JPH10170032A - Ice heat storage device - Google Patents

Ice heat storage device

Info

Publication number
JPH10170032A
JPH10170032A JP32972496A JP32972496A JPH10170032A JP H10170032 A JPH10170032 A JP H10170032A JP 32972496 A JP32972496 A JP 32972496A JP 32972496 A JP32972496 A JP 32972496A JP H10170032 A JPH10170032 A JP H10170032A
Authority
JP
Japan
Prior art keywords
water
ice
heat storage
heat exchanger
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32972496A
Other languages
Japanese (ja)
Other versions
JP3445077B2 (en
Inventor
Koichi Yamaguchi
山口  広一
Yoshihiro Ito
芳浩 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP32972496A priority Critical patent/JP3445077B2/en
Publication of JPH10170032A publication Critical patent/JPH10170032A/en
Application granted granted Critical
Publication of JP3445077B2 publication Critical patent/JP3445077B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To miniaturize a device, to improve the maintainability of it, to reduce costs and to improve efficiency by spouting supercooled water being generated by a heat exchanger from the side surface part of a thermal storage tank to a supercooling relieving device. SOLUTION: Water is taken in from an ice storage tank 1 by a pump, the water is fed to the supercooled water generating heat exchanger 3 and the water is cooled by the refrigerating machine 6 of the heat exchanger 3 to be the supercooled water. the supercooled water is spouted from the outlet hole of the heat exchanger 3 and the spouted supercooled water is spouted to the inside of the ice storage tank 1 going through a hole 7 arranged to the side surface of the ice storage tank 1. The supercooled water is collided with plate form supercooling releasing device 4 placed obliquely to the spouting direction of the supercooled water being converted to ice. Therefore, the down sizing of the device and reduction of the cost of it are enabled by not mounting supercooled water generating heat exchanger 3 above the ice storage tank 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、氷蓄熱装置に係
り、例えば深夜電力を利用して氷を生成し、昼間の冷房
に利用する氷蓄熱装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ice heat storage device, and more particularly to an ice heat storage device that generates ice using midnight power and uses it for daytime cooling.

【0002】[0002]

【従来の技術】氷蓄熱装置は、大別して、配管の周りに
固い氷を生成させるスタティック型と、シャーベットの
ような柔らかい氷を生成させるダイナミック型に分類す
ることができる。スタティック型は、蓄熱槽を小型化で
きる利点を備えているが、追加製氷が困難なため、運転
コストが大きくなる欠点を有している。
2. Description of the Related Art Ice heat storage devices can be broadly classified into a static type for generating hard ice around a pipe and a dynamic type for generating soft ice such as a sherbet. The static type has an advantage that the heat storage tank can be reduced in size, but has a drawback that the operating cost becomes large because additional ice making is difficult.

【0003】一方、シャーベット状の氷の生成が可能な
ダイナミック型は、追加製氷が可能な利点を有する。シ
ャーベット状の氷を生成させる手段は種々あるが、最も
構成が簡単な方式として、熱交換器内で水を冷却して過
冷却水を生成し、その過冷却水の過冷却状態を解除させ
て、槽内に氷を貯めていく装置が知られている(例え
ば、実開平1−136832号公報)。
On the other hand, a dynamic type capable of producing sherbet-like ice has an advantage that additional ice making is possible. There are various means for generating sherbet-like ice, but the simplest method is to cool water in a heat exchanger to generate supercooled water and release the supercooled water from the supercooled state. A device for storing ice in a tank is known (for example, Japanese Utility Model Laid-Open No. 1-136832).

【0004】従来のダイナミック型の氷蓄熱装置は、過
冷却水を生成する熱交換器を槽上部へ設置し、過冷却水
を槽上部より槽内の過冷却解除装置もしくは水面(実開
平4−43742号公報)へ噴出させたり、或いは、槽
上部に設置した過冷却解除装置へ向かって噴出させたり
していた(特開平6−147561号公報)。
In a conventional dynamic type ice heat storage device, a heat exchanger for generating supercooled water is installed in an upper portion of a tank, and the supercooled water is supplied from the upper portion of the tank to a supercooling release device in the tank or to a water surface (actually open flat 4- No. 43742), or to a supercooling release device installed in the upper part of the tank (JP-A-6-147561).

【0005】このため、ダイナミック型はスタティック
型に比べ装置の大型化を招き、或いは装置の密閉化が困
難なため頻繁に水質管理を行う必要があった。しかし、
ダイナミック型は元来大規模ビル向け空調設備であるた
め、この大型化,頻繁な水質管理は大きな問題にはなら
なかった。また、ダイナミック型の氷蓄熱装置は、ポン
プが過冷却水を吸い込むことにより製氷の安定性がやや
欠け、効率の悪化を招く場合があった。
[0005] For this reason, the dynamic type requires a larger device than the static type, or it is difficult to seal the device, so that frequent water quality management has to be performed. But,
Since the dynamic type was originally an air conditioner for large-scale buildings, the increase in size and frequent water quality management did not become a major problem. Further, in the dynamic type ice heat storage device, the stability of ice making is slightly lacked due to the pump sucking the supercooled water, and the efficiency may be deteriorated in some cases.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、中小ビ
ル用空調では、氷蓄熱装置の大きさやメンテナンス性が
重要であり、氷蓄熱装置をスタティック型に近い大きさ
まで小型化し、メンテナンス性を向上させる必要があ
る。そこで、本発明の目的は、装置を小型化すると共に
メンテナンス性を改善し、低コスト化,高効率化を可能
にした氷蓄熱装置を提供することである。
However, in air conditioning for small and medium-sized buildings, the size and maintainability of the ice heat storage device are important. is there. Therefore, an object of the present invention is to provide an ice heat storage device that is reduced in size and improved in maintainability, and is capable of reducing costs and increasing efficiency.

【0007】[0007]

【課題を解決するための手段】前記課題を解決するため
に請求項1記載の発明は、冷凍機を用いて水を過冷却水
へ変化させる熱交換器と、該熱交換器により生成された
過冷却水より氷を生成する過冷却解除装置と、該過冷却
解除装置により生成された氷を蓄える蓄熱槽と、該蓄熱
槽から前記熱交換器へ水を送水するポンプとを備えた氷
蓄熱装置において、前記過冷却解除装置は前記蓄熱槽内
に配置されてなり、前記蓄熱槽の側面部から、前記熱交
換器により生成された過冷却水を前記過冷却解除装置に
向けて噴出させるようにしたことを特徴とする。
According to a first aspect of the present invention, there is provided a heat exchanger for converting water into supercooled water using a refrigerator, and a heat exchanger produced by the heat exchanger. Ice heat storage including a supercooling release device that generates ice from supercooled water, a heat storage tank that stores ice generated by the supercooling release device, and a pump that sends water from the heat storage tank to the heat exchanger. In the apparatus, the supercooling release device is disposed in the heat storage tank, and supercooled water generated by the heat exchanger is ejected from a side surface of the heat storage tank toward the supercooling release device. It is characterized by the following.

【0008】請求項1記載の発明によれば、例えば、図
1に示すように、蓄熱槽1の側板側から過冷却水を槽内
の過冷却解除装置4へと噴出させる構成であるため、 蓄熱槽1の上部に余分なスペースを必要としない。 過冷却水の噴出方向と逆向き成長する氷が、側板の過
冷却水噴出口へ到達するまでの距離だけ蓄積可能であ
り、槽スペース(槽の横幅)の有効利用率が高い。
According to the first aspect of the present invention, for example, as shown in FIG. 1, since the supercooled water is jetted from the side plate side of the heat storage tank 1 to the subcooling release device 4 in the tank, No extra space is required above the heat storage tank 1. Ice that grows in the direction opposite to the supercooled water jet direction can accumulate for the distance until it reaches the supercooled water jet port on the side plate, and the effective utilization rate of the tank space (width of the tank) is high.

【0009】氷の成長方向と過冷却水の噴出方向が正
反対になるため、過冷却水が保持している運動エネルギ
ーにより、槽内の氷を圧縮でき、容積氷充填率を高める
ことができる。
Since the growth direction of the ice and the direction of the jet of the supercooled water are opposite to each other, the kinetic energy held by the supercooled water can compress the ice in the tank and increase the filling rate of the volumetric ice.

【0010】また、請求項2記載の発明は、前記過冷却
解除装置は、前記噴出された過冷却水を受け止める金属
板部と、前記送水ポンプの水導入口への氷塊の侵入を防
止する氷塊防止フィルタとを備えてなり、前記金属板部
と氷塊防止フィルタとを熱伝導不良体を介して接続した
こを特徴とする。
According to a second aspect of the present invention, in the supercool release device, a metal plate portion for receiving the jetted supercooled water, and an ice block for preventing entry of the ice block into a water inlet of the water pump. An anti-reflection filter, wherein the metal plate portion and the ice block prevention filter are connected to each other via a poor heat conduction member.

【0011】請求項2記載の発明によれば、例えば、図
3(A),(B)に示すように、過冷却解除装置4Aが
金属板部12と氷核侵入防止用フィルタ13を熱伝導不
良体14を介して接続させた構造であるため、 過冷却水の衝突面が熱伝導の良い金属板であるため、
過冷却水の解除効率が高い。 氷核侵入防止用フィルタにより、槽内の氷塊がポンプ
2への給水管路へ侵入する心配がない。 金属板12の温度は、過冷却水の衝突で氷の温度より
低くなるものの、氷核侵入防止用フィルタ13は熱伝導
不良体14を介して接続されているため、フィルタ13
は氷の温度より低くならない。このため、フィルタ13
の冷却による過冷却水の発生が無くなり、給水管路へ過
冷却水が吸い込まれる確率が少なくなり、システムの信
頼性、効率が高くなる。
According to the second aspect of the present invention, for example, as shown in FIGS. 3A and 3B, the supercooling canceling device 4A conducts heat conduction between the metal plate 12 and the ice nucleus intrusion prevention filter 13. Because the structure is connected via the defective body 14, the collision surface of the supercooled water is a metal plate with good heat conduction,
Supercooling water release efficiency is high. With the ice nucleus intrusion prevention filter, there is no fear that ice blocks in the tank enter the water supply line to the pump 2. Although the temperature of the metal plate 12 becomes lower than the temperature of the ice due to the collision of the supercooled water, the filter 13 for preventing ice nucleus intrusion is connected via the poor heat conduction body 14, so that the filter 13
Does not fall below the ice temperature. Therefore, the filter 13
The generation of the supercooled water due to the cooling of the water is eliminated, the probability of the supercooled water being sucked into the water supply pipeline is reduced, and the reliability and efficiency of the system are increased.

【0012】また、請求項3記載の発明は、前記熱交換
器の過冷却水の出口に、過冷却水を前記過冷却解除装置
へ衝突させるノズルを装着したことを特徴とする。請求
項3記載の発明によれば、例えば、図4(A)〜(C)
に示すように、熱交換器3の出口に過冷却水を過冷却解
除装置4に衝突させるノズル15を装着しているので、 安定製氷が可能な過冷却水の流量範囲で、過冷却水を
確実に過冷却解除装置4へ衝突させることができる。
Further, the invention according to claim 3 is characterized in that a nozzle for causing supercooled water to collide with the supercooling release device is mounted at an outlet of the supercooled water of the heat exchanger. According to the third aspect of the present invention, for example, FIGS.
As shown in the figure, since the nozzle 15 for causing the supercooled water to collide with the subcooling release device 4 is attached to the outlet of the heat exchanger 3, the supercooled water is supplied within the flow rate range of the supercooled water that enables stable ice making. It is possible to reliably cause the collision with the supercooling release device 4.

【0013】即ち、過冷却水の流量Qと安定製氷時間T
cとの間には次式の Tc=B1 /(B2 +B3 ×Q0.5 ) (B1 ,B2 ,B3 は熱交換器3の寸法,内面粗さによ
り決まる定数) 関係があり、過冷却水流量は熱交換器3により決定して
しまう。一方、過冷却水を解除装置4へ効率良く衝突さ
せなければ、過冷却水が再びポンプ2に吸い込まれ製氷
の安定性が低下する。従って、ノズル15の長さや口径
を調節することにより両者を両立させることができる。 噴出の広がりを無くし、蓋や蓄熱槽側板などへの過冷
却水の飛散を防止し、安定した製氷を行うことができ
る。
That is, the flow rate Q of the supercooled water and the stable ice making time T
The following equation Tc = B1 / (B2 + B3 × Q 0.5) (B1, B2, B3 are the dimensions of the heat exchanger 3, determined constants by the inner surface roughness) between the c is related, supercooled water flow It is determined by the heat exchanger 3. On the other hand, if the supercooled water does not collide with the release device 4 efficiently, the supercooled water is sucked into the pump 2 again, and the stability of the ice making is reduced. Therefore, both can be compatible by adjusting the length and diameter of the nozzle 15. Spreading of the jet is eliminated, and supercooled water is prevented from scattering on the lid and the heat storage tank side plate, and stable ice making can be performed.

【0014】また、請求項4記載の発明は、氷融解用の
水を前記蓄熱槽の側面部より該蓄熱槽内へ噴出するよう
にしたことを特徴とする。請求項4記載の発明によれ
ば、例えば、図5に示すように、氷融解用の水を蓄熱槽
1の側面部(側板)より蓄熱槽1内へ噴出するようにし
ているので、蓄熱槽の上部にスペースを必要とせず、ま
た、噴出の力を利用して過冷却解除装置4に衝突させ槽
内の氷にシャワー状に融解用の水(飛散水H)を降り注
ぐことができる。このため、小型化のみならず効率良く
氷を融解させることができる。
Further, the invention according to claim 4 is characterized in that water for melting the ice is jetted from the side surface of the heat storage tank into the heat storage tank. According to the invention as set forth in claim 4, for example, as shown in FIG. 5, water for melting ice is blown into the heat storage tank 1 from the side surface (side plate) of the heat storage tank 1. No space is required at the top of the tank, and the water for thawing (scattered water H) can be poured into the ice in the tank in a shower-like manner by colliding with the supercooling release device 4 using the force of the jet. Therefore, not only the size can be reduced, but also the ice can be efficiently melted.

【0015】また、請求項5記載の発明は、前記熱交換
器はプレート式熱交換器からなり、冷媒と水とを並行流
で流すことを特徴とする。請求項5記載の発明によれ
ば、過冷却水生成用熱交換器としてプレート式(積層
型)を用い、かつ冷媒と水を並行的に流す構成であるの
で、安定製氷を実現でき槽側面のスペースをコンパクト
化できる。
[0015] The invention according to claim 5 is characterized in that the heat exchanger is a plate heat exchanger, and the refrigerant and the water flow in parallel. According to the fifth aspect of the present invention, since a plate type (laminated type) is used as the supercooled water generating heat exchanger and the refrigerant and the water are flowed in parallel, stable ice making can be realized. Space can be made compact.

【0016】即ち、従来は装置の大型化を引き起こして
も、安定製氷のために過冷却水生成用熱交換器として、
二重管式やシェルアンドチューブを用い、水を冷却する
媒体としてブラインを用いた。しかし、過冷却水生成用
熱交換器としてコンパクトなプレート式を用いても冷媒
と水が並行的に流すことにより過冷却のしすぎを無くし
安定製氷を実現することができる。
That is, even if the conventional apparatus is enlarged, the heat exchanger for generating supercooled water for stable ice making is
A double tube type or shell and tube was used, and brine was used as a medium for cooling water. However, even if a compact plate type is used as the heat exchanger for generating supercooled water, the refrigerant and the water flow in parallel, so that excessive cooling is eliminated and stable ice making can be realized.

【0017】[0017]

【発明の実施の形態】以下、本発明を図示の実施形態例
に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on an embodiment shown in the drawings.

【0018】(1)第1実施形態例 図1は本実施形態例の氷蓄熱装置C1 のブロック図であ
る。図1に示すように、氷蓄熱装置C1 は、横幅の広い
蓄熱槽1と、ポンプ2と、熱交換器3と、過冷却解除装
置4と、氷核がポンプの導入口へ侵入するのを防止する
侵入防止フィルタ5と、前記熱交換器3にて水を過冷却
させるための冷凍機6等を備えている。
(1) First Embodiment FIG. 1 is a block diagram of an ice heat storage device C1 of this embodiment. As shown in FIG. 1, the ice heat storage device C1 has a wide heat storage tank 1, a pump 2, a heat exchanger 3, a subcooling release device 4, and an ice nucleus that enters the inlet of the pump. An intrusion prevention filter 5 for preventing water and a refrigerator 6 for supercooling water in the heat exchanger 3 are provided.

【0019】更に、蓄熱槽1の側面には過冷却水噴出用
の穴7が形成され、該穴7には蓄熱槽1の水を外部へ漏
洩させないためのシール材8が装着されている。また、
過冷却水生成用熱交換器3は、支持台9により支持され
ている。
Further, a hole 7 for jetting supercooled water is formed on a side surface of the heat storage tank 1, and a seal member 8 for preventing water in the heat storage tank 1 from leaking to the outside is mounted in the hole 7. Also,
The supercooled water generating heat exchanger 3 is supported by a support 9.

【0020】係る構成において、製氷は以下のように行
われる。即ち、ポンプ2が蓄熱槽1より水を吸い込み、
過冷却水生成用熱交換器3へと給水する。該熱交換器3
において、冷凍機6が水を冷却し過冷却水へと変化させ
る。前記熱交換器3の出口より噴出した過冷却水は、穴
7を通って蓄熱槽1内へと噴出し、該噴出方向に対して
斜めに配置された板状の過冷却解除装置4に衝突し氷へ
と変化する。かかる動作の繰り返しにより蓄熱槽1に氷
Iが堆積していく。なお、本実施形態例では蓄熱槽1を
密閉に近い構造にできるため、槽内の蓄熱材(水もしく
は水溶液)の腐敗を防止でき、水質管理が容易になる。
In such a configuration, ice making is performed as follows. That is, the pump 2 sucks water from the heat storage tank 1,
Water is supplied to the heat exchanger 3 for generating supercooled water. The heat exchanger 3
In, the refrigerator 6 cools the water and changes it to supercooled water. The supercooled water spouted from the outlet of the heat exchanger 3 spouts into the heat storage tank 1 through the hole 7 and collides with the plate-shaped supercooling release device 4 arranged obliquely to the jetting direction. Turns into ice. Ice I is accumulated in the heat storage tank 1 by repeating such an operation. In the present embodiment, since the heat storage tank 1 can be made to have a nearly closed structure, the heat storage material (water or aqueous solution) in the tank can be prevented from decay, and the water quality can be easily managed.

【0021】[変形例]図2に示す本例は、第1実施形
態例の変形例である。図2は、過冷却水を生成させる手
段として、前述の冷媒により直接冷凍サイクルで冷やす
直膨型氷蓄熱システムではなく、間接式冷却システムに
用いられる液体を循環させるブライン回路10,第2ポ
ンプ2A,第2熱交換器3Aを用いた氷蓄熱装置C2 で
ある。このように構成すると、ブライン(二次冷媒)は
熱容量が大きいので、サイクルの温度制御が容易になる
という効果がある。
[Modification] The present embodiment shown in FIG. 2 is a modification of the first embodiment. FIG. 2 shows a brine circuit 10 and a second pump 2A for circulating a liquid used in an indirect cooling system instead of a direct expansion type ice heat storage system in which the above-described refrigerant is directly cooled by a refrigeration cycle as means for generating supercooled water. And an ice heat storage device C2 using the second heat exchanger 3A. With this configuration, since the brine (secondary refrigerant) has a large heat capacity, there is an effect that the temperature control of the cycle is facilitated.

【0022】(2)第2実施形態例 図3(A)は本実施形態例の氷蓄熱装置C3 のブロック
図、図3(B)は過冷却解除装置4Aを構成する第1,
第2金属板12,13等の拡大図である。なお、以下の
説明において、それまでに説明した部分には同一符号を
付し、重複記載を省略する。
(2) Second Embodiment FIG. 3 (A) is a block diagram of an ice heat storage device C3 of this embodiment, and FIG. 3 (B) is a first and a second embodiment of the supercooling release device 4A.
It is an enlarged view of 2nd metal plate 12,13 etc. Note that, in the following description, the parts described so far are denoted by the same reference numerals, and redundant description will be omitted.

【0023】本実施形態例と第1実施形態例との相違点
は、第1実施形態例の過冷却解除装置4が一枚の金属板
からなるのに対し、本実施形態例の過冷却解除装置4A
は次のように構成した点である。その他の点は同一であ
る。即ち、図3(A),(B)に示すように、氷蓄熱装
置C3 の過冷却解除装置4Aは、第1金属板12と、氷
核侵入防止用の金網13aを持つ第2金属板13と、該
第1,第2金属板12,13を接続する熱伝導不良体と
してのプラスチック継ぎ手14等により構成されてい
る。
The difference between the present embodiment and the first embodiment is that the supercooling release device 4 of the first embodiment is made of a single metal plate, while the supercooling release device of the present embodiment is different from that of the first embodiment. Device 4A
Is a point configured as follows. Other points are the same. That is, as shown in FIGS. 3A and 3B, the subcooling release device 4A of the ice heat storage device C3 includes a first metal plate 12 and a second metal plate 13 having a wire mesh 13a for preventing entry of ice nuclei. And a plastic joint 14 or the like as a heat conduction defective body connecting the first and second metal plates 12 and 13.

【0024】係る構成において、ポンプ2が蓄熱槽1よ
り水を過冷却水生成用の熱交換器3へと送る。該熱交換
器3において、冷凍機6が水を冷却して過冷却水へと変
化させる。過冷却水は、蓄熱槽側面の穴7より槽内へと
噴出し、過冷却解除装置4Aの第1金属板12に衝突す
る。第1金属板12上で過冷却水は、その状態を解除し
氷となって、蓄熱槽1内に堆積していく。
In such a configuration, the pump 2 sends water from the heat storage tank 1 to the heat exchanger 3 for generating supercooled water. In the heat exchanger 3, the refrigerator 6 cools the water to change it into supercooled water. The supercooled water is jetted out of the hole 7 on the side of the heat storage tank into the tank, and collides with the first metal plate 12 of the supercooling release device 4A. The supercooled water releases the state on the first metal plate 12 and becomes ice, and accumulates in the heat storage tank 1.

【0025】一方、水は第2金属板13に取り付けられ
た金網13aを通って、再びポンプ2へと吸い込まれ
る。しかし、第2金属板13と第1金属板12とは熱伝
導不良体の継ぎ手14で接続されているので、第1金属
板12が過冷却水との接触により冷却されても、第2金
属板13がそれほど冷却されることがない。従って、第
2金属板13が槽内の水を過冷却状態にすることがな
く、ポンプ2へ過冷却水が吸い込まれる確率が低くな
る。なお、本実施形態例では過冷却解除装置4Aの下側
を金属板(第2金属板13)としたが、この下側を機械
的強度の大きな熱伝導不良体のプラスチックで構成して
もよい。
On the other hand, the water is sucked into the pump 2 again through the wire mesh 13a attached to the second metal plate 13. However, since the second metal plate 13 and the first metal plate 12 are connected by the joint 14 having poor heat conduction, even if the first metal plate 12 is cooled by contact with supercooled water, the second metal plate The plate 13 is not cooled so much. Therefore, the second metal plate 13 does not bring the water in the tank into a supercooled state, and the probability that the supercooled water is sucked into the pump 2 is reduced. In the present embodiment, the lower side of the supercooling release device 4A is a metal plate (second metal plate 13), but the lower side may be made of a plastic having a high mechanical strength and poor heat conduction. .

【0026】(3)第3実施形態例 図4(A)は本実施形態例の氷蓄熱装置C4 のブロック
図、図4(B),(C)は要部拡大図である。本実施形
態例と第1実施形態例との相違点は、過冷却水生成用熱
交換器3の過冷却水噴出出口に、噴出方向に向けて断面
積が小さくなるノズル15を撥水性パッキン16を介し
て装着した点である。16Aは氷片の衝突を防止する筒
である。
(3) Third Embodiment FIG. 4A is a block diagram of an ice heat storage device C4 according to this embodiment, and FIGS. 4B and 4C are enlarged views of a main part. The difference between this embodiment and the first embodiment is that a nozzle 15 having a cross-sectional area decreasing toward the jetting direction is provided at the supercooled water jet outlet of the supercooled water generating heat exchanger 3 with a water-repellent packing 16. This is the point that was mounted via. 16A is a cylinder for preventing collision of ice pieces.

【0027】係る構成において、ポンプ2が蓄熱槽1よ
り水を過冷却水生成用熱交換器3へと送る。該熱交換器
3において、冷凍機6が水を冷却して過冷却水へと変化
させる。過冷却水は、熱交換器3の出口に装着されたノ
ズル15により槽内へと噴出し、過冷却解除装置4に衝
突する。ノズル15の出口口径及び長さは、過冷却水が
過冷却解除装置4へ衝突すると共に、槽内で噴出が乱れ
ないように調節可能である。過冷却解除装置4に衝突し
た過冷却水は、氷へと変化し著熱槽1内へと堆積してい
く。
In such a configuration, the pump 2 sends water from the heat storage tank 1 to the heat exchanger 3 for generating supercooled water. In the heat exchanger 3, the refrigerator 6 cools the water to change it into supercooled water. The supercooled water is jetted into the tank by the nozzle 15 attached to the outlet of the heat exchanger 3 and collides with the supercool release device 4. The outlet diameter and length of the nozzle 15 can be adjusted so that the supercooled water collides with the subcooling release device 4 and the jet is not disturbed in the tank. The supercooled water colliding with the subcooling release device 4 changes to ice and accumulates in the heating tank 1.

【0028】(4)第4実施形態例 図5は本実施形態例の氷蓄熱装置C5 のブロック図であ
る。図5に示すように、氷蓄熱装置C5 は、蓄熱槽1と
ポンプ2と過冷却水生成用熱交換器3と過冷却解除装置
4と氷核融解用熱交換器17と膨脹弁18a,18b,
18cと電磁弁19等からなる蓄熱ユニット、および室
外熱交換器22と圧縮機23等からなる室外ユニット、
および室内ユニット21a,21b等により構成されて
いる。
(4) Fourth Embodiment FIG. 5 is a block diagram of an ice heat storage device C5 of this embodiment. As shown in FIG. 5, the ice heat storage device C5 comprises a heat storage tank 1, a pump 2, a supercooled water generating heat exchanger 3, a subcooling canceling device 4, an ice nucleus melting heat exchanger 17, and expansion valves 18a, 18b. ,
A heat storage unit consisting of 18c, a solenoid valve 19, etc., and an outdoor unit consisting of an outdoor heat exchanger 22, a compressor 23, etc.
And the indoor units 21a and 21b.

【0029】係る構成において、氷蓄熱時にポンプ2
は、蓄熱槽1より熱交換器3へ給水を行う。熱交換器3
では、圧縮機23より室外熱交換器22と氷核融解用熱
交換器17を経て膨脹弁18aで絞られ吐出した冷媒と
水の熱交換が起こり、過冷却水が生成される。過冷却水
は、蓄熱槽1の穴7より蓄熱槽1内へと噴出し、過冷却
解除装置4により氷へと変化させられる。
In such a configuration, the pump 2 can be used during ice heat storage.
Supplies water from the heat storage tank 1 to the heat exchanger 3. Heat exchanger 3
In this case, heat exchange occurs between the refrigerant that has been throttled and discharged by the expansion valve 18a from the compressor 23 through the outdoor heat exchanger 22 and the ice nucleus melting heat exchanger 17, and supercooled water is generated. The supercooled water is jetted out of the hole 7 of the heat storage tank 1 into the heat storage tank 1, and is changed into ice by the subcooling release device 4.

【0030】一方、冷房時には、冷媒は圧縮機23→室
外熱交換器22→氷核融解用熱交換器17→電磁弁19
→室内ユニット21a,21bへと流れた後、再び圧縮
機23へと戻る。水は、蓄熱槽1→ポンプ2と流れた
後、熱交換器17にて冷媒と熱交換し暖められる。そし
て熱交換器3へと流れ、槽1側面の穴7より槽内へと噴
出される。噴出された水は、過冷却過冷却解除装置4に
衝突し、飛散水Hとなって蓄熱槽1内の氷へ降り注ぎ、
槽内の氷を効率良く融解させる。
On the other hand, during cooling, the refrigerant flows from the compressor 23 → the outdoor heat exchanger 22 → the heat exchanger 17 for melting ice nuclei → the solenoid valve 19.
→ After flowing to the indoor units 21a and 21b, the flow returns to the compressor 23 again. After flowing from the heat storage tank 1 to the pump 2, the water exchanges heat with the refrigerant in the heat exchanger 17 and is heated. Then, it flows to the heat exchanger 3 and is jetted out of the hole 7 on the side surface of the tank 1 into the tank. The jetted water collides with the supercooling / supercooling canceling device 4, becomes scattered water H, and falls onto ice in the heat storage tank 1.
Melts the ice in the tank efficiently.

【0031】(5)第5実施形態例 図6(A),(B)は本実施形態例の氷蓄熱装置C6 の
ブロック図および要部拡大図である。図6(A)に示す
ように、氷蓄熱装置C6 は、蓄熱槽1とポンプ2と次に
説明する過冷却水生成用熱交換器3Bと過冷却解除装置
4と氷核侵入防止用フィルタ5および前記熱交換器3B
にて水を過冷却させるための冷凍機6等により構成され
ている。
(5) Fifth Embodiment FIGS. 6A and 6B are a block diagram and an enlarged view of a main part of an ice heat storage device C6 of this embodiment. As shown in FIG. 6A, the ice heat storage device C6 includes a heat storage tank 1, a pump 2, a heat exchanger 3B for generating supercooled water, a subcooling release device 4, and a filter 5 for preventing ice nuclei from entering. And the heat exchanger 3B
And a refrigerator 6 for supercooling water.

【0032】図6(B)に示すように、前記熱交換器3
Bは、プレート式(積層型)熱交換器であり、冷媒は入
口31より流入し出口32より流出する。一方、水は、
入口33より流入し出口34より流出し、水と冷媒の流
れは並行流となっている。
As shown in FIG. 6B, the heat exchanger 3
B is a plate type (laminated type) heat exchanger, in which the refrigerant flows in from the inlet 31 and flows out from the outlet 32. On the other hand, water
The water flows in from the inlet 33 and flows out from the outlet 34, and the flows of the water and the refrigerant are parallel.

【0033】係る構成において、ポンプ2が蓄熱槽1よ
り水を過冷却水生成用熱交換器3Bへと送る。前記熱交
換器3Bにおいて、冷凍機6が水を冷却して過冷却水へ
と変化させる。過冷却水は、熱交換器3Bの出口34よ
り蓄熱槽1内へと噴出し、過冷却解除装置4に衝突する
ことにより氷へと変化し、槽内には氷が堆積していく。
In such a configuration, the pump 2 sends water from the heat storage tank 1 to the supercooled water generating heat exchanger 3B. In the heat exchanger 3B, the refrigerator 6 cools the water to change it into supercooled water. The supercooled water is jetted from the outlet 34 of the heat exchanger 3B into the heat storage tank 1 and collides with the subcooling release device 4 to change into ice, and ice is accumulated in the tank.

【0034】[0034]

【発明の効果】以上説明したように請求項1記載の発明
は、従来のように過冷却水生成用熱交換器を槽上部に設
置しないため、装置の小型化及び低コスト化を図ること
ができる。請求項2記載の発明は、蓄熱槽内での解除板
(過冷却解除装置)による再冷却を防ぎ、ポンプ吸い込
み口への過冷却水の侵入を防ぐことができる。このた
め、製氷の安定性を向上させ、システム効率を改善する
ことができる。
As described above, according to the first aspect of the present invention, since the heat exchanger for generating supercooled water is not installed at the upper part of the tank as in the prior art, the size and cost of the apparatus can be reduced. it can. According to the second aspect of the present invention, it is possible to prevent re-cooling by the release plate (sub-cooling release device) in the heat storage tank and prevent the supercooled water from entering the pump suction port. For this reason, stability of ice making can be improved and system efficiency can be improved.

【0035】請求項3記載の発明は、熱交換器の種類に
関係なく、過冷却解除装置にて効率よく過冷却水を解除
できるため、製氷の安定性及びシステム効率の向上をも
たらすことができる。請求項4記載の発明は、氷融解用
水を蓄熱槽側面より噴出させるため、装置の小型化を可
能にした効率的な解氷による氷利用冷房時の消費電力の
低減幅を拡大することができる。請求項5記載の発明
は、プレート式熱交換器での製氷により、システムを小
型化することができる。
According to the third aspect of the present invention, since the supercooled water can be efficiently released by the supercooling release device regardless of the type of the heat exchanger, the stability of ice making and the system efficiency can be improved. . According to the fourth aspect of the present invention, since the water for melting ice is ejected from the side of the heat storage tank, the reduction in power consumption during ice-based cooling by efficient defrosting that enables the downsizing of the apparatus can be expanded. . According to the fifth aspect of the present invention, the size of the system can be reduced by ice making in the plate heat exchanger.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態例のブロック図である。FIG. 1 is a block diagram of a first embodiment of the present invention.

【図2】同第2実施形態例のブロック図である。FIG. 2 is a block diagram of the second embodiment.

【図3】同第3実施形態例のブロック図および要部拡大
図である。
FIG. 3 is a block diagram and a main part enlarged view of the third embodiment.

【図4】同第4実施形態例のブロック図および要部拡大
図である。
FIG. 4 is a block diagram and a main part enlarged view of the fourth embodiment.

【図5】同第5実施形態例のブロック図である。FIG. 5 is a block diagram of the fifth embodiment.

【図6】同第6実施形態例のブロック図および要部拡大
図である。
FIG. 6 is a block diagram and a main part enlarged view of the sixth embodiment.

【符号の説明】[Explanation of symbols]

1 蓄熱槽 2 ポンプ 3 過冷却水生成用の熱交換器 4 過冷却解除装置 5 フィルタ 6 冷凍機 7 蓄熱槽の側面部に設けた穴 8 シール材 REFERENCE SIGNS LIST 1 heat storage tank 2 pump 3 heat exchanger for generating supercooled water 4 subcooling release device 5 filter 6 refrigerator 7 hole provided on side of heat storage tank 8 sealing material

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 冷凍機を用いて水を過冷却水へ変化させ
る熱交換器と、該熱交換器により生成された過冷却水よ
り氷を生成する過冷却解除装置と、該過冷却解除装置に
より生成された氷を蓄える蓄熱槽と、該蓄熱槽から前記
熱交換器へ水を送水するポンプとを備えた氷蓄熱装置に
おいて、 前記過冷却解除装置は前記蓄熱槽内に配置されてなり、 前記蓄熱槽の側面部から、前記熱交換器により生成され
た過冷却水を前記過冷却解除装置に向けて噴出させるよ
うにしたことを特徴とする氷蓄熱装置。
1. A heat exchanger for converting water to supercooled water using a refrigerator, a supercooling release device for generating ice from supercooled water generated by the heat exchanger, and the supercooling release device In the ice heat storage device including a heat storage tank that stores the ice generated by the above, and a pump that sends water from the heat storage tank to the heat exchanger, the supercooling release device is disposed in the heat storage tank, An ice heat storage device, wherein supercooled water generated by the heat exchanger is jetted from a side portion of the heat storage tank toward the subcooling release device.
【請求項2】 前記過冷却解除装置は、前記噴出された
過冷却水を受け止める金属板部と、前記送水ポンプの水
導入口への氷塊の侵入を防止する氷塊防止フィルタとを
備えてなり、 前記金属板部と氷塊防止フィルタとを熱伝導不良体を介
して接続したこを特徴とする請求項1記載の氷蓄熱装
置。
2. The supercooling release device includes a metal plate portion that receives the jetted supercooled water, and an iceblock prevention filter that prevents entry of iceblocks into a water inlet of the water pump. 2. The ice heat storage device according to claim 1, wherein the metal plate and the ice block prevention filter are connected to each other via a poor heat conduction member.
【請求項3】 前記熱交換器の過冷却水の出口に、過冷
却水を前記過冷却解除装置へ衝突させるノズルを装着し
たことを特徴とする請求項1または請求項2記載の氷蓄
熱装置。
3. The ice heat storage device according to claim 1, wherein a nozzle for causing supercooled water to collide with the supercooling release device is mounted at an outlet of the supercooled water of the heat exchanger. .
【請求項4】 氷融解用の水を前記蓄熱槽の側面部より
該蓄熱槽内へ噴出するようにしたことを特徴とする請求
項1乃至請求項3記載の氷蓄熱装置。
4. The ice heat storage device according to claim 1, wherein water for melting the ice is jetted from a side surface of the heat storage tank into the heat storage tank.
【請求項5】 冷凍機を用いて水を過冷却水へ変化させ
る熱交換器と、該熱交換器により生成された過冷却水よ
り氷を生成する過冷却解除装置と、該過冷却解除装置に
より生成された氷を蓄える蓄熱槽と、該蓄熱槽から前記
熱交換器へ水を送水するポンプとを備えた氷蓄熱装置に
おいて、 前記熱交換器はプレート式熱交換器からなり、冷媒と水
とを並行流で流すことを特徴とする氷蓄熱装置。
5. A heat exchanger for converting water to supercooled water using a refrigerator, a supercooling release device for generating ice from the supercooled water generated by the heat exchanger, and the supercooling release device. An ice heat storage device comprising: a heat storage tank for storing ice generated by the above; and a pump for sending water from the heat storage tank to the heat exchanger, wherein the heat exchanger comprises a plate-type heat exchanger, and includes a refrigerant and water. An ice heat storage device characterized by flowing in a parallel flow.
JP32972496A 1996-12-10 1996-12-10 Ice storage device Expired - Fee Related JP3445077B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32972496A JP3445077B2 (en) 1996-12-10 1996-12-10 Ice storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32972496A JP3445077B2 (en) 1996-12-10 1996-12-10 Ice storage device

Publications (2)

Publication Number Publication Date
JPH10170032A true JPH10170032A (en) 1998-06-26
JP3445077B2 JP3445077B2 (en) 2003-09-08

Family

ID=18224572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32972496A Expired - Fee Related JP3445077B2 (en) 1996-12-10 1996-12-10 Ice storage device

Country Status (1)

Country Link
JP (1) JP3445077B2 (en)

Also Published As

Publication number Publication date
JP3445077B2 (en) 2003-09-08

Similar Documents

Publication Publication Date Title
US11674725B2 (en) Heat pump
JP3445077B2 (en) Ice storage device
JPH1054591A (en) Ice storage apparatus
CN110006119A (en) Refrigeration unit
JP2727754B2 (en) Ice making equipment
JPH0370928A (en) Ice heat accumulator
JPH10205917A (en) Condenser
JP2946889B2 (en) Ice making equipment
CN217402692U (en) Shunt, heat exchanger assembly and air conditioner
JPH07248168A (en) Icemaker
JP4288795B2 (en) Ice heat storage device
JP2982742B2 (en) Ice making equipment
JP3643687B2 (en) Air conditioner with ice heat storage unit
JPH04306471A (en) Ice heat accumulating device
JP2806155B2 (en) Ice making equipment
JP2001033069A (en) Thermal storage system and melting method in the thermal storage system
JP2649078B2 (en) Heat storage type cooling and heating method
JP3102042B2 (en) Ice making equipment
CN114484959A (en) Ice making system
JP2508299B2 (en) Ice heat storage device
JPH11211373A (en) Heat storage type air-conditioner
JP2563703B2 (en) Subcooled ice heat storage device
JP3642238B2 (en) Ice heat storage device
JP2005188896A (en) Ice thermal storage method and ice thermal storage device
JPH10160207A (en) Ice storage device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20110627

LAPS Cancellation because of no payment of annual fees