JP4252502B2 - Magnesium alloy molded part manufacturing method - Google Patents

Magnesium alloy molded part manufacturing method Download PDF

Info

Publication number
JP4252502B2
JP4252502B2 JP2004186615A JP2004186615A JP4252502B2 JP 4252502 B2 JP4252502 B2 JP 4252502B2 JP 2004186615 A JP2004186615 A JP 2004186615A JP 2004186615 A JP2004186615 A JP 2004186615A JP 4252502 B2 JP4252502 B2 JP 4252502B2
Authority
JP
Japan
Prior art keywords
solid phase
solid
phase ratio
magnesium alloy
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004186615A
Other languages
Japanese (ja)
Other versions
JP2004291093A (en
Inventor
健 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2004186615A priority Critical patent/JP4252502B2/en
Publication of JP2004291093A publication Critical patent/JP2004291093A/en
Application granted granted Critical
Publication of JP4252502B2 publication Critical patent/JP4252502B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明はマグネシウム合金の成形部品の製造方法に関するものである。   The present invention relates to a method for producing a molded part of a magnesium alloy.

背景技術および発明が解決しようとする課題Background Art and Problems to be Solved by the Invention

マグネシウム合金は、実用合金の中で最も軽く、樹脂材料に代わる材料として、近年、電子機器筐体等に採用されている。   Magnesium alloys are the lightest of practical alloys, and have recently been adopted in electronic equipment casings and the like as substitutes for resin materials.

一般的に使用されているマグネシウム合金は、hcp結晶構造のマグネシウムα相(以下α相と称す)であるため、塑性加工が難しく、成形方法としては、ダイキャスト法、チキソキャスト法、熱間プレス法などが採用されている。   Generally used magnesium alloys are magnesium α-phase (hereinafter referred to as α-phase) with an hcp crystal structure, so plastic processing is difficult, and the die casting method, thixocasting method, hot press can be used as the forming method. Laws are adopted.

しかし、ダイキャスト法では、マグネシウムの溶湯を扱わなければならず、燃焼の危険性を伴う問題があり、防燃ガスとして用いられている6フッ化硫黄は地球温暖化ガスのため、使用できなくなってきている。   However, the die-casting method has to handle molten magnesium, and there is a problem with the risk of combustion. Sulfur hexafluoride, which is used as a flame-retardant gas, cannot be used because it is a global warming gas. It is coming.

また、チキソキャスト法では、合金を半溶融或いは半凝固状態で機械的攪拌を与え、固相を球状化させたスラリーを得る必要があるため生産効率が悪く、また、空気等攪拌雰囲気を巻き込むため燃焼の危険性も伴うといった問題がある。さらには、切削チップを用いることでスラリーを必要としないチクソモールド法でも、現状、成形時の固相率が0に近く、実質的に溶湯を扱っている。   Moreover, in the thixocast method, it is necessary to give a slurry in which the alloy is semi-molten or semi-solidified to obtain a slurry in which the solid phase is spheroidized, so that the production efficiency is poor, and the stirring atmosphere such as air is involved. There is a problem that there is a risk of combustion. Furthermore, even in the thixomold method that does not require slurry by using a cutting tip, the solid phase rate at the time of molding is close to 0, and the molten metal is substantially handled.

さらには、ダイキャスト法、チクソキャスト法等の射出成形法では、薄肉化に対応し難く、また、成形後に、バリ取り、表面仕上などの2次加工が必要であるため、生産効率が悪いという問題がある。   Furthermore, injection molding methods such as die-casting and thixocasting methods are difficult to cope with thinning, and after processing, secondary processing such as deburring and surface finishing is required, so production efficiency is poor. There's a problem.

また、熱間プレス等のプレス加工では、偏肉構造をとることができず、部分的に強度が必要な場合でも全体を厚く設定しなければならず、軽量化を目的とした場合には適応し難い。また、ボス等の機構部を作り込むことができないため、適用用途も限られていた。   Also, in press processing such as hot press, it is not possible to take an uneven thickness structure, and even if strength is partially required, the whole must be set thick, and it is suitable for weight reduction purposes It is hard to do. Moreover, since a mechanism part such as a boss cannot be built, the application is limited.

そこで、一部では鍛造可能なマグネシウム合金も開発され、その鍛造も実用化されているものの、一回の鍛造での変形率は小さく複数回の鍛造が必要となり、薄肉の、例えば、電子機器の筐体の様な形状を成形するのは難しかった。   For this reason, magnesium alloys that can be forged have been developed in some areas, and the forging has also been put to practical use. However, the deformation rate of one forging is small, and multiple forgings are required. It was difficult to mold a shape like a housing.

また、特許文献1には、マグネシウム合金素材を半溶融状態に加熱処理し鍛造成形する方法が開示されている。この方法では、成形時の固相率等の明示がなく、半溶融状態すなわち固相率をVfとあらわすと0<Vf<1の範囲にて加工することになる。   Patent Document 1 discloses a method of forging by heat-treating a magnesium alloy material into a semi-molten state. In this method, there is no indication of the solid phase ratio at the time of molding, and if the semi-molten state, that is, the solid phase ratio is expressed as Vf, processing is performed in the range of 0 <Vf <1.

しかし、上記方法では、固相率が少なすぎるとほとんど溶融状態になるため、取り扱いが困難になることや、鍛造成形時に流動性が良すぎるため、金型キャビティ内に充填される前に飛散してしまうという問題があり、また、固相率が高すぎる場合には、塑性変形能が低く鍛造成形できないという問題もあった。
特開平6―246384号公報
However, in the above method, if the solid phase ratio is too low, it will almost be in a molten state, which makes it difficult to handle, and the fluidity is too good during forging, so it will scatter before filling the mold cavity. In addition, when the solid phase ratio is too high, there is a problem that the plastic deformability is low and forging cannot be performed.
JP-A-6-246384

そこで、本発明の上記課題の解決を目的として成されたものであって、第1の発明は、初期の結晶粒径が300μm以下のマグネシウム合金を固相率30〜80%の固液共存温度に加熱保持した状態で成形用金型内に装入し加圧成形することを特徴とするマグネシウム合金成形部品の製造方法である。   Accordingly, the present invention has been made for the purpose of solving the above-mentioned problems of the present invention. The first invention is a solid-liquid coexistence temperature of a magnesium alloy having an initial crystal grain size of 300 μm or less and a solid phase ratio of 30 to 80%. A method for producing a magnesium alloy molded part, which is charged and molded in a molding die while being heated and held.

また、第2の発明は、初期の結晶粒径が300μm以上のマグネシウム合金を固相率20〜60%の固液共存温度に30分以上保持し、その後、固相率30〜80%の固液共存温度に加熱保持した状態で成形用金型内に装入し加圧成形することを特徴とするマグネシウム合金成形部品の製造方法である。   Further, the second invention is to hold a magnesium alloy having an initial crystal grain size of 300 μm or more at a solid-liquid coexistence temperature with a solid phase ratio of 20 to 60% for 30 minutes or more, and thereafter, with a solid phase ratio of 30 to 80%. A method for producing a magnesium alloy molded part, comprising charging into a molding die while being heated and held at a liquid coexisting temperature, followed by pressure molding.

また、第3の発明は、マグネシウム合金に加圧変形により内部歪を付与した後、固液共存温度に加熱保持することにより、固相粒子径を初期の結晶粒径に比べて小さくしたマグネシウム合金を、固相率30〜80%の固液共存温度に加熱保持した状態で成形用金型内に装入し加圧成形することを特徴とするマグネシウム合金成形部品の製造方法である。   In addition, the third invention provides a magnesium alloy in which the solid phase particle size is made smaller than the initial crystal particle size by applying internal strain to the magnesium alloy by pressure deformation and then heating and holding at a solid-liquid coexistence temperature. Is molded in a molding die while being heated and held at a solid-liquid coexistence temperature with a solid phase ratio of 30 to 80%, followed by pressure forming.

また、第4の発明は、マグネシウム合金を30〜60%の固液共存温度に加熱保持した状態で、板状または柱状に押し出すことにより、固相粒子径を初期の結晶粒径に比べて小さくしたマグネシウム合金を、固相率30〜80%の固液共存温度に加熱保持した状態で成形用金型内に装入し加圧成形することを特徴とするマグネシウム合金成形部品の製造方法である。   The fourth aspect of the invention is that the solid phase particle size is made smaller than the initial crystal particle size by extruding the magnesium alloy into a plate shape or a column shape while being heated and held at a solid-liquid coexistence temperature of 30 to 60%. A magnesium alloy molded part manufacturing method, comprising: charging a formed magnesium alloy into a molding die in a state of being heated and held at a solid-liquid coexistence temperature with a solid phase ratio of 30 to 80%. .

また、第5の発明は、マグネシウム合金を固相率30〜80%の固液共存温度に加熱保持した状態で成形用金型内に装入し加圧成形することを特徴とするマグネシウム合金成形部品の製造方法である。
また、第6の発明は、第5の発明において、前記マグネシウム合金は、一度、30〜80%の固液共存温度に加熱保持させた後、急冷凝固させたものであることを特徴とする。
また、第7の発明は、第5又は6の発明において、前記マグネシウム合金の初期結晶粒径が300μm以下であることを特徴とする。
また、第8の発明は、第5の発明において、前記マグネシウム合金は、加圧変形により、内部歪を付与したものであることを特徴とする。
また、第9の発明は、第5の発明において、前記マグネシウム合金は、固相率30〜80%の固液共存温度に加熱保持した状態で、板状または柱状に押し出されたものであることを特徴とする。
According to a fifth aspect of the present invention, there is provided a magnesium alloy molding characterized in that the magnesium alloy is charged in a molding die while being heated and held at a solid-liquid coexistence temperature with a solid phase ratio of 30-80%. It is a manufacturing method of components.
The sixth invention is characterized in that, in the fifth invention, the magnesium alloy is once heated and held at a solid-liquid coexistence temperature of 30 to 80% and then rapidly solidified.
According to a seventh aspect, in the fifth or sixth aspect, the initial crystal grain size of the magnesium alloy is 300 μm or less.
The eighth invention is characterized in that, in the fifth invention, the magnesium alloy is provided with an internal strain by pressure deformation.
The ninth invention is the fifth invention, wherein the magnesium alloy is extruded in a plate shape or a column shape while being heated and held at a solid-liquid coexistence temperature with a solid phase ratio of 30 to 80%. It is characterized by.

第1の発明によれば、マグネシウム合金の初期結晶粒径を300μm以下とすることで、鍛造成形性を向上させることができる。
第2の発明によれば、固相粒子径を小さくすることができ、鍛造成形性を向上させることができる。
第3の発明によれば、マグネシウム合金は、加圧変形により、内部歪を付与したものであるので、昇温時の再結晶により固相粒子を微細にすることができ、鍛造成形性を向上させることができる。
第4の発明によれば、押出し時のせん断力により固相粒子を微細にすることができ、また、加圧成形時の仕込み形状への切り出し工程を簡略化できる。
第5の発明によれば、マグネシウム合金を固相率30〜80%の固液共存温度に加熱保持した状態で成形用金型内に装入し加圧成形することにより、容易に鍛造成形品を得ることができる。
第6の発明によれば、前記マグネシウム合金は、一度、30〜80%の固液共存温度に加熱保持させた後、急冷凝固させたものであるので、加圧成形時に再加熱する際、所望の固相率に短時間で到達することができ、処理速度の向上、生産性の向上が図れる。
第7の発明によれば、前記マグネシウム合金の初期結晶粒径が300μm以下とすることで、鍛造性を向上することができる。
第8の発明によれば、前記マグネシウム合金は、加圧変形により、内部歪を付与したものであるので、昇温時の再結晶により固相粒子を微細にすることができ、鍛造成形性を向上させることができる。
第9の発明によれば、前記マグネシウム合金は、固相率30〜80%の固液共存温度に加熱保持した状態で、板状または柱状に押し出されたものであるので、押出し時のせん断力により固相粒子を微細にすることができ、また、加圧成形時の仕込み形状への切り出し工程を簡略化できる。
According to the first invention, forging formability can be improved by setting the initial crystal grain size of the magnesium alloy to 300 μm or less.
According to the second invention, the solid phase particle diameter can be reduced and the forgeability can be improved.
According to the third invention, since the magnesium alloy is given internal strain by pressure deformation, the solid phase particles can be made fine by recrystallization at the time of temperature rise, and forging formability is improved. Can be made.
According to the fourth invention, the solid phase particles can be made fine by the shearing force at the time of extrusion, and the cut-out process to the charged shape at the time of pressure molding can be simplified.
According to the fifth invention, a magnesium alloy is easily forged by inserting it into a molding die while being heated and held at a solid-liquid coexistence temperature having a solid phase ratio of 30 to 80%, followed by pressure molding. Can be obtained.
According to the sixth invention, since the magnesium alloy is once heated and held at a solid-liquid coexistence temperature of 30 to 80% and then rapidly solidified, it is desired to reheat at the time of pressure forming. The solid phase ratio can be reached in a short time, and the processing speed and productivity can be improved.
According to the seventh invention, forgeability can be improved by setting the initial crystal grain size of the magnesium alloy to 300 μm or less.
According to the eighth invention, since the magnesium alloy is given internal strain by pressure deformation, the solid phase particles can be made fine by recrystallization at the time of temperature rise, and the forgeability is improved. Can be improved.
According to the ninth invention, since the magnesium alloy is extruded in the form of a plate or a column while being heated and held at a solid-liquid coexistence temperature with a solid phase ratio of 30 to 80%, the shearing force at the time of extrusion Thus, the solid phase particles can be made fine, and the cutting process into the charged shape at the time of pressure molding can be simplified.

以下、本発明について図をもとに詳細に説明する。
ここでは、一般的に塑性加工し難いと言われている鋳造用マグネシウム合金AZ91D(以下AZ91Dと称す)を用いているが、これに限定されるものではなく、他のマグネシウム合金であっても構わない。
Hereinafter, the present invention will be described in detail with reference to the drawings.
Here, a casting magnesium alloy AZ91D (hereinafter referred to as AZ91D), which is generally said to be difficult to be plastically processed, is used. However, the present invention is not limited to this, and other magnesium alloys may be used. Absent.

以下に、実施例1について説明する。
まず、AZ91Dの温度−固相率の関係を調べるため、AZ91Dを700℃の完全溶融状態とした後、0.2℃/秒の冷却速度で種々の温度まで冷却し、水中に急冷することにより、各温度における組識を凍結したまま凝固させた。そして、その凝固組識を観察測定し、温度−固相率の関係を求めた。その結果を図1に示す。
Example 1 will be described below.
First, in order to investigate the relationship between the temperature and the solid phase ratio of AZ91D, AZ91D was made into a completely molten state at 700 ° C., then cooled to various temperatures at a cooling rate of 0.2 ° C./second, and rapidly cooled in water. The tissue at each temperature was solidified while frozen. And the solidification organization was observed and measured, and the relationship of temperature-solid phase ratio was calculated | required. The result is shown in FIG.

次に、さまざまな固相率を有するマグネシウム合金の鍛造テストを行う。   Next, forging tests of magnesium alloys having various solid fractions are performed.

上記図1の結果から、20%、30%、40%、60%、80%、90%、100%の各固相率のマグネシウム合金の加熱温度(固液共存温度)は、それぞれ590℃、587℃、585℃、572℃、535℃、493℃、450℃であることが分かる。   From the results of FIG. 1 above, the heating temperatures (solid-liquid coexistence temperatures) of the solid alloys of 20%, 30%, 40%, 60%, 80%, 90%, and 100% are 590 ° C., respectively. It turns out that it is 587 degreeC, 585 degreeC, 572 degreeC, 535 degreeC, 493 degreeC, and 450 degreeC.

そこで、AZ91Dインゴットを30mm×30mm×20mmtに切り出した鍛造試験片1を、上記各温度に加熱保持し、図2のような鍛造プレス機(装置全体は図示せず)を用いて、成形テスト用金型2に装入し加圧することにより、図3に示すような鍛造成形品を作製した。この時の金型温度は250℃、材料温度は各固相率の固液共存温度とした。   Therefore, the forging test piece 1 obtained by cutting the AZ91D ingot into 30 mm × 30 mm × 20 mmt is heated and held at each of the above temperatures, and used for a molding test using a forging press machine (not shown) as shown in FIG. A forged molded product as shown in FIG. 3 was produced by charging the mold 2 and applying pressure. The mold temperature at this time was 250 ° C., and the material temperature was the solid-liquid coexistence temperature of each solid phase ratio.

そして、鍛造成形品の天面の厚みを測定し、固相率−天面厚みの関係を調べた。その結果を図4に示す。   Then, the thickness of the top surface of the forged product was measured, and the relationship between the solid phase ratio and the top surface thickness was examined. The result is shown in FIG.

図4から明らかなように、固相率の低下に伴い、充分な流動が得られ、鍛造後の厚みが設計値に等しくなっている。しかし、固相率が20%以下の場合は、ほぼ液体となるため金型にセットすることができなかった。また、固相率が80%を超えた場合には、加圧時に割れが生じ、鍛造成形することができなかった。   As is clear from FIG. 4, with the decrease in the solid phase ratio, a sufficient flow is obtained, and the thickness after forging is equal to the design value. However, when the solid phase ratio was 20% or less, it was almost liquid and could not be set in the mold. When the solid phase ratio exceeded 80%, cracking occurred during pressurization and forging could not be performed.

次に、所望の固相率の固液共存温度を保持した時の所望の固相率に到達するまでの時間を測定した。   Next, the time until the desired solid phase ratio was reached when the solid-liquid coexistence temperature of the desired solid phase ratio was maintained was measured.

まず、上記と同寸法のAZ91Dインゴットを鉄製の密閉ケースに装入し、熱処理炉にて固相率約30%の固液共存温度(587℃)に20分保持した後水中にて急冷した。このようにして作製した固液共存処理試料と、通常のインゴットを同寸法に切り出した試料とを、鉄製の密閉ケースに封入し、再度590℃まで加熱し、所定時間保持した後水中に急冷し、固相率を測定することにより保持時間と固相率の関係を調べた。その結果を図5に示す。   First, an AZ91D ingot having the same dimensions as above was placed in an iron sealed case, kept in a solid-liquid coexistence temperature (587 ° C.) with a solid phase ratio of about 30% in a heat treatment furnace, and then rapidly cooled in water. The solid-liquid coexistence treated sample prepared in this way and a sample obtained by cutting a normal ingot into the same dimensions are enclosed in an iron sealed case, heated again to 590 ° C., held for a predetermined time, and then rapidly cooled in water. Then, the relationship between the retention time and the solid phase ratio was examined by measuring the solid phase ratio. The result is shown in FIG.

図5から明らかなように、固液共存処理を施した試料は短い保持時間で所望の固相率に達することが分かる。つまり、鍛造前の固液共存状態までの加熱時間を短くすることができるため、鍛造用に切り出す前のインゴットに対して固液共存処理を施した後試料を切り出すことで、生産性を向上することができる。   As is apparent from FIG. 5, it can be seen that the sample subjected to the solid-liquid coexistence treatment reaches the desired solid phase ratio in a short holding time. In other words, since the heating time until the solid-liquid coexistence state before forging can be shortened, productivity is improved by cutting the sample after subjecting the ingot before cutting for forging to the solid-liquid coexistence treatment. be able to.

以下に、実施例2について説明する。
まず、鍛造時の固相粒子の粒径と鍛造成形性の関係を調べた。
Example 2 will be described below.
First, the relationship between the particle size of solid phase particles during forging and forging formability was examined.

初期の結晶粒径が100μm、300μm、500μmの合金インゴットを30mm×30mm×20mmtに切り出し、それぞれを固相率80%、60%、40%の各固液共存温度(535℃、572℃、585℃)に加熱保持し、鍛造試験片1とした。これらの鍛造試験片1を図2に示す鍛造プレス機の成形テスト用金型2の間に装入し加圧成形することにより、図3に示すような鍛造成形品を作成した。この時の金型温度は250℃、材料温度は各固相率の固液共存温度とした。   Alloy ingots having initial crystal grain sizes of 100 μm, 300 μm, and 500 μm were cut into 30 mm × 30 mm × 20 mmt, and solid-liquid coexistence temperatures (535 ° C., 572 ° C., 585 ° C.) with solid phase ratios of 80%, 60%, and 40%, respectively. The forged test piece 1 was heated and held at 0 ° C.). These forged test pieces 1 were placed between the molding test molds 2 of the forging press shown in FIG. 2 and subjected to pressure molding to produce a forged molded product as shown in FIG. The mold temperature at this time was 250 ° C., and the material temperature was the solid-liquid coexistence temperature of each solid phase ratio.

そして、得られた成形品の天面の厚みを測定した。その結果を図6に示す。   And the thickness of the top | upper surface of the obtained molded article was measured. The result is shown in FIG.

図6から明らかなように、固相率40%の時には、何れの粒径の試料も鍛造後の厚みは設計値となり、差は見られなかったが、固相率60%では、粒径500μmの試料が若干厚くなり、固相率80%では、固相粒子の粒径が大きくなるほど、厚みが厚くなることがわかる。したがって、固相率が80%で、且つ、初期の結晶粒径が大きい場合良好な鍛造性が得られないため、所望の設計厚さに成形するには、初期の結晶粒径を300μm以下にすることが必要である。   As can be seen from FIG. 6, when the solid phase ratio is 40%, the thickness after forging of the samples with any grain size is the design value, and no difference is seen. However, when the solid phase ratio is 60%, the grain size is 500 μm. It can be seen that, when the sample is slightly thicker and the solid phase ratio is 80%, the thickness increases as the particle size of the solid phase particles increases. Therefore, when the solid phase ratio is 80% and the initial crystal grain size is large, good forgeability cannot be obtained. Therefore, in order to form the desired design thickness, the initial crystal grain size should be 300 μm or less. It is necessary to.

次に、初期の合金インゴットの結晶粒径が固液共存状態に保持することでどのように変化するかを調べた。   Next, it was examined how the crystal grain size of the initial alloy ingot changes by maintaining the solid-liquid coexistence state.

詳しくは、初期の結晶粒径が100μm、300μm、500μmに調整された合金インゴットの試料を鉄製の密閉ケースに装入し、それぞれの固相率(60%、40%、20%)の固液共存温度(572℃、585℃、590℃)に達した後、所定時間保持し水中にて急冷し、組識観察を行い、固相粒子の粒径が固液共存処理時にどのように変化するかを調べた。その結果を、図7に示す。   Specifically, a sample of an alloy ingot whose initial crystal grain size is adjusted to 100 μm, 300 μm, and 500 μm is placed in an iron sealed case, and the solid-liquid ratio of each solid phase ratio (60%, 40%, 20%). After reaching the coexistence temperature (572 ° C, 585 ° C, 590 ° C), hold for a predetermined time, quench in water, observe tissue, and how the particle size of solid phase particles changes during solid-liquid coexistence treatment I investigated. The result is shown in FIG.

図7から明らかなように、初期の結晶粒径が100μmの場合には、何れの固相率の場合でも保持時間と共に固相粒子の結晶粒径は増加している。特に固相率が60%の時には増加の度合いが大きいことが分かる。   As can be seen from FIG. 7, when the initial crystal grain size is 100 μm, the crystal grain size of the solid phase particles increases with the retention time at any solid phase ratio. It can be seen that the degree of increase is particularly large when the solid phase ratio is 60%.

また、初期の結晶粒径が500μmの場合には、何れの固相率の場合も溶解により粒径が減少した後、固相率60%保持の場合、粒径にほとんど変化なく、固相率40、20%の場合には、若干の減少傾向にあることがわかる。   In addition, when the initial crystal grain size is 500 μm, there is almost no change in the grain size when the solid phase ratio is kept at 60% after the grain size is reduced by dissolution in any solid phase ratio, and the solid phase ratio is almost unchanged. In the case of 40 and 20%, it can be seen that there is a slight decreasing tendency.

また、初期の結晶粒径が300μmの場合には、何れの固相率に保持した場合でも、粒径の変化はほとんどなかった。   Further, when the initial crystal grain size was 300 μm, there was almost no change in the grain size even when the solid phase ratio was maintained.

つまり、良好な鍛造性を得るためには、初期の結晶粒径が300μm以上の場合には、何れの固相率においても、所望の温度に達した後30分以上保持することが必要であることがわかる。   That is, in order to obtain good forgeability, when the initial crystal grain size is 300 μm or more, it is necessary to hold for 30 minutes or more after reaching the desired temperature at any solid phase ratio. I understand that.

また、初期の結晶粒径が300μm以下と小さい場合には、粒成長による粗大化を防ぐために所望の温度に達した後の保持時間を30分以下にすることが望ましい。   When the initial crystal grain size is as small as 300 μm or less, it is desirable that the holding time after reaching a desired temperature is 30 minutes or less in order to prevent coarsening due to grain growth.

以下に、実施例3について説明する。
図2に示すような鍛造プレス機(装置全体は図示せず)に据え込み用金型2を取り付け、初期の結晶粒径が500μmのAZ91Dインゴットを15mmの厚さに切り出し、金型温度250℃、材料温度250℃で加圧することにより、約10mmの厚さまで変形させ内部歪を付与した。
Example 3 will be described below.
The upset die 2 is attached to a forging press as shown in FIG. 2 (the entire apparatus is not shown), an AZ91D ingot having an initial crystal grain size of 500 μm is cut into a thickness of 15 mm, and a die temperature of 250 ° C. By applying pressure at a material temperature of 250 ° C., the film was deformed to a thickness of about 10 mm to give internal strain.

このようにして作製した試料を、鉄製の密閉ケースに装入し、固相率60%の固液共存温度(572℃)に加熱保持後水中に急冷し、固相粒子の粒径を測定した。その結果、固相粒子の粒径は約200μmとなっていた。   The sample thus prepared was placed in an iron sealed case, heated and held at a solid-liquid coexistence temperature (572 ° C.) with a solid phase ratio of 60%, and then rapidly cooled in water, and the particle size of the solid phase particles was measured. . As a result, the particle size of the solid phase particles was about 200 μm.

これは、初期のインゴットでは500μmだった結晶粒径が、固液共存温度までの昇温中に再結晶しているためと考えられる。つまり、合金インゴットに対して内部歪を付与し固液共存状態にすることで、固相粒子の粒径が小さくなり、鍛造性が良好になることがわかる。   This is presumably because the crystal grain size, which was 500 μm in the initial ingot, was recrystallized during the temperature rise to the solid-liquid coexistence temperature. In other words, it can be seen that by applying internal strain to the alloy ingot to make it coexist in a solid-liquid state, the particle size of the solid phase particles is reduced and the forgeability is improved.

このことを確認するために実施例1と同様の鍛造テストを行なったところ、良好な鍛造性を確認した。   In order to confirm this, the same forging test as in Example 1 was performed, and good forgeability was confirmed.

以下、実施例4について説明する。
初期の結晶粒径が500μmのAZ91Dインゴットを内径φ200mmのコンテナ内に装入し、固相率20%、30%、40%、60%、70%の固液共存温度(590℃、587℃、585℃、572℃、558℃)で30mm×30mmの角棒に押出し、固相粒子の粒径を測定した。その結果を表1に示す。
Hereinafter, Example 4 will be described.
An AZ91D ingot having an initial crystal grain size of 500 μm was charged into a container having an inner diameter of φ200 mm, and a solid-liquid coexistence temperature (590 ° C., 587 ° C., 20%, 30%, 40%, 60%, 70%) 585 ° C., 572 ° C., 558 ° C.) and extruded into 30 mm × 30 mm square bars, and the particle size of the solid phase particles was measured. The results are shown in Table 1.

Figure 0004252502
Figure 0004252502

固相率20%の場合は、流動が激しく角状形状に押出すことができなかった。また、固相率70%の場合は、流動が悪く押出すことができなかった。   When the solid phase ratio was 20%, the flow was so intense that it could not be extruded into a square shape. When the solid phase ratio was 70%, the flow was so bad that extrusion could not be performed.

固相率30%、40%、60%の場合は、角状に押出すことができ、その組識を観察した結果、表1の備考欄に示すように、固相粒子が球状化された固液共存状態のいわゆるスラリー状態の組識であった。また、その固相粒子は、溶解に伴う粒径減少と押出し時のせん断力により、初期の結晶粒径に比べて、微細になっていた。   When the solid phase ratio was 30%, 40%, or 60%, it was possible to extrude into a square shape. As a result of observing the structure, the solid phase particles were spheroidized as shown in the remarks column of Table 1. It was an organization of so-called slurry in a solid-liquid coexistence state. Further, the solid phase particles were finer than the initial crystal particle size due to the particle size reduction accompanying dissolution and the shearing force during extrusion.

これらの押出し材を用いて実施例1と同様の鍛造テストを行なったところ、良好な鍛造性を確認した。   When these forging materials were used, the same forging test as in Example 1 was performed, and good forgeability was confirmed.

本実施例では、押出し比約35で押出しを行ない、このような結果が得られたが、押出し比を変更した場合は押出し可能な固相率は変化するため、本実施例が本発明を限定するものでないことは言うまでもない。   In this example, extrusion was performed at an extrusion ratio of about 35, and such a result was obtained. However, when the extrusion ratio is changed, the extrudable solid phase ratio changes, so this example limits the present invention. It goes without saying that it is not what you do.

鋳造用マグネシウム合金AZ91Dの温度−固相率を測定した結果を示す図である。It is a figure which shows the result of having measured the temperature-solid phase rate of magnesium alloy AZ91D for casting. 鍛造装置の成形部分を示す模式図である。It is a schematic diagram which shows the shaping | molding part of a forging apparatus. 本発明の成形に用いた鍛造成形品を示す模式図である。It is a schematic diagram which shows the forge molded product used for shaping | molding of this invention. 鍛造時の固相率による鍛造性の違いを説明するための図である。It is a figure for demonstrating the difference in forgeability by the solid-phase rate at the time of forging. 未処理の合金インゴットと固液共存処理をしたインゴットの溶解に要する時間を比較説明するための図である。It is a figure for comparing and explaining the time required for melt | dissolution of the unprocessed alloy ingot and the ingot which carried out the solid-liquid coexistence process. 初期の結晶粒径と成形時の固相率による鍛造成形性の違いを説明するための図である。It is a figure for demonstrating the difference of the forge formability by the initial crystal grain size and the solid-phase rate at the time of shaping | molding. 固液共存温度で保持した場合の初期の結晶粒径による固相粒径の変化を示す図である。It is a figure which shows the change of the solid-phase particle size by the initial crystal grain size at the time of hold | maintaining at a solid-liquid coexistence temperature.

符号の説明Explanation of symbols

1 マグネシウム合金鍛造試験片
2 金型
1 Magnesium alloy forging specimen 2 Mold

Claims (1)

初期の結晶粒径が300μm以上のマグネシウム合金を固相率20〜60%の固液共存温度に30分以上保持してその結晶粒径を小さくして、その後、固相率30〜80%の固液共存温度に加熱保持した状態で成形用金型内に装入し加圧成形することを特徴とするマグネシウム合金成形部品の製造方法。   A magnesium alloy having an initial crystal grain size of 300 μm or more is maintained at a solid-liquid coexistence temperature of a solid phase ratio of 20 to 60% for 30 minutes or more to reduce the crystal grain size, and then the solid phase ratio of 30 to 80%. A method for producing a magnesium alloy molded part, comprising charging into a molding die while being heated and held at a solid-liquid coexisting temperature, followed by pressure molding.
JP2004186615A 2004-06-24 2004-06-24 Magnesium alloy molded part manufacturing method Expired - Fee Related JP4252502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004186615A JP4252502B2 (en) 2004-06-24 2004-06-24 Magnesium alloy molded part manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004186615A JP4252502B2 (en) 2004-06-24 2004-06-24 Magnesium alloy molded part manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP5342999A Division JP2000246414A (en) 1999-03-02 1999-03-02 Manufacture of magnesium alloy formed parts

Publications (2)

Publication Number Publication Date
JP2004291093A JP2004291093A (en) 2004-10-21
JP4252502B2 true JP4252502B2 (en) 2009-04-08

Family

ID=33411384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004186615A Expired - Fee Related JP4252502B2 (en) 2004-06-24 2004-06-24 Magnesium alloy molded part manufacturing method

Country Status (1)

Country Link
JP (1) JP4252502B2 (en)

Also Published As

Publication number Publication date
JP2004291093A (en) 2004-10-21

Similar Documents

Publication Publication Date Title
US9775647B2 (en) Magnesium alloy
RU2463371C2 (en) Magnesium-containing high-silica aluminium alloys used as structural materials and method of their manufacturing
JP3861720B2 (en) Forming method of magnesium alloy
JP2000514717A (en) Semi-solid molding processing
CN106086546A (en) The low-pressure casting process of aluminium alloy wheel hub
CN108097854B (en) High-uniformity short-flow forming method for large metal component
JPH11104800A (en) Material for plastic working light metal alloy and manufacture of plastic working member
JP2018202479A (en) Diploid cast forging method for solid-liquid transition-controlled aluminum alloy
Xia et al. Hot forging process design, microstructure, and mechanical properties of cast Mg–Zn–Y–Zr magnesium alloy tank cover
JP2004322206A (en) Method for manufacturing magnesium alloy billet for semi-solidified forming
JP6385683B2 (en) Al alloy casting and manufacturing method thereof
JP2000246414A (en) Manufacture of magnesium alloy formed parts
JP4252502B2 (en) Magnesium alloy molded part manufacturing method
Ning et al. Characterization of the secondary phases in spray formed Al–Zn–Mg–Cu–Sc–Zr alloy during hot compression
AU2016211088B2 (en) Process for obtaining a low silicon aluminium alloy part
Wang et al. Effect of rolling-remelting SIMA process on semi-solid microstructure of ZCuSn10 alloy
RU2371512C1 (en) Method of product receiving from heatproof nickel alloy
JP2005029871A (en) Magnesium alloy sheet material and manufacturing method therefor
JP2001509085A (en) Semi-solid metal forming method
Wang et al. Microstructure evolution and mechanical properties of ZK60 magnesium alloy produced by SSTT and RAP route in semi-solid state
JPH06297127A (en) Manufacture of member made of light alloy
Martinec et al. Using of technology semisolid squeeze casting by different initial states of material
Freitas et al. Microstructure, material flow and tensile properties of A356 alloy thixoformed parts
EP0139168A1 (en) Fine grained metal composition
Zhao et al. Effect of Near-Liquidus Squeeze Casting Pressure on Microstructure and Mechanical Property of AZ91D Alloy Differential Support. Materials 2023, 16, 4020

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071031

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081205

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090121

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees