JPH08269589A - Production of superplastic az91 magnesium alloy - Google Patents

Production of superplastic az91 magnesium alloy

Info

Publication number
JPH08269589A
JPH08269589A JP9956795A JP9956795A JPH08269589A JP H08269589 A JPH08269589 A JP H08269589A JP 9956795 A JP9956795 A JP 9956795A JP 9956795 A JP9956795 A JP 9956795A JP H08269589 A JPH08269589 A JP H08269589A
Authority
JP
Japan
Prior art keywords
magnesium alloy
vacuum
magnesium
solidified powder
superplastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9956795A
Other languages
Japanese (ja)
Inventor
Mamoru Mabuchi
馬渕  守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP9956795A priority Critical patent/JPH08269589A/en
Publication of JPH08269589A publication Critical patent/JPH08269589A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To develop an AZ91 magnesium alloy showing ultraplasticity by subjecting AZ91 magnesium alloy rapidly solidified powder to compacting in vacuum in a vacuum and thereafter executing hot extrusion. CONSTITUTION: AZ91 magnesium alloy rapidly cooled and solidified powder is vacuum-sealed in a magnesium can, and the rapidly solidified powder is compacted and sintered in a vacuum by using a hot press machine. Moreover, this sintered body is subjected to hot extrusion to produce the AZ91 magnesium alloy. In the process of the hot extrusion, recrystallization occurs, and simultaneously, an oxidized film on the surface of the rapidly solidified powder suppresses the growth of the crystal grains, thereby, a fine grain structure can be obtd., and its ultraplasticity is developed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超塑性AZ91マグネ
シウム合金の製造方法に関する。さらに詳しくは、本発
明は、マグネシウム合金の結晶粒を微細化し、超塑性を
発現させて、軽量化材料としてその利用が期待されてい
るマグネシウム合金の加工特性を改良することを可能と
する新しい超塑性AZ91マグネシウム合金の製造方法
に関するものである。
FIELD OF THE INVENTION The present invention relates to a method for producing a superplastic AZ91 magnesium alloy. More specifically, the present invention refines the crystal grains of the magnesium alloy, expresses superplasticity, and improves the processing characteristics of the magnesium alloy, which is expected to be used as a lightweight material. The present invention relates to a method for manufacturing a plastic AZ91 magnesium alloy.

【0002】[0002]

【従来の技術】マグネシウム合金は、鉄やアルミニウム
合金に比べ比重が低いため軽量金属材料として、自動車
の部品や航空宇宙分野などの構造部材としての利用が期
待されている。比較的単純な形状の部品(自動車のピス
トンやコネクチングロッドなど)は鋳造法などにより成
形することができることから、これまで、自動車部品と
してマグネシウムダイカスト合金等が利用されており、
今後、マグネシウムの持つ実用軽量化材料としての利用
価値に着目して、その重要性がますます高くなることが
期待されている(軽金属,Vol.42,No.12,
707−719(1992))。
2. Description of the Related Art Magnesium alloy has a lower specific gravity than iron and aluminum alloys and is expected to be used as a lightweight metal material for automobile parts and structural members in the aerospace field. Since parts with relatively simple shapes (such as automobile pistons and connecting rods) can be molded by casting, magnesium die casting alloys, etc. have been used as automotive parts.
Focusing on the utility value of magnesium as a practical lightweight material, it is expected that its importance will increase more and more (light metal, Vol. 42, No. 12,
707-719 (1992)).

【0003】一方、航空機のドアパネルなどのような板
状の素材を複雑な形状に成形するには2次加工が必要で
ある。しかし、マグネシウムは最密六方格子構造である
ため一般に延性が低く加工性が悪いので、複雑形状に2
次加工することはきわめて困難、あるいは多くの加工工
程が必要となり加工コストが著しく高くなる。
On the other hand, secondary processing is required to form a plate-shaped material such as an aircraft door panel into a complicated shape. However, since magnesium has a close-packed hexagonal lattice structure and generally has low ductility and poor workability, it has a complicated shape.
Subsequent processing is extremely difficult, or many processing steps are required, resulting in a significantly high processing cost.

【0004】また、最近、金属材料の加工性を向上する
ために、例えば、チタン合金の超塑性加工技術にみられ
るように、超塑性を応用した各種の金属材料の超塑性加
工技術の開発が期待されているが、これまでのところ、
超塑性材料として研究対象とされている金属材料も一部
のものに限られており(「豊田中央研究所 R &Dレ
ビュー」Vol.25,NO.1,54−73(199
0)、及び「材料開発ジャーナル」Vol.9,No.
2,8−14(1993))、また、特に、マグネシウ
ム合金に関しては、その超塑性に関する従来技術はほと
んど見当たらず、これまでに、実用マグネシウム合金の
超塑性に関する報告例はほとんどないといってもよいの
が現状である。
Further, recently, in order to improve the workability of metal materials, for example, as seen in the superplastic processing technology of titanium alloys, development of superplastic processing technology of various metal materials to which superplasticity is applied has been developed. Expected, but so far,
The metallic materials that are the subject of research as superplastic materials are also limited to some (“Toyota Central Research Laboratory R & D Review” Vol. 25, No. 1, 54-73 (199).
0), and "Materials Development Journal" Vol. 9, No.
2, 8-14 (1993)), and particularly regarding magnesium alloys, almost no conventional technology relating to superplasticity is found, and thus far, there have been few reports regarding superplasticity of practical magnesium alloys. The current situation is good.

【0005】[0005]

【発明が解決しようとする課題】マグネシウム合金の加
工性を向上させ、少ない工程で複雑形状に2次加工する
ためには、超塑性変形を利用した超塑性成形が有効であ
る。超塑性を発現させるには、マグネシウム合金の結晶
粒径を微細にする必要がある。本発明者らは、このよう
な視点に立ち、マグネシウム合金の結晶粒を微細化し、
超塑性を発現させることが可能な新しい製造方法を開発
することを目標として鋭意研究を積み重ねた結果、AZ
91マグネシウム合金の急冷凝固粉末を真空中で加圧焼
結させ、さらに、この焼結体を熱間押し出し加工するこ
とによって所期の目的を達成し得ることを見い出し、本
発明を完成するに至った。
Superplastic forming utilizing superplastic deformation is effective for improving the workability of a magnesium alloy and performing the secondary processing into a complicated shape in a small number of steps. In order to develop superplasticity, it is necessary to make the crystal grain size of the magnesium alloy fine. The present inventors, from such a viewpoint, refine the crystal grains of the magnesium alloy,
As a result of intensive research aimed at developing a new manufacturing method capable of expressing superplasticity, AZ
It was found that the desired object can be achieved by press-quenching and solidifying a rapidly solidified powder of 91 magnesium alloy in a vacuum and further hot-extruding this sintered body, and completed the present invention. It was

【0006】すなわち、本発明は、マグネシウム合金の
結晶粒を微細化し超塑性を発現させるための製造方法を
開発するものであり、加工特性に優れた超塑性AZ91
マグネシウム合金の製造方法を提供することを目的とす
るものである。
[0006] That is, the present invention is to develop a manufacturing method for refining the crystal grains of magnesium alloy to develop superplasticity, and superplasticity AZ91 excellent in working characteristics.
It is an object of the present invention to provide a method for producing a magnesium alloy.

【0007】[0007]

【課題を解決するための手段】そこで、本発明は、上記
課題を解決すべくAZ91マグネシウム合金の製造法に
おいて、急冷凝固粉末を真空中300℃で加圧焼結させ
た後、この焼結体を200〜300℃の温度で熱間押し
出しする方法を採用する。
In order to solve the above-mentioned problems, the present invention provides a method for producing an AZ91 magnesium alloy in which a rapidly solidified powder is pressure-sintered in vacuum at 300 ° C. Is hot-extruded at a temperature of 200 to 300 ° C.

【0008】上記課題を解決するための本発明の態様
は、AZ91マグネシウム合金急冷凝固粉末を真空中で
加圧焼結させた後、この焼結体を熱間押し出しすること
を特徴とする超塑性AZ91マグネシウム合金の製造方
法、である。
An aspect of the present invention for solving the above-mentioned problems is that the AZ91 magnesium alloy rapidly solidified powder is pressure-sintered in a vacuum, and then the sintered body is hot extruded. A method of manufacturing an AZ91 magnesium alloy.

【0009】また、本発明は、AZ91マグネシウム合
金急冷凝固粉末を真空中、150〜300℃で加圧焼結
させること、焼結体を200〜300℃の温度で熱間押
し出しすること、を好ましい態様としている。
In the present invention, it is preferable that the AZ91 magnesium alloy rapidly solidified powder is pressure-sintered in vacuum at 150 to 300 ° C., and the sintered body is hot extruded at a temperature of 200 to 300 ° C. It is an aspect.

【0010】本発明においては、AZ91マグネシウム
合金急冷凝固粉末を、例えば、マグネシウム缶内に真空
密閉した後、加圧焼結させるが、この場合、当該加圧焼
結処理は、例えば、ホットプレス機を用いて、マグネシ
ウム缶を温度150〜300℃、圧力200〜1500
MPaの条件で圧縮することにより好適に実施される。
次いで、得られた焼結体を熱間押し出し加工するが、こ
の場合、200〜300℃の温度条件で熱間押し出しす
る方法が好適なものとして例示される。上記加圧焼結及
び熱間押し出しの具体的方法は、上記のものに限定され
るものではなく、無加圧焼結及び熱間押出し等、上記と
同効のものであれば適宜使用し得るものであることはい
うまでもない。
In the present invention, the rapidly solidified AZ91 magnesium alloy powder is, for example, vacuum-sealed in a magnesium can and then pressure-sintered. In this case, the pressure-sintering treatment is performed by, for example, a hot press machine. With a magnesium can at a temperature of 150 to 300 ° C. and a pressure of 200 to 1500
It is preferably carried out by compressing under the condition of MPa.
Next, the obtained sintered body is hot extruded, and in this case, a method of hot extruding under a temperature condition of 200 to 300 ° C. is exemplified as a preferable method. The specific method of pressure sintering and hot extrusion is not limited to the above, and pressureless sintering and hot extrusion may be appropriately used as long as they have the same effects as above. It goes without saying that it is a thing.

【0011】本発明は、上記方法を採用することによ
り、熱間押し出し中に再結晶が生じるとともに、急冷凝
固粉末表面の酸化膜が結晶粒の成長を抑制するために、
結晶粒を微細化することができ、それによって、微細結
晶粒に起因した超塑性を発現させ、従来、加工性が悪い
とされていたマグネシウム合金の加工性を顕著に向上さ
せることを可能とするものである。本発明によって製造
される超塑性AZ91マグネシウム合金は、後記する実
施例に示したように、温度350℃、ひずみ速度10-2
-1程度の領域において150%以上の大きな破断伸び
が得られることから、熱間鍜造による成形加工、熱間プ
レス加工工程で複雑形状に2次加工することが可能であ
り、航空機のドアパネル等に応用することが期待され
る。尚、本発明者らが知るところによれば、マグネシウ
ム合金に関して、このような超塑性を発現させて、その
加工特性を改良することを可能にした例はこれまで報告
された例は見当たらない。
According to the present invention, by adopting the above method, recrystallization occurs during hot extrusion and the oxide film on the surface of the rapidly solidified powder suppresses the growth of crystal grains.
The crystal grains can be made finer, thereby making it possible to express the superplasticity due to the fine crystal grains and significantly improve the workability of the magnesium alloy, which was conventionally considered to have poor workability. It is a thing. The superplastic AZ91 magnesium alloy produced according to the present invention has a temperature of 350 ° C. and a strain rate of 10 −2 as shown in Examples described later.
Since a large breaking elongation of 150% or more can be obtained in the region of about s -1, it is possible to carry out secondary processing into a complicated shape by forming process by hot forging and hot pressing process, aircraft door panel It is expected to be applied to etc. According to the knowledge of the present inventors, there is no example reported so far which has made it possible to develop such superplasticity in a magnesium alloy to improve its working characteristics.

【0012】[0012]

【実施例】以下、本発明の実施例を説明するが、本発明
は当該実施例によって何ら限定されるものではない。 実施例 (1)マグネシウム合金急冷凝固粉末の作製 高純度マグネシウム、アルミニウム、亜鉛インゴットか
らMg−9%Al−1%Zn(重量%)のAZ91マグ
ネシウム合金を鋳造により作製した。さらに、これを電
気炉を用いて再溶解し、常法により、急冷凝固作製装置
(PSI社製)により噴霧状に吹くことにより急冷凝固
粉末を作製した。
EXAMPLES Examples of the present invention will be described below, but the present invention is not limited to the examples. Example (1) Preparation of rapidly solidified magnesium alloy powder An AZ91 magnesium alloy of Mg-9% Al-1% Zn (wt%) was prepared by casting from high-purity magnesium, aluminum, and a zinc ingot. Further, this was redissolved in an electric furnace and sprayed in a spray form by a rapid solidification production apparatus (manufactured by PSI Co.) by a conventional method to produce rapidly solidified powder.

【0013】(2)超塑性合金の作製 AZ91マグネシウム合金急冷凝固粉末をマグネシウム
缶内に真空密閉した後、ホットプレス機を用いマグネシ
ウム缶を温度300℃、圧力200MPaの条件で圧縮
しAZ91マグネシウム合金急冷凝固粉末を加圧焼結さ
せ、直径40mmの丸棒を作製した。さらに、この丸棒
焼結体を温度250℃、押し出し比100の条件で熱間
押し出しし直径4mmの丸棒に加工した。熱間押し出し
中に再結晶が生じるととも急冷凝固粉末表面の酸化膜が
結晶粒成長を抑制するため微細な結晶粒組織が得られ
る。上記方法により作製されたAZ91マグネシウム合
金の結晶粒径は5μmであった。
(2) Preparation of superplastic alloy AZ91 magnesium alloy rapid solidified powder was vacuum-sealed in a magnesium can, and the magnesium can was compressed using a hot press machine at a temperature of 300 ° C. and a pressure of 200 MPa to rapidly cool the AZ91 magnesium alloy. The solidified powder was pressure-sintered to produce a round bar having a diameter of 40 mm. Further, this round bar sintered body was hot extruded under the conditions of a temperature of 250 ° C. and an extrusion ratio of 100 to be processed into a round bar having a diameter of 4 mm. When recrystallization occurs during hot extrusion, an oxide film on the surface of the rapidly solidified powder suppresses grain growth, so that a fine grain structure can be obtained. The crystal grain size of the AZ91 magnesium alloy produced by the above method was 5 μm.

【0014】(3)引張試験 押出し棒から平行部長さ5mm、平行部直径2.5mm
の丸棒試験片を作製した。この試験片を引張試験機(大
阪科学社製)に装着した後、電気炉により加熱し約30
分で所定温度(350℃)に昇温した。所定温度に約1
0分間保持した後、引張試験を開始し、破断後、試料の
伸び量を測定した。引張試験は、温度一定(350℃)
の条件下で変形速度を変え、ひずみ速度10-3〜1s-1
の範囲で行った。
(3) Tensile test From the extruded rod, the parallel part length is 5 mm, and the parallel part diameter is 2.5 mm.
A round bar test piece was prepared. After mounting this test piece on a tensile tester (Osaka Kagaku Co., Ltd.), it was heated by an electric furnace for about 30 minutes.
The temperature was raised to a predetermined temperature (350 ° C.) in minutes. About 1 at a given temperature
After holding for 0 minutes, a tensile test was started, and after breaking, the elongation amount of the sample was measured. Tensile test is constant temperature (350 ℃)
Strain rate 10 -3 to 1 s -1 under different conditions
It went in the range of.

【0015】引張り試験による超塑性が発現したことを
示す結果を図1に示す。図1は、AZ91マグネシウム
合金の350℃におけるひずみ速度と破断伸びの関係を
示したものである。10-3〜3x10-2-1のひずみ速
度領域において150%以上の大きな破断伸びが得られ
た。このような大きな伸びは超塑性発現によるものであ
る。尚、比較例として、従来製品の破断伸びを示すと、
AZ91マグネシウム合金鋳造材の場合、約350℃に
おいて破断伸びは約50%であった。
The results showing that superplasticity was developed in the tensile test are shown in FIG. FIG. 1 shows the relationship between strain rate and elongation at break at 350 ° C. of AZ91 magnesium alloy. A large breaking elongation of 150% or more was obtained in the strain rate region of 10 −3 to 3 × 10 −2 s −1 . Such a large elongation is due to the manifestation of superplasticity. As a comparative example, when showing the breaking elongation of the conventional product,
In the case of the cast AZ91 magnesium alloy, the elongation at break was about 50% at about 350 ° C.

【0016】[0016]

【発明の効果】以上述べたように、本発明においては、
AZ91マグネシウム合金急冷凝固粉末を真空中で加圧
焼結させた後、この焼結体を熱間押し出しすることによ
って、従来製品の結晶粒が100μm以上程度であるの
に対して、5μm程度の微細な結晶粒組織を有する超塑
性AZ91マグネシウム合金焼結体を得ることができ、
これによりマグネシウム合金をすくない加工工程で複雑
形状に2次加工することができるマグネシウム合金が得
られる。
As described above, according to the present invention,
After the AZ91 magnesium alloy rapidly solidified powder is pressure-sintered in vacuum, this sintered body is hot extruded, so that the crystal grain of the conventional product is about 100 μm or more, whereas the fine grain of about 5 μm is fine. It is possible to obtain a superplastic AZ91 magnesium alloy sintered body having various crystal grain structures,
This makes it possible to obtain a magnesium alloy which can be secondarily processed into a complicated shape in a processing step in which the magnesium alloy is thinned.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明により作製されたAZ91マグネシウム
合金の350℃におけるひずみ速度と破断伸びの関係を
あらわす説明図である。
FIG. 1 is an explanatory diagram showing a relationship between a strain rate and a breaking elongation at 350 ° C. of an AZ91 magnesium alloy produced according to the present invention.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 AZ91マグネシウム合金急冷凝固粉末
を真空中で加圧焼結させた後、この焼結体を熱間押し出
しすることを特徴とする超塑性AZ91マグネシウム合
金の製造方法。
1. A method for producing a superplastic AZ91 magnesium alloy, which comprises press-sintering a rapidly solidified AZ91 magnesium alloy powder in a vacuum and then hot extruding the sintered body.
【請求項2】 AZ91マグネシウム合金急冷凝固粉末
を真空中150〜300℃で加圧焼結させる請求項1記
載の超塑性AZ91マグネシウム合金の製造方法。
2. The method for producing a superplastic AZ91 magnesium alloy according to claim 1, wherein the rapidly solidified powder of AZ91 magnesium alloy is pressure-sintered at 150 to 300 ° C. in a vacuum.
【請求項3】 焼結体を200〜300℃の温度で熱間
押し出しすることを特徴とする請求項1記載の超塑性A
Z91マグネシウム合金の製造方法。
3. The superplasticity A according to claim 1, wherein the sintered body is hot extruded at a temperature of 200 to 300 ° C.
Method for manufacturing Z91 magnesium alloy.
JP9956795A 1995-03-30 1995-03-30 Production of superplastic az91 magnesium alloy Pending JPH08269589A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9956795A JPH08269589A (en) 1995-03-30 1995-03-30 Production of superplastic az91 magnesium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9956795A JPH08269589A (en) 1995-03-30 1995-03-30 Production of superplastic az91 magnesium alloy

Publications (1)

Publication Number Publication Date
JPH08269589A true JPH08269589A (en) 1996-10-15

Family

ID=14250714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9956795A Pending JPH08269589A (en) 1995-03-30 1995-03-30 Production of superplastic az91 magnesium alloy

Country Status (1)

Country Link
JP (1) JPH08269589A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004060048A (en) * 2002-06-05 2004-02-26 Sumitomo Denko Steel Wire Kk Magnesium alloy sheet and method for producing the same
JP2006070332A (en) * 2004-09-02 2006-03-16 National Institute Of Advanced Industrial & Technology Method for manufacturing high-strength magnesium alloy from cut waste
JP2007002318A (en) * 2005-06-24 2007-01-11 National Institute Of Advanced Industrial & Technology Method for producing superplastic magnesium alloy from grain boundary precipitation type magnesium alloy scrap
US7909948B2 (en) 2004-03-15 2011-03-22 Gohsyu Co., Ltd. Alloy powder raw material and its manufacturing method
JP2016053198A (en) * 2014-09-04 2016-04-14 株式会社コイワイ Metal molded product and metal powder for metal molded product
CN112831738A (en) * 2020-12-31 2021-05-25 长沙理工大学 Processing method for improving high-temperature creep property of magnesium alloy through extrusion and hammering

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05504602A (en) * 1990-02-20 1993-07-15 アライド―シグナル・インコーポレーテッド Superplastic forming method for rapidly solidified magnesium-based metal alloys

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05504602A (en) * 1990-02-20 1993-07-15 アライド―シグナル・インコーポレーテッド Superplastic forming method for rapidly solidified magnesium-based metal alloys

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004060048A (en) * 2002-06-05 2004-02-26 Sumitomo Denko Steel Wire Kk Magnesium alloy sheet and method for producing the same
US7909948B2 (en) 2004-03-15 2011-03-22 Gohsyu Co., Ltd. Alloy powder raw material and its manufacturing method
JP2006070332A (en) * 2004-09-02 2006-03-16 National Institute Of Advanced Industrial & Technology Method for manufacturing high-strength magnesium alloy from cut waste
JP2007002318A (en) * 2005-06-24 2007-01-11 National Institute Of Advanced Industrial & Technology Method for producing superplastic magnesium alloy from grain boundary precipitation type magnesium alloy scrap
JP2016053198A (en) * 2014-09-04 2016-04-14 株式会社コイワイ Metal molded product and metal powder for metal molded product
CN112831738A (en) * 2020-12-31 2021-05-25 长沙理工大学 Processing method for improving high-temperature creep property of magnesium alloy through extrusion and hammering

Similar Documents

Publication Publication Date Title
EP0090253B1 (en) Fine grained metal composition
US3997369A (en) Production of metallic articles
JPH07179974A (en) Aluminum alloy and its production
JP6296558B2 (en) Copper alloy and manufacturing method thereof
EP1840235A1 (en) Magnesium alloy and corresponding production method
JPS627828A (en) Al alloy with high li and si content and its production
KR20120064687A (en) Titanium alloy microstructural refinement method and high temperature-high strain superplastic forming of titanium alloys
Chen et al. Grain refinement of magnesium alloys processed by severe plastic deformation
Wang et al. Fabrication of fine-grained, high strength and toughness Mg alloy by extrusion− shearing process
JP2772765B2 (en) Method of heating casting material for thixocasting
JPH08269589A (en) Production of superplastic az91 magnesium alloy
JP3771203B2 (en) Method for deep drawing of magnesium alloy sheet and molded body thereof
JPH01152237A (en) Aluminum alloy material for engine member
JP3320037B2 (en) FORGED MOLDED PRODUCT AND ITS MANUFACTURING METHOD
JP5403508B2 (en) Mg alloy member.
JP3838803B2 (en) Composite high strength material and manufacturing method thereof
JP5161414B2 (en) High strength magnesium alloy
US3291654A (en) Process for preparing high strength fabricated articles from aluminumbase alloys containing magnesium and copper
EP0139168A1 (en) Fine grained metal composition
JP3523512B2 (en) Forging method of magnesium alloy
JP4152095B2 (en) Method for producing semi-molten billet of aluminum alloy for transportation equipment
JP2580682B2 (en) Method for producing α + β type Ti alloy member having high strength and high toughness
JP3343045B2 (en) Method for producing wire or thin plate of Cu-Ni-Fe alloy magnet
JPH1177214A (en) Magnesium alloy forged thin-walled parts, and its manufacture
JP4253846B2 (en) Magnesium alloy wire, method for producing the same, and magnesium alloy molded body