JPH101665A - Electric field light-emitting element - Google Patents

Electric field light-emitting element

Info

Publication number
JPH101665A
JPH101665A JP8157170A JP15717096A JPH101665A JP H101665 A JPH101665 A JP H101665A JP 8157170 A JP8157170 A JP 8157170A JP 15717096 A JP15717096 A JP 15717096A JP H101665 A JPH101665 A JP H101665A
Authority
JP
Japan
Prior art keywords
main chain
polymer
electroluminescent device
group
organic layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8157170A
Other languages
Japanese (ja)
Inventor
Hiromitsu Tanaka
洋充 田中
Akane Okada
茜 岡田
Seiji Tokitou
静士 時任
Yasunori Taga
康訓 多賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP8157170A priority Critical patent/JPH101665A/en
Publication of JPH101665A publication Critical patent/JPH101665A/en
Pending legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the subject element not requiring a low molecule electron- transporting material, thereby enabling to avoid the deterioration of the element with time due to the crystallization of the low molecule, easy in the manufacture of the element, capable of being made in a large area, and useful for the back lights of liquid crystal displays, etc., by disposing an organic layer containing a specific electron-transpiration polymer between electrodes. SOLUTION: This electric field light-emitting element is made by successively laminating (A) the first transparent electrode, (B) an organic layer containing an organic compound emitting light on the application of an electric voltage as a main component, and the second electrode to a transparent substrate. The component B containing a polymer comprising a polylefin main chain and side chains bound to the main chain and produced from a compound containing (Z) an oxadiazole group, e.g. poly(p- 4-[5-(4-t-butylphenyl)-1,3,4- oxadiazol-2-yl]phenyl}styrene).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、有機層をもつ電界
発光素子に関する。この電界発光素子は、電気的に発光
を起こすことのできる面状の発光体であることから、自
動車のフロントディスプレーなどの表示装置、液晶ディ
スプレーのバックライトとして使用することができる。
[0001] The present invention relates to an electroluminescent device having an organic layer. Since the electroluminescent element is a planar light emitting body capable of electrically emitting light, it can be used as a display device such as a front display of an automobile or a backlight of a liquid crystal display.

【0002】[0002]

【従来の技術】電界発光素子は強い蛍光をもつ有機化合
物固体に一対の電極を取り付けたもので、電圧の印加に
よって発光する。一般に、電界発光素子は、透明ガラス
基板上に、透明電極(ITO)と、強い蛍光をもつ固体
有機化合物よりなる発光層としての有機層と、金属(M
g)電極とが順に積層された構成を有している。この電
界発光素子の発光原理は以下の通りである。陽極から正
孔を、陰極から電子を注入すると、注入された正孔と電
子は固体中を移動し、衝突、再結合を起こして消滅す
る。再結合により発生したエネルギーは発光分子の励起
状態の生成に使われて蛍光を発する。
2. Description of the Related Art An electroluminescent device has a pair of electrodes attached to a solid organic compound having strong fluorescence, and emits light by applying a voltage. In general, an electroluminescent device includes a transparent electrode (ITO), an organic layer as a light emitting layer made of a solid organic compound having strong fluorescence, and a metal (M) on a transparent glass substrate.
g) electrodes are sequentially stacked. The principle of light emission of this electroluminescent device is as follows. When holes are injected from the anode and electrons are injected from the cathode, the injected holes and electrons move through the solid, collide and recombine, and disappear. The energy generated by the recombination is used to generate the excited state of the light-emitting molecule and emits fluorescence.

【0003】このような電界発光素子は、視野角の制限
がなく、また低電圧駆動、高速応答が可能であり、液
晶、プラズマディスプレー、無機電界発光素子といった
他の表示素子と比較して、ディスプレーとしての優れた
特性を持っている。しかしながら、発光部が有機層で形
成された電界発光素子は寿命が短いという点が問題点と
して指摘されている。この電界発光素子の寿命が短い原
因の一つとして、有機物(ホール輸送機能分子)の結晶
化による変質、劣化の問題をかかえているためである。
すなわち、駆動時の素子の発熱により素子の接合界面で
剥離が起こったり、有機層中の有機物が熱によりその結
晶構造が変化することや、有機物自身の変質が起こり、
有機層が熱的に劣化したりする。
[0003] Such an electroluminescent device has no limitation on the viewing angle, can operate at a low voltage and can respond at high speed, and has a higher display performance than other display devices such as a liquid crystal, a plasma display, and an inorganic electroluminescent device. Has excellent characteristics as. However, it has been pointed out that the electroluminescent device in which the light emitting portion is formed of an organic layer has a short life. One of the reasons why the life of the electroluminescent device is short is that there is a problem of deterioration and deterioration due to crystallization of organic substances (hole transporting molecules).
That is, peeling occurs at the junction interface of the element due to heat generation of the element at the time of driving, the crystal structure of the organic substance in the organic layer changes due to heat, and the organic substance itself deteriorates,
The organic layer may be thermally degraded.

【0004】有機電界発光素子が効率よく発光するため
には、ホール輸送機能、発光機能、電子輸送機能を担う
分子が不可欠である。有機電界発光素子の電子輸送材料
に用いられる分子は、主にAlq3(アルミノキノール
の一種)に見られるような(Tang et,al.,Appl.Phys.Le
tt.,51、913(1987))金属錯体系材料と、筒井等によって
提案された(筒井等.,日化誌.,11,1540(1991) )オキサ
ジアゾール系の材料とに分類される。これらの材料は、
ITO基板上に作製されたホール輸送層の上に電子輸送
層として蒸着され、有機電界発光素子を構成する要素と
して使用される。素子作製には蒸着プロセスが適用され
るため、用いることのできる分子は必然的に低分子に限
られる。
In order for an organic electroluminescent device to emit light efficiently, molecules having a hole transporting function, a light emitting function, and an electron transporting function are indispensable. The molecules used for the electron transporting material of the organic electroluminescent device are mainly those found in Alq3 (a kind of aluminoquinol) (Tang et, al., Appl. Phys. Le.
tt., 51, 913 (1987)) Metal complex-based materials and oxadiazole-based materials proposed by Tsutsui et al. (Tsutsui et al., Nikka Kagaku., 11, 1540 (1991)) . These materials are
It is deposited as an electron transporting layer on the hole transporting layer formed on the ITO substrate, and is used as an element constituting an organic electroluminescent device. Since a vapor deposition process is applied to device fabrication, molecules that can be used are necessarily limited to low molecules.

【0005】金属錯体系の材料の中には、Alq3のよ
うに電子輸送性が極めて高く、かつ、安定な材料はある
が、実用的に使用できる金属錯体材料の数は少ない。一
方、オキサジアゾール系化合物は、筒井等の例に見られ
るように様々な誘導体が合成され、特性が調べられてい
る。これらの化合物は、いずれも電子輸送性を有してい
ることが明らかとなっている。しかしながら、オキサジ
アゾール系の化合物は結晶化しやすく、たとえば、オキ
サジアゾール誘導体の一種であるPBD( 化12)は蒸
着直後から結晶化を起こし、膜の平滑性が損なわれるた
めに電子輸送層として使用するためには安定性が低いと
いう問題があった。
[0005] Among the metal complex-based materials, there are materials having extremely high electron transportability and stable such as Alq3, but the number of metal complex materials that can be used practically is small. On the other hand, various derivatives of oxadiazole-based compounds have been synthesized and their properties have been examined as seen in the examples of Tsutsui et al. It has been clarified that all of these compounds have an electron transporting property. However, oxadiazole-based compounds are easily crystallized. For example, PBD (Chemical Formula 12), which is a kind of oxadiazole derivative, is crystallized immediately after vapor deposition, and the smoothness of the film is impaired. There is a problem that the stability is low for use.

【0006】結晶性を低下させ、有機電界発光素子の電
子輸送層として用いることができる程に安定な薄膜を作
製する手段の一には、対象とする分子を高分子化する方
法がある。このような例は、ホール輸送性分子を高分子
化したものに多く見られる。たとえば、ポリビニルカル
バゾールをマトリックスとする高分子分散型電界発光素
子(応用物理61(10),1044(1992) )や、側鎖にトリフェ
ニルアミンやTPDを含むポリマー(高分子論文集,52,
(4)216(1995))、また、ポリカーボネートの主鎖にホー
ル輸送分子を導入した材料(特開平5−247458
号)が知られている。
One of the means for producing a thin film which has reduced crystallinity and is stable enough to be used as an electron transporting layer of an organic electroluminescent device is a method of polymerizing a target molecule. Such examples are often found in polymerized hole transporting molecules. For example, a polymer dispersed electroluminescent device having a matrix of polyvinyl carbazole (Applied Physics 61 (10), 1044 (1992)), or a polymer containing triphenylamine or TPD in the side chain (Polymer Transactions, 52,
(4) 216 (1995)) and a material in which a hole transport molecule is introduced into the main chain of polycarbonate (JP-A-5-247458).
No.) is known.

【0007】上記のように、ホール輸送分子を高分子化
することで、分子運動や分子の配列状態が規制され、非
晶状態が熱力学的な安定状態となり、低分子に見られる
ような結晶化の問題を回避することができる。高分子分
散型電界発光素子の場合、マトリックスの高分子は不活
性で、何らキャリア(電子や正孔)の移動を妨げてはな
らない。このため、キャリアのトラップ形成の原因とな
る可能性のあるカルボニル基、ハロゲン、エステル、ア
ミドといった極性基は排除したほうが良い。しかし、合
成上極性基を導入せざるを得ない場合が多い。上述の城
戸、出光興産の高分子はこのような極性を含んでいる。
[0007] As described above, by polymerizing the hole transport molecule, the molecular motion and the arrangement state of the molecules are regulated, the amorphous state becomes a thermodynamically stable state, and the crystal as seen in a small molecule is obtained. The problem of conversion can be avoided. In the case of the polymer-dispersed electroluminescent device, the polymer in the matrix is inactive and must not hinder the movement of carriers (electrons and holes). For this reason, it is better to eliminate polar groups such as carbonyl groups, halogens, esters, and amides that may cause carrier trap formation. However, in many cases, a polar group has to be introduced due to synthesis. The aforementioned Kido and Idemitsu Kosan polymers contain such polarity.

【0008】キャリア輸送機能を持った分子を側鎖型で
高分子化する場合、主鎖部分はキャリアの輸送に無関係
であるため、電子輸送機能分子(ホッピングサイト)の
密度を上げ、キャリアの輸送効率を向上させるためには
主鎖部分は単純な構造であることが好ましい。上述の城
戸、出光興産の高分子は、全てポリマー中のキャリア移
動に関与しない部分の分子量は主鎖をポリオレフィンと
する高分子よりも大きい。
When a molecule having a carrier transport function is polymerized in a side chain form, the main chain portion is irrelevant to carrier transport. Therefore, the density of the electron transport functional molecules (hopping sites) is increased, and the carrier transport is increased. In order to improve the efficiency, the main chain preferably has a simple structure. In the above-mentioned polymers of Kido and Idemitsu Kosan, the molecular weight of the portion of the polymer that is not involved in carrier transfer is larger than the polymer having a main chain of polyolefin.

【0009】[0009]

【発明が解決しようとする課題】本発明は、熱的に安定
な薄膜構造を有する特性の優れた有機電界発光素子を簡
便に得ることを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to easily obtain an organic electroluminescent device having a thermally stable thin film structure and excellent characteristics.

【0010】[0010]

【課題を解決するための手段】本発明の電界発光素子
は、透明基板上に、透明第1電極と、電圧の印加により
発光する有機化合物を主成分とする有機層と、第2電極
とを順に積層してなる電界発光素子において、該有機層
は、ポリオレフィンの主鎖と、該主鎖に結合したオキサ
ジアゾール基を含む化合物の側鎖とからなる高分子を含
むことを特徴とする。
According to the electroluminescent device of the present invention, a transparent first electrode, an organic layer mainly composed of an organic compound which emits light by applying a voltage, and a second electrode are formed on a transparent substrate. In the electroluminescent device formed by sequentially stacking the organic layers, the organic layer includes a polymer including a main chain of a polyolefin and a side chain of a compound including an oxadiazole group bonded to the main chain.

【0011】該側鎖は、オキサジアゾール基を介して2
つの芳香族化合物が結合しており一方の芳香族化合物が
該主鎖に結合していることが望ましい。該芳香族化合物
は、フェニル基、ナフチル基、アントラニル基、ビフェ
ニル基等の芳香族炭化水素、トリフェニルアミン等の含
窒素芳香族化合物、ジフェニルエーテル等の含酸素芳香
族化合物、ピリジン、ビピリジン、インドール、キノリ
ン、チオフェン、フラン等の複素環化合物を挙げること
ができる。
The side chain is 2 through an oxadiazole group.
Desirably, two aromatic compounds are bonded and one aromatic compound is bonded to the main chain. The aromatic compound is a phenyl group, a naphthyl group, an anthranyl group, an aromatic hydrocarbon such as a biphenyl group, a nitrogen-containing aromatic compound such as triphenylamine, an oxygen-containing aromatic compound such as diphenyl ether, pyridine, bipyridine, indole, Heterocyclic compounds such as quinoline, thiophene and furan can be mentioned.

【0012】[0012]

【発明の実施の形態】本発明の電界発光素子は、透明基
板上に、透明第1電極と、有機層と、第2電極とを順に
積層してなり、該有機層に特徴を有するものである。こ
の有機層は、ポリオレフィン主鎖と、該主鎖に結合した
オキサジアゾール基を含む化合物を含む側鎖とからなる
高分子を含で形成される。
BEST MODE FOR CARRYING OUT THE INVENTION The electroluminescent device of the present invention comprises a transparent first substrate, a transparent first electrode, an organic layer, and a second electrode, which are laminated in this order. is there. This organic layer is formed including a polymer comprising a polyolefin main chain and a side chain containing a compound containing an oxadiazole group bonded to the main chain.

【0013】この高分子は、化1式および化2式の一般
式で表される。すなわち、ポリオレフィンの主鎖と、オ
キサジアゾール基を含む側鎖とからなる。主鎖は、ポリ
オレフィン系の重合体でポリエチレン、ポリプロピレン
などが利用できる。主鎖には化2式のようにアルキル置
換基が結合していてもよい。この側鎖は主鎖にたとえ
ば、次の一般式で表されるAr1 (化1式)、sp−A
1 (化2式)を介してオキサジアゾール基と結合して
いる。オキサジアゾール基には他の置換基Ar2 が結合
され、Ar1 とAr2 挟まれた構成となっていることが
好ましい。なお、化2式中のspはスペーサとして主鎖
とAr1 との間に、たとえば、(CH2 n 、(CO2-
(CH2 n )、(CONH(CH2 n )、O(CH
2 n n≧0で表される結合を有することを示す。
This polymer has the general formulas 1 and 2
It is expressed by an equation. That is, the main chain of polyolefin and
And a side chain containing an xadiazole group. The main chain is poly
Olefin polymer, polyethylene, polypropylene
Etc. are available. Alkyl substitution in the main chain as shown in Chemical formula 2.
A substituent may be bonded. This side chain can be compared to the main chain
For example, Ar represented by the following general formula1(Formula 1), sp-A
r1Bonding to an oxadiazole group through
I have. The oxadiazole group has another substituent ArTwoIs combined
And Ar1And ArTwoThat it is sandwiched between
preferable. In addition, sp in the chemical formula 2 is a main chain as a spacer.
And Ar1And, for example, (CHTwo)n, (COTwo-
(CHTwo)n), (CONH (CHTwo) n), O (CH
Two)nIt has a bond represented by n ≧ 0.

【0014】[0014]

【化1】 Embedded image

【0015】[0015]

【化2】 Embedded image

【0016】Ar1 としては、たとえば、フェニル、ナ
フチル、アントラニル、ビフェニルのような芳香族化合
物基、ジフェニルエーテルのような含酸素芳香族化合物
基、ピリジン、ビピリジン、インドール、キノリン、チ
オフェン、フランのような複素環化合物を挙げることが
できる。さらに化3、化4などの化合物も利用できる。
Examples of Ar 1 include aromatic compound groups such as phenyl, naphthyl, anthranyl and biphenyl, oxygen-containing aromatic compound groups such as diphenyl ether, pyridine, bipyridine, indole, quinoline, thiophene and furan. Heterocyclic compounds can be mentioned. Further, compounds represented by Chemical Formulas 3 and 4 can also be used.

【0017】[0017]

【化3】 Embedded image

【0018】[0018]

【化4】 Embedded image

【0019】Ar2 としては、Ar1 で挙げた化合物が
利用でき、以下のホール輸送機能、発光機能を有する化
5〜13式の化合物が利用できる。なお、Ar2 は、A
1と同じか、または異なる組み合わせでオキサジアゾ
ール基と結合していても良い。
As Ar 2 , the compounds mentioned for Ar 1 can be used, and compounds of the following formulas 5 to 13 having the following hole transport function and light emitting function can be used. Note that Ar 2 is A
It may be bonded to the oxadiazole group in the same or different combination as r 1 .

【0020】[0020]

【化5】 Embedded image

【0021】[0021]

【化6】 Embedded image

【0022】[0022]

【化7】 Embedded image

【0023】[0023]

【化8】 Embedded image

【0024】[0024]

【化9】 Embedded image

【0025】[0025]

【化10】 Embedded image

【0026】[0026]

【化11】 Embedded image

【0027】上記の側鎖形成化合物(Ar1 、Ar2
には、置換基が導入されてもよく、たとえば、アルキル
基、アリル基、アリール基、アミノ基、アルコシ基、ア
リルオキシ基、アリールオキシ基、チオアルキル基、チ
オアリル基、スルホン基、ホスホリル基、カルボキシル
基、カルボニル基、チオカルボニル基、イミノ基、ヒド
ロキシ基、アミド基、アルコキシシリル基、シアノ基等
の置換基が挙げられる。
The above side chain forming compounds (Ar 1 , Ar 2 )
May have a substituent introduced therein, for example, an alkyl group, an allyl group, an aryl group, an amino group, an alkoxy group, an allyloxy group, an aryloxy group, a thioalkyl group, a thioallyl group, a sulfone group, a phosphoryl group, a carboxyl group And substituents such as carbonyl group, thiocarbonyl group, imino group, hydroxy group, amide group, alkoxysilyl group and cyano group.

【0028】また、このような高分子には、ホール輸送
機能、発光機能を有する化合物(化3〜11式)を単位
として含んでいても良い。この高分子は、ビニル基を有
する上記のオキサジアゾールを含む側鎖形成化合物をモ
ノマーとして、ラジカル重合法、カチオン重合法、アニ
オン重合法による重合で調整することができる。
Further, such a polymer may contain, as a unit, a compound having a hole transport function and a light emitting function (formulas 3 to 11). This polymer can be prepared by polymerization using a side chain-forming compound containing the oxadiazole having a vinyl group as a monomer by a radical polymerization method, a cation polymerization method, or an anion polymerization method.

【0029】この側鎖化合物は、ホール輸送機能分子、
あるいは発光機能分子との共重合体であってもよい。こ
こで、共重合体は、ビニル基を有するモノマーをラジカ
ル重合法、カチオン重合法、アニオン重合法によって重
合して調製される。このとき、異なるモノマーを添加し
てあってもよい。または、上記の重合体にホール輸送機
能性、電子輸送機能性、発光機能性の分子を分散させて
なる混合物を含んでもよい。ここで、分散する分子は、
低分子に限らず高分子であってもよい。
This side chain compound is a hole transport function molecule,
Alternatively, it may be a copolymer with a light emitting functional molecule. Here, the copolymer is prepared by polymerizing a monomer having a vinyl group by a radical polymerization method, a cation polymerization method, or an anion polymerization method. At this time, different monomers may be added. Alternatively, a mixture obtained by dispersing a molecule having a hole transporting function, an electron transporting function, and a light emitting function in the above polymer may be included. Here, the dispersed molecules are
Not only low molecular weight but also high molecular weight may be used.

【0030】また、電界発光素子の有機層を構成する有
機層は、単層であっても良いが、塗布法あるいは蒸着法
によって成膜された薄膜と、上記重合体を含む薄膜との
積層膜であってもよい。また、上記重合体を含む有機層
は、スピンコート法、ディップコート法などの塗布法に
よって作製されてもよく、真空蒸着法で作製されてもよ
い。
The organic layer constituting the organic layer of the electroluminescent device may be a single layer, but may be a laminated film of a thin film formed by a coating method or a vapor deposition method and a thin film containing the above polymer. It may be. Further, the organic layer containing the polymer may be formed by a coating method such as a spin coating method or a dip coating method, or may be formed by a vacuum evaporation method.

【0031】キャリア輸送機能を持った分子を側鎖型で
高分子化する場合、主鎖部分はキャリアの輸送に無関係
であるため、電子輸送機能分子(ホッピングサイト)の
密度を上げ、キャリアの輸送効率を向上させるためには
主鎖部分は単純な構造であることが好ましい。今回用い
た炭化水素系の高分子主鎖(ポリオレフィン)は分子量
27.0で、メタクリルの86.1やカーボネートの6
0.0やアミドの86.1と比較して小さい。このポリ
オレフィンを主鎖とする高分子の側鎖に電子輸送分子
(芳香族系の化合物である)の芳香環を結合させた構造
の高分子は、電子輸送密度が高い高分子となるものと考
えられる。
When a molecule having a carrier transport function is polymerized in a side chain type, the main chain portion is irrelevant to carrier transport, so that the density of electron transport functional molecules (hopping sites) is increased and carrier transport is increased. In order to improve the efficiency, the main chain preferably has a simple structure. The hydrocarbon-based polymer main chain (polyolefin) used in this study had a molecular weight of 27.0, and 86.1 of methacryl or 66.1 of carbonate.
It is smaller than 0.0 or 86.1 of amide. A polymer having a structure in which the aromatic ring of an electron transport molecule (which is an aromatic compound) is bonded to the side chain of a polymer having a polyolefin as a main chain is considered to be a polymer having a high electron transport density. Can be

【0032】この高分子は、側鎖に短いエチレンを介し
て結合しているために、側鎖間の立体反発が大きくな
る。このため、上述のポリオレフィンを主鎖とする高分
子は結晶化の原因となる側鎖の重なりが阻害されるため
に安定なアモルファス相を形成する。つまりは均一な薄
膜を形成することができる。
Since this polymer is bonded to the side chain via a short ethylene, steric repulsion between the side chains increases. For this reason, the above-mentioned polymer having a polyolefin as a main chain forms a stable amorphous phase because the overlapping of side chains causing crystallization is inhibited. That is, a uniform thin film can be formed.

【0033】[0033]

【実施例】以下、実施例により説明する。 (実施例) (Friedel-Crafts反応によるPBDのアセチル化)塩化
アルミニウム56.7gを窒素雰囲気下で二硫化炭素6
00mlに溶解し、0℃に冷却した。塩化アセチル9m
lを1分間かけて滴下した後、−3℃に保ちながらPB
D(化12式)20.15gの二硫化炭素200mlの
溶液を45分間かけて滴下した。反応溶液を室温に戻し
て15分間攪拌した後、二硫化炭素をデカンテーション
で除き、砕氷600ml中に注いだ。反応液を15分攪
拌した後、クロロホルム300mlで抽出した。抽出ク
ロロホルム液を200mlの水で2回洗浄し、炭酸カリ
ウムで乾燥した。炭酸カリウムを濾過し、濾液を濃縮・
真空乾燥した。生成物をシリカゲルカラムクロマトグラ
フィーで精製して、14.3gのアセチルPBDを得
た。
Embodiments will be described below with reference to embodiments. (Example) (Acetylation of PBD by Friedel-Crafts reaction) 56.7 g of aluminum chloride was added to carbon disulfide 6 under nitrogen atmosphere.
Dissolved in 00 ml and cooled to 0 ° C. Acetyl chloride 9m
1 over 1 minute, and then maintain PB at -3 ° C.
A solution of 20.15 g of D (formula 12) in 200 ml of carbon disulfide was added dropwise over 45 minutes. After the reaction solution was returned to room temperature and stirred for 15 minutes, carbon disulfide was removed by decantation and poured into crushed ice (600 ml). After stirring the reaction solution for 15 minutes, it was extracted with 300 ml of chloroform. The extracted chloroform solution was washed twice with 200 ml of water and dried over potassium carbonate. Filter potassium carbonate and concentrate the filtrate.
Vacuum dried. The product was purified by silica gel column chromatography to give 14.3 g of acetyl PBD.

【0034】[0034]

【化12】 Embedded image

【0035】(還元による1−ヒドロキシエチルPBD
の生成)アセチルPBD3.17gをエタノール125
mlに溶解し、窒素気流下に攪拌しながら0.66gの
水素化硼素ナトリウムを加えた。18時間後に反応液を
濃縮し、水20mlとクロロホルム20mlを加えた。
水層をクロロホルム10mlで2回抽出し、クロロホル
ム層を合わせて水20mlで洗浄した。硫酸ナトリウム
で乾燥した後、濃縮した。濃縮生成物をシリカゲルカラ
ムクロマトグラフィーで精製して、2.76gの1−ヒ
ドロキシエチルPBDを得た。
(1-hydroxyethyl PBD by reduction
Production of 3.17 g of acetyl PBD in 125 ml of ethanol
Then, 0.66 g of sodium borohydride was added while stirring under a nitrogen stream. After 18 hours, the reaction solution was concentrated, and 20 ml of water and 20 ml of chloroform were added.
The aqueous layer was extracted twice with 10 ml of chloroform, and the combined chloroform layers were washed with 20 ml of water. After drying over sodium sulfate, the mixture was concentrated. The concentrated product was purified by silica gel column chromatography to obtain 2.76 g of 1-hydroxyethyl PBD.

【0036】(脱水反応によるビニルPBDの生成)
2.76gの1−ヒドロキシエチルPBD0.51gと
p−トルエンスルホン酸0.19gをベンゼン200m
lに溶解し、生成水分離器を付けた反応容器中、窒素雰
囲気下で加熱還流した。3時間後反応溶液を40mlに
濃縮し、飽和重曹水30mlで濃縮液を洗浄し、次いで
水20mlで2回洗浄した。硫酸ナトリウムで乾燥し、
濃縮した残留生成物をシリカゲルカラムクロマトグラフ
ィーで精製して、300mgのビニルPBDを得た。
(Production of Vinyl PBD by Dehydration Reaction)
2.76 g of 1-hydroxyethyl PBD (0.51 g) and p-toluenesulfonic acid (0.19 g) were mixed with benzene (200 m).
and heated and refluxed under a nitrogen atmosphere in a reaction vessel equipped with a product water separator. After 3 hours, the reaction solution was concentrated to 40 ml, and the concentrated solution was washed with 30 ml of a saturated aqueous sodium hydrogen carbonate solution, and then washed twice with 20 ml of water. Dried over sodium sulfate,
The concentrated residual product was purified by silica gel column chromatography to obtain 300 mg of vinyl PBD.

【0037】(重合反応によるPPBDの生成)ビニル
PBD3.44g、AIBN8mgを蒸留したベンゼン
50gに溶解して反応容器に注入した。真空脱気後反応
容器を密閉して、60℃で5日間反応させた。反応液を
1リットルのメタノール中に注ぎ、析出物をベンゼン−
メタノールで再沈精製を5回繰り返しベンゼンより凍結
乾燥して2.95gのPPBD(化13式)を得た。
(Production of PPBD by Polymerization Reaction) 3.44 g of vinyl PBD and 8 mg of AIBN were dissolved in 50 g of distilled benzene and injected into a reaction vessel. After degassing under vacuum, the reaction vessel was sealed and reacted at 60 ° C. for 5 days. The reaction solution was poured into 1 liter of methanol, and
The reprecipitation purification with methanol was repeated 5 times and freeze-dried from benzene to obtain 2.95 g of PPBD (formula 13).

【0038】[0038]

【化13】 Embedded image

【0039】得られたPPBDのDSC測定の結果、P
PBDのTgは213℃であった。融点は250℃以下
には認められなかった。PPBDはクロスニコルス下に
おける偏光顕微鏡観察から、非晶性の高分子であること
がわかった。PPBDのキャストフィルムは無色で透明
な膜となった。PPBDフィルムの吸収極大は320n
m、蛍光極大は395.5nmであった。
As a result of DSC measurement of the obtained PPBD, P
The Tg of the PBD was 213 ° C. Melting points were not observed below 250 ° C. PPBD was found to be an amorphous polymer by observation with a polarizing microscope under crossed Nichols. The PPBD cast film became a colorless and transparent film. The maximum absorption of PPBD film is 320n
m, the fluorescence maximum was 395.5 nm.

【0040】(比較例)PBDの融点は136−138
℃であった。PBDは融点以下では結晶であり、融点以
上では液化した。PBDを蒸着法によりITO上に10
0nm蒸着、薄膜化した。成膜直後は透明なアモルファ
ス膜であったが、約30分後には、結晶化し、白く曇っ
た膜となった。
Comparative Example The melting point of PBD was 136-138.
° C. PBD was crystalline below the melting point and liquefied above the melting point. PBD is deposited on ITO by evaporation method.
0 nm was deposited and thinned. Immediately after film formation, the film was a transparent amorphous film, but after about 30 minutes, crystallized and became a white cloudy film.

【0041】(分散型素子の作製)ITO電極上に有機
層をスピンコート法により作製した。スピンコート溶液
は、PPBDとTPDを、所定の重量比で(PPBDと
の組成比はPBD50モル%から100%まで(50、
67、80、89、95、100%)混合物の重量が2
5mgとなるように混合し、クマリン6を1重量%加
え、1,2−ジクロルエタン1.5gに溶解して調製し
た。これを0.2μmのフィルターで濾過し、ITO基
板上に3000rpmでスピンコートした。この時の膜
厚は、ほぼ100nmであった。金属電極はMgとAg
の二元共蒸着法によって作製した。金属組成はMg:A
g=10:1,蒸着速度は150Å/minで150n
m蒸着した。
(Preparation of Dispersion Type Element) An organic layer was formed on an ITO electrode by spin coating. The spin coat solution is prepared by mixing PPBD and TPD at a predetermined weight ratio (the composition ratio with PPBD is from 50 mol% to 100% of PBD (50,
67, 80, 89, 95, 100%) The weight of the mixture is 2
The mixture was mixed so as to be 5 mg, coumarin 6 was added at 1% by weight, and dissolved in 1.5 g of 1,2-dichloroethane. This was filtered through a 0.2 μm filter and spin-coated on an ITO substrate at 3000 rpm. At this time, the film thickness was almost 100 nm. Metal electrodes are Mg and Ag
Was manufactured by a binary co-evaporation method. Metal composition is Mg: A
g = 10: 1, 150 n / min at 150 ° / min
m was deposited.

【0042】素子の評価は、窒素雰囲気中でおこなっ
た。初期特性は、素子の電圧を1Vずつ約5秒毎に昇圧
し、各電圧における輝度と電流密度を測定することによ
って得た。輝度はミノルタnt−1°を用いて測定し
た。作製した素子の構成は、ITO/PPBD、TP
D、クマリン6(1重量%)/Mg:Ag(有機層厚約
100nm)である。
The device was evaluated in a nitrogen atmosphere. The initial characteristics were obtained by increasing the voltage of the device by 1 V every about 5 seconds and measuring the luminance and current density at each voltage. Luminance was measured using Minolta nt-1 °. The structure of the fabricated device is ITO / PPBD, TP
D, Coumarin 6 (1% by weight) / Mg: Ag (organic layer thickness about 100 nm).

【0043】素子は、クマリン6からの発光である緑色
に発光した。各PPBD/TPD比の電流密度−輝度特
性を図2に示した。PPBDとTPDの組成比が89:
11の時、28V印加で150cd/m2 の輝度(緑
色)を得た。 (二層型素子の作製)ITO上にPPVをスピンコート
法で成膜した。PPVの前駆体水溶液をスピンコート後
200℃で1時間真空下で熱処理した。その後、PPB
D25mg、クマリン6 0.3mgをジクロロエタン
1.5mlに溶解したものを3000rpmでスピンコ
ートした。この時の膜厚は、ほぼ100nmであった。
金属電極はMgとAgの二元共蒸着法によって作製し
た。金属組成はMg:Ag=10:1、蒸着速度は15
0Å/min.で、150nm蒸着した。この素子は、
26V、41mA/cm2 の時、62cd/m2 輝度で
発光した。
The device emitted green light which was emitted from coumarin 6. FIG. 2 shows current density-luminance characteristics of each PPBD / TPD ratio. The composition ratio of PPBD and TPD is 89:
At 11, the luminance (green) of 150 cd / m 2 was obtained by applying 28V. (Preparation of Two-Layer Element) PPV was formed on ITO by spin coating. After spin-coating the precursor aqueous solution of PPV, it was heat-treated under vacuum at 200 ° C for 1 hour. After that, PPB
A solution prepared by dissolving 25 mg of D and 0.3 mg of coumarin 6 in 1.5 ml of dichloroethane was spin-coated at 3000 rpm. At this time, the film thickness was almost 100 nm.
The metal electrode was produced by a binary co-evaporation method of Mg and Ag. The metal composition is Mg: Ag = 10: 1, and the deposition rate is 15
0 ° / min. Then, 150 nm was deposited. This element
At 26 V and 41 mA / cm 2 , light was emitted at a luminance of 62 cd / m 2 .

【0044】(ホール輸送機能分子(ポリビニルカルバ
ゾール(PVK))とPPBDとの共重合体(50:5
0モル比)の合成)ビニルPBD660mg、9−ビニ
ルカルバゾール340mg、AIBN3mgをベンゼン
15gに溶解し、脱気、封管した後60℃で40時間加
熱した。放冷後、ベンゼン−メタノールで再沈をおこな
ったあと、ベンゼンから凍結乾燥し、PVK−PPBD
共重合体を得た。
(Copolymer of hole transport function molecule (polyvinyl carbazole (PVK)) and PPBD (50: 5
Synthesis of 0 mol ratio) 660 mg of vinyl PBD, 340 mg of 9-vinylcarbazole and 3 mg of AIBN were dissolved in 15 g of benzene, degassed and sealed, and then heated at 60 ° C. for 40 hours. After allowing to cool, reprecipitation was performed with benzene-methanol, followed by freeze-drying from benzene and PVK-PPBD.
A copolymer was obtained.

【0045】(素子の作製および評価)PVK−PPB
D共重合体250mg、クマリン6 2.5mgをジク
ロロエタン7.6gに溶解し、ITO電極上に100n
mの厚さにデップコートした。金属電極はMgとAgの
二元共蒸着法によって作製した。金属組成はMg:Ag
=10:1、蒸着速度は150Å/min.で、150
nm蒸着した。この素子は、31V、45mA/cm2
の時、19cd/m2 の輝度で発光した。
(Production and Evaluation of Element) PVK-PPB
Dissolve 250 mg of D copolymer and 2.5 mg of coumarin 6 in 7.6 g of dichloroethane and put 100 n on the ITO electrode.
m was applied by dip coating. The metal electrode was produced by a binary co-evaporation method of Mg and Ag. Metal composition is Mg: Ag
= 10: 1, deposition rate 150 ° / min. And 150
nm. This element is 31 V, 45 mA / cm 2
In this case, light was emitted at a luminance of 19 cd / m 2 .

【0046】[0046]

【発明の効果】電界発光素子の有機層に電子輸送機能の
ある低分子(PBD)を用いる際に問題となる低分子の
結晶化が、高分子化したことおよび側鎖間の立体障害に
より抑制することができた。すなわち、PPBDはTg
=210℃と高いTgを有し、Tgまで軟化することな
く、膜形態を保持できる。一方、低分子電子輸送機能材
料のPBDの薄膜は、135℃で材料の溶融により膜形
態を維持できなくなる。また、高分子の電子輸送機能材
料のPPBDではTgまで安定にアモルファス状態を保
持できた。
According to the present invention, the crystallization of a low-molecular compound, which is a problem when using a low-molecular compound (PBD) having an electron-transporting function in the organic layer of the electroluminescent device, is suppressed by the polymerization and the steric hindrance between side chains. We were able to. That is, PPBD is Tg
= 210 ° C., and can maintain the film form without softening to Tg. On the other hand, a PBD thin film of a low-molecular-weight electron transport function material cannot maintain its film form due to melting of the material at 135 ° C. In addition, PPBD, which is a polymer electron transport function material, was able to stably maintain an amorphous state until Tg.

【0047】電子輸送機能を有する高分子を電界発光素
子に用いることにより、低分子の電子輸送機能材料を用
いる必要がなくなり、低分子の電子輸送機能材料で問題
となる結晶化による経時劣化の問題を回避できる。低分
子電子輸送機能材料のPBDの薄膜は、数日で結晶化
し、膜形態を保持できなくなるが、高分子のPPBDは
数カ月後も結晶化は全く認められない。
By using a polymer having an electron transporting function in an electroluminescent element, it is not necessary to use a low-molecular-weight electron-transporting material, and the problem of aging due to crystallization, which is a problem with a low-molecular-weight electron-transporting material. Can be avoided. A thin film of PBD, a low molecular weight electron transport material, crystallizes in a few days and cannot retain the film form, but no crystallization of a high molecular weight PPBD is observed after several months.

【0048】電子輸送材料を含む有機層がスピンコート
法のみで作製でき、蒸着法を用いないため、作製が簡便
で大面積化が容易である。ホール輸送機能分子と電子輸
送機能分子との共重合体において、共重合体比を変える
ことによりホール輸送性、電子輸送性のバランスのコン
トロールが容易で、特性に優れた素子を製作できる。
Since the organic layer containing the electron transporting material can be formed only by the spin coating method and does not use the vapor deposition method, the preparation is simple and the area can be easily increased. By changing the copolymer ratio of the copolymer of the hole transporting molecule and the electron transporting molecule, it is easy to control the balance between the hole transporting property and the electron transporting property, and an element having excellent characteristics can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施例PPBDの組成を変えて作製した素子
の電流密度と輝度特性の関係を示すグラフである。
FIG. 1 is a graph showing the relationship between current density and luminance characteristics of a device manufactured by changing the composition of a PPBD in this example.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H05B 33/14 H05B 33/14 (72)発明者 時任 静士 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 多賀 康訓 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内Continuation of the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical display location H05B 33/14 H05B 33/14 (72) Inventor Shizutoshi Tokuji 41st Nagakute-cho, Yakumichi, Nagakute-cho, Aichi-gun, Aichi (1) Toyota Central Research Laboratory Co., Ltd. (72) Inventor Yasunori Taga 41-cho, Yokomichi, Nagakute-cho, Aichi-gun, Aichi Prefecture

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 透明基板上に、透明第1電極と、電圧の
印加により発光する有機化合物を主成分とする有機層
と、第2電極とを順に積層してなる電界発光素子におい
て、 該有機層は、ポリオレフィンの主鎖と、該主鎖に結合し
オキサジアゾール基を含む化合物の側鎖とからなる高分
子を含むことを特徴とする電界発光素子。
1. An electroluminescent device comprising a transparent substrate and a transparent first electrode, an organic layer mainly composed of an organic compound emitting light by application of a voltage, and a second electrode laminated in this order on the transparent substrate. An electroluminescent device, wherein the layer comprises a polymer comprising a polyolefin main chain and a side chain of a compound containing an oxadiazole group bonded to the main chain.
【請求項2】 該側鎖は、オキサジアゾール基を挟んで
2つの芳香族化合物が結合しており一方の芳香族化合物
が該主鎖に結合していることを特徴とする請求項1に記
載の電界発光素子。
2. The side chain according to claim 1, wherein two aromatic compounds are bonded via an oxadiazole group, and one of the aromatic compounds is bonded to the main chain. An electroluminescent device according to claim 1.
【請求項3】 該側鎖は、官能基を介して該芳香族化合
物が主鎖に結合していることを特徴とする請求項2に記
載の電界発光素子。
3. The electroluminescent device according to claim 2, wherein the aromatic compound is bonded to the main chain of the side chain via a functional group.
【請求項4】該芳香族化合物は、フェニル基、ナフチル
基、アントラニル基、ビフェニル基、トリフェニルアミ
ン、ジフェニルエーテル、ピリジン、ビピリジン、イン
ドール、キノリン、チオフエン、フランから選ばれるこ
とを特徴とする請求項2または3に記載の電界発光素
子。
4. The aromatic compound is selected from phenyl, naphthyl, anthranyl, biphenyl, triphenylamine, diphenyl ether, pyridine, bipyridine, indole, quinoline, thiophene, and furan. 4. The electroluminescent device according to 2 or 3.
JP8157170A 1996-06-18 1996-06-18 Electric field light-emitting element Pending JPH101665A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8157170A JPH101665A (en) 1996-06-18 1996-06-18 Electric field light-emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8157170A JPH101665A (en) 1996-06-18 1996-06-18 Electric field light-emitting element

Publications (1)

Publication Number Publication Date
JPH101665A true JPH101665A (en) 1998-01-06

Family

ID=15643727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8157170A Pending JPH101665A (en) 1996-06-18 1996-06-18 Electric field light-emitting element

Country Status (1)

Country Link
JP (1) JPH101665A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002205974A (en) * 2000-12-12 2002-07-23 Merck Patent Gmbh Banana-shaped polymerizable mesogenic compound
WO2003018653A1 (en) * 2001-08-31 2003-03-06 Nippon Hoso Kyokai Phosphor light-emitting compound, phosphor light-emitting composition, and organic light emitting element
US6720091B2 (en) 2000-03-16 2004-04-13 Sumitomo Chemical Company, Limited Polymeric fluorescent substance, polymeric fluorescent substance and polymer light-emitting device using the same
JP2005097589A (en) * 2003-08-29 2005-04-14 Showa Denko Kk Phosphorescent polymer compound and organic light emitting device using this
US7250226B2 (en) 2001-08-31 2007-07-31 Nippon Hoso Kyokai Phosphorescent compound, a phosphorescent composition and an organic light-emitting device
WO2008053935A1 (en) 2006-11-01 2008-05-08 Showa Denko K.K. Cyclic siloxane compound, organic electroluminescent element, and use thereof
US7396598B2 (en) 2001-06-20 2008-07-08 Showa Denko K.K. Light emitting material and organic light-emitting device
US7431996B2 (en) * 2002-12-17 2008-10-07 Fuji Xerox Co., Ltd. Polyester resin, functional device and organic electroluminescent device using polyester resin, and method of manufacturing organic electroluminescent device
WO2009011270A1 (en) 2007-07-13 2009-01-22 Showa Denko K.K. Triazine ring-containing polymer compound and organic light-emitting device using the polymer compound
WO2009034987A1 (en) 2007-09-14 2009-03-19 Showa Denko K.K. Phosphorescent polymer compound and organic electroluminescent device using the same
US7510782B2 (en) 2003-12-19 2009-03-31 Showa Denko K.K. Boron-containing polymer compound and organic light emitting device using the same
WO2009101983A1 (en) 2008-02-15 2009-08-20 Showa Denko K.K. Method for treating surface of electrode, electrode, and process for producing organic electroluminescent element
WO2009107574A1 (en) 2008-02-25 2009-09-03 昭和電工株式会社 Organic electroluminescent element, and manufacturing method and uses therefor
US7638071B2 (en) 2004-03-24 2009-12-29 Showa Denko K.K. Crosslinked self-doping type electrically conducting polymer, production process thereof, product coated with the polymer and electronic device
US7781959B2 (en) 2004-08-27 2010-08-24 Showa Denko K.K. Organic electroluminescent device and production method thereof
WO2010134518A1 (en) 2009-05-19 2010-11-25 昭和電工株式会社 Surface treatment method for electrodes and method for producing electrodes and organic luminescence elements
WO2011010503A1 (en) 2009-07-21 2011-01-27 昭和電工株式会社 Light emitting element, method for manufacturing light emitting element, image display device, and illuminating device
WO2011065454A1 (en) 2009-11-30 2011-06-03 昭和電工株式会社 Iridium complex compound, organic electroluminescence element, and use therefor
US8016629B2 (en) 2005-04-25 2011-09-13 Showa Denko K.K. Method of producing a display device
WO2011148478A1 (en) 2010-05-26 2011-12-01 昭和電工株式会社 Light-emitting element, image display device, and lighting device
US8268650B2 (en) 2008-07-22 2012-09-18 Showa Denko K.K. Process for manufacturing sealed organic electroluminescence devices
WO2012176335A1 (en) 2011-06-24 2012-12-27 昭和電工株式会社 Organic light emitting element and method for manufacturing organic light emitting element
US8404362B2 (en) 2007-07-13 2013-03-26 Showa Denko K.K. Organic light-emitting element using triazine ring-containing polymer compound
US8441003B2 (en) 2007-06-28 2013-05-14 Showa Denko K.K. Phosphorescent polymer compound based on iridium polymer complex and organic electroluminescent device utilizing the same
US8617722B2 (en) 2008-02-22 2013-12-31 Showa Denko K.K. Polymer compound and organic electroluminescence element using the same
US9644048B2 (en) 2009-10-27 2017-05-09 Samsung Electronics Co., Ltd Composition for anode buffer layer, high-molecular weight compound for anode buffer layer, organic electroluminescence element, and production process and uses of the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04212286A (en) * 1990-03-16 1992-08-03 Asahi Chem Ind Co Ltd Distributed type electric field luminous element
JPH0711249A (en) * 1993-04-28 1995-01-13 Mitsui Petrochem Ind Ltd Thin film electroluminescent element and its production
JPH08208745A (en) * 1995-01-31 1996-08-13 Chisso Corp Oxadiazole polymer
JPH08259939A (en) * 1995-03-10 1996-10-08 At & T Corp Electron transport material
JPH09255725A (en) * 1996-03-25 1997-09-30 Kemipuro Kasei Kk Oxadiazolylated polymer, production thereof, and organic electroluminescent element made using the same
JPH10511718A (en) * 1994-12-28 1998-11-10 ケンブリッジ ディスプレイ テクノロジー リミテッド Polymer for optical devices

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04212286A (en) * 1990-03-16 1992-08-03 Asahi Chem Ind Co Ltd Distributed type electric field luminous element
JPH0711249A (en) * 1993-04-28 1995-01-13 Mitsui Petrochem Ind Ltd Thin film electroluminescent element and its production
JPH10511718A (en) * 1994-12-28 1998-11-10 ケンブリッジ ディスプレイ テクノロジー リミテッド Polymer for optical devices
JPH08208745A (en) * 1995-01-31 1996-08-13 Chisso Corp Oxadiazole polymer
JPH08259939A (en) * 1995-03-10 1996-10-08 At & T Corp Electron transport material
JPH09255725A (en) * 1996-03-25 1997-09-30 Kemipuro Kasei Kk Oxadiazolylated polymer, production thereof, and organic electroluminescent element made using the same

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6720091B2 (en) 2000-03-16 2004-04-13 Sumitomo Chemical Company, Limited Polymeric fluorescent substance, polymeric fluorescent substance and polymer light-emitting device using the same
JP2002205974A (en) * 2000-12-12 2002-07-23 Merck Patent Gmbh Banana-shaped polymerizable mesogenic compound
US7396598B2 (en) 2001-06-20 2008-07-08 Showa Denko K.K. Light emitting material and organic light-emitting device
US7763365B2 (en) 2001-06-20 2010-07-27 Showa Denko K.K. Light emitting material and organic light-emitting device
US7736757B2 (en) 2001-06-20 2010-06-15 Showa Denko K.K. Light emitting material and organic light-emitting device
US7635527B2 (en) 2001-06-20 2009-12-22 Showa Denko K.K. Light emitting material and organic light-emitting device
US7250226B2 (en) 2001-08-31 2007-07-31 Nippon Hoso Kyokai Phosphorescent compound, a phosphorescent composition and an organic light-emitting device
WO2003018653A1 (en) * 2001-08-31 2003-03-06 Nippon Hoso Kyokai Phosphor light-emitting compound, phosphor light-emitting composition, and organic light emitting element
US7431996B2 (en) * 2002-12-17 2008-10-07 Fuji Xerox Co., Ltd. Polyester resin, functional device and organic electroluminescent device using polyester resin, and method of manufacturing organic electroluminescent device
JP2005097589A (en) * 2003-08-29 2005-04-14 Showa Denko Kk Phosphorescent polymer compound and organic light emitting device using this
US7510782B2 (en) 2003-12-19 2009-03-31 Showa Denko K.K. Boron-containing polymer compound and organic light emitting device using the same
US7857999B2 (en) 2004-03-24 2010-12-28 Showa Denko K.K. Crosslinked self-doping type electrically conducting polymer, production process thereof, product coated with the polymer and electronic device
US7638071B2 (en) 2004-03-24 2009-12-29 Showa Denko K.K. Crosslinked self-doping type electrically conducting polymer, production process thereof, product coated with the polymer and electronic device
EP2207185A1 (en) 2004-03-24 2010-07-14 Showa Denko Kabushiki Kaisha Crosslinked self-doping type electrically conducting polymer, production process thereof, product coated with the polymer and electronic device
US7781959B2 (en) 2004-08-27 2010-08-24 Showa Denko K.K. Organic electroluminescent device and production method thereof
US8016629B2 (en) 2005-04-25 2011-09-13 Showa Denko K.K. Method of producing a display device
WO2008053935A1 (en) 2006-11-01 2008-05-08 Showa Denko K.K. Cyclic siloxane compound, organic electroluminescent element, and use thereof
US8441003B2 (en) 2007-06-28 2013-05-14 Showa Denko K.K. Phosphorescent polymer compound based on iridium polymer complex and organic electroluminescent device utilizing the same
WO2009011270A1 (en) 2007-07-13 2009-01-22 Showa Denko K.K. Triazine ring-containing polymer compound and organic light-emitting device using the polymer compound
US8404362B2 (en) 2007-07-13 2013-03-26 Showa Denko K.K. Organic light-emitting element using triazine ring-containing polymer compound
US8426037B2 (en) 2007-07-13 2013-04-23 Showa Denko K.K. Triazine ring-containing polymer compound and organic light-emitting element using the polymer compound
WO2009034987A1 (en) 2007-09-14 2009-03-19 Showa Denko K.K. Phosphorescent polymer compound and organic electroluminescent device using the same
US8426038B2 (en) 2007-09-14 2013-04-23 Showa Denko K.K. Phosphorescent polymer compound and organic electroluminescence device using the same
WO2009101983A1 (en) 2008-02-15 2009-08-20 Showa Denko K.K. Method for treating surface of electrode, electrode, and process for producing organic electroluminescent element
US8617722B2 (en) 2008-02-22 2013-12-31 Showa Denko K.K. Polymer compound and organic electroluminescence element using the same
WO2009107574A1 (en) 2008-02-25 2009-09-03 昭和電工株式会社 Organic electroluminescent element, and manufacturing method and uses therefor
US8268650B2 (en) 2008-07-22 2012-09-18 Showa Denko K.K. Process for manufacturing sealed organic electroluminescence devices
WO2010134518A1 (en) 2009-05-19 2010-11-25 昭和電工株式会社 Surface treatment method for electrodes and method for producing electrodes and organic luminescence elements
WO2011010503A1 (en) 2009-07-21 2011-01-27 昭和電工株式会社 Light emitting element, method for manufacturing light emitting element, image display device, and illuminating device
US8735875B2 (en) 2009-07-21 2014-05-27 Showa Denko K.K. Light emitting element, method for manufacturing light emitting element, image display device, and illuminating device
US9644048B2 (en) 2009-10-27 2017-05-09 Samsung Electronics Co., Ltd Composition for anode buffer layer, high-molecular weight compound for anode buffer layer, organic electroluminescence element, and production process and uses of the same
WO2011065454A1 (en) 2009-11-30 2011-06-03 昭和電工株式会社 Iridium complex compound, organic electroluminescence element, and use therefor
WO2011148478A1 (en) 2010-05-26 2011-12-01 昭和電工株式会社 Light-emitting element, image display device, and lighting device
WO2012176335A1 (en) 2011-06-24 2012-12-27 昭和電工株式会社 Organic light emitting element and method for manufacturing organic light emitting element

Similar Documents

Publication Publication Date Title
JPH101665A (en) Electric field light-emitting element
US5571626A (en) Electroluminescent devices comprising polymers, and processes for their use
Dailey et al. Synthesis and device characterisation of side-chain polymer electron transport materials for organic semiconductor applications
US6355773B1 (en) Functional polymer and organic electroluminescence element, optical memory, and hole transport element using the same
JPH0945478A (en) Polymeric fluorescent substance and its manufacture, and organic electroluminescent element
JP3546645B2 (en) Polymer fluorescent substance and organic electroluminescent device
JP2003253145A (en) Light-emitting composition
KR20010098607A (en) Organic luminescence device and process for production thereof
JPH09279135A (en) Electroluminescent element
JPH1135688A (en) Silicon-containing compound, production of the same silicon-containing compound and luminous element using the same silicon-containing compound
JP3514417B2 (en) Organic compound, polymer thereof and organic electroluminescent device
JP2003253129A (en) Luminescent composition
EP1760799B1 (en) Organic luminous material and organic light-emitting device
JP4314771B2 (en) Organic electroluminescence device
JP2003178884A (en) Organic electric field light-emitting element
JP3817957B2 (en) Organic fluorescent material and organic electroluminescence device
KR100620468B1 (en) Materials for Electroluminescence and Electroluminescence Devices
EP0786924B1 (en) Organic electroluminescence device
WO2007046246A1 (en) Luminescent composition and light-emitting device
JPH0820614A (en) Copolymer, its production and luminous element using the same
JPH1025473A (en) Electroluminescent element and its production
JPH03244630A (en) Organic electroluminescent element
JPH10158641A (en) Organic electroluminescent element
JP2004087396A (en) Organic electroluminescent element
JP3569993B2 (en) Oxadiazole polymer