JP2005188896A - Ice thermal storage method and ice thermal storage device - Google Patents

Ice thermal storage method and ice thermal storage device Download PDF

Info

Publication number
JP2005188896A
JP2005188896A JP2003433681A JP2003433681A JP2005188896A JP 2005188896 A JP2005188896 A JP 2005188896A JP 2003433681 A JP2003433681 A JP 2003433681A JP 2003433681 A JP2003433681 A JP 2003433681A JP 2005188896 A JP2005188896 A JP 2005188896A
Authority
JP
Japan
Prior art keywords
ice
water
heat storage
ice water
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003433681A
Other languages
Japanese (ja)
Inventor
Kazuo Kobayashi
一夫 小林
Shoichiro Baba
尚一郎 馬場
Akira Akiyoshi
亮 秋吉
Tsuneo Kouki
恒雄 幸喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2003433681A priority Critical patent/JP2005188896A/en
Publication of JP2005188896A publication Critical patent/JP2005188896A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To prevent supercooled water from freezing on the way of circulation and eliminate an installation restriction of an ice thermal storage device. <P>SOLUTION: A cold water/ice water circulation line 20 including an ice water generator 17 for pumping cold water 15 from an ice thermal storage tank 12 and circulating as ice water in the ice thermal storage tank is provided. The ice water generator, including an evaporator 1 of a refrigerating machine 4 for supercooling the cold water, and a supercooling releasing part 25 for releasing supercooling and generating the ice water, discharges the ice water and delivers to the ice heat storage tank. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、水を熱媒体とした氷蓄熱方法及びその装置に関するものである。   The present invention relates to an ice heat storage method and apparatus using water as a heat medium.

従来、ビル等の空調を行う場合の熱媒体として水が用いられ、水を氷水状態として蓄熱槽に貯留する氷蓄熱装置がある。   2. Description of the Related Art Conventionally, there is an ice heat storage device in which water is used as a heat medium when air conditioning a building or the like and water is stored in a heat storage tank in an ice water state.

従来の氷蓄熱装置として、例えば特許文献1に示されるものがあり、図7に於いて略述する。   As a conventional ice heat storage device, for example, there is one shown in Patent Document 1, which is outlined in FIG.

図7中、1は過冷却器を兼ねる蒸発器、2は凝縮器、3は圧縮機、4は冷凍機、5は冷却塔、12は氷蓄熱槽を示している。   In FIG. 7, 1 is an evaporator that also serves as a supercooler, 2 is a condenser, 3 is a compressor, 4 is a refrigerator, 5 is a cooling tower, and 12 is an ice heat storage tank.

前記蒸発器1、前記凝縮器2、前記圧縮機3は閉鎖された冷凍機4を構成している。又、前記冷却塔5と前記凝縮器2間を冷却水ポンプ6によって水が循環され、冷却水系7が形成される。又、前記蒸発器1と前記氷蓄熱槽12間は冷水ポンプ8によって冷媒である水が循環され、冷水系13が形成される。該冷水系13は冷水が循環する為の配水管11を具備し、該配水管11には上流側から前記冷水ポンプ8、予熱交換器9、氷核フィルタ10が設けられている。   The evaporator 1, the condenser 2, and the compressor 3 constitute a closed refrigerator 4. Further, water is circulated between the cooling tower 5 and the condenser 2 by a cooling water pump 6 to form a cooling water system 7. Further, between the evaporator 1 and the ice heat storage tank 12, water as a refrigerant is circulated by a cold water pump 8 to form a cold water system 13. The cold water system 13 includes a water distribution pipe 11 for circulating cold water. The water distribution pipe 11 is provided with the cold water pump 8, the preheat exchanger 9, and an ice core filter 10 from the upstream side.

前記冷凍機4に於いて、前記凝縮器2内で前記冷却水系7によって冷凍機4の冷媒が凝縮され、前記蒸発器1で冷媒が蒸発する。前記冷水ポンプ8によって循環される冷水は前記蒸発器1で過冷却(−2℃)される。過冷却水は、前記配水管11を通って前記氷蓄熱槽12に吐出され、吐出される際に過冷却状態が解除され、氷結シャーベット状の氷水として前記氷蓄熱槽12に貯留される。前記予熱交換器9は、冷水が前記配水管11内で氷結しない様に冷水を所要温度迄冷却し、前記氷核フィルタ10は冷水中の氷を除去し、氷が前記蒸発器1に流入しない様にするものである。   In the refrigerator 4, the refrigerant in the refrigerator 4 is condensed in the condenser 2 by the cooling water system 7, and the refrigerant is evaporated in the evaporator 1. The cold water circulated by the cold water pump 8 is supercooled (−2 ° C.) by the evaporator 1. The supercooled water is discharged to the ice heat storage tank 12 through the water distribution pipe 11, and the supercooled state is released when discharged, and is stored in the ice heat storage tank 12 as frozen sherbet-like ice water. The preheat exchanger 9 cools the cold water to a required temperature so that the cold water does not freeze in the distribution pipe 11, and the ice core filter 10 removes the ice in the cold water, so that the ice does not flow into the evaporator 1. It is what you do.

前記氷蓄熱槽12には、シャーベット状の氷14が貯留されることで冷熱が蓄えられる。冷房等冷熱が必要な場合、氷が融解され得られた冷水15が抽出され、空調機(図示せず)等に供給される。   The ice heat storage tank 12 stores chilled heat by storing sherbet-like ice 14. When cooling such as cooling is required, cold water 15 obtained by melting ice is extracted and supplied to an air conditioner (not shown) or the like.

上記した従来の氷蓄熱装置では、状態の不安定な過冷却水が前記蒸発器1から前記配水管11により前記氷蓄熱槽12に導かれるので、前記配水管11中で衝撃を受ける等により過冷却水が氷結する虞れがあり、氷結した場合は前記配水管11が詰り、更に氷結が前記蒸発器1迄伝播し、該蒸発器1が凍り付き、氷蓄熱装置を停止しなければならない事態に至る虞れがある。   In the conventional ice heat storage device described above, the supercooled water in an unstable state is led from the evaporator 1 to the ice heat storage tank 12 through the water distribution pipe 11, so that it is excessive due to an impact in the water distribution pipe 11. There is a possibility that the cooling water may freeze, and in the case of freezing, the water distribution pipe 11 is clogged, and further, the freezing propagates to the evaporator 1, the evaporator 1 freezes, and the ice heat storage device must be stopped. There is a risk of reaching.

又、従来の氷蓄熱装置では、前記配水管11から前記氷蓄熱槽12に吐出して、過冷却状態を解除する構成であるので、前記配水管11の吐出位置は前記氷蓄熱槽12の上方に制限され、氷蓄熱装置の設置に制約を受ける等の不具合があった。   In addition, the conventional ice heat storage device is configured to discharge from the water distribution pipe 11 to the ice heat storage tank 12 to release the supercooled state, so that the discharge position of the water distribution pipe 11 is located above the ice heat storage tank 12. However, there were problems such as restrictions on the installation of ice heat storage devices.

特許第3122223号公報Japanese Patent No. 3122223

本発明は斯かる実情に鑑み、過冷却水が循環途中で氷結することを防止し、又氷蓄熱装置の設置制約を除去するものである。   In view of such circumstances, the present invention prevents supercooled water from freezing in the middle of circulation, and removes the installation restriction of the ice heat storage device.

本発明は、氷水生成器を含み氷蓄熱槽から冷水を吸上げ、氷水として前記氷蓄熱槽に循環させる冷水/氷水循環ラインを具備し、前記氷水生成器は前記氷蓄熱槽から冷水を吸上げ、過冷却後直ちに過冷却解除して氷水を生成し、氷水状態で氷水循環ラインを介して前記氷蓄熱槽に送出する氷蓄熱方法に係り、又冷水/氷水循環ラインを流動する冷媒の態様が冷却水及び氷水である様に構成された氷蓄熱方法に係るものである。   The present invention includes an ice water generator that includes a cold water / ice water circulation line that sucks cold water from an ice heat storage tank and circulates the ice water into the ice heat storage tank as ice water, and the ice water generator sucks cold water from the ice heat storage tank The present invention relates to an ice heat storage method in which ice water is generated immediately after supercooling to generate ice water and sent to the ice heat storage tank through the ice water circulation line in the ice water state, and the mode of the refrigerant flowing through the cold water / ice water circulation line is The present invention relates to an ice heat storage method configured to be cooling water and ice water.

又、本発明は、氷水生成器を含み氷蓄熱槽から冷水を吸上げ、氷水として前記氷蓄熱槽に循環させる冷水/氷水循環ラインを具備し、前記氷水生成器は冷水を過冷却する冷凍機の蒸発器と過冷却解除して氷水を生成する過冷却解除部とを有し、氷水を吐出して前記氷蓄熱槽に送出する氷蓄熱装置に係るものである。   The present invention further includes a cold water / ice water circulation line that includes an ice water generator, sucks cold water from the ice heat storage tank, and circulates the ice water as ice water to the ice heat storage tank. The ice water generator is a refrigerator that supercools the cold water. This invention relates to an ice heat storage device that has an evaporator and a supercool release unit that generates ice water by releasing supercooling, and discharges ice water and sends it to the ice heat storage tank.

又、本発明は、前記過冷却解除部は、氷水生成器の蒸発器に連設される流速増速部と該流速増速部と軸心の方向が異なる様に該流速増速部に連設された出口水室部とを具備し、前記蒸発器から流出された過冷却水が前記流速増速部で増速され、前記出口水室部で流れ方向が変更されることで過冷却状態が解除される様に構成された氷蓄熱装置に係り、又前記流速増速部は前記出口水室部の中心に対してオフセットして設けられ、前記出口水室部で旋回流が発生する様に構成された氷蓄熱装置に係り、更に又前記流速増速部の少なくとも下流端部分に加熱手段を設け、前記流速増速部と前記出口水室部との連設部に熱絶縁部を形成した氷蓄熱装置に係るものである。   Further, according to the present invention, the supercooling release portion is connected to the flow velocity accelerating portion so that the direction of the flow velocity accelerating portion and the flow velocity accelerating portion connected to the evaporator of the ice water generator are different from each other. A supercooled state in which the supercooled water flowing out from the evaporator is accelerated by the flow velocity accelerating unit and the flow direction is changed in the outlet water chamber unit. The flow velocity accelerating portion is provided offset from the center of the outlet water chamber so that a swirling flow is generated in the outlet water chamber. In addition, a heating means is provided at least at the downstream end portion of the flow velocity accelerating portion, and a heat insulating portion is formed in a continuous portion between the flow velocity accelerating portion and the outlet water chamber portion. This relates to the ice heat storage device.

本発明によれば、氷水生成器を含み氷蓄熱槽から冷水を吸上げ、氷水として前記氷蓄熱槽に循環させる冷水/氷水循環ラインを具備し、前記氷水生成器は前記氷蓄熱槽から冷水を吸上げ、過冷却後直ちに過冷却解除して氷水を生成し、氷水状態で氷水循環ラインを介して前記氷蓄熱槽に送出するので、不安定な過冷却水状態でラインを循環することが無くなるので、衝撃等でライン流動中に氷結する事態が避けられ、安定した氷蓄熱装置の作動が実現できる。   According to the present invention, the ice water generator includes a cold water / ice water circulation line that sucks cold water from an ice heat storage tank including the ice water generator and circulates the ice water as ice water to the ice heat storage tank, and the ice water generator draws cold water from the ice heat storage tank. After sucking and overcooling, the supercooling is released to generate ice water, and the ice water is sent to the ice heat storage tank through the ice water circulation line, so that the line is not circulated in an unstable supercooled water state. Therefore, a situation where icing occurs during the flow of the line due to impact or the like can be avoided, and a stable operation of the ice heat storage device can be realized.

又本発明によれば、氷水生成器を含み氷蓄熱槽から冷水を吸上げ、氷水として前記氷蓄熱槽に循環させる冷水/氷水循環ラインを具備し、前記氷水生成器は冷水を過冷却する冷凍機の蒸発器と過冷却解除して氷水を生成する過冷却解除部とを有し、氷水を吐出して前記氷蓄熱槽に送出するので、氷水生成器と氷蓄熱槽との配置の制約がなく、狭小な場所での設置が可能となり又ラインを構成する配管の引回し等の制約が無くなる。   According to the present invention, there is further provided a cold water / ice water circulation line that includes an ice water generator and sucks cold water from the ice heat storage tank and circulates the ice water as ice water to the ice heat storage tank. The ice water generator is a freezer that supercools the cold water. And a supercooling release unit that generates ice water by releasing supercooling, and discharges ice water and sends it to the ice heat storage tank, so there are restrictions on the arrangement of the ice water generator and the ice heat storage tank. Therefore, it can be installed in a narrow place, and there are no restrictions such as routing of the pipes constituting the line.

又本発明によれば、前記過冷却解除部は、氷水生成器の蒸発器に連設される流速増速部と該流速増速部と軸心の方向が異なる様に該流速増速部に連設された出口水室部とを具備し、前記蒸発器から流出された過冷却水が前記流速増速部で増速され、前記出口水室部で流れ方向が変更されることで過冷却状態が解除される様に構成され、前記流速増速部は前記出口水室部の中心に対してオフセットして設けられ、前記出口水室部で旋回流が発生する様に構成されたので、簡単な構成で効果的に過冷却状態の解除が行われる。   Further, according to the present invention, the supercooling release portion is provided in the flow velocity accelerating portion so that the direction of the flow velocity accelerating portion and the flow velocity accelerating portion connected to the evaporator of the ice water generator are different from each other. A supercooling water flowed out from the evaporator is accelerated by the flow velocity accelerating portion and the flow direction is changed in the outlet water chamber portion. Since the state is configured to be released, the flow velocity accelerating portion is provided offset with respect to the center of the outlet water chamber portion, and is configured to generate a swirling flow in the outlet water chamber portion. The supercooling state is effectively released with a simple configuration.

更に又本発明によれば、前記流速増速部の少なくとも下流端部分に加熱手段を設け、前記流速増速部と前記出口水室部との連設部に熱絶縁部を形成したので氷結が流速増速部に伝播することなく、安定した氷蓄熱装置の運転が可能となる等の優れた効果を発揮する。   Furthermore, according to the present invention, a heating means is provided at least at the downstream end portion of the flow velocity accelerating portion, and a heat insulating portion is formed at a continuous portion between the flow velocity accelerating portion and the outlet water chamber portion, so that freezing is caused. It exhibits excellent effects such as enabling stable operation of the ice heat storage device without propagating to the flow velocity accelerating portion.

以下、図面を参照しつつ本発明を実施する為の最良の形態を説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

図1は本発明に係る氷蓄熱装置の第1の実施の形態を示しており、図中、図7中で示したものと同等のものには同符号を付してある。   FIG. 1 shows a first embodiment of an ice heat storage device according to the present invention. In the figure, the same components as those shown in FIG.

凝縮器2の熱交換器21と蒸発器1の熱交換器22と圧縮機3とは冷凍機用配管18に接続され、該冷凍機用配管18の前記凝縮器2と前記蒸発器1との間には膨張弁19が設けられ、閉鎖循環路が形成される。該閉鎖循環路には熱媒体が循環され、前記凝縮器2の前記熱交換器21で冷却され、凝縮され、前記膨張弁19により気化され、前記蒸発器1で該蒸発器1を流通する冷水を過冷却し、前記熱交換器22より前記圧縮機3に循環する。   The heat exchanger 21 of the condenser 2, the heat exchanger 22 of the evaporator 1, and the compressor 3 are connected to a refrigerator pipe 18, and the condenser 2 and the evaporator 1 of the refrigerator pipe 18 are connected to each other. An expansion valve 19 is provided between them to form a closed circuit. A heat medium is circulated through the closed circuit, cooled by the heat exchanger 21 of the condenser 2, condensed, vaporized by the expansion valve 19, and chilled water flowing through the evaporator 1 in the evaporator 1. And is circulated from the heat exchanger 22 to the compressor 3.

氷水生成器17は前記蒸発器1と過冷却解除部25により構成され、氷蓄熱槽12と前記氷水生成器17の吸入側とは冷水吸上げ配管23によって接続され、前記氷水生成器17の吐出側とは氷水戻し配管24によって接続され、前記冷水吸上げ配管23には冷水予熱器40が設けられている。前記氷水生成器17は吐出側に前記過冷却解除部25を具備し、前記氷水戻し配管24は前記過冷却解除部25に接続されている。前記氷水戻し配管24は、好ましくは、合成樹脂製、或は金属製で内面に弗素樹脂(ポリテトラフルオロエチレン)、ポリエチレン等の合成樹脂層が形成されたものが使用される。   The ice water generator 17 is constituted by the evaporator 1 and the supercooling release unit 25, and the ice heat storage tank 12 and the suction side of the ice water generator 17 are connected by a cold water suction pipe 23, and the discharge of the ice water generator 17 is performed. The cold water suction pipe 23 is provided with a cold water preheater 40 which is connected to the side by an ice water return pipe 24. The ice water generator 17 includes the supercooling release unit 25 on the discharge side, and the ice water return pipe 24 is connected to the supercooling release unit 25. The ice water return pipe 24 is preferably made of a synthetic resin or a metal having a synthetic resin layer such as fluorine resin (polytetrafluoroethylene) or polyethylene formed on the inner surface.

冷水ポンプ8で吸上げられた冷水は前記冷水予熱器40で予熱された後前記氷水生成器17に送出され、前記熱交換器22で過冷却状態迄冷却され、更に前記氷水生成器17から吐出される際に前記過冷却解除部25を通過する。前記冷水予熱器40は前記氷水生成器17に入る冷水中に氷の粒が混入していると、それを核として該氷水生成器17内で過冷却水が凍結するので、氷の粒を溶解させる為のものである。前記過冷却解除部25を通過する際に過冷却状態が解除され、氷結し、氷水として前記氷水生成器17から吐出され、該氷水生成器17は氷水生成器として機能する。氷水は前記氷水戻し配管24を経て前記氷蓄熱槽12に循環され、氷は前記氷蓄熱槽12に貯溜される。而して、前記冷水ポンプ8、前記冷水吸上げ配管23、前記氷水生成器17、前記氷水戻し配管24は冷水/氷水循環ライン20を構成する。   The chilled water sucked up by the chilled water pump 8 is preheated by the chilled water preheater 40, then sent to the ice water generator 17, cooled to a supercooled state by the heat exchanger 22, and discharged from the ice water generator 17. When passing, the supercooling release unit 25 is passed. In the cold water preheater 40, when ice particles are mixed in the cold water entering the ice water generator 17, the supercooled water is frozen in the ice water generator 17 using the ice particles as a nucleus, so that the ice particles are dissolved. It is for making it happen. When passing through the supercooling release unit 25, the supercooled state is released, freezes, and is discharged from the ice water generator 17 as ice water, and the ice water generator 17 functions as an ice water generator. Ice water is circulated to the ice heat storage tank 12 through the ice water return pipe 24, and ice is stored in the ice heat storage tank 12. Thus, the cold water pump 8, the cold water suction pipe 23, the ice water generator 17, and the ice water return pipe 24 constitute a cold water / ice water circulation line 20.

前記氷水戻し配管24を流通するのは、不安定な過冷却水ではなく、安定な氷水であるので、流通途中で衝撃等を受けたとしても氷結し氷水戻し配管24を詰らせることはない。更に、図1では、氷水生成器17と氷蓄熱槽12とを上下に配置しているが、実際には同一水平面に配置してもよい等、氷水生成器17、氷蓄熱槽12の配置に制約はなく、配管の引回しの制約、設置場所の制約が解除される。   The ice water return pipe 24 circulates not the unstable supercooled water but the stable ice water, so that even if an impact or the like is received during the circulation, the ice water return pipe 24 does not freeze and clog the ice water return pipe 24. . Further, in FIG. 1, the ice water generator 17 and the ice heat storage tank 12 are arranged one above the other. However, in practice, the ice water generator 17 and the ice heat storage tank 12 may be arranged on the same horizontal plane. There are no restrictions, and restrictions on the routing of piping and restrictions on installation locations are lifted.

冷熱が利用される場合は、前記氷蓄熱槽12から冷水15が抽出され、図示しない空調機等に供給される。   When cold heat is used, cold water 15 is extracted from the ice heat storage tank 12 and supplied to an air conditioner (not shown).

図2〜図4に於いて、前記過冷却解除部25について説明する。   The supercooling release unit 25 will be described with reference to FIGS.

該過冷却解除部25は、主に流速増速部26、熱絶縁部27、出口水室部28から構成されている。   The supercooling release unit 25 mainly includes a flow speed increasing unit 26, a heat insulating unit 27, and an outlet water chamber unit 28.

前記流速増速部26は前記蒸発器1の吐出側端に連設され、流路断面が下流に向って漸次減少する略漏斗状をしており、前記流速増速部26の下流端に前記出口水室部28が連設されている。前記流速増速部26はフランジ部26aを有し、前記蒸発器1に対して着脱可能となっている。   The flow velocity accelerating portion 26 is connected to the discharge side end of the evaporator 1, has a substantially funnel shape in which the flow path cross section gradually decreases toward the downstream, and the flow velocity accelerating portion 26 has the downstream end of the flow velocity accelerating portion 26. An outlet water chamber 28 is continuously provided. The flow velocity accelerating portion 26 has a flange portion 26 a and is detachable from the evaporator 1.

前記出口水室部28は鉛直方向に延びる軸心を有する中空管であり、前記出口水室部28の下部に前記流速増速部26が連通し、上端に吐出孔29が設けられている。前記流速増速部26の下流端部外周にはヒータ31が巻設され、前記流速増速部26の下流端部を、例えば20℃前後に又はそれ以上に加熱し、前記流速増速部26と前記出口水室部28の接続部に熱絶縁部27を形成している。尚、前記ヒータ31は前記流速増速部26の全長に亘って巻設されてもよい。更に、前記ヒータ31の熱源としては抵抗発熱体、或は蒸気、或は加熱した水、油等種々採用できる。   The outlet water chamber portion 28 is a hollow tube having an axial center extending in the vertical direction. The flow velocity accelerating portion 26 communicates with a lower portion of the outlet water chamber portion 28 and a discharge hole 29 is provided at the upper end. . A heater 31 is wound around the outer periphery of the downstream end of the flow velocity accelerating portion 26, and the downstream end of the flow velocity accelerating portion 26 is heated to, for example, about 20 ° C. or more, so that the flow velocity accelerating portion 26 is heated. And a heat insulating part 27 is formed at the connecting part of the outlet water chamber part 28. The heater 31 may be wound over the entire length of the flow velocity accelerating portion 26. Furthermore, as the heat source of the heater 31, various resistance heating elements, steam, heated water, oil, etc. can be adopted.

該流速増速部26を金属製とすると、該流速増速部26の内面には、氷結防止用の合成樹脂、例えば、弗素樹脂等の樹脂層32を形成する。又は、前記流速増速部26自体を合成樹脂製としてもよい。前記蒸発器1の吐出側端面にも、氷結防止用の合成樹脂、例えば、弗素樹脂製の合成樹脂層33を形成する。尚、図中、34は過冷却水が流出される流出口である。   When the flow velocity accelerating portion 26 is made of metal, a resin layer 32 of a synthetic resin for preventing freezing, such as a fluorine resin, is formed on the inner surface of the flow velocity accelerating portion 26. Alternatively, the flow speed increasing portion 26 itself may be made of a synthetic resin. A synthetic resin layer 33 made of synthetic resin for preventing freezing, for example, fluorine resin, is also formed on the discharge side end face of the evaporator 1. In the figure, 34 is an outlet through which the supercooled water flows out.

前記出口水室部28は合成樹脂製、若しくは金属製であり、該出口水室部28を金属製とすると、内面には氷結防止用の合成樹脂、例えば、弗素樹脂製の合成樹脂層35を形成する。前記吐出孔29はフランジ部29aを具備しており、該フランジ部29aを介して前記氷水戻し配管24が着脱可能に接続される。   The outlet water chamber 28 is made of synthetic resin or metal. When the outlet water chamber 28 is made of metal, a synthetic resin for preventing freezing, for example, a synthetic resin layer 35 made of fluorine resin, is provided on the inner surface. Form. The discharge hole 29 includes a flange portion 29a, and the ice water return pipe 24 is detachably connected through the flange portion 29a.

前記蒸発器1から流出した過冷却水は、前記流速増速部26を通過することで増速され、更に前記出口水室部28で流れが上方向に方向が変ることで、過冷却状態が解除され、氷結する。氷結することで温度が0℃迄上昇し、又氷結した氷は比重が小さいので、冷水と共にシャーベット状(氷水)となって上昇する。前記出口水室部28内で一旦氷結があると、該出口水室部28内の氷が種氷となり、該出口水室部28内に流入する過冷却水は順次解除される。尚、氷結を促進する為、該出口水室部28の所要位置に超音波振動機等の氷結補助手段を設置してもよい。   The supercooled water that has flowed out of the evaporator 1 is accelerated by passing through the flow velocity accelerating unit 26, and further, the direction of the flow is changed upward in the outlet water chamber 28, so that the supercooled state is changed. Releases and freezes. The temperature rises to 0 ° C. by freezing, and the frozen ice has a small specific gravity, so it rises in a sherbet shape (ice water) together with cold water. Once there is freezing in the outlet water chamber 28, the ice in the outlet water chamber 28 becomes seed ice, and the supercooled water flowing into the outlet water chamber 28 is sequentially released. In order to promote freezing, freezing assisting means such as an ultrasonic vibrator may be installed at a required position of the outlet water chamber 28.

前記熱絶縁部27は前記流速増速部26の下流端を加熱し、熱絶縁部を形成し、前記出口水室部28内での氷結が前記流速増速部26に伝播しない様にしてある。而して、前記吐出孔29からは状態の安定した0℃の氷水が吐出される。前記氷水戻し配管24を流通する氷水は、0℃であるので該氷水戻し配管24が氷結によって詰まることがなくなる。   The heat insulating part 27 heats the downstream end of the flow velocity accelerating portion 26 to form a heat insulating portion so that icing in the outlet water chamber portion 28 does not propagate to the flow velocity accelerating portion 26. . Thus, 0 ° C. ice water with a stable state is discharged from the discharge hole 29. Since the ice water flowing through the ice water return pipe 24 is 0 ° C., the ice water return pipe 24 is not clogged by freezing.

尚、前記過冷却解除部25は前記フランジ部26aで前記蒸発器1と、又前記フランジ部29aで前記氷水戻し配管24と切離し可能であるので、ユニット化が可能であり、取扱い、組立て作業性、保守性が向上する。   The supercooling release portion 25 can be separated from the evaporator 1 by the flange portion 26a and from the ice water return pipe 24 by the flange portion 29a, so that it can be unitized and handled and assembled. , Improving maintainability.

又、前記流速増速部26は、前記出口水室部28を省略し、前記氷水戻し配管24に直接連結する構成としてもよい。   The flow velocity accelerating unit 26 may be configured to directly connect to the ice water return pipe 24 without the outlet water chamber 28.

図5、図6は第2の実施の形態に係る過冷却解除部39を示しており、図中、図2、図3中で示したものと同等のものには同符号を付し、その説明を省略してある。   5 and 6 show the supercooling release unit 39 according to the second embodiment. In the figure, parts equivalent to those shown in FIG. 2 and FIG. The explanation is omitted.

流速増速部26の軸心36を、出口水室部28の中心37に対してオフセットさせている。   The shaft center 36 of the flow velocity increasing portion 26 is offset with respect to the center 37 of the outlet water chamber portion 28.

前記軸心36が前記中心37に対してオフセットされることで、前記出口水室部28に流入した過冷却水は、該出口水室部28内で旋回する。過冷却水が、前記出口水室部28内で旋回することで、効果的に過冷却状態が解除され、氷結が生じる。又、旋回流38が発生することで、中心に氷が集り、氷は種氷となる。又、前記出口水室部28に滞留することなく、円滑に氷水として吐出孔29より吐出され、更に中心に氷が集まることで管壁に氷が付着することがなく氷結が成長して、前記出口水室部28を凍りつかせることがなくなる。又、吐出孔29、及びその下流側でも旋回流を維持させることで同様な結果が得られる。   When the axial center 36 is offset with respect to the center 37, the supercooled water that has flowed into the outlet water chamber portion 28 swirls within the outlet water chamber portion 28. When the supercooling water swirls in the outlet water chamber 28, the supercooling state is effectively canceled and icing occurs. Further, when the swirl flow 38 is generated, ice gathers at the center, and the ice becomes seed ice. In addition, the water is smoothly discharged as ice water from the discharge hole 29 without staying in the outlet water chamber portion 28, and further, ice is collected at the center so that ice does not adhere to the tube wall, and freezing grows. The exit water chamber 28 is not frozen. Further, the same result can be obtained by maintaining the swirling flow in the discharge hole 29 and the downstream side thereof.

尚、第1、第2の実施の形態に於いて、出口水室部28の軸心は鉛直方向としたが、水平或は斜めであってもよい。   In the first and second embodiments, the axis of the outlet water chamber 28 is set in the vertical direction, but it may be horizontal or oblique.

本発明の実施の形態を示すシステム構成図である。It is a system configuration figure showing an embodiment of the invention. 第1の実施の形態に於ける過冷却解除部の側面図である。It is a side view of the supercooling cancellation | release part in 1st Embodiment. 第1の実施の形態に於ける過冷却解除部の平面図である。It is a top view of the supercooling cancellation | release part in 1st Embodiment. 該過冷却解除部の一部を破断した拡大側面図である。It is the expanded side view which fractured | ruptured a part of this supercooling cancellation | release part. 第2の実施の形態に於ける過冷却解除部の側面図である。It is a side view of the supercooling cancellation | release part in 2nd Embodiment. 第2の実施の形態に於ける過冷却解除部の平面図である。It is a top view of the supercooling cancellation | release part in 2nd Embodiment. 従来例のシステム構成図である。It is a system configuration diagram of a conventional example.

符号の説明Explanation of symbols

1 蒸発器
4 冷凍機
12 氷蓄熱槽
14 氷
15 冷水
17 氷水生成器
20 冷水/氷水循環ライン
21 熱交換器
22 熱交換器
23 冷水吸上げ配管
24 氷水戻し配管
25 過冷却解除部
26 流速増速部
27 熱絶縁部
28 出口水室部
31 ヒータ
32 樹脂層
33 合成樹脂層
36 軸心
38 旋回流
39 過冷却解除部
40 氷水予熱器
DESCRIPTION OF SYMBOLS 1 Evaporator 4 Refrigerator 12 Ice heat storage tank 14 Ice 15 Cold water 17 Ice water generator 20 Chilled water / ice water circulation line 21 Heat exchanger 22 Heat exchanger 23 Chilled water suction pipe 24 Ice water return pipe 25 Supercool release part 26 Flow speed acceleration Section 27 Thermal insulation section 28 Outlet water chamber section 31 Heater 32 Resin layer 33 Synthetic resin layer 36 Axis center 38 Swirling flow 39 Supercooling release section 40 Ice water preheater

Claims (6)

氷水生成器を含み氷蓄熱槽から冷水を吸上げ、氷水として前記氷蓄熱槽に循環させる冷水/氷水循環ラインを具備し、前記氷水生成器は前記氷蓄熱槽から冷水を吸上げ、過冷却後直ちに過冷却解除して氷水を生成し、氷水状態で氷水循環ラインを介して前記氷蓄熱槽に送出することを特徴とする氷蓄熱方法。   A cooling water / ice water circulation line that sucks cold water from an ice heat storage tank including an ice water generator and circulates as ice water to the ice heat storage tank is provided, the ice water generator sucks cold water from the ice heat storage tank, and after being supercooled An ice heat storage method comprising: immediately releasing the supercooling to generate ice water, and sending the ice water to the ice heat storage tank through an ice water circulation line in an ice water state. 冷水/氷水循環ラインを流動する冷媒の態様が冷却水及び氷水である様に構成された請求項1の氷蓄熱方法。   The ice heat storage method according to claim 1, wherein the refrigerant flowing in the cold water / ice water circulation line is configured to be cooling water and ice water. 氷水生成器を含み氷蓄熱槽から冷水を吸上げ、氷水として前記氷蓄熱槽に循環させる冷水/氷水循環ラインを具備し、前記氷水生成器は冷水を過冷却する冷凍機の蒸発器と過冷却解除して氷水を生成する過冷却解除部とを有し、氷水を吐出して前記氷蓄熱槽に送出することを特徴とする氷蓄熱装置。   A cooling water / ice water circulation line that includes an ice water generator and sucks cold water from the ice heat storage tank and circulates it as ice water to the ice heat storage tank, and the ice water generator supercools the evaporator of the refrigerator that supercools the cold water. An ice heat storage device comprising: a supercooling release unit that releases ice water to release ice water and sends the ice water to the ice heat storage tank. 前記過冷却解除部は、氷水生成器の蒸発器に連設される流速増速部と該流速増速部と軸心の方向が異なる様に該流速増速部に連設された出口水室部とを具備し、前記蒸発器から流出された過冷却水が前記流速増速部で増速され、前記出口水室部で流れ方向が変更されることで過冷却状態が解除される様に構成された請求項3の氷蓄熱装置。   The supercooling release unit includes a flow velocity accelerating portion that is connected to the evaporator of the ice water generator, and an outlet water chamber that is connected to the flow velocity accelerating portion so that the direction of the axial center differs from that of the flow velocity accelerating portion. And the supercooled water flowing out from the evaporator is accelerated by the flow velocity accelerating unit, and the supercooled state is released by changing the flow direction in the outlet water chamber. The ice heat storage device according to claim 3 configured. 前記流速増速部は前記出口水室部の中心に対してオフセットして設けられ、前記出口水室部で旋回流が発生する様に構成された請求項4の氷蓄熱装置。   The ice heat storage device according to claim 4, wherein the flow velocity accelerating unit is provided to be offset with respect to a center of the outlet water chamber, and a swirling flow is generated in the outlet water chamber. 前記流速増速部の少なくとも下流端部分に加熱手段を設け、前記流速増速部と前記出口水室部との連設部に熱絶縁部を形成した請求項4の氷蓄熱装置。   The ice heat storage device according to claim 4, wherein a heating means is provided at least in a downstream end portion of the flow velocity accelerating portion, and a heat insulating portion is formed in a continuous portion between the flow velocity accelerating portion and the outlet water chamber portion.
JP2003433681A 2003-12-26 2003-12-26 Ice thermal storage method and ice thermal storage device Pending JP2005188896A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003433681A JP2005188896A (en) 2003-12-26 2003-12-26 Ice thermal storage method and ice thermal storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003433681A JP2005188896A (en) 2003-12-26 2003-12-26 Ice thermal storage method and ice thermal storage device

Publications (1)

Publication Number Publication Date
JP2005188896A true JP2005188896A (en) 2005-07-14

Family

ID=34790993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003433681A Pending JP2005188896A (en) 2003-12-26 2003-12-26 Ice thermal storage method and ice thermal storage device

Country Status (1)

Country Link
JP (1) JP2005188896A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012193871A (en) * 2011-03-15 2012-10-11 Takasago Thermal Eng Co Ltd Dynamic ice making system and dynamic ice making method
CN105115214A (en) * 2015-10-13 2015-12-02 罗良宜 Direct evaporation ice slurry circulation dynamic ice production device
RU197873U1 (en) * 2020-01-09 2020-06-03 Андрей Александрович Демешко DEVICE FOR PRODUCING ICE WATER

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012193871A (en) * 2011-03-15 2012-10-11 Takasago Thermal Eng Co Ltd Dynamic ice making system and dynamic ice making method
CN105115214A (en) * 2015-10-13 2015-12-02 罗良宜 Direct evaporation ice slurry circulation dynamic ice production device
RU197873U1 (en) * 2020-01-09 2020-06-03 Андрей Александрович Демешко DEVICE FOR PRODUCING ICE WATER

Similar Documents

Publication Publication Date Title
US9746221B2 (en) Defrost system for refrigeration apparatus, and cooling unit
JPH05502934A (en) Simple hot gas defrosting refrigeration system
KR200393464Y1 (en) Ice making system
JP2005188896A (en) Ice thermal storage method and ice thermal storage device
JP3122223B2 (en) Ice storage device
WO2003031887A1 (en) Method and system for making ice by underwater supercooling release and low temperature water supply system comprising it
JP6912673B2 (en) Defrost system
JP2009222379A (en) Automatic ice maker
JP2955090B2 (en) Subcooled ice making equipment
JPH0370928A (en) Ice heat accumulator
JP2020091046A (en) Cooling device
JP4399309B2 (en) Ice heat storage device
JP2002098490A (en) Heat storage tank and refrigeration cycle device having the same, and air conditioner equipped with the same
JP3852801B2 (en) Internal / external melting double flow type ice heat storage system
JP2005009805A (en) Ice storage device
JP3443508B2 (en) Ice storage device
JP2024014329A (en) Defrost operation method in air cooler
JP2000257987A (en) Evaporator and refrigerator having the same
JPH04306471A (en) Ice heat accumulating device
JP3710982B2 (en) Brine showcase
JP2002048459A (en) Refrigeration unit
JPH03105181A (en) Antifreezing device for heat exchanger
JP2001012769A (en) Method of ice thermal storage and device
JP2563703B2 (en) Subcooled ice heat storage device
CN113137801A (en) Refrigeration device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080822

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081014