JPH10163054A - Manufacture of globular cu-ni-fe allot magnet with anisotropy in equatorial shape - Google Patents

Manufacture of globular cu-ni-fe allot magnet with anisotropy in equatorial shape

Info

Publication number
JPH10163054A
JPH10163054A JP8319377A JP31937796A JPH10163054A JP H10163054 A JPH10163054 A JP H10163054A JP 8319377 A JP8319377 A JP 8319377A JP 31937796 A JP31937796 A JP 31937796A JP H10163054 A JPH10163054 A JP H10163054A
Authority
JP
Japan
Prior art keywords
spherical
extruded
magnet
alloy
anisotropy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8319377A
Other languages
Japanese (ja)
Other versions
JP3261050B2 (en
Inventor
Atsushi Okawa
淳 大川
Akihiro Takada
高田揚大
Akihiko Yanagiya
柳谷彰彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP31937796A priority Critical patent/JP3261050B2/en
Publication of JPH10163054A publication Critical patent/JPH10163054A/en
Application granted granted Critical
Publication of JP3261050B2 publication Critical patent/JP3261050B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14708Fe-Ni based alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture a sound globular Cu-Ni-Fe alloy magnet with anisotropy in an equatorial shape. SOLUTION: In the manufacturing method, a Cu-Ni-Fe alloy powder comprising Ni: 5-25wt.%, Fe: 5-25wt.% and Cu and unavoidable impurities in the other part is prepared by a gas-atomizing manner, and a metallic vessel is charged with the powder and sealed, and it is extruded with a hot extruding device at 900 deg.C above and at a distortion speed of 10s<-1> or above, and then a metal material on the surface of the extruded material derived from the metallic vessel is removed. The anisotropy is imparted to the extruded material in its form by cold drawing working, and then an anisotropically converted bay material in a drawing direction is globularly forged in the direction parallel to that of anisotropy. Alternatively after anisotropy is imparted to the extruded material in the form by cold drawing, solution heat treatment is performed to impart isotropy, and then the drawn material is globularly forged.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、主として各種機器
等に用いる赤道状に異方化された球状Cu−Ni−Fe
磁石合金の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an equatorially anisotropic spherical Cu--Ni--Fe mainly used for various devices and the like.
The present invention relates to a method for manufacturing a magnet alloy.

【0002】[0002]

【従来の技術】Cu−Ni−Fe合金はCu60%、N
i20%、Fe20%の組成で代表される実用の磁石合
金(特公昭55−9814号、特公昭55−4248号
参照)で、高温でfcc単相(γ)領域があり、600
℃近傍で時効するとγ相はNi−Fe−richの強磁
性γ1 相とCu−richの非磁性γ2 相の2相に分離
する。その際にスピノーダル分解によって反応が進行す
る。そして冷間加工によりγ1 相を細長く延ばし、保磁
力および角形性を向上させるものである。このCu−N
i−Fe磁石合金の実用材料としての用途は、主に磁気
スケール用線材である。この材料は古くは鋳造法により
インゴットを作製し、溶体化処理した後、熱間押し出し
により棒状材料を作製し、その後冷間引き抜きあるいは
スウェージングにより線材に加工することにより形状異
方化し、その後時効処理し所望の磁気特性を発現させて
いる。また鋳造法によるインゴット作製する方法をとら
ずに粉末工法による製造方法もある。これは水アトマイ
ズ法にて目的組成の合金粉末を作製し、還元処理を行な
った後、金属製容器に充填し、所定の温度に加熱し、熱
間押し出しにより棒状材料を作製し、その後は鋳造イン
ゴット法と同様に冷間引き抜きあるいはスウェージング
により線材に加工することにより形状異方化し、その後
時効処理し所望の磁気特性を発現させるものである。
2. Description of the Related Art Cu-Ni-Fe alloys are 60% Cu, N
A practical magnet alloy represented by a composition of i20% and Fe20% (see Japanese Patent Publication No. 55-9814 and Japanese Patent Publication No. 55-4248).
When aged at around ° C., the γ phase separates into two phases, a ferromagnetic γ 1 phase of Ni-Fe-rich and a non-magnetic γ 2 phase of Cu-rich. At that time, the reaction proceeds by spinodal decomposition. The extended slender gamma 1 phase by cold working, thereby improving the coercive force and squareness. This Cu-N
The application of the i-Fe magnet alloy as a practical material is mainly a wire rod for a magnetic scale. In the past, this material was made into an ingot by casting, solution-processed, then made into a rod-like material by hot extrusion, then made into a wire by cold drawing or swaging, and then anisotropically shaped. It has been processed to develop the desired magnetic properties. There is also a manufacturing method using a powder method instead of a method for manufacturing an ingot by a casting method. This is to produce an alloy powder of the desired composition by a water atomizing method, perform reduction treatment, fill a metal container, heat to a predetermined temperature, produce a rod-shaped material by hot extrusion, and then cast As in the ingot method, the wire is processed into a wire by cold drawing or swaging to anisotropically shape the wire and then subjected to aging treatment to develop desired magnetic properties.

【0003】[0003]

【発明が解決しようとする課題】上記のCu−Ni−F
e合金については線材としての用途が主であったが、近
年各種機器において赤道状に異方化された球状磁石の用
途が注目されており、そのニーズに応じて製造の検討が
されてきた。しかし、溶解凝固プロセスにより作製した
本合金では、凝固時に初晶および残液凝固部の二つの領
域が生じ、これに起因して成分偏析を避けることができ
ない。さらにスピノーダル分解を伴うCu−Ni−Fe
系合金の作製においては、凝固後の冷却過程で分解が起
こり、これを避けることはできない。Cu−Ni−Fe
合金の製造方法においては、鋳造法においては鋳造した
インゴットは凝固後の冷却時にいわゆるスピノーダル分
解を生じ、Cu−richの領域とFe−Ni−ric
h領域の二つの領域から構成されるため、成分偏析を生
じやすい。これを均一化するとすれば1000℃以上の
高温で溶体化する必要がある。特に鋳造法で作製された
インゴットの結晶粒の大きさは、鋳塊の大きさつまり鋳
造時の凝固速度の逆数に比例して大きくなる。また凝固
の際の鋳造欠陥の発生も避けることはできない。このよ
うな粗大化した結晶粒および鋳造欠陥は、後工程の冷間
加工時に粒界割れおよびこれに起因する磁気特性の不良
などの問題を生じさせることとなる。球状磁石の製造を
鍛造加工で行うと、この欠陥に起因する割れも起こるこ
ととなる。
SUMMARY OF THE INVENTION The above-mentioned Cu-Ni-F
Although e-alloys were mainly used as wire rods, in recent years the use of equatorially anisotropic spherical magnets has attracted attention in various devices, and production has been studied according to their needs. However, in the present alloy produced by the melt solidification process, two regions of a primary crystal and a residual liquid solidified portion are generated at the time of solidification, and component segregation cannot be avoided due to this. Cu-Ni-Fe with spinodal decomposition
In the production of a system alloy, decomposition occurs during the cooling process after solidification, and this cannot be avoided. Cu-Ni-Fe
In the method for producing an alloy, in a casting method, a so-called spinodal decomposition occurs in a cast ingot at the time of cooling after solidification, and a region of Cu-rich and Fe-Ni-ric
Since it is composed of two regions of the h region, component segregation is likely to occur. If this is to be uniform, it is necessary to form a solution at a high temperature of 1000 ° C. or higher. In particular, the size of the crystal grains of the ingot produced by the casting method increases in proportion to the size of the ingot, that is, the reciprocal of the solidification rate during casting. In addition, the occurrence of casting defects during solidification cannot be avoided. Such coarsened crystal grains and casting defects cause problems such as grain boundary cracks during the cold working in the subsequent step and poor magnetic properties resulting therefrom. If a spherical magnet is manufactured by forging, cracks due to this defect will also occur.

【0004】このような問題点を解決するために、鋳造
法よりも微細な組織が得られる粉末冶金法による製造も
考えられる。
[0004] In order to solve such a problem, production by a powder metallurgy method capable of obtaining a finer structure than the casting method can be considered.

【0005】その粉末冶金法とは、鋳造法によりインゴ
ットを作製する方法をとらずに、水アトマイズ法にて目
的組成の合金粉末を作製し、還元処理した後、該合金粉
末を金属製容器に充填した後所定の温度の加熱し、熱間
押し出しにより棒状材料を作製するという方法である。
In the powder metallurgy method, an alloy powder having a desired composition is produced by a water atomizing method without performing a method of producing an ingot by a casting method, and after reduction treatment, the alloy powder is transferred to a metal container. After filling, a rod-shaped material is produced by heating at a predetermined temperature and hot extrusion.

【0006】しかしながら従来の粉末冶金法において
は、粉末間の境界が固化成形後の粒界となって残存する
ことが多く、この粒界は鋳造材の場合と同様に球状に鍛
造加工する時に割れを引き起こす。
However, in the conventional powder metallurgy method, boundaries between powders often remain as grain boundaries after solidification and molding, and these grain boundaries are broken when forged into a sphere similarly to the case of cast materials. cause.

【0007】また図2に示すように、上述のような鋳造
法あるいは粉末冶金法により作製した線材からの切削加
工によっても球状磁石を作製することは可能であるが、
切削加工により作製した球状磁石は線材の異方性を保っ
ており、球状磁石の赤道状方向に異方化したものは製造
することができなかった。
As shown in FIG. 2, it is possible to produce a spherical magnet by cutting from a wire produced by the above-described casting method or powder metallurgy method.
The spherical magnet produced by the cutting process maintained the anisotropy of the wire, and a spherical magnet anisotropic in the equatorial direction could not be produced.

【0008】[0008]

【課題を解決するための手段】本発明はこのような課題
を解するものであって、その目的とするところは従来技
術に見られる種々の問題点を発生させることなく、割れ
のない健全な赤道状に異方化された球状磁石の製造を実
現する技術を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to provide a sound-free, crack-free sound without causing various problems found in the prior art. It is an object of the present invention to provide a technology for realizing the production of an equatorially anisotropic spherical magnet.

【0009】しかして、本発明の要旨は、 1.ガスアトマイズ法によりNi:5〜25重量%、F
e:5〜25重量%、残部Cuおよび不可避的不純物よ
りなるCu−Ni−Fe合金粉末を作製し、この粉末を
金属容器に充填・封入し、これを熱間押し出し装置にて
900℃以上、歪み速度10s-1以上の大きな歪み速度
で押し出し、次いで、該押出材表面の金属容器由来の金
属材料を除去し、次いで、この押出材を冷間引き抜き加
工により形状異方化させ、次いで、該引き抜き方向に異
方化された棒材を異方化した方向に対して平行な方向に
球状鍛造加工を行うことを特徴とする赤道状方向に異方
化された球状Cu−Ni−Fe合金磁石の製造方法にあ
り、また、 2.ガスアトマイズ法によりNi:5〜25重量%、F
e:5〜25重量%、残部Cuおよび不可避的不純物よ
りなるCu−Ni−Fe合金粉末を作製し、この粉末を
金属容器に充填・封入し、これを熱間押し出し装置にて
900℃以上、歪み速度10s-1以上の大きな歪み速度
で押し出し、次いで、該押出材表面の金属容器由来の金
属材料を除去し、次いで、この押出材を冷間引き抜き加
工により形状異方化させた後、溶体化熱処理を行って等
方性にし、次いで、該引抜材に球状鍛造加工を行うこと
を特徴とする赤道状方向に異方化された球状Cu−Ni
−Fe合金磁石の製造方法にあり、また、 3.球状鍛造加工時の歪速度が0.1s-1から50s-1
であることを特徴とする上記1又は2記載の球状Cu−
Ni−Fe合金磁石の製造方法にあり、また、 4.球状鍛造加工時の温度が常温からスピノーダル分解
温度600℃までであることを特徴とする上記1、2又
は3のいずれかに記載の球状Cu−Ni−Fe合金磁石
の製造方法にある。
The gist of the present invention is as follows. Ni: 5 to 25% by weight, F by gas atomization
e: A Cu—Ni—Fe alloy powder composed of 5 to 25% by weight, with the balance being Cu and unavoidable impurities, was prepared and filled in a metal container, which was then heated to 900 ° C. or higher by a hot extruder. Extruded at a large strain rate of 10 s −1 or more, then the metal material from the metal container on the surface of the extruded material is removed, and then the extruded material is anisotropically shaped by cold drawing. An equatorially anisotropic spherical Cu-Ni-Fe alloy magnet characterized in that a spherical forging process is performed in a direction parallel to a direction in which a bar material anisotropic in a drawing direction is anisotropic. 1. The manufacturing method of Ni: 5 to 25% by weight, F by gas atomization
e: A Cu—Ni—Fe alloy powder composed of 5 to 25% by weight, with the balance being Cu and unavoidable impurities, was prepared and filled in a metal container, which was then heated to 900 ° C. or higher by a hot extruder. The extruded material was extruded at a large strain rate of 10 s −1 or more, then the metal material derived from the metal container on the surface of the extruded material was removed. A spherical Cu-Ni anisotropically deformed in the equatorial direction, characterized by performing isotropic heat treatment to make it isotropic and then subjecting the drawn material to spherical forging.
2. the method for producing an Fe alloy magnet; The strain rate during spherical forging is from 0.1 s -1 to 50 s -1
The spherical Cu- according to the above 1 or 2, wherein
3. a method for manufacturing a Ni—Fe alloy magnet; The method for producing a spherical Cu—Ni—Fe alloy magnet according to any one of the above items 1, 2 or 3, wherein the temperature at the time of the spherical forging is from room temperature to a spinodal decomposition temperature of 600 ° C.

【0010】本発明の製造方法は、目的の組成になるよ
うに、ガスアトマイズ法により通常粒径1mm以下の合
金粉末を作製し、この粉末を金属製の容器に充填・封入
し、これを熱間押し出し装置にて900℃以上歪み速度
10s-1以上の大きな歪み速度で押し出し、次いで、図
3に示すように冷間引き抜き加工により形状異方化さ
せ、引き抜き方向に異方化された棒材を冷間で異方化し
た方向に対して平行な方向に鍛造加工を行なうことによ
り、割れなく球状磁石に加工でき、さらにその球状磁石
に加工されるときに異方化方向とは垂直な方向である球
状磁石の赤道状方向に異方化されたCu−Ni−Fe合
金磁石を製造できる方法である。
According to the production method of the present invention, an alloy powder having a particle size of usually 1 mm or less is produced by a gas atomization method so as to obtain a desired composition, and this powder is filled and sealed in a metal container, and then hot-pressed. The extruder extrudes at a high strain rate of 900 ° C. or more and a strain rate of 10 s −1 or more, and then anisotropically shaped by cold drawing as shown in FIG. 3 to obtain a rod material anisotropic in the drawing direction. By performing forging in the direction parallel to the direction anisotropically cold, it can be processed into a spherical magnet without cracking, and when it is processed into the spherical magnet, the direction is perpendicular to the anisotropic direction. This is a method capable of manufacturing a Cu-Ni-Fe alloy magnet anisotropically oriented in the equatorial direction of a certain spherical magnet.

【0011】また、本願請求項2に記載の発明のよう
に、鍛造加工に使用する引抜材に溶体化熱処理により等
方性にしたものを用いることにより、赤道状方向の異方
性をさらに大きくしたCu−Ni−Fe合金磁石を製造
することができるものである。上記工法において、押し
出し温度での変形抵抗値が小さい場合、押し出し時の歪
み速度が小さい場合には、押し出しダイス内で十分に充
填密度が上がる前に押し出しが始まり、押し出された材
料の密度は低い状態となる。これに対して、歪み速度1
0s-1以上の大きな歪み速度で押し出すことにより、押
し出しの際、ダイス内で押出材料は実質的に98%以上
の高密度に充填できる。
Further, as in the invention according to the second aspect of the present invention, the anisotropy in the equatorial direction can be further increased by using a drawn material used for forging which is made isotropic by solution heat treatment. It is possible to manufacture a Cu-Ni-Fe alloy magnet prepared as described above. In the above method, when the deformation resistance value at the extrusion temperature is small, when the strain rate at the time of extrusion is small, the extrusion starts before the packing density is sufficiently increased in the extrusion die, and the density of the extruded material is low. State. On the other hand, the strain rate 1
By extruding at a large strain rate of 0 s -1 or more, the extruded material can be filled at a high density of 98% or more in a die during extrusion.

【0012】引抜材の鍛造加工についてであるが、引抜
材が異方化された方向に垂直な方向に鍛造加工を行え
ば、引抜材の異方化方向に引っ張り力がかかり、図2の
ような従来の線材から切削加工により製造した球状磁石
と同様となってしまう。引抜材の異方化方向と平行な方
向に鍛造加工を行うことによって、異方化された引抜材
から赤道状に異方化された球状磁石を製造することがで
きるのである。
Regarding forging of the drawn material, if forging is performed in a direction perpendicular to the direction in which the drawn material is anisotropically, a tensile force is applied in the anisotropic direction of the drawn material, as shown in FIG. It is the same as a spherical magnet manufactured by cutting from a conventional wire rod. By performing forging in a direction parallel to the anisotropic direction of the drawn material, a spherical magnet anisotropically anisotropic can be manufactured from the anisotropic drawn material.

【0013】また、異方化された引抜材を、例えば溶体
化温度である1030℃で30分間熱処理を行い、水冷
し引抜材を等方性とし、該引抜材を球状鍛造加工するこ
とによっても、赤道状に異方化された球状磁石を製造す
ることができる。この場合には、赤道状方向の異方性を
さらに大きくすることが可能である。
Further, the anisotropic drawn material is subjected to a heat treatment at, for example, a solution heat treatment temperature of 1030 ° C. for 30 minutes, water-cooled to make the drawn material isotropic, and the drawn material is subjected to spherical forging. In addition, a spherical magnet anisotropically anisotropic can be manufactured. In this case, it is possible to further increase the anisotropy in the equatorial direction.

【0014】[0014]

【発明の実施の形態】本発明の作用を考えれば以下の通
りである。Cu−Ni−Fe合金はNi:5〜25重量
%、Fe:5〜25重量%、残部Cuおよび不可避的不
純物よりなる実用の磁石合金で、高温でfcc単相
(γ)領域があり、600℃近傍で時効するとγ相はN
i−Fe−richの強磁性γ1 相とCu−richの
非磁性γ2相の2相に分離する。その際にスピノーダル
分解によって反応が進行する。そして冷間加工によりγ
1 相を細長く延ばし、そのγ1 相が延びた方向に異方化
されることから異方化方向に平行な方向に鍛造加工を行
なうことにより球状磁石の赤道状方向に引張力がはたら
き球状磁石の赤道状に異方化されるものと考えられる。
また、このことは引き抜きにより異方化した棒材に溶体
化熱処理を施したものを鍛造加工する場合でも同じ様に
考えられる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The operation of the present invention is as follows. The Cu-Ni-Fe alloy is a practical magnet alloy composed of Ni: 5 to 25% by weight, Fe: 5 to 25% by weight, the balance being Cu and unavoidable impurities. When aged around ℃, γ phase becomes N
separating the i-Fe-rich 2 phase non-magnetic gamma 2 phase ferromagnetic gamma 1 phase and Cu-rich of. At that time, the reaction proceeds by spinodal decomposition. And γ by cold working
One phase is elongated, and the γ 1 phase is anisotropic in the direction in which it extends.Forging work is performed in the direction parallel to the anisotropic direction, and the tensile force acts in the equatorial direction of the spherical magnet. It is considered to be anisotropic in the shape of the equator.
The same can be said for the case where a rod material anisotropically formed by drawing is subjected to a solution heat treatment and then forged.

【0015】[0015]

【実施例】【Example】

[実施例1]Cu、Ni、Feをそれぞれ重量比で72
%、20%および8%になるように秤量配合し、真空誘
導溶解炉にて溶解後、アルゴンガスアトマイズを行い、
平均粒径126μmの当該合金粉末を作製した。作製し
た合金粉末を炭素鋼製の金属容器に充填・脱気・封入
後、温度1000℃、歪み速度10s-1でφ160mm
からφ20mmに押し出し、押出棒材を作製した。酸洗
加工にて押出棒材表面の金属容器由来の金属材料を除去
した。次いでこの棒材を冷間引き抜き加工し、引き抜き
方向に異方化されたφ3mmの線材を作製した。この線
材を切り出し、異方化方向に平行な方向に冷間球状鍛造
加工を歪み速度:0.1s-1で行い、φ5mmの球状磁
石を製造した。その結果所望の磁気特性を有する球状磁
石が得られた。
[Example 1] Cu, Ni and Fe were each contained in a weight ratio of 72.
%, 20% and 8%, weighed and blended, melted in a vacuum induction melting furnace, and then argon gas atomized.
The alloy powder having an average particle size of 126 μm was produced. After filling the prepared alloy powder into a metal container made of carbon steel, degassing and sealing, the temperature is 1000 ° C., the strain rate is 10 s −1 and the diameter is 160 mm.
And extruded to φ20 mm to produce an extruded rod. The metal material derived from the metal container on the surface of the extruded rod was removed by pickling. Next, this rod was subjected to cold drawing to produce a wire having a diameter of 3 mm anisotropic in the drawing direction. This wire was cut out, and cold spherical forging was performed at a strain rate of 0.1 s -1 in a direction parallel to the anisotropic direction to produce a spherical magnet of φ5 mm. As a result, a spherical magnet having desired magnetic properties was obtained.

【0016】[実施例2]Cu、Ni、Feをそれぞれ
重量比で65%、20%および15%になるように秤量
配合し、真空誘導溶解炉にて溶解後、アルゴンガスアト
マイズを行い、平均粒径126μmの当該合金粉末を作
製した。作製した合金粉末を炭素鋼製の金属容器に充填
・脱気・封入後、温度1000℃、歪み速度10s-1
φ160mmからφ20mmに押し出し、押出棒材を作
製した。酸洗加工にて押出棒材表面の金属容器由来の金
属材料を除去した。次いでこの棒材を冷間引き抜き加工
し、引き抜き方向に異方化されたφ8mmの線材を作製
した。この線材を切り出し、異方化方向に平行な方向に
冷間球状鍛造加工を歪み速度:0.1s-1で行い、φ1
5mmの球状磁石を製造した。その結果所望の磁気特性
を有する球状磁石が得られた。
Example 2 Cu, Ni, and Fe were weighed and blended so as to be 65%, 20%, and 15% by weight, respectively, melted in a vacuum induction melting furnace, and then subjected to argon gas atomization to obtain average particles. The alloy powder having a diameter of 126 μm was produced. The prepared alloy powder was filled, degassed, and sealed in a carbon steel metal container, and then extruded from φ160 mm to φ20 mm at a temperature of 1000 ° C. and a strain rate of 10 s −1 to produce an extruded rod. The metal material derived from the metal container on the surface of the extruded rod was removed by pickling. Next, the rod was subjected to cold drawing to produce a φ8 mm wire that was anisotropic in the drawing direction. This wire is cut out and cold spherical forging is performed at a strain rate of 0.1 s -1 in a direction parallel to the anisotropic direction.
A 5 mm spherical magnet was produced. As a result, a spherical magnet having desired magnetic properties was obtained.

【0017】[実施例3]Cu、Ni、Feをそれぞれ
重量比で72%、20%および8%になるように秤量配
合し、真空誘導溶解炉にて溶解後、アルゴンガスアトマ
イズを行い、平均粒径126μmの当該合金粉末を作製
した。作製した合金粉末を炭素鋼製の金属容器に充填・
脱気・封入後、温度1000℃、歪み速度10s-1でφ
160mmからφ20mmに押し出し、押出棒材を作製
した。酸洗加工にて押出棒材表面の容器金属材料を除去
した。次いでこの棒材を冷間引き抜き加工し、引き抜き
方向に異方化されたφ8mmの線材を作製した。この線
材を切り出し、異方化方向に平行な方向に冷間球状鍛造
加工を温度:300℃、歪み速度:30s-1で行い、φ
15mmの球状磁石を製造した。その結果所望の磁気特
性を有する球状磁石が得られた。
Example 3 Cu, Ni, and Fe were weighed and blended to be 72%, 20%, and 8% by weight, respectively, melted in a vacuum induction melting furnace, and then subjected to argon gas atomization to obtain an average particle size. The alloy powder having a diameter of 126 μm was produced. Filling the prepared alloy powder into a carbon steel metal container
After degassing and sealing, φ at temperature 1000 ° C and strain rate 10s -1
The extruded bar was extruded from 160 mm to φ20 mm. The container metal material on the surface of the extruded rod was removed by pickling. Next, the rod was subjected to cold drawing to produce a φ8 mm wire that was anisotropic in the drawing direction. This wire is cut out, and cold spherical forging is performed in a direction parallel to the anisotropic direction at a temperature of 300 ° C. and a strain rate of 30 s −1.
A 15 mm spherical magnet was produced. As a result, a spherical magnet having desired magnetic properties was obtained.

【0018】[実施例4]Cu、Ni、Feをそれぞれ
重量比で65%、20%および15%になるように秤量
配合し、真空誘導溶解炉にて溶解後、アルゴンガスアト
マイズを行い、平均粒径126μmの当該合金粉末を作
製した。作製した合金粉末を炭素鋼製の金属容器に充填
・脱気・封入後、温度1000℃、歪み速度10s-1
φ160mmからφ50mmに押し出し、押出棒材を作
製した。酸洗加工にて押出棒材表面の金属容器由来の金
属材料を除去した。次いでこの棒材を冷間引き抜き加工
し、引き抜き方向に異方化されたφ20mmの線材を作
製した。この線材を切り出し、異方化方向に平行な方向
に冷間球状鍛造加工を温度:300℃、歪み速度:30
-1で行い、φ30mmの球状磁石を製造した。その結
果所望の磁気特性を有する球状磁石が得られた。
Example 4 Cu, Ni, and Fe were weighed and blended so as to be 65%, 20%, and 15% by weight, respectively, melted in a vacuum induction melting furnace, and then subjected to argon gas atomization to obtain average particles. The alloy powder having a diameter of 126 μm was produced. The prepared alloy powder was filled, degassed, and sealed in a carbon steel metal container, and extruded from φ160 mm to φ50 mm at a temperature of 1000 ° C. and a strain rate of 10 s −1 to produce an extruded rod. The metal material derived from the metal container on the surface of the extruded rod was removed by pickling. Next, this rod was subjected to cold drawing to produce a φ20 mm wire rod anisotropic in the drawing direction. This wire is cut out and cold spherical forging is performed at a temperature of 300 ° C. and a strain rate of 30 in a direction parallel to the anisotropic direction.
Performed at s −1 to produce a spherical magnet of φ30 mm. As a result, a spherical magnet having desired magnetic properties was obtained.

【0019】[実施例5]Cu、Ni、Feをそれぞれ
重量比で65%、20%および15%になるように秤量
配合し、真空誘導溶解炉にて溶解後、アルゴンガスアト
マイズを行い、平均粒径126μmの当該合金粉末を作
製した。作製した合金粉末を炭素鋼製の金属容器に充填
・脱気・封入後、温度1000℃、歪み速度10s-1
φ160mmからφ50mmに押し出し、押出棒材を作
製した。酸洗加工にて押出棒材表面の金属容器由来の金
属材料を除去した。次いでこの棒材を冷間引き抜き加工
し、引き抜き方向に異方化されたφ20mmの線材を作
製した。その線材を液体化熱処理により等方性した後、
この線材を切り出し、異方化方向に平行な方向に冷間球
状鍛造加工を温度:300℃、歪み速度:30s-1で行
い、φ30mmの球状磁石を製造した。その結果所望の
磁気特性を有する球状磁石が得られた。
Example 5 Cu, Ni, and Fe were weighed and blended so as to be 65%, 20%, and 15% by weight, respectively, melted in a vacuum induction melting furnace, and then subjected to argon gas atomization to obtain an average particle size. The alloy powder having a diameter of 126 μm was produced. The prepared alloy powder was filled, degassed, and sealed in a carbon steel metal container, and extruded from φ160 mm to φ50 mm at a temperature of 1000 ° C. and a strain rate of 10 s −1 to produce an extruded rod. The metal material derived from the metal container on the surface of the extruded rod was removed by pickling. Next, this rod was subjected to cold drawing to produce a φ20 mm wire rod anisotropic in the drawing direction. After making the wire isotropic by liquid heat treatment,
This wire was cut out, and cold spherical forging was performed in a direction parallel to the anisotropic direction at a temperature of 300 ° C. and a strain rate of 30 s −1 to produce a spherical magnet of φ30 mm. As a result, a spherical magnet having desired magnetic properties was obtained.

【0020】[0020]

【発明の効果】以上述べたように、本発明は従来鋳造材
あるいは粉末原料を用いて異方化後の切削工程では作製
することができなかった球状のCu−Ni−Fe合金磁
石について、鍛造により割れなどの問題点を発生させる
ことなく、健全な球状およびその球状の赤道状に異方化
された磁石を作製できるようにしたものであり、業界の
ニーズに答える有用な発明である。また、赤道状に異方
化された球状磁石の量産を可能としたものであり、工業
上極めて有用な発明である。
As described above, the present invention relates to a forging of a spherical Cu-Ni-Fe alloy magnet which could not be produced by a cutting process after anisotropically using a cast material or a powder material. Thus, it is possible to produce a sound sphere and a sphere-like equatorially anisotropic magnet without causing problems such as cracks, and the present invention is a useful invention that meets the needs of the industry. In addition, the invention enables mass production of spherical magnets anisotropically anisotropic, and is an industrially useful invention.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明製造方法により製造した球状Cu−Ni
−Fe合金磁石の模式図。
FIG. 1 shows spherical Cu—Ni produced by the production method of the present invention.
FIG. 2 is a schematic view of an Fe alloy magnet.

【図2】従来法による球状Cu−Ni−Fe合金磁石製
造工程概略図。
FIG. 2 is a schematic view of a manufacturing process of a spherical Cu—Ni—Fe alloy magnet by a conventional method.

【図3】本発明による球状Cu−Ni−Fe合金磁石製
造工程概略図。
FIG. 3 is a schematic diagram of a manufacturing process of a spherical Cu—Ni—Fe alloy magnet according to the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI // C22F 1/00 660 C22F 1/00 685 685 687 687 694 694 H01F 1/08 A ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification symbol FI // C22F 1/00 660 C22F 1/00 685 685 687 687 694 694 H01F 1/08 A

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ガスアトマイズ法によりNi:5〜25
重量%、Fe:5〜25重量%、残部Cuおよび不可避
的不純物よりなるCu−Ni−Fe合金粉末を作製し、
この粉末を金属容器に充填・封入し、これを熱間押し出
し装置にて900℃以上、歪み速度10s-1以上の大き
な歪み速度で押し出し、次いで、該押出材表面の金属容
器由来の金属材料を除去し、次いで、この押出材を冷間
引き抜き加工により形状異方化させ、次いで、該引き抜
き方向に異方化された棒材を異方化した方向に対して平
行な方向に球状鍛造加工を行うことを特徴とする赤道状
方向に異方化された球状Cu−Ni−Fe合金磁石の製
造方法。
1. Ni: 5 to 25 by a gas atomizing method.
% By weight, Fe: 5 to 25% by weight, the balance being Cu and unavoidable impurities, to prepare a Cu—Ni—Fe alloy powder,
This powder is filled and sealed in a metal container, and is extruded with a hot extruder at 900 ° C. or more at a large strain rate of 10 s −1 or more, and then the metal material derived from the metal container on the surface of the extruded material is removed. The extruded material is then anisotropically shaped by cold drawing, and then subjected to spherical forging in a direction parallel to the direction in which the anisotropically shaped bar is drawn in the drawing direction. A method for producing a spherical Cu-Ni-Fe alloy magnet anisotropically oriented in an equatorial direction.
【請求項2】 ガスアトマイズ法によりNi:5〜25
重量%、Fe:5〜25重量%、残部Cuおよび不可避
的不純物よりなるCu−Ni−Fe合金粉末を作製し、
この粉末を金属容器に充填・封入し、これを熱間押し出
し装置にて900℃以上、歪み速度10s-1以上の大き
な歪み速度で押し出し、次いで、該押出材表面の金属容
器由来の金属材料を除去し、次いで、この押出材を冷間
引き抜き加工により形状異方化させた後、溶体化熱処理
を行って等方性にし、次いで、該引抜材に球状鍛造加工
を行うことを特徴とする赤道状方向に異方化された球状
Cu−Ni−Fe合金磁石の製造方法。
2. Ni: 5 to 25 by a gas atomizing method.
% By weight, Fe: 5 to 25% by weight, the balance being Cu and unavoidable impurities, to prepare a Cu—Ni—Fe alloy powder,
This powder is filled and sealed in a metal container, and is extruded with a hot extruder at 900 ° C. or more at a large strain rate of 10 s −1 or more, and then the metal material derived from the metal container on the surface of the extruded material is removed. Removing, and then extruding the extruded material by cold drawing to make it anisotropic, then performing solution heat treatment to make it isotropic, and then subjecting the drawn material to spherical forging. A method for producing a spherical Cu-Ni-Fe alloy magnet anisotropically shaped.
【請求項3】 球状鍛造加工時の歪速度が0.1s-1
ら50s-1であることを特徴とする請求項1又は2記載
の球状Cu−Ni−Fe合金磁石の製造方法。
3. The method for producing a spherical Cu—Ni—Fe alloy magnet according to claim 1 , wherein the strain rate during the spherical forging is from 0.1 s −1 to 50 s −1 .
【請求項4】 球状鍛造加工時の温度が常温からスピノ
ーダル分解温度600℃までであることを特徴とする請
求項1、2又は3のいずれかに記載の球状Cu−Ni−
Fe合金磁石の製造方法。
4. The spherical Cu—Ni— alloy according to claim 1, wherein the temperature during the spherical forging is from room temperature to a spinodal decomposition temperature of 600 ° C.
Manufacturing method of Fe alloy magnet.
JP31937796A 1996-11-29 1996-11-29 Method of manufacturing spherical Cu-Ni-Fe alloy magnet anisotropically anisotropic Expired - Fee Related JP3261050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31937796A JP3261050B2 (en) 1996-11-29 1996-11-29 Method of manufacturing spherical Cu-Ni-Fe alloy magnet anisotropically anisotropic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31937796A JP3261050B2 (en) 1996-11-29 1996-11-29 Method of manufacturing spherical Cu-Ni-Fe alloy magnet anisotropically anisotropic

Publications (2)

Publication Number Publication Date
JPH10163054A true JPH10163054A (en) 1998-06-19
JP3261050B2 JP3261050B2 (en) 2002-02-25

Family

ID=18109481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31937796A Expired - Fee Related JP3261050B2 (en) 1996-11-29 1996-11-29 Method of manufacturing spherical Cu-Ni-Fe alloy magnet anisotropically anisotropic

Country Status (1)

Country Link
JP (1) JP3261050B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007002322A (en) * 2005-06-27 2007-01-11 Yamaha Metanikusu Kk Copper alloy material for sleeve, method for producing the same, and sleeve
US9905362B2 (en) 2012-10-23 2018-02-27 Toyota Jidosha Kabushiki Kaisha Rare-earth magnet production method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007002322A (en) * 2005-06-27 2007-01-11 Yamaha Metanikusu Kk Copper alloy material for sleeve, method for producing the same, and sleeve
US9905362B2 (en) 2012-10-23 2018-02-27 Toyota Jidosha Kabushiki Kaisha Rare-earth magnet production method

Also Published As

Publication number Publication date
JP3261050B2 (en) 2002-02-25

Similar Documents

Publication Publication Date Title
EP0090253B1 (en) Fine grained metal composition
JPH02503331A (en) Magnesium alloy with high mechanical resistance and manufacturing method by rapid solidification of the alloy
CN111440963A (en) High-heat-resistance high-conductivity CuCrNb-based copper alloy and preparation method thereof
JP2021013031A (en) Magnet manufacturing
JP2003277899A (en) Magnesium alloy member and its production method
JP2865499B2 (en) Superplastic aluminum-based alloy material and method for producing superplastic alloy material
JP3261050B2 (en) Method of manufacturing spherical Cu-Ni-Fe alloy magnet anisotropically anisotropic
Lakshmi et al. Induction reheating of A356. 2 aluminum alloy and thixocasting as automobile component
JP2019194356A (en) Wire of magnesium alloy, and manufacturing method thereof
JP2019194355A (en) Wire of magnesium alloy, and manufacturing method thereof
JP3487315B2 (en) Die casting method
JP3355093B2 (en) Method for producing Cu-Ni-Fe alloy sheet material for magnetic scale
JP2000256766A (en) HOT WORKING METHOD FOR CuNiFe ALLOY
JP3343045B2 (en) Method for producing wire or thin plate of Cu-Ni-Fe alloy magnet
JP3442641B2 (en) Method for producing Cu-Ni-Fe alloy wire or thin plate for magnetic scale
EP0139168A1 (en) Fine grained metal composition
JPH08269589A (en) Production of superplastic az91 magnesium alloy
JP2016076614A (en) Method for manufacturing rare earth magnet
JP2804423B2 (en) Method for producing Mn-Al-C alloy magnetic material
JP2996378B2 (en) Manufacturing method of copper alloy rod for conductive wire rolled by cold rolling
JPH09174188A (en) Production of press forming product
JPH0987771A (en) Production of half-melted aluminum-magnesium alloy
JPH0349961B2 (en)
JP2004292846A (en) METHOD FOR MANUFACTURING Cu-Ni-Fe ALLOY MATERIAL FOR MAGNETIC SCALE
JP4252502B2 (en) Magnesium alloy molded part manufacturing method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees