JPH1025473A - Electroluminescent element and its production - Google Patents

Electroluminescent element and its production

Info

Publication number
JPH1025473A
JPH1025473A JP9079506A JP7950697A JPH1025473A JP H1025473 A JPH1025473 A JP H1025473A JP 9079506 A JP9079506 A JP 9079506A JP 7950697 A JP7950697 A JP 7950697A JP H1025473 A JPH1025473 A JP H1025473A
Authority
JP
Japan
Prior art keywords
electrode
layer
hole transport
org
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9079506A
Other languages
Japanese (ja)
Inventor
Hiromitsu Tanaka
洋充 田中
Akane Okada
茜 岡田
Seiji Tokitou
静士 時任
Yasunori Taga
康訓 多賀
Koji Noda
浩司 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP9079506A priority Critical patent/JPH1025473A/en
Publication of JPH1025473A publication Critical patent/JPH1025473A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an electroluminescent element which comprises a first transparent electrode, an org. layer, and a second electrode laminated on a transparent substrate, is excellent in heat resistance and durability, and can form, by vapor deposition, a high-purity hole transport layer by incorporating a specific polymer into the org. layer. SOLUTION: This element is produced by by successively laminating the first transparent electrode (e.g. an ITO electrode), an org. layer mainly comprising an org. compd. which emits light under a voltage applied, and the second electrode (e.g. an Mg metal electrode) on a transparent substrate (e.g. a glass substrate). The org. layer contains a polymer (e.g. one represented by the formula) which pref. has a degree of polymn. of 3-7 and has, as the base units, units derived from a hole transport molecule having arom. rings (e.g. triphenylamine). The arom. rings of a base unit have been bonded to those of the other base units directly or through unsatd. side chains.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、有機層をもつ電界
発光素子及びその製造方法に関する。この電界発光素子
は、電気的に発光を起こすことのできる面状の発光体で
あることから、自動車のフロントディスプレーなどの表
示装置、液晶ディスプレーのバックライトとして使用す
ることができる。
The present invention relates to an electroluminescent device having an organic layer and a method for manufacturing the same. Since the electroluminescent element is a planar light emitting body capable of electrically emitting light, it can be used as a display device such as a front display of an automobile or a backlight of a liquid crystal display.

【0002】[0002]

【従来の技術】電界発光素子は強い蛍光をもつ有機化合
物固体に一対の電極を取り付けたもので、電圧の印加に
よって発光する。一般に、電界発光素子は、透明ガラス
基板上に、透明電極(ITO)と、強い蛍光をもつ固体
有機化合物よりなる発光層としての有機層と、金属(た
とえばMg)電極とが順に積層された構成を有してい
る。この電界発光素子の発光原理は以下の通りである。
陽極から正孔を、陰極から電子を注入すると、注入され
た正孔と電子は固体中を移動し、衝突、再結合を起こし
て消滅する。再結合により発生したエネルギーは発光分
子の励起状態の生成に使われて蛍光を発する。
2. Description of the Related Art An electroluminescent device has a pair of electrodes attached to a solid organic compound having strong fluorescence, and emits light by applying a voltage. In general, an electroluminescent element has a structure in which a transparent electrode (ITO), an organic layer as a light emitting layer made of a solid organic compound having strong fluorescence, and a metal (eg, Mg) electrode are sequentially laminated on a transparent glass substrate. have. The principle of light emission of this electroluminescent device is as follows.
When holes are injected from the anode and electrons are injected from the cathode, the injected holes and electrons move through the solid, collide and recombine, and disappear. The energy generated by the recombination is used to generate the excited state of the light-emitting molecule and emits fluorescence.

【0003】このような電界発光素子は、視野角の制限
がなく、また低電圧駆動、高速応答が可能であり、液
晶、プラズマディスプレー、無機電界発光素子といった
他の表示素子と比較して、ディスプレーとしての優れた
特性を持っている。しかしながら、発光部が有機層で形
成された電界発光素子は寿命が短いという点が問題点と
して指摘されている。この電界発光素子の寿命が短い原
因の一つとして、有機物(ホール輸送機能分子)の結晶
化による変質、劣化の問題をかかえているためである。
すなわち、駆動時の素子の発熱により素子の接合界面に
剥離が起こったり、有機層が変形することや、有機物自
身の変質が起こり、有機層が熱的に劣化したりする。
[0003] Such an electroluminescent device has no limitation on the viewing angle, can operate at a low voltage and can respond at high speed, and has a higher display performance than other display devices such as a liquid crystal, a plasma display, and an inorganic electroluminescent device. Has excellent characteristics as. However, it has been pointed out that the electroluminescent device in which the light emitting portion is formed of an organic layer has a short life. One of the reasons why the life of the electroluminescent device is short is that there is a problem of deterioration and deterioration due to crystallization of organic substances (hole transporting molecules).
That is, the heat generated by the element at the time of driving causes peeling at the junction interface of the element, deformation of the organic layer, deterioration of the organic substance itself, and thermal deterioration of the organic layer.

【0004】電界発光素子は、高表示品質の平面発光体
であるが、この素子の実用化にあたって耐熱性の向上と
長寿命化の問題を克服することが求められている。これ
は、電界発光素子が素子中の有機物(ホール輸送機能分
子)の結晶化による変質、劣化の問題を抱えているため
である。この有機物の結晶化の問題を解決するために、
ホール輸送機能分子自身の耐熱性を向上させる方法とし
て、スターバーストアミン分子(Appl.Phys.Lett.,65
(7),807 (1994))や、TPD誘導体(テトラフェニルベ
ンジジン誘導体)をホール輸送機能分子として使用する
提案がなされている。
The electroluminescent device is a flat luminous body of high display quality, but it is required to overcome the problems of improvement in heat resistance and prolonging the service life in practical use of this device. This is because the electroluminescent device has a problem of deterioration and deterioration due to crystallization of the organic substance (hole transport function molecule) in the device. To solve the problem of crystallization of organic matter,
As a method for improving the heat resistance of the hole transport function molecule itself, a starburst amine molecule (Appl. Phys. Lett., 65
(7), 807 (1994)) and the use of a TPD derivative (tetraphenylbenzidine derivative) as a hole transport function molecule.

【0005】ホール輸送機能分子の耐熱性と分子構造と
の関係は、現状では明らかでない。例えば、鈴木等はT
PDの置換基を変えた誘導体を各種合成し、素子の寿命
と分子構造との関係を検討したが明確な結論は得られて
いない(応用物理学会予稿集p1074,94春)。か
つ彼らの用いた材料では、Tgと素子寿命との関係は認
められなかった。また、Adachi等は、種々のホール輸送
機能分子を合成し、それ等の材料を用いた素子の寿命を
検討した結果、素子の寿命と分子のイオン化ポテンシャ
ルに相関関係があると報告している(APPL.PHYS.LETT.,
66(20) 2679(1995))。しかしながら、分子構造と関連
付けた結論は得られていない。
[0005] The relationship between the heat resistance and the molecular structure of the hole transporting function molecule is not clear at present. For example, Suzuki is T
Various derivatives having different PD substituents were synthesized, and the relationship between the lifetime and the molecular structure of the device was examined. However, no clear conclusion was obtained (Proceedings of the Japan Society of Applied Physics, p1074, spring 94). Moreover, in the materials used by them, no relationship was found between Tg and device life. In addition, Adachi et al. Synthesized various hole transporting molecules and examined the lifetime of devices using these materials, and reported that there was a correlation between the lifetime of the device and the ionization potential of the molecule ( APPL.PHYS.LETT.,
66 (20) 2679 (1995)). However, no conclusions relating to the molecular structure have been obtained.

【0006】また、別の方法としては、ホール輸送機能
分子を高分子化することで耐熱性を向上させる方法があ
る。すなわち、高分子化することでホール輸送機能分子
は、分子運動や分子の配列状態が規制され、非晶状態が
熱力学的な安定状態となり、低分子に見られるような結
晶化の問題を回避することができる。このような例とし
て、ポリビニルカルバゾールをマトリックスとする高分
子分散型EL素子(応用物理 61(10)、1044(1992))、
側鎖にトリフェニルアミンやTPDを含むポリマー(高
分子論文集 52(4)、216(1995) )、ポリカーボネートの
主鎖にホール輸送機能分子を導入したもの(特開平5−
247458号公報)が知られている。
[0006] As another method, there is a method of improving heat resistance by polymerizing a hole transport function molecule. In other words, by polymerizing the hole transport function molecule, the molecular motion and the arrangement state of the molecule are regulated, the amorphous state becomes a thermodynamically stable state, and the problem of crystallization seen in small molecules is avoided. can do. Examples of such a polymer-dispersed EL device using polyvinyl carbazole as a matrix (applied physics 61 (10), 1044 (1992)),
Polymers containing triphenylamine or TPD in the side chain (Polymer Transactions 52 (4), 216 (1995)), and those having a hole-transporting molecule introduced into the main chain of polycarbonate (Japanese Unexamined Patent Publication No.
247458) is known.

【0007】他の方法として、ホール輸送分子を耐熱性
マトリックスに固溶することで耐熱性を向上させる試み
もなされている。時任等は、二元同時蒸着法によって有
機分子を無機物中に分散、固定することに成功し、耐熱
性の向上を図った報告がある(時任等Appl.Phys.Lett.,
66(6)673(1995))。
As another method, attempts have been made to improve the heat resistance by dissolving a hole transport molecule in a heat resistant matrix. Tokito et al. Reported that they succeeded in dispersing and fixing organic molecules in an inorganic substance by a binary simultaneous vapor deposition method and improved heat resistance (Tokitomi et al., Appl. Phys. Lett.,
66 (6) 673 (1995)).

【0008】[0008]

【発明が解決しようとする課題】上記の高分子素材を用
いた電界発光素子の場合には、ホール輸送機能材料が重
合法によって調製される。このため重合時に用いた無機
塩、溶媒、触媒などの不純物の除去が困難である。これ
らの不純物が、微量でも素子中に混入すると発光素子特
性の低下をきたす。また、重合法を用いた材料の調製で
は、ホール輸送機能を形成する際に、高分子の側鎖など
が酸化反応を受け化学構造が変化するなどの欠陥が避け
られない。また、一旦生成した高分子中の欠陥部分の除
去は不可能である。さらに、高分子鎖中の欠陥がホール
のトラップとして作用すれば、素子特性の低下につなが
る。さらに素子作製時に用いた溶媒は、素子からの除去
が困難である。
In the case of an electroluminescent device using the above polymer material, a hole transporting functional material is prepared by a polymerization method. For this reason, it is difficult to remove impurities such as inorganic salts, solvents, and catalysts used in the polymerization. Even if a small amount of these impurities are mixed into the device, the characteristics of the light emitting device are deteriorated. In addition, in the preparation of a material using a polymerization method, when forming a hole transport function, defects such as a change in chemical structure due to an oxidation reaction of a side chain of a polymer or the like are inevitable. Further, it is impossible to remove a defective portion in the polymer once formed. Furthermore, if a defect in the polymer chain acts as a trap for holes, it leads to a decrease in device characteristics. Further, it is difficult to remove the solvent used during the production of the device from the device.

【0009】ホール輸送分子を耐熱性マトリックスに固
溶させる方法は、素子の耐熱性向上が見込めるももの、
ホール輸送分子の密度がマトリックスが存在することに
より低下し、ホール輸送分子間の距離が増大することに
よりホールの分子間のホッピングがおこりにくくなるこ
とが避けられない。このため、発光素子のホール輸送層
のホール輸送機能が低下することによって、素子特性は
ホール輸送機能分子単独の場合と比較して低下してしま
う。
The method of dissolving the hole transport molecule in the heat resistant matrix can improve the heat resistance of the device.
It is inevitable that the density of the hole transporting molecules decreases due to the presence of the matrix, and that the distance between the hole transporting molecules increases, so that hopping between the hole molecules hardly occurs. For this reason, when the hole transport function of the hole transport layer of the light emitting element is reduced, the device characteristics are reduced as compared with the case where the hole transport function molecule is used alone.

【0010】蒸着法で作製する発光素子に用いるホール
輸送機能分子は、精製が容易であるため不純物の混入が
少なく、ホール輸送層中に存在するホール輸送機能分子
の存在密度も高いので、ホール輸送機能の低下をきたす
ことがなく、特性に優れた素子を作製できるメリットが
あるが、従来技術で述べたように材料の耐熱性向上の指
針に乏しく、試行錯誤的に合成を試みてゆくしかなく、
耐熱性を高めることが困難であった。
The hole transporting function molecules used in the light emitting element manufactured by the vapor deposition method are easy to purify and contain little impurities, and the hole transporting layer has a high density of hole transporting molecules present in the hole transporting layer. Although there is an advantage that a device with excellent characteristics can be manufactured without lowering the function, there are few guidelines for improving the heat resistance of the material as described in the prior art, and synthesis must be tried by trial and error. ,
It was difficult to increase heat resistance.

【0011】本発明は、上記の事情に鑑みてなされたも
ので、蒸着可能で耐熱性に優れたホール輸送機能材料を
開発し、耐熱性にすぐれた有機電界発光素子とすること
およびその製造方法を確率することを目的とする。
The present invention has been made in view of the above circumstances, and has been developed to provide a hole transporting functional material having excellent heat resistance, which can be deposited, to provide an organic electroluminescent device having excellent heat resistance, and a method of manufacturing the same. The goal is to establish

【0012】[0012]

【課題を解決するための手段】本発明者らは、トリフェ
ニルアミンなどのホール輸送機能をもつ分子を基本単位
としてその化合物の多量体を系統的に合成した。その結
果、たとえば、トリフェニルアミンでは、多量化度と化
合物の耐熱性の指標となるTgとの間に明確な相関関係
があることを見いだした。すなわち、トリフェニルアミ
ン単位が一つ付加する毎に、多量体のTgは約30℃程
度上昇した。具体的には表3に示すように、二量体(T
PD)、三量体(TPTR)、四量体(TPTE)のT
gは、それぞれ60℃、95℃、130℃であった。し
たがって、基本単位の多量化度が増すにつれ、耐熱性に
より優れた材料を得ることができるという知見を見いだ
した。しかも、トリフェニルアミン単位の場合は、多量
化度を高めていってもホール輸送機能はほとんど変化せ
ず、優れたホール輸送機能が得られるということを見い
だした。このホール輸送機能分子を用いて電界発光素子
を作製したところ、耐熱性が高く寿命の長い発光素子が
得られ本発明を完成した。
Means for Solving the Problems The present inventors systematically synthesized multimers of the compound using a molecule having a hole transporting function such as triphenylamine as a basic unit. As a result, for example, in triphenylamine, it was found that there was a clear correlation between the degree of multimerization and Tg, which is an index of the heat resistance of the compound. That is, each time one triphenylamine unit was added, the Tg of the polymer increased by about 30 ° C. Specifically, as shown in Table 3, the dimer (T
PD), trimer (TPTR), tetramer (TPTE) T
g were 60 ° C, 95 ° C, and 130 ° C, respectively. Therefore, it has been found that as the degree of multiplication of the basic unit increases, a material having better heat resistance can be obtained. Moreover, in the case of the triphenylamine unit, it was found that the hole transport function hardly changed even if the degree of multimerization was increased, and that an excellent hole transport function was obtained. When an electroluminescent element was manufactured using the hole transporting molecule, a light emitting element having high heat resistance and a long life was obtained, and the present invention was completed.

【0013】本発明の電界発光素子は、透明基板上に、
透明第1電極と、電圧の印加により発光する有機化合物
を主成分とする有機層と、第2電極とを順に積層してな
る電界発光素子において、該有機層は、芳香族環を有す
るホール輸送機能分子を基本単位とし、該基本単位の芳
香族環どうしが直接、または不飽和側鎖を介して結合を
形成した多量体を含むことを特徴とする。
[0013] The electroluminescent device of the present invention comprises:
In an electroluminescent device in which a transparent first electrode, an organic layer mainly containing an organic compound which emits light by application of a voltage, and a second electrode are sequentially laminated, the organic layer has a hole transporting property having an aromatic ring. It is characterized in that a functional molecule is a basic unit, and that the aromatic ring of the basic unit contains a multimer in which a bond is formed directly or via an unsaturated side chain.

【0014】前記基本単位は、トリフェニルアミンであ
ることが望ましい。前記トリフェニルアミンのフェニル
基は、置換基が結合していることが望ましい。前記多量
体は、蒸着法による該ホール輸送機能層の形成が可能な
多量化度であることが望ましい。
Preferably, the basic unit is triphenylamine. The phenyl group of the triphenylamine preferably has a substituent bonded thereto. It is preferable that the multimer has a degree of multimerization capable of forming the hole transporting functional layer by a vapor deposition method.

【0015】本発明の電界発光素子の製造方法は、透明
基板上に、透明第1電極と、電圧の印加により発光する
有機化合物を主成分とする有機層と、第2電極とを順に
蒸着により積層して形成する電界発光素子の製造方法に
おいて、該有機層および第2電極の形成は、該透明基板
の温度を80℃以上、蒸着する有機材料のガラス転移温
度以下の温度に保持して、蒸着により形成することを特
徴とする。
According to the method of manufacturing an electroluminescent device of the present invention, a transparent first electrode, an organic layer mainly composed of an organic compound which emits light by applying a voltage, and a second electrode are sequentially deposited on a transparent substrate by vapor deposition. In the method for manufacturing an electroluminescent device formed by stacking, the formation of the organic layer and the second electrode is performed by maintaining the temperature of the transparent substrate at 80 ° C. or higher and a glass transition temperature or lower of an organic material to be deposited. It is characterized by being formed by vapor deposition.

【0016】[0016]

【発明の実施の形態】本発明の電界発光素子は、透明基
板上に、透明第1電極と、電圧の印加により発光する有
機化合物を主成分とする有機層と、第2電極とを順に積
層してなる。上記透明基板は特に限定されず、ガラス基
板、透明セラミックス基板、ダイヤモンド基板等を用い
ることができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The electroluminescent device of the present invention comprises a transparent first electrode, a transparent first electrode, an organic layer mainly composed of an organic compound which emits light when a voltage is applied, and a second electrode. Do it. The transparent substrate is not particularly limited, and a glass substrate, a transparent ceramics substrate, a diamond substrate, or the like can be used.

【0017】上記透明第1電極は、高い光透過性及び導
電性を有する電極のことであり、従来と同様、例えば金
の蒸着膜、ITO、ポリアニリンを用いることができ
る。上記電圧の印加により発光する有機化合物よりなる
有機層は特に限定されないが、一般に、電子輸送機能分
子、発光機能分子、ホール輸送機能分子、マトリック
ス、バインダー、あるいはこれらを兼ね備えた有機物よ
り構成され、単層あるいは多層からなる数十から数百n
mの均一厚みの薄膜とすることができる。
The transparent first electrode is an electrode having high light transmittance and conductivity. For example, a gold deposited film, ITO, or polyaniline can be used as in the conventional case. The organic layer formed of an organic compound that emits light by the application of the voltage is not particularly limited, but is generally formed of an electron transporting functional molecule, a light emitting functional molecule, a hole transporting functional molecule, a matrix, a binder, or an organic material having a combination of these. Dozens to hundreds of layers or layers
m can be obtained as a thin film having a uniform thickness.

【0018】上記第2電極は、透明電極あるいは不透明
電極のいずれでもよく、一般に、Mg、Ag、Mg−A
g等の金属電極を用いることができる。本発明のホール
輸送機能分子は、公知の芳香族環を含有するホール輸送
機能分子を基本単位とし、この基本単位どうしが互いに
芳香族環で共役構造となる結合を形成して多量体となっ
た化合物である。この公知の芳香族環を含有するホール
輸送機能分子は、たとえば、ヒドラジン型、スチルベン
型、トリフェニルアミン型、複素環型、などの化合物が
挙げられる。
The second electrode may be either a transparent electrode or an opaque electrode. Generally, Mg, Ag, Mg-A
g or other metal electrode can be used. The hole transporting functional molecule of the present invention has a hole transporting functional molecule containing a known aromatic ring as a basic unit, and this basic unit forms a bond having a conjugated structure with an aromatic ring to form a multimer. Compound. Examples of the well-known hole transporting functional molecule containing an aromatic ring include hydrazine-type, stilbene-type, triphenylamine-type, and heterocyclic-type compounds.

【0019】なかでも、トリフェニルアミンの2量体以
上の多量体が容易に合成でき、蒸着法により、純度の高
い高性能のホール輸送機能層が形成できるので好まし
い。なお、トリフェニルアミンの多量体は、真空蒸着法
の適用が可能な7以下の多量化度であることが望まし
い。耐熱性を要する場合は多量化度は3以上であること
が望ましい。
Above all, it is preferable because a multimer of triphenylamine dimer or more can be easily synthesized, and a high-purity, high-performance hole transport function layer can be formed by vapor deposition. The multimer of triphenylamine desirably has a degree of multiplication of 7 or less to which a vacuum deposition method can be applied. When heat resistance is required, the degree of multiplication is desirably 3 or more.

【0020】また、基本単位、たとえば、トリフェニル
アミンの場合には、一基本単位に対する置換基の数は1
から15まで可能であるが、特に1〜3がのぞましい。
ホール輸送機能分子の基本単位は、芳香族環どうしが直
接結合または、共役結合を介して結合して形成された多
量体である。共役結合としては、たとえば、−CH=C
H−、−C≡C−,−N=N−、−C=N−、−C
(R)=C(R’)−(R,R’はアルキルまたはアリ
ール基)、芳香族化合物(たとえば、フェニル基、ビフ
ェニル基、トリフェニル基、ナフチル基、アントラニル
基、フェナントリル基など)が挙げられる。
In the case of a basic unit, for example, triphenylamine, the number of substituents per basic unit is one.
To 15 is possible, but 1 to 3 are particularly desirable.
The basic unit of the hole transporting functional molecule is a multimer formed by bonding aromatic rings directly or via a conjugate bond. As the conjugate bond, for example, -CH = C
H-, -C≡C-, -N = N-, -C = N-, -C
(R) = C (R ′)-(R and R ′ are alkyl or aryl groups) and aromatic compounds (for example, phenyl group, biphenyl group, triphenyl group, naphthyl group, anthranyl group, phenanthryl group, etc.). Can be

【0021】また、多量体を基本骨格として、芳香族環
に置換基が導入された化合物でもよく、このような置換
基としては、アルキル基、アリル基、アリール基、アミ
ノ基、アルコキシル基、アリルオキシ基、チオアルキル
基、チオアリル基、チオアリール基、スルホン基、ホス
ホリル基、カルボキシル基、カルボニル基、チオカルボ
ニル基、イミノ基、ヒドロキシ基、アミド基、アルコキ
シル基、シアノ基などが挙げられる。
Further, a compound in which a substituent is introduced into an aromatic ring using a multimer as a basic skeleton may be used. Examples of such a substituent include an alkyl group, an allyl group, an aryl group, an amino group, an alkoxyl group, and an allyloxy group. Groups, thioalkyl groups, thioallyl groups, thioaryl groups, sulfone groups, phosphoryl groups, carboxyl groups, carbonyl groups, thiocarbonyl groups, imino groups, hydroxy groups, amido groups, alkoxyl groups, cyano groups and the like.

【0022】以上のようなホール輸送機能材料は、蒸着
法で作製される有機EL素子の、一層型、二層型、三層
型の素子のホール輸送層として使用することができる。
この場合、ホール輸送層には、発光機能分子、電子輸送
機能分子、ホール輸送機能分子をドーピングした形で用
いてもよい。また、ディップコート、スピンコート法と
言った塗布法で作製される有機EL素子の有機層に用い
られるホール輸送機能材料として用いることもできる。
この場合には、マトリックスに分散させた形、あるいは
単独で用いることもできる。また、本ホール輸送機能材
料は、耐熱性マトリックスに固溶させる方法にも適用す
ることができる。この場合、ホール輸送層には、発光機
能分子、電子輸送機能分子、ホール輸送機能分子をドー
ピングした形で用いてもよい。
The above-described hole transporting functional material can be used as a hole transporting layer of a one-layer, two-layer, or three-layer type organic EL device manufactured by a vapor deposition method.
In this case, the hole transport layer may be used in a form doped with a light emitting functional molecule, an electron transport functional molecule, and a hole transport functional molecule. Further, it can also be used as a hole transporting function material used for an organic layer of an organic EL device manufactured by a coating method such as dip coating or spin coating.
In this case, it can be used in the form of being dispersed in a matrix or alone. Further, the present hole transporting functional material can be applied to a method of forming a solid solution in a heat resistant matrix. In this case, the hole transport layer may be used in a form doped with a light emitting functional molecule, an electron transport functional molecule, and a hole transport functional molecule.

【0023】本発明のホール輸送機能分子としてトリフ
ェニルアミン多量体の結合例を3量体について化1式〜
化9式に示す。4量体について化10式〜化12式に示
す。3量体以下では、直鎖上の結合様式しかないが、4
量体以上では分岐を生じる場合もある。6量体以上で
は、分岐点が複数となる可能性がある。
Examples of the binding of a triphenylamine multimer as the hole transporting function molecule of the present invention are shown below for a trimer.
It is shown in Formula 9. Formulas 10 to 12 show the tetramer. For trimers and smaller, there is only a linear bonding mode,
If it is a monomer or more, branching may occur. If it is a hexamer or more, there may be a plurality of branch points.

【0024】[0024]

【化1】 Embedded image

【0025】[0025]

【化2】 Embedded image

【0026】[0026]

【化3】 Embedded image

【0027】[0027]

【化4】 Embedded image

【0028】[0028]

【化5】 Embedded image

【0029】[0029]

【化6】 Embedded image

【0030】[0030]

【化7】 Embedded image

【0031】[0031]

【化8】 Embedded image

【0032】[0032]

【化9】 Embedded image

【0033】[0033]

【化10】 Embedded image

【0034】[0034]

【化11】 Embedded image

【0035】[0035]

【化12】 Embedded image

【0036】また、3量体、4量体の結合の仕方はには
アミノ基に対してオルソ、メタ、パラの結合の可能性が
あり、異性体が存在する。直鎖状の4量体、3量体の場
合に、結合の位置をメタ、パラの組み合わせに限って、
可能な異性体を纏めたのが表1、表2である。
The trimer and tetramer can be bonded to the amino group by ortho, meta or para bonding, and there are isomers. In the case of a linear tetramer or trimer, the bond position is limited to a combination of meta and para,
Tables 1 and 2 summarize the possible isomers.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【表2】 [Table 2]

【0039】また、トリフェニルアミン多量体の合成
は、芳香族アミンと芳香族沃素化物との銅触媒を用いる
ウルマン反応によっておこなうことができる。また、ト
リフェニルアミンのハロゲン化物どうしを、ニッケル、
パラジウム触媒を用いてカップリング反応させてもおこ
なうことができる。たとえば、臭化物をグリニヤール試
薬とし、別の臭化物とニッケル触媒(Ni(dpp)C
2 等)を用いてカップリグすることができる。また、
臭化物をアルキルリチウム試薬を用いてリチウム化した
後、ほう酸に誘導したものと、別の臭化物をパラジウム
触媒(Pd(PPh3 4 等)を用いてカップリングす
ることができる。また、臭化物を亜鉛を還元剤として、
ニッケル触媒を用いてカップリングすることができる。
The synthesis of the triphenylamine multimer can be carried out by the Ullmann reaction of an aromatic amine with an aromatic iodide using a copper catalyst. In addition, triphenylamine halides, nickel,
The reaction can also be carried out by performing a coupling reaction using a palladium catalyst. For example, a bromide is used as a Grignard reagent, and another bromide and a nickel catalyst (Ni (dpp) C
It can be Kappurigu with l 2, etc.). Also,
After the bromide is lithiated using an alkyl lithium reagent, boric acid-derived bromide and another bromide can be coupled using a palladium catalyst (such as Pd (PPh 3 ) 4 ). In addition, bromide using zinc as a reducing agent,
Coupling can be performed using a nickel catalyst.

【0040】本発明の電界発光素子の製造方法は、透明
基板を特定の温度範囲に保持して有機層および第2電極
を形成する。すなわち、透明基板を高温に保持すること
で透明基板の表面に形成されているITO膜面に吸着し
ていた水分を除去でき、かつ、有機層を成膜中に蒸発源
から飛んできた低分子不純物(分解物)を透明基板から
再蒸発させることができ、純度の高い有機層が形成でき
る。また、金属の第2電極も高温成膜によって緻密にで
きる。その結果、湿気や酸素が電極膜中を透過するのが
抑えられ、素子の劣化が抑制できる。
In the method of manufacturing an electroluminescent device according to the present invention, an organic layer and a second electrode are formed while maintaining a transparent substrate in a specific temperature range. That is, by holding the transparent substrate at a high temperature, moisture adsorbed on the ITO film surface formed on the surface of the transparent substrate can be removed, and the low molecular weight that has flew from the evaporation source during the film formation of the organic layer can be removed. Impurities (decomposed products) can be re-evaporated from the transparent substrate, and a high-purity organic layer can be formed. Also, the second metal electrode can be made dense by high-temperature film formation. As a result, permeation of moisture and oxygen through the electrode film is suppressed, and deterioration of the element can be suppressed.

【0041】前記透明基板の温度は、80℃以上が有効
であり、蒸着する有機物のガラス転移温度の範囲以下が
好ましい。蒸着する有機物のガラス転移温度を超えると
有機層の結晶化が起こり有機層の膜質が悪くなるので好
ましくない。有機層を形成するホール輸送材料のガラス
転移温度を表3に示した。また、前記透明基板の温度が
80℃未満では、該透明基板より低分子不純物等の除去
が不充分となるので好ましくない。
The effective temperature of the transparent substrate is 80 ° C. or higher, and is preferably lower than the glass transition temperature of the organic substance to be deposited. Exceeding the glass transition temperature of the organic substance to be deposited is not preferred because crystallization of the organic layer occurs and the quality of the organic layer deteriorates. Table 3 shows the glass transition temperature of the hole transporting material forming the organic layer. On the other hand, if the temperature of the transparent substrate is lower than 80 ° C., the removal of low molecular impurities and the like from the transparent substrate becomes insufficient, which is not preferable.

【0042】このように透明基板を加温して成膜するこ
とにより、純度の高い有機層の形成と緻密な金属第2電
極が形成でき、電界発光素子特性(輝度、効率)が改善
され素子の寿命も伸びる利点がある。
By heating the transparent substrate to form a film, a high-purity organic layer can be formed and a dense metal second electrode can be formed, and the characteristics (luminance and efficiency) of the electroluminescent device can be improved. This has the advantage of extending the life of the device.

【0043】[0043]

【表3】 [Table 3]

【0044】[0044]

【実施例】以下、実施例により具体的に説明する。 (ホール輸送機能分子の合成例) (合成例1) ジ(m−トリル)4−ブロモフェニルアミンの合成 ジ(m−トリル)アミン5.0g、4−ブロモ−1−ヨ
ードベンゼン7.20g、銅粉末0.1g、酸化銅
(1)0.1g、水酸化カリウム1.84g、デカリン
7g、18クラウン6 0.05gの混合物を窒素雰囲
気下に160℃で8時間加熱、攪拌した。生成物をカラ
ムクロマトグラフィーで精製し、4.8gのジ(m−ト
リル)ブロモフェニルアミンを得た。
The present invention will be specifically described below with reference to examples. (Synthesis Example of Hole Transport Function Molecule) (Synthesis Example 1) Synthesis of di (m-tolyl) 4-bromophenylamine 5.0 g of di (m-tolyl) amine, 7.20 g of 4-bromo-1-iodobenzene, A mixture of 0.1 g of copper powder, 0.1 g of copper oxide (1), 1.84 g of potassium hydroxide, 7 g of decalin, and 0.05 g of 18 crown 6 was heated and stirred at 160 ° C. for 8 hours under a nitrogen atmosphere. The product was purified by column chromatography to give 4.8 g of di (m-tolyl) bromophenylamine.

【0045】N,N,N’,N’−テトラ(m−トリ
ル)ベンジジンの合成 マグネシウム18mgに窒素気流下でジ(m−トリル)
ブロモフェニルアミン500mgを溶解したテトラヒド
ロフラン溶液10mlを15分かけて滴下した。その
後、3時間攪拌した後50℃で1.5時間攪拌を続け
た。この反応液を氷冷した後、1、3−ジ(ジフェニル
ホスフィノ)プロパンニッケル(II)クロリド10mg
を加え、50時間室温で放置した。反応液は、濃縮し濃
縮残渣を溶媒に溶解して(1H−NMRの定量による)
75%の収率でN,N,N’,N’−テトラ(m−トリ
ル)ベンジジン(化13式に示す2量体)を得た。
Synthesis of N, N, N ', N'-tetra (m-tolyl) benzidine Di (m-tolyl) was added to 18 mg of magnesium under a nitrogen stream.
10 ml of a tetrahydrofuran solution in which 500 mg of bromophenylamine was dissolved was added dropwise over 15 minutes. Then, after stirring for 3 hours, stirring was continued at 50 ° C. for 1.5 hours. The reaction mixture was cooled on ice, and then 10 mg of 1,3-di (diphenylphosphino) propane nickel (II) chloride was added.
Was added and left at room temperature for 50 hours. The reaction solution is concentrated, and the concentrated residue is dissolved in a solvent (by 1H-NMR quantification).
N, N, N ', N'-tetra (m-tolyl) benzidine (a dimer represented by Formula 13) was obtained at a yield of 75%.

【0046】[0046]

【化13】 Embedded image

【0047】(合成例2) 4−(N,N,−ジ(m−トリル))アミノ−4’−ヨ
ードビフェニルの合成 m,m’−ジトリルアミン2.5g、4,4’−ジヨー
ドビフェニル5.14g、炭酸カリウム1.93g、銅
粉末0.05g、酸化第一銅0.05g、キシレン15
g、18クラウン6 0.05gの混合物を窒素気流下
で生成水の分離装置および還流冷却管をを配置したフラ
スコを200℃で40時間加熱した。反応生成物を濾過
し、固形物をクロロホルムで洗浄して濾液と共に濃縮乾
固した。生成物はカラムクロマトグラフィーで精製し、
2.02gの4−(N,N−ジ(m−トリル))アミノ
−4’−ヨードビフェニルを得た。
Synthesis Example 2 Synthesis of 4- (N, N, -di (m-tolyl)) amino-4'-iodobiphenyl 2.5 g of m, m'-ditolylamine, 4,4'-diiodobiphenyl 5.14 g, potassium carbonate 1.93 g, copper powder 0.05 g, cuprous oxide 0.05 g, xylene 15
A mixture of 0.05 g of 18 crowns and 6 crowns was heated at 200 ° C. for 40 hours under a nitrogen stream at 200 ° C. in which a separation device for water and a reflux condenser were arranged. The reaction product was filtered, the solid was washed with chloroform and concentrated to dryness with the filtrate. The product is purified by column chromatography,
2.02 g of 4- (N, N-di (m-tolyl)) amino-4'-iodobiphenyl were obtained.

【0048】TPTRの合成(化14式に示す3量体) 4−(N,N−ジ(m−トリル))アミノ−4’−ヨー
ドビフェニル2.02g、p−トリルアミン0.23
g、銅粉末0.02g、酸化第一銅0.02g、炭酸カ
リウム0.65g、キシレン20g、18クラウン6
0.02gを窒素気流下 200℃で40時間加熱し
た。反応生成物を濾過し、固形物をクロロホルムで洗浄
して濾液と共に濃縮乾固した。生成物はカラムクロマト
グラフィーで精製し、0.52gのTPTR(化14
式)を得た。DSC(示差走査熱量計)により、10℃
/分で昇温したときのTPTRのTgは、95℃であっ
た。
Synthesis of TPTR (trimer shown in Chemical Formula 14) 4- (N, N-di (m-tolyl)) amino-4'-iodobiphenyl 2.02 g, p-tolylamine 0.23
g, copper powder 0.02 g, cuprous oxide 0.02 g, potassium carbonate 0.65 g, xylene 20 g, 18 crown 6
0.02 g was heated at 200 ° C. for 40 hours under a nitrogen stream. The reaction product was filtered, the solid was washed with chloroform and concentrated to dryness with the filtrate. The product was purified by column chromatography and 0.52 g of TPTR (Chem.
Formula) was obtained. 10 ° C. by DSC (differential scanning calorimeter)
The Tg of TPTR when the temperature was increased at a rate of 95 ° C./min.

【0049】[0049]

【化14】 Embedded image

【0050】(合成例3)実施例2で合成した4−
(N,N−ジ(m−トリル))アミノ−4’−ヨードビ
フェニル1.50g、N,N’−ジフェニルベンジン
0.52g、銅粉末0.02g、酸化第一銅0.02
g、炭酸カリウム0.48g、キシレン20g、18ク
ラウン6 0.02gを窒素気流下 200℃で46時
間加熱した。反応生成物を濾過し、固形物をクロロホル
ムで洗浄して濾液と共に濃縮乾固した。生成物はカラム
クロマトグラフィーで精製し、0.8gのTPTRを得
た。DSC(示差走査熱量計)により、10℃/分で昇
温したときのTPTE(化15式に示す4量体)のTg
は、130℃であった。
Synthesis Example 3 4-Synthesized in Example 2
(N, N-di (m-tolyl)) amino-4′-iodobiphenyl 1.50 g, N, N′-diphenylbenzine 0.52 g, copper powder 0.02 g, cuprous oxide 0.02
g, potassium carbonate 0.48 g, xylene 20 g, and 18 crown 6 0.02 g were heated at 200 ° C. for 46 hours in a nitrogen stream. The reaction product was filtered, the solid was washed with chloroform and concentrated to dryness with the filtrate. The product was purified by column chromatography to give 0.8 g of TPTR. Tg of TPTE (tetramer shown in Chemical Formula 15) when the temperature was raised at 10 ° C./min by DSC (differential scanning calorimeter)
Was 130 ° C.

【0051】[0051]

【化15】 Embedded image

【0052】(合成例4)N,N’−ジフェニルN,
N’−ジ(m−トリル)ベンジン(TPD)の、DSC
(示差走査熱量計)により10℃/分で昇温したときの
TPD(化16式に示す2量体)のTgは60℃であっ
た。
(Synthesis Example 4) N, N'-diphenyl N,
DSC of N'-di (m-tolyl) benzine (TPD)
The Tg of the TPD (the dimer shown in Chemical Formula 16) when the temperature was raised at 10 ° C./min by a (differential scanning calorimeter) was 60 ° C.

【0053】[0053]

【化16】 Embedded image

【0054】(実施例1)上記の合成例で得たホール輸
送機能分子TPTEをホール輸送機能層とする電界発光
素子を作製した。ガラス基板上ITO電極上に、TPT
Eを1×10-7Torr、3nm/minの条件で70nm
蒸着した。引き続き、Alq(発光機能分子化17式に
示す)を1×10-7Torr、3nm/minの条件で70
nm蒸着した。次いで、MgAg(10:1)電極を5
×10-7Torr、13nm/minの条件で180nm蒸
着した。
Example 1 An electroluminescent device using the hole transporting molecule TPTE obtained in the above synthesis example as a hole transporting layer was manufactured. TPT on ITO electrode on glass substrate
E is 70 nm under the conditions of 1 × 10 −7 Torr and 3 nm / min.
Evaporated. Subsequently, Alq (shown in Formula 17 of light emitting functional molecule) was applied under the conditions of 1 × 10 −7 Torr and 3 nm / min.
nm. Then, an MgAg (10: 1) electrode was
180 nm was deposited under the conditions of × 10 -7 Torr and 13 nm / min.

【0055】[0055]

【化17】 Embedded image

【0056】TPD(化18式に示すトリフェニルアミ
ン)をホール輸送機能層とするEL素子を作製した。ガ
ラス基板1の上ITO電極上に、TPD(2量体化13
式または16式)を1×10-7Torr、3nm/minの
条件で70nm蒸着した。引き続き、Alq3を1×1
-7Torr、3nm/minの条件で70nm蒸着した。
次いで、MgAg(10:1)電極を5×10-7Torr、
13nm/minの条件で180nm蒸着した。
An EL device using TPD (triphenylamine represented by Formula 18) as a hole transport function layer was manufactured. TPD (dimerization 13)
(Formula 16 or Formula 16) was deposited at 70 nm under the conditions of 1 × 10 −7 Torr and 3 nm / min. Subsequently, 1 × 1 of Alq3 was added.
70 nm was deposited under the conditions of 0 -7 Torr and 3 nm / min.
Then, a MgAg (10: 1) electrode was placed at 5 × 10 −7 Torr,
180 nm was deposited at 13 nm / min.

【0057】[0057]

【化18】 Embedded image

【0058】上記で作製したTPTEをホール輸送層と
する電界発光素子を、室温、窒素ガス雰囲気下で駆動さ
せた。発光開始電圧は約3.5vで、10V印加で最高
輝度5000cd/m2 が得られた。この電界発光素子
を、窒素ガス雰囲気下で100℃で駆動させたところ、
発光開始電圧は約2.2Vで9V印加で最高輝度250
0cd/m2 が得られた。
The electroluminescent device using the TPTE prepared above as a hole transport layer was driven at room temperature in a nitrogen gas atmosphere. The light emission starting voltage was about 3.5 V, and a maximum luminance of 5000 cd / m 2 was obtained by applying 10 V. When the electroluminescent device was driven at 100 ° C. in a nitrogen gas atmosphere,
The light emission starting voltage is about 2.2 V and the maximum luminance is 250 when 9 V is applied.
0 cd / m 2 was obtained.

【0059】(比較例1)実施例1の製造条件で作製し
たTPD(2量体化13式または化16式)をホール輸
送層とするEL素子を、窒素ガス雰囲気下60℃で駆動
させたところ、絶縁破壊のため素子は全く発光しなかっ
た。 (実施例3)実施例1の製造条件で作製したTPTEを
ホール輸送層とするEL素子を、室温、窒素ガス雰囲気
下、定電流条件で駆動させた。11mA/cm2 で駆動
した時の輝度半減寿命は、400時間であった。33m
A/cm2 で駆動した時の輝度半減寿命は、100時間
であった。110mA/cm2 で駆動した時の輝度半減
寿命は、4時間であった。
(Comparative Example 1) An EL device having a hole transport layer using TPD (formula 13 or formula 16) produced under the production conditions of Example 1 was driven at 60 ° C. in a nitrogen gas atmosphere. However, the element did not emit light at all due to dielectric breakdown. (Example 3) An EL device having a hole transport layer made of TPTE manufactured under the manufacturing conditions of Example 1 was driven at room temperature under a nitrogen gas atmosphere under a constant current condition. The luminance half life when driven at 11 mA / cm 2 was 400 hours. 33m
The luminance half life when driven at A / cm 2 was 100 hours. The luminance half life when driven at 110 mA / cm 2 was 4 hours.

【0060】(比較例2)実施例1の製造条件で作製し
たTPD(2量体化13式または化16式)をホール輸
送層とする電界発光素子を、窒素ガス雰囲気下定電流条
件で駆動させた。11mA/cm2 で駆動した時の輝度
半減寿命は、100時間であった。 (実施例4)ITO付きのガラス基板上の基板温度10
0℃に設定し、真空蒸着法でトリフェニルアミン4量体
(TPTE)を500Å、キノリノールアルミ錯体(A
lq化17式に示す)を500Å成膜して有機層を形成
した。最後にMgAgの第2電極を2000Å蒸着し
た。
(Comparative Example 2) An electroluminescent device having a hole transport layer made of TPD (dimerization formula 13 or 16) manufactured under the manufacturing conditions of Example 1 was driven under a constant current condition in a nitrogen gas atmosphere. Was. The luminance half life when driven at 11 mA / cm 2 was 100 hours. (Example 4) Substrate temperature on glass substrate with ITO 10
The temperature was set to 0 ° C., and triphenylamine tetramer (TPTE) was added at 500 ° C. by a vacuum evaporation method, and a quinolinol aluminum complex (A
An organic layer was formed by forming a film of lq-formula 17) at 500 °. Finally, a second electrode of MgAg was deposited at 2000 °.

【0061】この素子を窒素雰囲気下で、駆動電流10
mA/cm2で発光させたところ300cd/m2の高い
初期輝度が得られた。連続駆動(10mA/cm2)で
の素子寿命は約1500時間が達成できた。 (比較例3)ITO付きのガラス基板上に室温条件で、
真空蒸着法でトリフェニルアミン4量体(TPTE)を
500Å、キノリノールアルミ錯体(Alq化17式2
示す)を500Å成膜した。最後にMgAg電極を20
00Å蒸着した。
The device was driven in a nitrogen atmosphere at a driving current of 10
When emitted at mA / cm 2 , a high initial luminance of 300 cd / m 2 was obtained. The device life under continuous driving (10 mA / cm 2 ) was able to be achieved for about 1500 hours. (Comparative Example 3) On a glass substrate with ITO at room temperature,
500 [deg.] Of triphenylamine tetramer (TPTE) was obtained by a vacuum evaporation method, and a quinolinol aluminum complex (Alq-formula 17 formula 2)
(Shown) was deposited at 500 °. Finally, the MgAg electrode is
00Å was deposited.

【0062】この素子を窒素雰囲気下で、駆動電流10
mA/cm2で発光させたところ初期輝度は200cd
/m2であった。連続駆動(10mA/cm2)での素子
寿命を測定したところ、半減寿命は約500時間が達成
できた。 (実施例5)ITO付きのガラス基板上に基板温度13
0℃に設定し、真空蒸着法でトリフェニルアミン4量体
(TPTE)を500Å、キノリノールアルミ錯体(A
lq化17式に示す)を500Å成膜した。最後にMg
Ag電極を2000Å蒸着した。
The device was driven in a nitrogen atmosphere at a drive current of 10
When emitted at mA / cm 2 , the initial luminance was 200 cd
/ M 2 . When the device life under continuous driving (10 mA / cm 2 ) was measured, the half life was able to be achieved about 500 hours. (Example 5) A substrate temperature of 13 was formed on a glass substrate with ITO.
The temperature was set to 0 ° C., and triphenylamine tetramer (TPTE) was added at 500 ° C. by a vacuum evaporation method, and a quinolinol aluminum complex (A
(shown in Formula 17) was deposited at 500 °. Finally Mg
An Ag electrode was deposited at 2000 °.

【0063】この素子を窒素雰囲気下で、駆動電流10
mA/cm2で発光させたところ320cd/m2の高い
初期輝度が得られた。連続駆動(10mA/cm2)で
の素子寿命は約2000時間にも達成できた。 (比較例4)ITO付きのガラス基板上に室温条件で、
真空蒸着法でトリフェニルアミン4量体(TPTE)を
500Å、キノリノールアルミ錯体(Alq化17式に
示す)を500Å成膜した。最後にMgAg電極を20
00Å蒸着した。
The device was driven at a driving current of 10
When emitted at mA / cm 2 , a high initial luminance of 320 cd / m 2 was obtained. The device life under continuous driving (10 mA / cm 2 ) was able to be achieved in about 2000 hours. (Comparative Example 4) On a glass substrate with ITO at room temperature,
By a vacuum evaporation method, triphenylamine tetramer (TPTE) was formed at a film thickness of 500 °, and a quinolinol aluminum complex (Alq-formula 17) was formed at a film thickness of 500 °. Finally, the MgAg electrode is
00Å was deposited.

【0064】この素子を窒素雰囲気下で、駆動電流10
mA/cm2で発光させたところ初期輝度は150cd
/m2であった。連続駆動(10mA/cm2)での素子
寿命を測定したところ、半減寿命は約300時間が達成
できた。
The device was driven in a nitrogen atmosphere at a driving current of 10
When emitted at mA / cm 2 , the initial luminance was 150 cd
/ M 2 . When the device life under continuous driving (10 mA / cm 2 ) was measured, the half life was able to be achieved about 300 hours.

【0065】[0065]

【発明の効果】本発明のホール輸送機能分子を基本単位
とする多量化物は、ホール輸送機能層を長時間、高温に
置いても結晶化することなくアモルファス状態で形態を
保持できる。特にトリフェニルアミンの多量化度を増す
ことにより耐熱性の高い化合物が得られる。また、本発
明の製造方法によれば、蒸着法において特定の温度範囲
でホール輸送機能層を形成するので、不純物を含まない
高純度のホール輸送機能層の形成が可能となる。このた
め本ホール輸送機能材料を用いた有機電界発光素子は、
初期特性、耐熱性、耐久性が優れたものとなる。
According to the present invention, the multimer having a hole transport function molecule as a basic unit can maintain its amorphous state without crystallization even when the hole transport function layer is kept at a high temperature for a long time. In particular, a compound having high heat resistance can be obtained by increasing the degree of multiplication of triphenylamine. Further, according to the manufacturing method of the present invention, since the hole transporting functional layer is formed in a specific temperature range in the vapor deposition method, it is possible to form a high-purity hole transporting functional layer containing no impurities. For this reason, the organic electroluminescent device using the hole transport function material,
The initial properties, heat resistance, and durability are excellent.

フロントページの続き (72)発明者 時任 静士 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内 (72)発明者 多賀 康訓 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内 (72)発明者 野田 浩司 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内Continuing from the front page (72) Shizuto Tokito, Inventor 41, Toyota Chuo Research Institute, Inc. 41 No. 1 inside Toyota Central Research Institute, Inc. (72) Inventor Koji Noda 41 No. 1 inside Toyota Central Research Institute Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】透明基板上に、透明第1電極と、電圧の印
加により発光する有機化合物を主成分とする有機層と、
第2電極とを順に積層してなる電界発光素子において、 該有機層は、芳香族環を有するホール輸送機能分子を基
本単位とし、該基本単位の芳香族環どうしが直接、また
は不飽和側鎖を介して結合を形成した多量体を含むこと
を特徴とする電界発光素子。
1. A transparent first electrode and an organic layer mainly composed of an organic compound which emits light upon application of a voltage on a transparent substrate,
In the electroluminescent device in which the second electrode and the second electrode are sequentially laminated, the organic layer has a hole transport function molecule having an aromatic ring as a basic unit, and the aromatic rings of the basic unit are directly or unsaturated side chains. An electroluminescent device comprising a multimer having a bond formed through the polymer.
【請求項2】透明基板上に、透明第1電極と、電圧の印
加により発光する有機化合物を主成分とする有機層と、
第2電極とを順に蒸着により積層して形成する電界発光
素子の製造方法において、 前記有機層および前記第2電極は、前記透明基板の温度
を80℃以上、蒸着する有機材料のガラス転移温度以下
の温度に保持して、蒸着により形成されていることを特
徴とする電界発光素子の製造方法。
2. A transparent first electrode and an organic layer mainly composed of an organic compound which emits light upon application of a voltage, on a transparent substrate,
In a method for manufacturing an electroluminescent device, wherein a second electrode and a second electrode are sequentially laminated by vapor deposition, wherein the organic layer and the second electrode have a temperature of the transparent substrate of 80 ° C. or higher and a glass transition temperature of an organic material to be vapor deposited or lower. A method for manufacturing an electroluminescent device, wherein the device is formed by vapor deposition while maintaining the temperature.
JP9079506A 1996-05-10 1997-03-31 Electroluminescent element and its production Pending JPH1025473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9079506A JPH1025473A (en) 1996-05-10 1997-03-31 Electroluminescent element and its production

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11629696 1996-05-10
JP8-116296 1996-05-10
JP9079506A JPH1025473A (en) 1996-05-10 1997-03-31 Electroluminescent element and its production

Publications (1)

Publication Number Publication Date
JPH1025473A true JPH1025473A (en) 1998-01-27

Family

ID=26420526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9079506A Pending JPH1025473A (en) 1996-05-10 1997-03-31 Electroluminescent element and its production

Country Status (1)

Country Link
JP (1) JPH1025473A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11246529A (en) * 1998-03-05 1999-09-14 Fuji Photo Film Co Ltd Aromatic tertiary amine compound having benzoazepine structure
WO2000005927A1 (en) * 1998-07-24 2000-02-03 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and method of its manufacture
JP2002198171A (en) * 2000-12-26 2002-07-12 Toyota Central Res & Dev Lab Inc Manufacturing method of organic field light-emitting element
JP2002313579A (en) * 2001-02-06 2002-10-25 Sony Corp Organic electroluminescent element and display device
US6646164B2 (en) 1998-07-16 2003-11-11 Sumitomo Electric Industries, Ltd. Triphenylamine derivative and organic electroluminescence device comprising the same
WO2005009979A1 (en) * 2003-07-28 2005-02-03 Semiconductor Energy Laboratory Co., Ltd. Quinoxaline derivative and luminescent element comprising the same
JP2008047935A (en) * 2007-09-25 2008-02-28 Konica Minolta Holdings Inc Organic electroluminescent device using new amino compound
US7601435B2 (en) 2003-04-18 2009-10-13 Semiconductor Energy Laboratory Co., Ltd. Quinoxaline derivative, and organic semiconductor device, electric field light emitting device, and electronic device which have the same
US7901792B2 (en) 2005-09-12 2011-03-08 Semiconductor Energy Laboratory Co., Ltd. Quinoxaline derivative, and light emitting element, light emitting device, and electronic appliance using the same
US7993761B2 (en) 2007-12-03 2011-08-09 Semiconductor Energy Laboratory Co., Ltd. Quinoxaline derivative, and light-emitting element, light-emitting device, and electronic device using the same
US8178216B2 (en) 2007-02-28 2012-05-15 Semiconductor Energy Laboratory Co., Ltd. Quinoxaline derivative, and light-emitting element, light-emitting device, and electronic device including quinoxaline derivative

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11246529A (en) * 1998-03-05 1999-09-14 Fuji Photo Film Co Ltd Aromatic tertiary amine compound having benzoazepine structure
US6646164B2 (en) 1998-07-16 2003-11-11 Sumitomo Electric Industries, Ltd. Triphenylamine derivative and organic electroluminescence device comprising the same
WO2000005927A1 (en) * 1998-07-24 2000-02-03 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and method of its manufacture
JP2000100566A (en) * 1998-07-24 2000-04-07 Idemitsu Kosan Co Ltd Organic electroluminescent device and manufacture thereof
JP2002198171A (en) * 2000-12-26 2002-07-12 Toyota Central Res & Dev Lab Inc Manufacturing method of organic field light-emitting element
JP2002313579A (en) * 2001-02-06 2002-10-25 Sony Corp Organic electroluminescent element and display device
US7601435B2 (en) 2003-04-18 2009-10-13 Semiconductor Energy Laboratory Co., Ltd. Quinoxaline derivative, and organic semiconductor device, electric field light emitting device, and electronic device which have the same
US8758905B2 (en) 2003-04-18 2014-06-24 Semiconductor Energy Laboratory Co., Ltd. Quinoxaline derivative, and organic semiconductor device, electric field light emitting device, and electronic device which have the same
US8231984B2 (en) 2003-04-18 2012-07-31 Semiconductor Energy Laboratory Co., Ltd. Quinoxaline derivative, and organic semiconductor device, electric field light emitting device, and electronic device which have the same
US7245073B2 (en) 2003-07-28 2007-07-17 Semiconductor Energy Laboratory Co., Ltd. Quinoxaline derivatives, and light emitting element using thereof
JP4652234B2 (en) * 2003-07-28 2011-03-16 株式会社半導体エネルギー研究所 Quinoxaline derivatives, organic semiconductor elements, light emitting elements, light emitting devices, and electronic devices
JPWO2005009979A1 (en) * 2003-07-28 2006-09-07 株式会社半導体エネルギー研究所 Quinoxaline derivative and light emitting device using the same
WO2005009979A1 (en) * 2003-07-28 2005-02-03 Semiconductor Energy Laboratory Co., Ltd. Quinoxaline derivative and luminescent element comprising the same
US7901792B2 (en) 2005-09-12 2011-03-08 Semiconductor Energy Laboratory Co., Ltd. Quinoxaline derivative, and light emitting element, light emitting device, and electronic appliance using the same
US8173277B2 (en) 2005-09-12 2012-05-08 Semiconductor Energy Laboratory Co., Ltd. Quinoxaline derivative, and light-emitting element, light-emitting device, and electronic appliance using the same
US8623523B2 (en) 2005-09-12 2014-01-07 Semiconductor Energy Laboratory Co., Ltd. Quinoxaline derivative, and light emitting element, light emitting device, and electronic appliance using the same
US8178216B2 (en) 2007-02-28 2012-05-15 Semiconductor Energy Laboratory Co., Ltd. Quinoxaline derivative, and light-emitting element, light-emitting device, and electronic device including quinoxaline derivative
JP2008047935A (en) * 2007-09-25 2008-02-28 Konica Minolta Holdings Inc Organic electroluminescent device using new amino compound
US7993761B2 (en) 2007-12-03 2011-08-09 Semiconductor Energy Laboratory Co., Ltd. Quinoxaline derivative, and light-emitting element, light-emitting device, and electronic device using the same

Similar Documents

Publication Publication Date Title
JP4286898B2 (en) Organic EL device
JP3180802B2 (en) Triphenylamine derivative and organic electroluminescent device using the same
JP2004220931A (en) Organic electroluminescent device
JP3546645B2 (en) Polymer fluorescent substance and organic electroluminescent device
JP3988539B2 (en) Organic electroluminescence device
JP4082297B2 (en) Organic compound, charge transport material, organic electroluminescent element material, and organic electroluminescent element
JP4066619B2 (en) Binaphthyl compound, method for producing the same, and organic electroluminescent device
JPH10265478A (en) Imidazole metal complex and organic electric field luminous element using the same
JPH1025473A (en) Electroluminescent element and its production
US6682832B2 (en) Thin film el device
JP5109236B2 (en) Hole blocking material and organic electroluminescent device
JP4424026B2 (en) 2,7-diaminonaphthalene compound, charge transport material, organic electroluminescent element material, and organic electroluminescent element
JP2004292766A (en) Organic electroluminescent element material
JP2004026732A (en) Asymmetric 1,4-phenylenediamine derivative, and organic electroluminescent device using the same
JP3807018B2 (en) Organic electroluminescent device and fluorescent material
JPH11185967A (en) Electroluminescent element
JP3757583B2 (en) Organic electroluminescence device
JP4320020B2 (en) Organic EL device
JP3726316B2 (en) Electroluminescent device
JP2001244076A (en) Organic elemctroluminescent element manufactured by using acridine derivative compound
JP3719328B2 (en) Fluorescent material and organic electroluminescent device using the same
JP4078961B2 (en) Bisaminophenylmethane compounds and charge transport materials, organic electroluminescent device materials and organic electroluminescent devices using the same
JP4109292B2 (en) Compounds for organic EL devices
KR20070097469A (en) Organic electroluminescent element
JP2012140434A (en) Arylamine compound and organic electroluminescent device