subdivision treatment such as laser irradiation.

【0032】[0032]

【実施例】[実施例1]質量で、Si:3.3%、C:
0.06%、酸可溶性Al:0.026%、N:0.0
08%、Mn:0.1%、S:0.007%、Cr:
0.1%、Sn:0.07%、含有する珪素鋼スラブを
1150℃で加熱した後、板厚2.0mmに熱延した。
この熱延板を1100℃で2分間焼鈍した後、最終板厚
0.22mmに冷延した。この冷延板を酸化度(P H2
O /P H2 ):0.1の湿潤ガス中で脱炭を兼ね840
℃で90秒焼鈍し、一次再結晶させた。次いでアンモニ
ア雰囲気中で焼鈍することにより、窒素量を0.02%
に増加して、インヒビターの強化を行った。
[Example] [Example 1] Si: 3.3% by mass, C:
0.06%, acid-soluble Al: 0.026%, N: 0.0
08%, Mn: 0.1%, S: 0.007%, Cr:
A silicon steel slab containing 0.1% and Sn: 0.07% was heated at 1150 ° C. and then hot-rolled to a plate thickness of 2.0 mm.
The hot rolled sheet was annealed at 1100 ° C. for 2 minutes and then cold rolled to a final sheet thickness of 0.22 mm. This cold-rolled sheet was subjected to an oxidation degree (P H 2
O / P H 2 ): Decarburization in wet gas of 0.1 840
It was annealed at 90 ° C. for 90 seconds for primary recrystallization. Then, by annealing in an ammonia atmosphere, the nitrogen content is reduced to 0.02%.
Intensification of inhibitor was carried out.

【0033】この鋼板に、以下の(A)〜(F)の焼鈍
分離剤を水スラリー状で塗布・乾燥した。 (A)Al2 3 、(B)Al2 3 +1%H3
3 、(C)Al2 3 +1%Na2 4 7 ・10H
2 O、(D)Al2 3 +0.5%B2 3 、(E)A
2 3 +0.5%B2 3 +2%Sb2 (S
4 3 、(F)Al2 3 +0.5%B2 3 +1%
Sn。
The following annealing separators (A) to (F) were applied to this steel sheet in the form of a water slurry and dried. (A) Al 2 O 3 , (B) Al 2 O 3 + 1% H 3 B
O 3 , (C) Al 2 O 3 + 1% Na 2 B 4 O 7 · 10H
2 O, (D) Al 2 O 3 + 0.5% B 2 O 3 , (E) A
l 2 O 3 + 0.5% B 2 O 3 + 2% Sb 2 (S
O 4 ) 3 , (F) Al 2 O 3 + 0.5% B 2 O 3 + 1%
Sn.

【0034】これらの試料を積層して仕上げ焼鈍を施し
た。仕上げ焼鈍は窒素と水素の混合ガス中10℃/hr
で1200℃まで加熱し、水素ガスに切り替え1200
℃で20時間焼鈍した。その後、張力コーテイング処理
を施した後、レーザー照射して磁区細分化した。得られ
た製品の磁気特性を表1に示す。
These samples were laminated and subjected to finish annealing. Finish annealing is 10 ℃ / hr in mixed gas of nitrogen and hydrogen
It is heated up to 1200 ° C and switched to hydrogen gas 1200
Annealed at 20 ° C for 20 hours. After that, a tension coating treatment was performed and then laser irradiation was performed to subdivide the magnetic domains. The magnetic properties of the obtained product are shown in Table 1.

【0035】 表1 試料符号 磁束密度 鉄損W17/50 備 考 B8 (T) (W/kg ) A 1.937 0.70 比較例 B 1.955 0.62 本発明例 C 1.949 0.64 本発明例 D 1.958 0.61 本発明例 E 1.955 0.61 本発明例 F 1.953 0.62 本発明例 Table 1 Sample code Magnetic flux density Iron loss W17 / 50 Remarks B8 (T) (W / kg) A 1.937 0.70 Comparative example B 1.955 0.62 Inventive example C 1.949 0. 64 Invention Example D 1.958 0.61 Invention Example E 1.955 0.61 Invention Example F 1.953 0.62 Invention Example

【0036】硼素化合物を添加することにより、二次再
結晶が安定的に発達して磁束密度(B8 )が向上し、鉄
損(W17/50 )が低減することがわかる。また、更にS
n或いはSbまたはそれらの化合物の一種もしくは複数
種を焼鈍分離剤に添加することも、有効な方策であるこ
とが分かる。
It can be seen that by adding the boron compound, secondary recrystallization is stably developed, the magnetic flux density (B8) is improved, and the iron loss (W17 / 50) is reduced. Moreover, S
It can be seen that adding n or Sb or one or more of these compounds to the annealing separator is also an effective strategy.

【0037】[実施例2]実施例1で用いた脱炭・窒化
板に以下の(A)〜(D)の焼鈍分離剤を塗布・乾燥し
た。(A)Al2 3 、(B)Al2 3 +0.5%B
2 3 、(C)Al2 3 +1%B2 3 、(D)Al
2 3 +3%B2 3 。これらの試料を積層して仕上げ
焼鈍を施した。仕上げ焼鈍は窒素と水素の混合ガス中、
(1)20℃/hr及び(2)25℃/hrの加熱速度
で1200℃まで加熱し、水素ガスに切り替え1200
℃で20時間焼鈍した。その後、張力コーテイング処理
を施した後、レーザー照射して磁区細分化した。得られ
た製品の磁気特性を表2に示す。
Example 2 The decarburizing / nitriding plate used in Example 1 was coated with the following annealing separators (A) to (D) and dried. (A) Al 2 O 3 , (B) Al 2 O 3 + 0.5% B
2 O 3 , (C) Al 2 O 3 + 1% B 2 O 3 , (D) Al
2 O 3 + 3% B 2 O 3 . These samples were laminated and subjected to finish annealing. Finish annealing is performed in a mixed gas of nitrogen and hydrogen,
(1) Heat to 1200 ° C. at a heating rate of 20 ° C./hr and (2) 25 ° C./hr and switch to hydrogen gas 1200
Annealed at 20 ° C for 20 hours. After that, a tension coating treatment was performed and then laser irradiation was performed to subdivide the magnetic domains. The magnetic properties of the obtained product are shown in Table 2.

【0038】 表2 加熱速度 試料符号 磁束密度 備 考 (℃/hr) B8 (T) 20 A 1.933 比較例 20 B 1.953 本発明例 20 C 1.952 本発明例 20 D 1.955 本発明例 25 A 1.931 比較例 25 B 1.951 本発明例 25 C 1.949 本発明例 25 D 1.924 比較例 Table 2 Heating rate Sample code Magnetic flux density Remarks (° C / hr) B8 (T) 20 A 1.933 Comparative example 20 B 1.953 Inventive example 20 C 1.952 Inventive example 20 D 1.955 Inventive Example 25 A 1.931 Comparative Example 25 B 1.951 Inventive Example 25 C 1.949 Inventive Example 25 D 1.924 Comparative Example

【0039】硼素化合物を添加することにより、二次再
結晶が安定的に発達して磁束密度(B8 )が向上する
が、(D)の場合のようにあまり多く添加すると、仕上
げ焼鈍の加熱速度が25℃/hrと速い場合には二次再
結晶完了温度が高くなりすぎるために磁束密度が低下す
ることが分かる。
By adding the boron compound, the secondary recrystallization is stably developed and the magnetic flux density (B8) is improved, but if it is added too much as in the case of (D), the heating rate of finish annealing is increased. It can be seen that when the temperature is as fast as 25 ° C./hr, the secondary recrystallization completion temperature becomes too high and the magnetic flux density decreases.

【0040】[実施例3]質量で、Si:3.2%、
C:0.08%、酸可溶性Al:0.025%、N:
0.009%、Mn:0.08%、Cu:0.09%、
S:0.025%、Sn:0.1%を含有する珪素鋼ス
ラブを1350℃で加熱した後、板厚2.0mmに熱延
した。この熱延板を1120℃で焼鈍した後0.22m
m厚に冷延した。この冷延板を酸化度(P H2 O /P H
2 ):0.13の湿潤ガス中湿潤ガス中で脱炭を兼ね8
50℃で90秒焼鈍し、一次再結晶させた。
Example 3 By mass, Si: 3.2%,
C: 0.08%, acid-soluble Al: 0.025%, N:
0.009%, Mn: 0.08%, Cu: 0.09%,
A silicon steel slab containing S: 0.025% and Sn: 0.1% was heated at 1350 ° C. and then hot-rolled to a plate thickness of 2.0 mm. 0.22 m after annealing this hot rolled sheet at 1120 ° C
Cold rolled to m thickness. This cold-rolled sheet has an oxidation degree (P H 2 O / P H
2 ): 0.13 in wet gas, also for decarburization in wet gas 8
It was annealed at 50 ° C. for 90 seconds to perform primary recrystallization.

【0041】この鋼板に以下の(A)〜(F)の焼鈍分
離剤を水スラリー状で塗布・乾燥した。(A)Al2
3 、(B)Al2 3 +1%H3 BO3 、(C)Al2
3+1%Na2 4 7 ・10H2 O、(D)Al2
3 +0.5%B2 3 、(E)Al2 3 +0.5%
2 3 +2%Sb2 (SO4 3 、(F)Al23
+0.5%B2 3 +1%Sn。これらの試料を積層し
て仕上げ焼鈍を施した。仕上げ焼鈍は窒素と水素の混合
ガス中10℃/hrで1200℃まで加熱し、水素ガス
に切り替え1200℃で20時間焼鈍した。その後、張
力コーテイング処理を施した後、レーザー照射して磁区
細分化した。得られた製品の磁気特性を表4に示す。
The following annealing separators (A) to (F) were applied to this steel sheet in the form of water slurry and dried. (A) Al 2 O
3 , (B) Al 2 O 3 + 1% H 3 BO 3 , (C) Al 2
O 3 + 1% Na 2 B 4 O 7 · 10H 2 O, (D) Al 2
O 3 + 0.5% B 2 O 3 , (E) Al 2 O 3 + 0.5%
B 2 O 3 + 2% Sb 2 (SO 4 ) 3 , (F) Al 2 O 3
+ 0.5% B 2 O 3 + 1% Sn. These samples were laminated and subjected to finish annealing. The finish annealing was performed by heating to 1200 ° C. at 10 ° C./hr in a mixed gas of nitrogen and hydrogen, switching to hydrogen gas and annealing at 1200 ° C. for 20 hours. After that, a tension coating treatment was performed and then laser irradiation was performed to subdivide the magnetic domains. Table 4 shows the magnetic properties of the obtained product.

【0042】 表4 試料符号 磁束密度 鉄損W17/50 備 考 B8 (T) (W/kg ) A 1.935 0.71 比較例 B 1.953 0.62 本発明例 C 1.946 0.64 本発明例 D 1.952 0.62 本発明例 E 1.955 0.61 本発明例 F 1.953 0.62 本発明例 Table 4 Sample code Magnetic flux density Iron loss W17 / 50 Remarks B8 (T) (W / kg) A 1.935 0.71 Comparative example B 1.953 0.62 Inventive example C 1.946 0. 64 Present Invention Example D 1.952 0.62 Present Invention Example E 1.955 0.61 Present Invention Example F 1.953 0.62 Present Invention Example

【0043】硼素化合物を添加することにより、二次再
結晶が安定的に発達して磁束密度(B8 )が向上し、鉄
損(W17/50 )が低減することがわかる。また、更にS
nまたはSb及びそれらの化合物の一種もしくは複数種
を焼鈍分離剤に添加することも、有効な方策であること
が分かる。
It can be seen that by adding the boron compound, secondary recrystallization is stably developed, the magnetic flux density (B8) is improved, and the iron loss (W17 / 50) is reduced. Moreover, S
It has been found that adding one or more of n or Sb and their compounds to the annealing separator is also an effective strategy.

【0044】[0044]

【発明の効果】本発明により、二次再結晶による結晶方
位の集積度を高めると共に、表面の鏡面状態を向上させ
ることにより、磁気特性の良い一方向性電磁鋼板を低コ
ストで製造することができる。
According to the present invention, by increasing the degree of integration of crystal orientation by secondary recrystallization and improving the mirror surface state of the surface, a unidirectional electrical steel sheet having good magnetic properties can be manufactured at low cost. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】磁束密度(B8 )に及ぼす硼素化合物(B2
3 )の添加量の影響を示す図。
FIG. 1 shows the effect of boron compounds (B 2 O) on the magnetic flux density (B 8).
The figure which shows the influence of the addition amount of 3 ).

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K033 AA02 BA01 CA02 CA03 CA09 FA01 FA13 FA14 JA04 LA00 MA01 MA02 MA03 PA08 PA11 RA02 SA02 SA03 TA01 TA04 TA06 5E041 AA02 CA02 HB11 NN01 NN18   ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4K033 AA02 BA01 CA02 CA03 CA09                       FA01 FA13 FA14 JA04 LA00                       MA01 MA02 MA03 PA08 PA11                       RA02 SA02 SA03 TA01 TA04                       TA06                 5E041 AA02 CA02 HB11 NN01 NN18

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 質量で、 Si:0.8〜4.8%、 C :0.003〜0.1%、 酸可溶性Al:0.012〜0.05%、 N ≦0.01% を含有する鋼帯を冷延・脱炭焼鈍後、焼鈍分離剤を塗布
し仕上げ焼鈍を施す方向性電磁鋼板の製造方法におい
て、脱炭焼鈍をFe系酸化物の形成しない酸化度の雰囲
気ガス中で行い、鋼板表面にシリカを主成分とする酸化
層を形成させた後に、アルミナを主成分とする焼鈍分離
剤を塗布すること、及びこの焼鈍分離剤中に硼素化合物
を添加することを特徴とする磁束密度の高い鏡面方向性
電磁鋼板の製造方法。
1. By mass, Si: 0.8 to 4.8%, C: 0.003 to 0.1%, acid-soluble Al: 0.012 to 0.05%, N ≤ 0.01%. In the method for producing a grain-oriented electrical steel sheet, in which the steel strip containing is cold-rolled / decarburized and annealed, and then an annealing separator is applied and finish annealing is performed, the decarburization / annealing is performed in an atmosphere gas with an oxidation degree that does not form an Fe-based oxide. And forming an oxide layer containing silica as a main component on the surface of the steel sheet, applying an annealing separating agent containing alumina as a main component, and adding a boron compound into the annealing separating agent. A method for manufacturing a mirror-oriented electrical steel sheet having a high magnetic flux density.
【請求項2】 Sn或いはSbまたはそれらの化合物の
一種もしくは複数種を焼鈍分離剤に添加することを特徴
とする請求項1記載の磁気特性の良好な鏡面方向性電磁
鋼板の製造方法。
2. The method for producing a grain-oriented electrical steel sheet with good magnetic properties according to claim 1, wherein one or more of Sn or Sb or a compound thereof is added to the annealing separator.
【請求項3】 鋼中元素としてSn或いはSbを質量で
0.03〜0.15%添加することを特徴とする請求項
1または2に記載の磁気特性の良好な鏡面方向性珪素鋼
板の製造方法。
3. Manufacture of a mirror-oriented silicon steel sheet having good magnetic properties according to claim 1 or 2, characterized in that Sn or Sb is added as an element in the steel in an amount of 0.03 to 0.15% by mass. Method.
【請求項4】 焼鈍分離剤の仕上げ焼鈍時の持ち込み水
分を1.5%以下とすることを特徴とする請求項1乃至
3のいずれか1項に記載の磁気特性の良好な鏡面方向性
電磁鋼板の製造方法。
4. The specular directional electromagnetic field with good magnetic properties according to claim 1, wherein the moisture content of the annealing separator during finish annealing is 1.5% or less. Steel plate manufacturing method.
【請求項5】 仕上焼鈍工程の1000〜1100℃の
二次再結晶温度域の加熱速度を20℃/hr以下とし
て、この温度域で二次再結晶させることを特徴とする請
求項1乃至4のいずれか1項に記載の磁束密度の高い鏡
面方向性電磁鋼板の製造方法。
5. The secondary recrystallization is performed in the temperature range of 1000 to 1100 ° C. in the secondary recrystallization temperature range of 20 ° C./hr or less in the finish annealing step. The method for producing a specular grain-oriented electrical steel sheet having a high magnetic flux density according to any one of 1.
JP2002071426A 2002-03-15 2002-03-15 Method for producing grain-oriented electrical steel sheet Expired - Fee Related JP4422385B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002071426A JP4422385B2 (en) 2002-03-15 2002-03-15 Method for producing grain-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002071426A JP4422385B2 (en) 2002-03-15 2002-03-15 Method for producing grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2003268451A true JP2003268451A (en) 2003-09-25
JP4422385B2 JP4422385B2 (en) 2010-02-24

Family

ID=29201705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002071426A Expired - Fee Related JP4422385B2 (en) 2002-03-15 2002-03-15 Method for producing grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP4422385B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101440598B1 (en) 2012-11-07 2014-09-15 주식회사 포스코 Oriented electrical steel sheets and method for manufacturing the same
WO2020149320A1 (en) * 2019-01-16 2020-07-23 日本製鉄株式会社 Method for manufacturing grain-oriented electrical steel sheet
WO2020149333A1 (en) * 2019-01-16 2020-07-23 日本製鉄株式会社 Method for manufacturing grain-oriented electrical steel sheet
RU2778108C1 (en) * 2019-01-16 2022-08-15 Ниппон Стил Корпорейшн Method for manufacturing a sheet of electrical steel with an oriented grain structure
US11725254B2 (en) 2015-12-24 2023-08-15 Posco Co., Ltd Method for manufacturing grain-oriented electrical steel sheet

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101944901B1 (en) 2016-12-21 2019-02-01 주식회사 포스코 Annealing separating agent composition for grain oriented electrical steel sheet, grain oriented electrical steel sheet, and method for manufacturing grain oriented electrical steel sheet

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101440598B1 (en) 2012-11-07 2014-09-15 주식회사 포스코 Oriented electrical steel sheets and method for manufacturing the same
US11725254B2 (en) 2015-12-24 2023-08-15 Posco Co., Ltd Method for manufacturing grain-oriented electrical steel sheet
WO2020149320A1 (en) * 2019-01-16 2020-07-23 日本製鉄株式会社 Method for manufacturing grain-oriented electrical steel sheet
WO2020149333A1 (en) * 2019-01-16 2020-07-23 日本製鉄株式会社 Method for manufacturing grain-oriented electrical steel sheet
CN113286909A (en) * 2019-01-16 2021-08-20 日本制铁株式会社 Method for producing grain-oriented electromagnetic steel sheet
CN113302321A (en) * 2019-01-16 2021-08-24 日本制铁株式会社 Method for producing unidirectional electromagnetic steel sheet
JPWO2020149320A1 (en) * 2019-01-16 2021-12-02 日本製鉄株式会社 Manufacturing method of grain-oriented electrical steel sheet
JPWO2020149333A1 (en) * 2019-01-16 2021-12-02 日本製鉄株式会社 Manufacturing method of grain-oriented electrical steel sheet
RU2768930C1 (en) * 2019-01-16 2022-03-25 Ниппон Стил Корпорейшн Method of making a sheet of electrical steel with an oriented grain structure
RU2778108C1 (en) * 2019-01-16 2022-08-15 Ниппон Стил Корпорейшн Method for manufacturing a sheet of electrical steel with an oriented grain structure
JP7188459B2 (en) 2019-01-16 2022-12-13 日本製鉄株式会社 Manufacturing method of grain-oriented electrical steel sheet
JP7486436B2 (en) 2019-01-16 2024-05-17 日本製鉄株式会社 Manufacturing method for grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
JP4422385B2 (en) 2010-02-24

Similar Documents

Publication Publication Date Title
JP4288054B2 (en) Method for producing grain-oriented silicon steel sheet
KR100442101B1 (en) The method for producing an electromagnetic steel sheet having high magnetic flux density
JP2679944B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JP2653638B2 (en) Manufacturing method of grain-oriented electrical steel sheet with low iron loss
JP3474837B2 (en) Method for manufacturing mirror-oriented unidirectional electrical steel sheet having B8 of 1.91 T or more
JP4427226B2 (en) Method for producing grain-oriented electrical steel sheet
JP2003268451A (en) Method for manufacturing grain-oriented electromagnetic steel sheet with high magnetic flux density and mirror plane
JP4331886B2 (en) Method for producing grain-oriented silicon steel sheet
JP2680987B2 (en) Method for producing grain-oriented silicon steel sheet with low iron loss
JP2678855B2 (en) Method for manufacturing ultra low iron loss unidirectional silicon steel sheet
JP4422384B2 (en) Method for producing grain-oriented electrical steel sheet
JP2678850B2 (en) Method for manufacturing ultra low iron loss unidirectional silicon steel sheet
JP2680532B2 (en) Method for producing grain-oriented electrical steel sheet with low iron loss
JP4427225B2 (en) Method for producing grain-oriented electrical steel sheet
JP4119614B2 (en) Method for producing grain-oriented electrical steel sheet
JP4585141B2 (en) Method for producing grain-oriented silicon steel sheet and decarburization annealing furnace
JPH07278669A (en) Manufacture of mirror surface oriented silicon steel sheet with low iron loss
JP2003268452A (en) Method for manufacturing grain-oriented electromagnetic steel sheet with adequate magnetic property and mirror plane
JP3182666B2 (en) Method for producing ultra-low iron loss unidirectional silicon steel sheet
JPH08269559A (en) Production of mirror-finished grain-oriented silicon steel sheet reduced in iron loss
JP3300194B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JPH08269557A (en) Production of mirror-finished grain-oriented silicon steel sheet reduced in iron loss
JPH101722A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JPH06100927A (en) Production of grain-oriented silicon steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4422385

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees