JP2000246414A - Manufacture of magnesium alloy formed parts - Google Patents

Manufacture of magnesium alloy formed parts

Info

Publication number
JP2000246414A
JP2000246414A JP5342999A JP5342999A JP2000246414A JP 2000246414 A JP2000246414 A JP 2000246414A JP 5342999 A JP5342999 A JP 5342999A JP 5342999 A JP5342999 A JP 5342999A JP 2000246414 A JP2000246414 A JP 2000246414A
Authority
JP
Japan
Prior art keywords
solid
magnesium alloy
forming
phase ratio
solid phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5342999A
Other languages
Japanese (ja)
Inventor
Takeshi Matsuda
健 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP5342999A priority Critical patent/JP2000246414A/en
Publication of JP2000246414A publication Critical patent/JP2000246414A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To easily and safety obtain the thin thickness formation and the uneven thickness formation at high production efficiency by charging a magnesium alloy having difficult-to-plastic work and difficult-to-forging work into a metallic mold for forming under state of heating-holding to the solid-liquid coexisting temp. in a specific-phase ratio and pressurize-forming. SOLUTION: The magnesium alloy under the state of heating-holding to the solid-liquid coexisting temp. of 30-80% solid-phase ratio, is charged into the metallic mold for forming in a forming press machine desirably heated to about 250 deg.C, and pressurize-formed. In this way, the forged-forming product of the magnesium alloy is easily obtd. At this time, as the magnesium alloy, the one which is rapidly cooled and solidified after heating and holding once to the solid-liquid coexisting temp. of 30-80% solid-phase ratio, is used and thus, reheating time at the pressurize-forming is shortened, or the forginability is improved by forming the crystal grain diameter at the initial stage to <=300 μm or the solid-phase grain is made fine with the recrystallization at the heat-up by giving the internal strain with the pressurize-deformation and thus, the forge- formability can be improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はマグネシウム合金の
成形部品の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a magnesium alloy molded part.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】マグ
ネシウム合金は、実用合金の中で最も軽く、樹脂材料に
代わる材料として、近年、電子機器筐体等に採用されて
いる。
2. Description of the Related Art Magnesium alloys are the lightest among practical alloys and have recently been employed in electronic equipment housings and the like as a material that can replace resin materials.

【0003】一般的に使用されているマグネシウム合金
は、hcp結晶構造のマグネシウムα相(以下α相と称
す)であるため、塑性加工が難しく、成形方法として
は、ダイキャスト法、チキソキャスト法、熱間プレス法
などが採用されている。
[0003] A commonly used magnesium alloy is a magnesium α phase having an hcp crystal structure (hereinafter referred to as α phase), so that it is difficult to carry out plastic working, and the forming method is a die casting method, a thixo casting method, or the like. A hot press method or the like is employed.

【0004】しかし、ダイキャスト法では、マグネシウ
ムの溶湯を扱わなければならず、燃焼の危険性を伴う問
題があり、防燃ガスとして用いられている6フッ化硫黄
は地球温暖化ガスのため、使用できなくなってきてい
る。
[0004] However, in the die casting method, it is necessary to handle a molten magnesium, and there is a problem with the danger of burning. Sulfur hexafluoride used as a flame retardant gas is a global warming gas. It is becoming unusable.

【0005】また、チキソキャスト法では、合金を半溶
融或いは半凝固状態で機械的攪拌を与え、固相を球状化
させたスラリーを得る必要があるため生産効率が悪く、
また、空気等攪拌雰囲気を巻き込むため燃焼の危険性も
伴うといった問題がある。さらには、切削チップを用い
ることでスラリーを必要としないチクソモールド法で
も、現状、成形時の固相率が0に近く、実質的に溶湯を
扱っている。
Further, in the thixocast method, it is necessary to apply mechanical stirring to the alloy in a semi-molten or semi-solid state to obtain a slurry in which the solid phase is made spherical, so that the production efficiency is poor.
In addition, there is a problem that danger of combustion is involved because a stirring atmosphere such as air is involved. Furthermore, even in the thixomolding method which does not require a slurry by using a cutting tip, the solid phase ratio at the time of molding is close to 0 at present, and the molten metal is substantially handled.

【0006】さらには、ダイキャスト法、チクソキャス
ト法等の射出成形法では、薄肉化に対応し難く、また、
成形後に、バリ取り、表面仕上などの2次加工が必要で
あるため、生産効率が悪いという問題がある。
Furthermore, injection molding methods such as a die casting method and a thixo casting method are difficult to cope with thinning.
Since secondary processing such as deburring and surface finishing is required after molding, there is a problem that production efficiency is poor.

【0007】また、熱間プレス等のプレス加工では、偏
肉構造をとることができず、部分的に強度が必要な場合
でも全体を厚く設定しなければならず、軽量化を目的と
した場合には適応し難い。また、ボス等の機構部を作り
込むことができないため、適用用途も限られていた。
[0007] In press working such as hot pressing, an uneven thickness structure cannot be obtained, and even when partial strength is required, the entire structure must be thickened. Difficult to adapt to. In addition, since a mechanical portion such as a boss cannot be formed, its application is limited.

【0008】そこで、一部では鍛造可能なマグネシウム
合金も開発され、その鍛造も実用化されているものの、
一回の鍛造での変形率は小さく複数回の鍛造が必要とな
り、薄肉の、例えば、電子機器の筐体の様な形状を成形
するのは難しかった。
[0008] For this reason, forgeable magnesium alloys have been developed in some parts, and the forging has been put to practical use.
The deformation rate in one forging is small, and a plurality of forgings are required, and it is difficult to form a thin wall, for example, a shape like a housing of an electronic device.

【0009】また、特開平6―246384号公報に
は、マグネシウム合金素材を半溶融状態に加熱処理し鍛
造成形する方法が開示されている。この方法では、成形
時の固相率等の明示がなく、半溶融状態すなわち固相率
をVfとあらわすと0<Vf<1の範囲にて加工するこ
とになる。
Further, Japanese Patent Application Laid-Open No. 6-246384 discloses a method in which a magnesium alloy material is subjected to a heat treatment in a semi-molten state and forged. In this method, the solid phase ratio or the like at the time of molding is not specified, and if the semi-molten state, that is, the solid phase ratio is represented by Vf, processing is performed in the range of 0 <Vf <1.

【0010】しかし、上記方法では、固相率が少なすぎ
るとほとんど溶融状態になるため、取り扱いが困難にな
ることや、鍛造成形時に流動性が良すぎるため、金型キ
ャビティ内に充填される前に飛散してしまうという問題
があり、また、固相率が高すぎる場合には、塑性変形能
が低く鍛造成形できないという問題もあった。
However, in the above method, if the solid phase ratio is too low, the solid state becomes almost molten, so that the handling becomes difficult, and the flowability during forging is too good. When the solid fraction is too high, there is also a problem that the plastic deformability is low and forging cannot be performed.

【0011】[0011]

【発明を解決するための手段】そこで、本発明の上記課
題の解決を目的として成されたものであって、請求項1
記載の発明は、マグネシウム合金を固相率30〜80%
の固液共存温度に加熱保持した状態で成形用金型内に装
入し加圧成形することを特徴とするマグネシウム合金成
形部品の製造方法である。
SUMMARY OF THE INVENTION Accordingly, the present invention has been made to solve the above-mentioned problems of the present invention.
In the invention described, the magnesium alloy has a solid phase ratio of 30 to 80%.
A method for producing a magnesium alloy molded part, wherein the molded part is charged into a molding die while being heated and held at the solid-liquid coexistence temperature and then subjected to pressure molding.

【0012】また、請求項2記載の発明は、前記マグネ
シウム合金は、一度、30〜80%の固液共存温度に加
熱保持させた後、急冷凝固させたものであることを特徴
とする請求項1記載のマグネシウム合金成形部品の製造
方法である。
Further, the invention according to claim 2 is characterized in that the magnesium alloy is once heated and maintained at a solid-liquid coexistence temperature of 30 to 80% and then rapidly solidified. 2. A method for producing a magnesium alloy molded part according to item 1.

【0013】また、請求項3記載の発明は、前記マグネ
シウム合金の初期結晶粒径が300μm以下であること
を特徴とする請求項1または2記載のマグネシウム合金
成形部品の製造方法である。
The invention according to claim 3 is the method according to claim 1 or 2, wherein the initial crystal grain size of the magnesium alloy is 300 μm or less.

【0014】また、請求項4記載の発明は、前記マグネ
シウム合金は、加圧変形により、内部歪を付与したもの
であることを特徴とする請求項1記載のマグネシウム合
金成形部品の製造方法である。
According to a fourth aspect of the present invention, there is provided the method of manufacturing a magnesium alloy molded part according to the first aspect, wherein the magnesium alloy is given an internal strain by pressurized deformation. .

【0015】また、請求項5記載の発明は、前記マグネ
シウム合金は、固相率30〜80%の固液共存温度に加
熱保持した状態で、板状または柱状に押し出されたもの
であることを特徴とする請求項1記載のマグネシウム合
金成形部品の製造方法である。
According to a fifth aspect of the present invention, the magnesium alloy is extruded into a plate or a column while being heated and maintained at a solid-liquid coexistence temperature having a solid phase ratio of 30 to 80%. A method for manufacturing a magnesium alloy molded part according to claim 1, wherein:

【0016】[0016]

【発明の実施の形態】以下、本発明について図をもとに
詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the drawings.

【0017】ここでは、一般的に塑性加工し難いと言わ
れている鋳造用マグネシウム合金AZ91D(以下AZ
91Dと称す)を用いているが、これに限定されるもの
ではなく、他のマグネシウム合金であっても構わない。 [実施例1]以下に、実施例1について説明する。
Here, a casting magnesium alloy AZ91D (hereinafter referred to as AZ), which is generally considered to be difficult to perform plastic working.
91D), but is not limited to this, and other magnesium alloys may be used. Embodiment 1 Embodiment 1 will be described below.

【0018】まず、AZ91Dの温度−固相率の関係を
調べるため、AZ91Dを700℃の完全溶融状態とし
た後、0.2℃/秒の冷却速度で種々の温度まで冷却
し、水中に急冷することにより、各温度における組識を
凍結したまま凝固させた。そして、その凝固組識を観察
測定し、温度−固相率の関係を求めた。その結果を図1
に示す。
First, in order to examine the relationship between the temperature and the solid fraction of AZ91D, AZ91D was completely melted at 700 ° C., then cooled to various temperatures at a cooling rate of 0.2 ° C./sec, and rapidly cooled in water. As a result, the tissue at each temperature was frozen and solidified. Then, the coagulated tissue was observed and measured, and the relationship between the temperature and the solid fraction was obtained. Figure 1 shows the results.
Shown in

【0019】次に、さまざまな固相率を有するマグネシ
ウム合金の鍛造テストを行う。
Next, forging tests are performed on magnesium alloys having various solid fractions.

【0020】上記図1の結果から、20%、30%、4
0%、60%、80%、90%、100%の各固相率の
マグネシウム合金の加熱温度(固液共存温度)は、それ
ぞれ590℃、587℃、585℃、572℃、535
℃、493℃、450℃であることが分かる。
From the results shown in FIG. 1, 20%, 30%, 4%
The heating temperature (solid-liquid coexistence temperature) of the magnesium alloy having each of the solid fractions of 0%, 60%, 80%, 90%, and 100% is 590 ° C, 587 ° C, 585 ° C, 572 ° C, and 535 ° C, respectively.
It turns out that it is C, 493C, and 450C.

【0021】そこで、AZ91Dインゴットを30mm
×30mm×20mmtに切り出した鍛造試験片1を、
上記各温度に加熱保持し、図2のような鍛造プレス機
(装置全体は図示せず)を用いて、成形テスト用金型2
に装入し加圧することにより、図3に示すような鍛造成
形品を作製した。この時の金型温度は250℃、材料温
度は各固相率の固液共存温度とした。
Therefore, the AZ91D ingot is set to 30 mm
A forged test piece 1 cut into a size of 30 mm x 20 mmt is
Heating and holding at each of the above-mentioned temperatures, and using a forging press machine as shown in FIG.
And pressurized to produce a forged product as shown in FIG. The mold temperature at this time was 250 ° C., and the material temperature was the solid-liquid coexistence temperature of each solid phase ratio.

【0022】そして、鍛造成形品の天面の厚みを測定
し、固相率−天面厚みの関係を調べた。その結果を図4
に示す。
Then, the thickness of the top surface of the forged product was measured, and the relationship between the solid fraction and the thickness of the top surface was examined. The result is shown in FIG.
Shown in

【0023】図4から明らかなように、固相率の低下に
伴い、充分な流動が得られ、鍛造後の厚みが設計値に等
しくなっている。しかし、固相率が20%以下の場合
は、ほぼ液体となるため金型にセットすることができな
かった。また、固相率が80%を超えた場合には、加圧
時に割れが生じ、鍛造成形することができなかった。
As is apparent from FIG. 4, a sufficient flow is obtained with a decrease in the solid fraction, and the thickness after forging becomes equal to the design value. However, when the solid phase ratio was 20% or less, it could not be set in a mold because it was almost liquid. On the other hand, when the solid phase ratio exceeded 80%, cracks occurred during pressurization, and forging could not be performed.

【0024】次に、所望の固相率の固液共存温度を保持
した時の所望の固相率に到達するまでの時間を測定し
た。
Next, when the solid-liquid coexistence temperature of the desired solid fraction was maintained, the time required to reach the desired solid fraction was measured.

【0025】まず、上記と同寸法のAZ91Dインゴッ
トを鉄製の密閉ケースに装入し、熱処理炉にて固相率約
30%の固液共存温度(587℃)に20分保持した後
水中にて急冷した。このようにして作製した固液共存処
理試料と、通常のインゴットを同寸法に切り出した試料
とを、鉄製の密閉ケースに封入し、再度590℃まで加
熱し、所定時間保持した後水中に急冷し、固相率を測定
することにより保持時間と固相率の関係を調べた。その
結果を図5に示す。
First, an AZ91D ingot of the same dimensions as above was placed in a closed case made of iron, kept in a heat treatment furnace at a solid-liquid coexistence temperature (587 ° C.) of about 30% solid phase for 20 minutes, and then in water. Quenched. The solid-liquid coexistence treated sample thus prepared and a sample obtained by cutting out a normal ingot into the same size are sealed in an iron closed case, heated again to 590 ° C., held for a predetermined time, and then rapidly cooled in water. The relationship between the retention time and the solid phase ratio was examined by measuring the solid phase ratio. The result is shown in FIG.

【0026】図5から明らかなように、固液共存処理を
施した試料は短い保持時間で所望の固相率に達すること
が分かる。つまり、鍛造前の固液共存状態までの加熱時
間を短くすることができるため、鍛造用に切り出す前の
インゴットに対して固液共存処理を施した後試料を切り
出すことで、生産性を向上することができる。 [実施例2]以下に、実施例2について説明する。
As is apparent from FIG. 5, the sample subjected to the solid-liquid coexistence treatment reaches a desired solid phase ratio in a short holding time. That is, since the heating time until the solid-liquid coexistence state before forging can be shortened, the productivity is improved by cutting out the sample after performing the solid-liquid coexistence treatment on the ingot before cutting out for forging. be able to. Embodiment 2 Embodiment 2 will be described below.

【0027】まず、鍛造時の固相粒子の粒径と鍛造成形
性の関係を調べた。
First, the relationship between the particle size of the solid phase particles during forging and the forging formability was examined.

【0028】初期の結晶粒径が100μm、300μ
m、500μmの合金インゴットを30mm×30mm
×20mmtに切り出し、それぞれを固相率80%、6
0%、40%の各固液共存温度(535℃、572℃、
585℃)に加熱保持し、鍛造試験片1とした。これら
の鍛造試験片1を図2に示す鍛造プレス機の成形テスト
用金型2の間に装入し加圧成形することにより、図3に
示すような鍛造成形品を作成した。この時の金型温度は
250℃、材料温度は各固相率の固液共存温度とした。
Initial crystal grain size is 100 μm, 300 μm
m, 500μm alloy ingot 30mm x 30mm
× 20 mmt, each having a solid fraction of 80%, 6
0%, 40% solid-liquid coexistence temperature (535 ° C, 572 ° C,
(585 ° C.), thereby obtaining a forged test piece 1. These forged test pieces 1 were inserted between the forming test dies 2 of the forging press machine shown in FIG. 2 and pressed to form a forged product as shown in FIG. The mold temperature at this time was 250 ° C., and the material temperature was the solid-liquid coexistence temperature of each solid phase ratio.

【0029】そして、得られた成形品の天面の厚みを測
定した。その結果を図6に示す。
Then, the thickness of the top surface of the obtained molded product was measured. FIG. 6 shows the result.

【0030】図6から明らかなように、固相率40%の
時には、何れの粒径の試料も鍛造後の厚みは設計値とな
り、差は見られなかったが、固相率60%では、粒径5
00μmの試料が若干厚くなり、固相率80%では、固
相粒子の粒径が大きくなるほど、厚みが厚くなることが
わかる。したがって、固相率が80%で、且つ、初期の
結晶粒径が大きい場合良好な鍛造性が得られないため、
所望の設計厚さに成形するには、初期の結晶粒径を30
0μm以下にすることが必要である。
As is clear from FIG. 6, when the solid phase ratio was 40%, the thickness after forging became equal to the designed value for any sample of any particle size, and no difference was observed. Particle size 5
It can be seen that the thickness of the sample having a thickness of 00 μm is slightly increased, and that the solid phase ratio is 80%. Therefore, if the solid fraction is 80% and the initial crystal grain size is large, good forgeability cannot be obtained,
To obtain the desired design thickness, the initial crystal grain size should be 30
It is necessary that the thickness be 0 μm or less.

【0031】次に、初期の合金インゴットの結晶粒径が
固液共存状態に保持することでどのように変化するかを
調べた。
Next, it was investigated how the crystal grain size of the initial alloy ingot changes by maintaining the solid-liquid coexistence state.

【0032】詳しくは、初期の結晶粒径が100μm、
300μm、500μmに調整された合金インゴットの
試料を鉄製の密閉ケースに装入し、それぞれの固相率
(60%、40%、20%)の固液共存温度(572
℃、585℃、590℃)に達した後、所定時間保持し
水中にて急冷し、組識観察を行い、固相粒子の粒径が固
液共存処理時にどのように変化するかを調べた。その結
果を、図7に示す。
More specifically, the initial crystal grain size is 100 μm,
Samples of the alloy ingot adjusted to 300 μm and 500 μm were placed in an iron closed case, and the solid-liquid coexistence temperature (572%) of each solid phase ratio (60%, 40%, 20%) was set.
C., 585.degree. C., 590.degree. C.), hold for a predetermined time, quench in water, observe tissue, and examine how the particle size of solid phase particles changes during solid-liquid coexistence treatment. . The result is shown in FIG.

【0033】図7から明らかなように、初期の結晶粒径
が100μmの場合には、何れの固相率の場合でも保持
時間と共に固相粒子の結晶粒径は増加している。特に固
相率が60%の時には増加の度合いが大きいことが分か
る。
As is clear from FIG. 7, when the initial crystal grain size is 100 μm, the crystal grain size of the solid phase particles increases with the retention time at any solid phase ratio. In particular, when the solid phase ratio is 60%, the degree of increase is large.

【0034】また、初期の結晶粒径が500μmの場合
には、何れの固相率の場合も溶解により粒径が減少した
後、固相率60%保持の場合、粒径にほとんど変化な
く、固相率40、20%の場合には、若干の減少傾向に
あることがわかる。
When the initial crystal grain size is 500 μm, the grain size is reduced by dissolution at any solid phase ratio, and when the solid phase ratio is maintained at 60%, there is almost no change in the grain size. In the case of the solid phase ratio of 40 and 20%, it can be seen that there is a slight decreasing tendency.

【0035】また、初期の結晶粒径が300μmの場合
には、何れの固相率に保持した場合でも、粒径の変化は
ほとんどなかった。
When the initial crystal grain size was 300 μm, there was almost no change in the grain size regardless of the solid phase ratio.

【0036】つまり、良好な鍛造性を得るためには、初
期の結晶粒径が300μm以上の場合には、何れの固相
率においても、所望の温度に達した後30分以上保持す
ることが必要であることがわかる。
In other words, in order to obtain good forgeability, when the initial crystal grain size is 300 μm or more, it is necessary to maintain the solid phase ratio for at least 30 minutes after reaching the desired temperature. It turns out that it is necessary.

【0037】また、初期の結晶粒径が300μm以下と
小さい場合には、粒成長による粗大化を防ぐために所望
の温度に達した後の保持時間を30分以下にすることが
望ましい。 [実施例3]以下に、実施例3について説明する。
When the initial crystal grain size is as small as 300 μm or less, it is desirable to set the holding time after reaching a desired temperature to 30 minutes or less in order to prevent coarsening due to grain growth. Third Embodiment A third embodiment will be described below.

【0038】図2に示すような鍛造プレス機(装置全体
は図示せず)に据え込み用金型2を取り付け、初期の結
晶粒径が500μmのAZ91Dインゴットを15mm
の厚さに切り出し、金型温度250℃、材料温度250
℃で加圧することにより、約10mmの厚さまで変形さ
せ内部歪を付与した。
The upsetting die 2 was attached to a forging press (the entire apparatus is not shown) as shown in FIG. 2, and an AZ91D ingot having an initial crystal grain size of 500 μm was placed in a size of 15 mm.
Cut to a thickness of 250 mm, mold temperature 250 ° C, material temperature 250
By pressurizing at ° C., it was deformed to a thickness of about 10 mm to give internal strain.

【0039】このようにして作製した試料を、鉄製の密
閉ケースに装入し、固相率60%の固液共存温度(57
2℃)に加熱保持後水中に急冷し、固相粒子の粒径を測
定した。その結果、固相粒子の粒径は約200μmとな
っていた。
The sample thus prepared was placed in a closed case made of iron, and the solid-liquid coexistence temperature (57%) having a solid phase ratio of 60% was measured.
(2 ° C.) and then rapidly cooled in water, and the particle size of the solid particles was measured. As a result, the particle size of the solid particles was about 200 μm.

【0040】これは、初期のインゴットでは500μm
だった結晶粒径が、固液共存温度までの昇温中に再結晶
しているためと考えられる。つまり、合金インゴットに
対して内部歪を付与し固液共存状態にすることで、固相
粒子の粒径が小さくなり、鍛造性が良好になることがわ
かる。
This is 500 μm for the initial ingot.
It is considered that the crystal grain size was recrystallized during the heating up to the solid-liquid coexistence temperature. That is, it can be seen that, by imparting an internal strain to the alloy ingot so as to be in a solid-liquid coexistence state, the particle size of the solid phase particles is reduced, and the forgeability is improved.

【0041】このことを確認するために実施例1と同様
の鍛造テストを行なったところ、良好な鍛造性を確認し
た。 [実施例4]以下、実施例4について説明する。
In order to confirm this, a forging test similar to that of Example 1 was performed, and good forgeability was confirmed. Embodiment 4 Hereinafter, Embodiment 4 will be described.

【0042】初期の結晶粒径が500μmのAZ91D
インゴットを内径φ200mmのコンテナ内に装入し、
固相率20%、30%、40%、60%、70%の固液
共存温度(590℃、587℃、585℃、572℃、
558℃)で30mm×30mmの角棒に押出し、固相
粒子の粒径を測定した。その結果を表1に示す。
AZ91D having an initial crystal grain size of 500 μm
The ingot is charged in a container with an inner diameter of 200 mm,
Solid-liquid coexistence temperature of 20%, 30%, 40%, 60%, 70% of solid phase ratio (590 ° C, 587 ° C, 585 ° C, 572 ° C,
(558 ° C.) and extruded into a 30 mm × 30 mm square bar, and the particle size of the solid particles was measured. Table 1 shows the results.

【0043】[0043]

【表1】 固相率20%の場合は、流動が激しく角状形状に押出す
ことができなかった。また、固相率70%の場合は、流
動が悪く押出すことができなかった。
[Table 1] When the solid phase ratio was 20%, the flow was so strong that it could not be extruded into a square shape. When the solid fraction was 70%, extrusion was not possible due to poor flow.

【0044】固相率30%、40%、60%の場合は、
角状に押出すことができ、その組識を観察した結果、表
1の備考欄に示すように、固相粒子が球状化された固液
共存状態のいわゆるスラリー状態の組識であった。ま
た、その固相粒子は、溶解に伴う粒径減少と押出し時の
せん断力により、初期の結晶粒径に比べて、微細になっ
ていた。
In the case of solid phase ratios of 30%, 40% and 60%,
As a result of observing the structure, as shown in the remarks column of Table 1, the structure was a so-called slurry state in which solid phase particles were spheroidized and coexisted in a solid-liquid state. Further, the solid phase particles were finer than the initial crystal particle size due to the reduction in particle size due to dissolution and the shearing force during extrusion.

【0045】これらの押出し材を用いて実施例1と同様
の鍛造テストを行なったところ、良好な鍛造性を確認し
た。
When a forging test similar to that of Example 1 was performed using these extruded materials, good forgeability was confirmed.

【0046】本実施例では、押出し比約35で押出しを
行ない、このような結果が得られたが、押出し比を変更
した場合は押出し可能な固相率は変化するため、本実施
例が本発明を限定するものでないことは言うまでもな
い。
In this embodiment, extrusion was performed at an extrusion ratio of about 35, and such a result was obtained. However, when the extrusion ratio was changed, the ratio of solid phase that can be extruded was changed. Needless to say, it does not limit the invention.

【0047】[0047]

【発明の効果】以上説明したように、請求項1記載の発
明によれば、マグネシウム合金を固相率30〜80%の
固液共存温度に加熱保持した状態で成形用金型内に装入
し加圧成形することにより、容易に鍛造成形品を得るこ
とができる。
As described above, according to the first aspect of the present invention, a magnesium alloy is charged into a molding die while being heated and maintained at a solid-liquid coexistence temperature of 30 to 80% solids fraction. By performing pressure molding, a forged product can be easily obtained.

【0048】また、請求項2記載の発明によれば、前記
マグネシウム合金は、一度、30〜80%の固液共存温
度に加熱保持させた後、急冷凝固させたものであるの
で、加圧成形時に再加熱する際、所望の固相率に短時間
で到達することができ、処理速度の向上、生産性の向上
が図れる。
According to the second aspect of the present invention, the magnesium alloy is heated and maintained once at a solid-liquid coexistence temperature of 30 to 80%, and then rapidly solidified. When reheating sometimes, it is possible to reach a desired solid phase ratio in a short time, thereby improving the processing speed and the productivity.

【0049】また、請求項3記載の発明によれば、前記
マグネシウム合金の初期結晶粒径が300μm以下とす
ることで、鍛造性を向上することができる。
According to the third aspect of the present invention, the forgeability can be improved by setting the initial crystal grain size of the magnesium alloy to 300 μm or less.

【0050】また、請求項4記載の発明によれば、前記
マグネシウム合金は、加圧変形により、内部歪を付与し
たものであるので、昇温時の再結晶により固相粒子を微
細にすることができ、鍛造成形性を向上させることがで
きる。
According to the fourth aspect of the present invention, since the magnesium alloy is given an internal strain by deformation under pressure, the solid phase particles are made finer by recrystallization at a temperature rise. And forgeability can be improved.

【0051】また、請求項5記載の発明によれば、前記
マグネシウム合金は、固相率30〜80%の固液共存温
度に加熱保持した状態で、板状または柱状に押し出され
たものであるので、押出し時のせん断力により固相粒子
を微細にすることができ、また、加圧成形時の仕込み形
状への切り出し工程を簡略化できる。
According to the fifth aspect of the present invention, the magnesium alloy is extruded into a plate or a column while being heated and maintained at a solid-liquid coexistence temperature having a solid phase ratio of 30 to 80%. Therefore, the solid phase particles can be made finer by the shearing force at the time of extrusion, and the step of cutting into the charged shape at the time of pressure molding can be simplified.

【0052】[0052]

【図面の簡単な説明】[Brief description of the drawings]

【0053】[0053]

【図1】鋳造用マグネシウム合金AZ91Dの温度−固
相率を測定した結果を示す図である。
FIG. 1 is a view showing the results of measuring the temperature-solid fraction of a magnesium alloy for casting AZ91D.

【0054】[0054]

【図2】鍛造装置の成形部分を示す模式図である。FIG. 2 is a schematic view showing a forming part of a forging device.

【0055】[0055]

【図3】本発明の成形に用いた鍛造成形品を示す模式図
である。
FIG. 3 is a schematic diagram showing a forged product used for molding of the present invention.

【0056】[0056]

【図4】鍛造時の固相率による鍛造性の違いを説明する
ための図である。
FIG. 4 is a view for explaining a difference in forgeability due to a solid phase ratio during forging.

【0057】[0057]

【図5】未処理の合金インゴットと固液共存処理をした
インゴットの溶解に要する時間を比較説明するための図
である。
FIG. 5 is a diagram for comparing and explaining the time required for melting an untreated alloy ingot and an ingot subjected to solid-liquid coexistence treatment.

【0058】[0058]

【図6】固液共存温度で保持した場合の初期の結晶粒径
による固相粒径の変化を示す図である。
FIG. 6 is a diagram showing a change in solid phase particle size due to an initial crystal particle size when the temperature is maintained at a solid-liquid coexistence temperature.

【0059】[0059]

【図7】初期の結晶粒径と成形時の固相率による鍛造成
形性の違いを説明するための図である。
FIG. 7 is a diagram for explaining a difference in forging formability depending on an initial crystal grain size and a solid phase ratio at the time of forming.

【0060】[0060]

【符号の説明】[Explanation of symbols]

1 マグネシウム合金鍛造試験片 2 金型 1 Magnesium alloy forging test piece 2 Mold

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 611 C22F 1/00 611 623 623 624 624 630 630K 681 681 683 683 690 690 694 694B Continuation of the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (Reference) C22F 1/00 611 C22F 1/00 611 623 623 624 624 630 630 630K 681 681 683 683 690 690 694 694B

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 マグネシウム合金を固相率30〜80%
の固液共存温度に加熱保持した状態で成形用金型内に装
入し加圧成形することを特徴とするマグネシウム合金成
形部品の製造方法。
1. A magnesium alloy having a solid phase ratio of 30 to 80%.
A method for producing a magnesium alloy molded part, wherein the molded part is charged into a molding die while being heated and held at the solid-liquid coexistence temperature and then subjected to pressure molding.
【請求項2】 前記マグネシウム合金は、一度、30〜
80%の固液共存温度に加熱保持させた後、急冷凝固さ
せたものであることを特徴とする請求項1記載のマグネ
シウム合金成形部品の製造方法。
2. The magnesium alloy according to claim 1, wherein
The method for producing a magnesium alloy molded component according to claim 1, wherein the component is heated and maintained at a solid-liquid coexistence temperature of 80% and then rapidly solidified.
【請求項3】 前記マグネシウム合金の初期結晶粒径が
300μm以下であることを特徴とする請求項1または
2記載のマグネシウム合金成形部品の製造方法。
3. The method according to claim 1, wherein an initial crystal grain size of the magnesium alloy is 300 μm or less.
【請求項4】 前記マグネシウム合金は、加圧変形によ
り、内部歪を付与したものであることを特徴とする請求
項1記載のマグネシウム合金成形部品の製造方法。
4. The method for manufacturing a magnesium alloy molded part according to claim 1, wherein said magnesium alloy is given an internal strain by pressurized deformation.
【請求項5】 前記マグネシウム合金は、固相率30〜
80%の固液共存温度に加熱保持した状態で、板状また
は柱状に押し出されたものであることを特徴とする請求
項1記載のマグネシウム合金成形部品の製造方法。
5. The method according to claim 1, wherein the magnesium alloy has a solid content of 30 to 30%.
The method for producing a magnesium alloy molded part according to claim 1, wherein the part is extruded in a plate shape or a column shape while being heated and held at a solid-liquid coexistence temperature of 80%.
JP5342999A 1999-03-02 1999-03-02 Manufacture of magnesium alloy formed parts Pending JP2000246414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5342999A JP2000246414A (en) 1999-03-02 1999-03-02 Manufacture of magnesium alloy formed parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5342999A JP2000246414A (en) 1999-03-02 1999-03-02 Manufacture of magnesium alloy formed parts

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004186615A Division JP4252502B2 (en) 2004-06-24 2004-06-24 Magnesium alloy molded part manufacturing method

Publications (1)

Publication Number Publication Date
JP2000246414A true JP2000246414A (en) 2000-09-12

Family

ID=12942608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5342999A Pending JP2000246414A (en) 1999-03-02 1999-03-02 Manufacture of magnesium alloy formed parts

Country Status (1)

Country Link
JP (1) JP2000246414A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002103015A (en) * 2000-09-25 2002-04-09 Honda Motor Co Ltd Method and apparatus for forging semi-molten metallic blank
US7914902B2 (en) * 2007-11-06 2011-03-29 Jiing Tung Tec. Metal Co., Ltd. Thermal module
CN103170602A (en) * 2013-03-14 2013-06-26 哈尔滨工业大学 Preparation method of Titanium-Copper (Ti-Cu) type titanium alloy semi-solid blank
CN103343308A (en) * 2013-07-22 2013-10-09 哈尔滨工业大学 Device and method for preparing magnesium alloy semi-solid blank through repetitive upsetting-extrusion deformation and isothermal annealing
CN108543919A (en) * 2018-05-25 2018-09-18 湖南工学院 A kind of high-performance Mg-Zn-Zr alloy short flow processes
CN112941435A (en) * 2019-12-10 2021-06-11 通用汽车环球科技运作有限责任公司 Method of forming magnesium-based alloy articles at high strain rates

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002103015A (en) * 2000-09-25 2002-04-09 Honda Motor Co Ltd Method and apparatus for forging semi-molten metallic blank
JP4509343B2 (en) * 2000-09-25 2010-07-21 本田技研工業株式会社 Semi-molten metal forging method and forging apparatus
US7914902B2 (en) * 2007-11-06 2011-03-29 Jiing Tung Tec. Metal Co., Ltd. Thermal module
CN103170602A (en) * 2013-03-14 2013-06-26 哈尔滨工业大学 Preparation method of Titanium-Copper (Ti-Cu) type titanium alloy semi-solid blank
CN103343308A (en) * 2013-07-22 2013-10-09 哈尔滨工业大学 Device and method for preparing magnesium alloy semi-solid blank through repetitive upsetting-extrusion deformation and isothermal annealing
CN108543919A (en) * 2018-05-25 2018-09-18 湖南工学院 A kind of high-performance Mg-Zn-Zr alloy short flow processes
CN112941435A (en) * 2019-12-10 2021-06-11 通用汽车环球科技运作有限责任公司 Method of forming magnesium-based alloy articles at high strain rates
US11655513B2 (en) 2019-12-10 2023-05-23 GM Global Technology Operations LLC Methods of forming magnesium-based alloy articles at high strain rates

Similar Documents

Publication Publication Date Title
US4769087A (en) Nickel base superalloy articles and method for making
US4415374A (en) Fine grained metal composition
JP2000514717A (en) Semi-solid molding processing
JP3861720B2 (en) Forming method of magnesium alloy
Yoon et al. Forgeability test of extruded Mg–Sn–Al–Zn alloys under warm forming conditions
US3698962A (en) Method for producing superalloy articles by hot isostatic pressing
KR100494514B1 (en) Method for manufacturing of magnesium alloy billets for thixoforming process
Xia et al. Hot forging process design, microstructure, and mechanical properties of cast Mg–Zn–Y–Zr magnesium alloy tank cover
JP2000246414A (en) Manufacture of magnesium alloy formed parts
JP2003277899A (en) Magnesium alloy member and its production method
JP2004524974A (en) High-temperature isostatic compression molding of castings
Na et al. Prediction of microstructure evolution during high temperature blade forging of a Ni− Fe based superalloy, Alloy 718
JP3467824B2 (en) Manufacturing method of magnesium alloy member
Ning et al. Characterization of the secondary phases in spray formed Al–Zn–Mg–Cu–Sc–Zr alloy during hot compression
RU2753103C1 (en) Method for obtaining complex-shaped products from high-alloy heat-resistant nickel alloys containing more than 30% of strengthening g&#39;-phase
JP4691735B2 (en) Grain refiner for casting and method for producing the same
JP4252502B2 (en) Magnesium alloy molded part manufacturing method
US3987658A (en) Graphite forging die
EP0139168A1 (en) Fine grained metal composition
JP2919014B2 (en) Forming method of semi-solid metal
Nikzad et al. Microstructure of shear-induced thixoformed Al-4.5 Cu-1.5 Mg alloy via RAP and SSTT processes
RU2649103C1 (en) Method of obtaining a product of heat-resistant nickel alloy
JPH0617486B2 (en) Method for forging powder-made Ni-base superalloy
JP3523512B2 (en) Forging method of magnesium alloy
JPS5887204A (en) Constant temperature forging method for superalloy using quickly soldified powder

Legal Events

Date Code Title Description
A02 Decision of refusal

Effective date: 20040427

Free format text: JAPANESE INTERMEDIATE CODE: A02

A521 Written amendment

Effective date: 20040624

Free format text: JAPANESE INTERMEDIATE CODE: A523

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040713

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20040806