JPH0617486B2 - Method for forging powder-made Ni-base superalloy - Google Patents

Method for forging powder-made Ni-base superalloy

Info

Publication number
JPH0617486B2
JPH0617486B2 JP61053420A JP5342086A JPH0617486B2 JP H0617486 B2 JPH0617486 B2 JP H0617486B2 JP 61053420 A JP61053420 A JP 61053420A JP 5342086 A JP5342086 A JP 5342086A JP H0617486 B2 JPH0617486 B2 JP H0617486B2
Authority
JP
Japan
Prior art keywords
temperature
forging
extrusion
powder
strain rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61053420A
Other languages
Japanese (ja)
Other versions
JPS62211333A (en
Inventor
健治 岩井
博 滝川
誠矢 古田
伸泰 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP61053420A priority Critical patent/JPH0617486B2/en
Publication of JPS62211333A publication Critical patent/JPS62211333A/en
Publication of JPH0617486B2 publication Critical patent/JPH0617486B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Forging (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はガスタービンなどの耐熱高強度部材に使用され
る粉末製Ni基超耐熱合金の鍛造方法に関する。
TECHNICAL FIELD The present invention relates to a method for forging a powder-made Ni-base superalloy for use in heat-resistant and high-strength members such as gas turbines.

(従来の技術) ガスタービンのブレードやディスクなどには従来鋳造あ
るいは鋳鍛造材が用いられてきた。しかし高効率化を図
るために高温燃焼化が進められ、タービンディスク材料
などは非常に高合金化されるようになって、その結果従
来の鋳鍛造方法では合金元素の偏析により所定の特性が
得られぬばかりか、加工時に割れの発生を見ることさえ
あった。そこで最近は合金元素の偏析の生じない粉末冶
金の手段が用いられるようになってきたのである。
(Prior Art) Conventionally cast or cast / forged materials have been used for blades and disks of gas turbines. However, in order to improve efficiency, high temperature combustion has been promoted, and turbine disk materials, etc., have become extremely highly alloyed, and as a result, the conventional casting and forging methods obtain the desired characteristics due to segregation of alloy elements. Not only could it not be observed, but even cracks were sometimes seen during processing. Therefore, recently, powder metallurgical means which does not cause segregation of alloying elements has come to be used.

一方、上記の鋳造材たとえば高強度Ni基合金のIN100
のように鍛造不可能と見なされてきた合金を、超塑性を
利用することによって鍛造可能とする方法も開発されて
いる(特公昭51−38665 号)。
On the other hand, the above-mentioned cast materials such as IN100 of high strength Ni-based alloy
A method has been developed to make alloys that have been regarded as unforgeable as described above, forgeable by utilizing superplasticity (Japanese Patent Publication No. 51-38665).

同方法によるIN100合金の鍛造は、先ず1093〜1149℃
(再結晶温度以下でそれより250℃以内の範囲)で絞り
比5:1以上の圧縮加工し施して結晶粒の微細化を図っ
て高延性を付与し、次いで恒温鍛造(ダイス及び材料温
度を同一温度に加熱し素材の温度低下を防止しつつ超塑
性を利用する鍛造)を1038〜1093℃(再結晶温度以下で
それより194℃までの範囲)で歪速度0.5cm/cm/minで
行って後、該鍛造品を高強度状態に復帰させる熱処理と
して1190℃の溶体化処理に次いで安定化及び析出処理あ
るいは時効硬化処理を行うのである。
Forging of IN100 alloy by the same method, first, 1093 ~ 1149 ℃
It is compressed at a drawing ratio of 5: 1 or more at a temperature below the recrystallization temperature and within 250 ° C from that to give high ductility by refining the crystal grains, and then isothermal forging (die and material temperature Forging using superplasticity while heating to the same temperature to prevent material temperature drop is performed at 1038 to 1093 ° C (range below recrystallization temperature to 194 ° C) at strain rate of 0.5 cm / cm / min. After that, as a heat treatment for returning the forged product to a high strength state, a solution treatment at 1190 ° C. is followed by a stabilization and precipitation treatment or an age hardening treatment.

又粉末冶金材料においても同様の鍛造方法が開発されて
おり(特開昭54−2220号参照)、同方法による粉末製改
良IN100合金の鍛造方法は、原料粉末を熱間静水圧処
理(HIP処理)により、粉末同士を焼結すると共に実
質上理論密度に緻密化した合金を、再結晶温度以下でか
つそれより195℃以内の温度で、厚さ低減率が少なくと
も10%以上(約15〜35%)の加工を0.1cm/cm/min以下
の歪速度で行う第1段階の恒温鍛造を施して高延性を付
与し、引続いて上記第1段階と同様温度で歪速度0.1cm
/cm/min以上(0.3〜0.75cm/cm/min)の第2段階恒
温鍛造を行うのであり、これによって厚さ低減率50%あ
るいはそれ以上の加工とすることができるのである。鍛
造品は1121℃の溶体化処理と安定化及び析出処理によっ
て強度を回復し製品とされるのである。
A similar forging method has also been developed for powder metallurgy materials (see Japanese Patent Laid-Open No. 54-2220), and the method for forging powder-improved IN100 alloy by the same method is to perform hot isostatic treatment (HIP treatment) on the raw material powder. ) Sinters the powders and densifies them to a theoretical density at a temperature not higher than the recrystallization temperature and not higher than 195 ° C., and the thickness reduction rate is at least 10% or more (about 15 to 35%). %) Is performed at a strain rate of 0.1 cm / cm / min or less to give a high ductility by constant temperature forging, and then a strain rate of 0.1 cm at the same temperature as in the first step.
/ Cm / min or more (0.3 to 0.75 cm / cm / min) second-stage constant temperature forging is carried out, whereby a thickness reduction rate of 50% or more can be achieved. The forged product is made into a product with its strength recovered by solution treatment at 1121 ° C and stabilization and precipitation treatment.

(発明が解決しようとする問題点) 上記の恒温鍛造では最終製品に非常に近い形状に成形す
ることができる利点がある。しかし一般的に超塑性は歪
速度が最大で0.5〜1.25%/秒程度の領域で発現し、そ
れを超えると発現しない特徴がある。
(Problems to be Solved by the Invention) The above isothermal forging has an advantage that it can be formed into a shape very close to the final product. However, in general, superplasticity is exhibited in a region where the strain rate is 0.5 to 1.25% / sec at the maximum, and is not exhibited when the strain rate exceeds that.

従って鍛造に長時間を要し、また温度も1000〜1100℃の
高温が必要であり、それに伴ってMo合金などの高価な型
材料を必要とするなどの問題点があった。
Therefore, it takes a long time for forging, and the temperature is required to be as high as 1000 to 1100 ° C., so that there is a problem that an expensive mold material such as Mo alloy is required.

本発明は以上の問題点に鑑みてなされたものであり、Ni
≧30%含有の粉末製Ni基超耐熱合金においてその熱間加
工性に関わるミクロ組織と加工条件(歪速度と温度)と
の関係を調査、検討し、高歪速度下の型鍛造可能な同合
金の製造方法及び鍛造条件を明らかにし同鍛造方法の確
立を目的とする。
The present invention has been made in view of the above problems, Ni
In the powder Ni-based super heat-resistant alloy containing ≧ 30%, the relationship between the microstructure related to its hot workability and the processing conditions (strain rate and temperature) was investigated and investigated, and die forging under the high strain rate was possible. The purpose of this study is to clarify the alloy manufacturing method and forging conditions and establish the forging method.

(問題点を解決するための手段) 上記目的を達成するための本発明の手段とするところ
は、重量百分率で、Ni≧30%を含む粉末製Ni基超耐熱合
金の製造において、原料粉末を熱間静水圧処理によって
実質上理論密度に固化して後、該合金をその再結晶温度
以下でかつ同温度より250℃以内で、押出し比1.5以上の
押出し加工を施し、次いでγ′相の完全固溶体化温度以
下でかつ同温度より200℃以内で高速型鍛造を行うとし
た点にある。
(Means for Solving the Problems) The means of the present invention for achieving the above-mentioned object is, in terms of weight percentage, in the production of a powder-made Ni-base superheat-resistant alloy containing Ni ≧ 30%, the raw material powder is After solidifying to a theoretical density by hot isostatic pressing, the alloy is extruded at an extrusion ratio of 1.5 or more at a temperature not higher than its recrystallization temperature and within 250 ° C of the same temperature, and then the γ'phase is completely removed. The point is that high-speed die forging is performed below the solid solution temperature and within 200 ° C of the temperature.

(実施例) 下記第1表に示す組成を有する粉末製Ni基超耐熱合金を
例とし、種々の調査結果を検討しながら本発明を詳述す
る。
(Examples) The present invention will be described in detail with reference to various investigation results using a powdered Ni-base superalloy having the composition shown in Table 1 below as an example.

先ずHIP処理について述べる。HIP処理は充分に混
合した原料粉末を、950〜1250℃×1000〜2000kgf/cm2
×1〜5時間のHIP処理を施し実質上理論密度に固化
するのであり、上記処理条件は通常の条件であって、第
1表に例示の合金の固化は1180℃×1000kgf/cm2×2
hで行った。
First, the HIP process will be described. For HIP treatment, thoroughly mixed raw material powder is processed at 950 to 1250 ° C × 1000 to 2000 kgf / cm 2
The HIP treatment is carried out for 1 to 5 hours to substantially solidify it to the theoretical density. The above treatment conditions are ordinary conditions. The alloys exemplified in Table 1 are solidified at 1180 ° C. × 1000 kgf / cm 2 × 2
I went at h.

第1図は上記合金のミクロ組織写真で実質上理論密度に
緻密化されており元の粉末の界面が炭化物の析出によっ
て浮彫りにされている。同炭化物はPPBといわれるM
C炭化物である。
FIG. 1 is a microstructure photograph of the above alloy, which is substantially densified to the theoretical density, and the interface of the original powder is embossed by the precipitation of carbide. The carbide is M called PPB
It is a C carbide.

一般に原料粉末の表面には酸化被膜があり、またHIP
材によっては上記のようにPPBが粒界面に析出した靱
性や延性を低下させ、熱間加工性にも大きな影響を及ぼ
すもので、鍛造時に割れの一因でもあった。
Generally, there is an oxide film on the surface of the raw material powder, and HIP
As described above, depending on the material, PPB reduces the toughness and ductility precipitated at the grain boundaries, and also has a large effect on hot workability, which was also a cause of cracking during forging.

従って前記HIP処理の条件では、MC炭化物の生成を
抑えた条件が望ましいのである。
Therefore, it is desirable that the HIP treatment condition is such that MC carbide formation is suppressed.

第2図は第1図の組織をもつ試験片を1075℃においてε
=200%/秒の高速引張によって破断した状態を示す写
真で破断後絞りは殆ど零である。
Fig. 2 shows the test piece with the structure of Fig. 1 at ε at 1075 ℃.
= 200% / sec. A photograph showing a state of fracture due to high-speed tension, and the drawing after fracture is almost zero.

しかしこのような材料であっても押出し加工を行うと第
3図の押出し加工材の組織写真に示すように微細組織と
なると共にPPBは離散し同押出し材の試験片を高速引
張りで破断したものは第4図に示すように85%を越える
絞りが得られている。なお上記の押出しは1100℃で押出
し比7.2で行ったものである。また高速引張りは1075℃
で歪速度200%/秒で行っている。
However, even with such a material, when it is extruded, it has a fine structure as shown in the microstructure photograph of the extruded material in Fig. 3, and PPB is dispersed, and the test piece of the extruded material is fractured by high-speed tension. As shown in Fig. 4, the aperture of more than 85% was obtained. The above extrusion was performed at 1100 ° C. with an extrusion ratio of 7.2. High-speed tension is 1075 ℃
The strain rate is 200% / sec.

もっとも上記のような押出し材でなくとも再結晶温度以
下の適切な条件下では、HIP固化の粉末製材料は歪速
度が0.1%/秒程度であれば超塑性を示すことが知られ
ており、第1図に示したHIP材を1050℃、ε=0.1%
/秒で引張ると粒界すべりによる超塑性が現われ、99%
の絞り(伸び660%)が得られた。このような条件下で
はいわゆる恒温鍛造が可能となる。
However, it is known that the HIP solidified powder material exhibits superplasticity if the strain rate is about 0.1% / sec, under appropriate conditions below the recrystallization temperature, even if it is not the above extruded material, The HIP material shown in Fig. 1 is 1050 ℃, ε = 0.1%
Superplasticity due to grain boundary slip appears when pulled at a rate of 99 / sec, 99%
Aperture (elongation 660%) was obtained. Under such conditions, so-called constant temperature forging is possible.

そこで以下に示すようにHIP材の押出し条件(温度、
押出し比)及び押出し材の加工条件(温度、歪速度)を
引張試験の絞り値に着目し評価し前記粉末製Ni基超耐熱
合金の高能率鍛造方法について調査検討した。
Therefore, as shown below, the extrusion conditions (temperature,
The extrusion ratio) and the processing conditions (temperature, strain rate) of the extruded material were evaluated by focusing on the drawing value of the tensile test, and the high-efficiency forging method of the powder-made Ni-base superheat-resistant alloy was investigated and studied.

先ず押出し比を7.2に一定して押出し温度を種々変化さ
せた場合の熱間加工性の調査結果、すなわち破断絞りに
及ぼす押出温度の影響を第5図に示す。
First, FIG. 5 shows the results of the investigation of hot workability when the extrusion ratio was kept constant at 7.2 and various extrusion temperatures were changed, that is, the influence of the extrusion temperature on the breaking reduction.

引張試験は、各押出し材より平行部6φ×15lの引張り
試験片を切り出し、これを1075℃、歪速度ε=200%/
秒の一定条件下が引張り、そのときの絞り値で熱間加工
性を評価した。
In the tensile test, a tensile test piece with a parallel section of 6φ × 15l was cut out from each extruded material, and this was cut at 1075 ° C., strain rate ε = 200% /
The sample was stretched under a constant condition of seconds, and the hot workability was evaluated by the drawing value at that time.

第5図において、押出し温度が1025〜1125℃の範囲にお
いては70%を越える絞り値が得られている。これは押出
しにより微細な再結晶組織が得られるためである。
In FIG. 5, in the extrusion temperature range of 1025 to 1125 ° C., the aperture value exceeding 70% was obtained. This is because a fine recrystallized structure can be obtained by extrusion.

1150℃以上の押出しで絞りは急激に低下している。これ
は再結晶が進みかつ析出相のγ′の一部が固溶して結晶
粗大化が進むためである。
The squeeze decreases sharply after extrusion at 1150 ℃ or higher. This is because recrystallization progresses and a part of γ'in the precipitation phase forms a solid solution to cause crystal coarsening.

1000℃以下の押出しでも絞りは低下している。これは押
出し時の加工熱だけでは再結晶せず比較的粗大な結晶粒
が存在しているためである。この場合には1100℃付近に
再加熱することによって微細な再結晶粒組織を得ること
が可能である。また押出し温度の低下は、押出し時の変
形抵抗の増大を招き、所定の押出し比を確保することが
不可能となる。
The squeeze is reduced even when extruding at 1000 ° C or less. This is because recrystallization is not performed only by the processing heat at the time of extrusion and relatively coarse crystal grains are present. In this case, it is possible to obtain a fine recrystallized grain structure by reheating to around 1100 ° C. Further, the decrease in extrusion temperature causes an increase in deformation resistance during extrusion, making it impossible to secure a predetermined extrusion ratio.

従ってプレス能力にもよるが、押出し温度は材料によっ
て定まる再結晶温度を基準にし、押出しによって微細な
再結晶組織の得られる温度範囲を選ぶべきであり、その
範囲として再結晶温度から250℃低い温度までを適切と
認めたのである。
Therefore, depending on the pressing capacity, the extrusion temperature should be based on the recrystallization temperature determined by the material, and the temperature range in which a fine recrystallization structure can be obtained by extrusion should be selected. Was recognized as appropriate.

次に押出し比と、押出し材引張試験時の歪速度が破断絞
り値に及ぼす影響について調査した結果を第6図に示
す。但し押出し材の押出し温度は1070℃である。
Next, FIG. 6 shows the results of an examination of the influence of the extrusion ratio and the strain rate during the tensile test of the extruded material on the breaking reduction value. However, the extrusion temperature of the extruded material is 1070 ° C.

同図について検討すると、歪速度が0.2%/秒と小さい
場合は押出し比関係なく100%近い絞りが得られてい
る。これは歪速度が超塑性発現領域内にあるためであ
る。
Examination of this figure shows that when the strain rate is as low as 0.2% / sec, a drawing close to 100% is obtained regardless of the extrusion ratio. This is because the strain rate is within the superplasticity developing region.

歪速度が大きい20%/秒、200%/秒ではもはや超塑性
は発現せず、歪速度によって、あるいはミクロ組織を決
める押出し比によって絞り値は大きく変化することが示
されている。
It has been shown that superplasticity is no longer exhibited at high strain rates of 20% / sec and 200% / sec, and the drawing value greatly changes depending on the strain rate or the extrusion ratio that determines the microstructure.

第7図及び第8図はそれぞれ押出し比1.6と3.6の押出し
材(押出し温度1070℃)のミクロ組織を示した写真であ
り、押出し比1.6の場合の第7図では原料粉末のデンド
ライト組織が一部残っているのに対し、押出し比3.6の
場合の第8図では完全な再結晶組織が得られている。
Figures 7 and 8 are photographs showing the microstructures of extruded materials (extrusion temperature: 1070 ° C) with extrusion ratios of 1.6 and 3.6, respectively. In the case of an extrusion ratio of 1.6, the dendrite structure of the raw material powder is In contrast to the remaining part, a complete recrystallized structure is obtained in FIG. 8 when the extrusion ratio is 3.6.

第9図は引張試験温度の破断絞り値に及ぼす影響を調査
した結果のグラフである。
FIG. 9 is a graph of the result of investigation on the influence of the tensile test temperature on the breaking reduction value.

すなわち押出し比一定の試験片をそれぞれ異なる試験温
度で歪速度を一定にして引張った場合の絞りの変化を求
めてグラフとしたもので、同図によれば押出し比R=3.
6の場合、ε=200%/秒の大きい歪速度であっても、引
張試験温度1000〜1100℃のいずれの試験においても絞り
80%以上を示し、R=1.6の場合、ε=20%/秒の引張
りでは1000〜1100℃間のいずれの試験においても絞り75
%以上を示している。しかしR=1.6、ε=200%/秒で
は1050℃で絞り70%を示すのみである。
That is, it is a graph obtained by obtaining the change in the drawing when the test pieces with a constant extrusion ratio were pulled at different test temperatures with a constant strain rate. According to the figure, the extrusion ratio R = 3.
In the case of 6, even if the strain rate is as large as ε = 200% / sec, it is possible to draw in any of the tensile test temperatures of 1000 to 1100 ° C.
80% or more, R = 1.6, ε = 20% / s drawing in any test between 1000 ~ 1100 ℃ 75% pulling 75
% Or more. However, when R = 1.6 and ε = 200% / sec, the aperture shows only 70% at 1050 ° C.

すなわち押出し比が大きくなる程絞りの大きくなる温度
領域が広くなっているのである。
That is, the larger the extrusion ratio, the wider the temperature range in which the drawing becomes larger.

このことは押出し比を高めて組織を微細化する程度歪速
度下での適正鍛造温度領域が広くなり、その結果恒温鍛
造の必要がなくなることを意味している。
This means that the appropriate forging temperature region under the strain rate is widened to the extent that the extrusion ratio is increased and the structure is refined, and as a result, constant temperature forging is not required.

以上の点を考慮し、また上記の調査結果からも押出し比
は1.5以上が必要と認められる。
Considering the above points, and based on the above survey results, it is recognized that an extrusion ratio of 1.5 or more is necessary.

更に高速型鍛造については、γ′相の完全溶体化温度以
上では結晶粒が急激に粗大化し、引いては変形抵抗が増
大することから同温度以下で行うことが必要であるが、
第10図の最大変形抵抗に及ぼす引張試験温度の影響から
も判るように鍛造温度が低ければ最大変形抵抗も大きく
なる。変形抵抗が大きくなると、金型寿命が短くなるう
え、同じ能力のプレスで鍛造する場合、変形抵抗が大き
いほど鍛造品の大きさが小さくなり、生産性が低下する
ようになる。以上のことから高速型鍛造は鍛造プレスの
能力にもよるがγ′相の完全溶体化温度以下で同温度よ
り200℃以内が適切と認めたのである。
Further, for high-speed die forging, it is necessary to carry out at a temperature equal to or lower than the temperature where the γ'phase complete solution temperature is higher than the complete solution temperature because the crystal grains abruptly coarsen and the deformation resistance increases.
As can be seen from the effect of the tensile test temperature on the maximum deformation resistance in Fig. 10, the lower the forging temperature, the larger the maximum deformation resistance. When the deformation resistance becomes large, the die life becomes short, and in the case of forging with a press having the same ability, the larger the deformation resistance becomes, the smaller the size of the forged product becomes, and the lower the productivity becomes. From the above, it was confirmed that high-speed die forging is appropriate at temperatures below the complete solution temperature of the γ'phase but within 200 ° C, depending on the capabilities of the forging press.

なお第10図は押出し比3.6の試験片をそれぞれの試験温
度で引張歪速度200%/秒で引張った場合の最大変形抵
抗を求めグラフとしたものである。
In addition, FIG. 10 is a graph in which the maximum deformation resistance is obtained when a test piece with an extrusion ratio of 3.6 is pulled at a tensile strain rate of 200% / sec at each test temperature.

本実施例のNi基超耐熱合金の場合、γ′相の完全固溶
体化温度は1200℃程度であるので、高速型鍛造温度は10
00℃程度以上に設定するのがよく、かかる温度では第10
図より最大変形抵抗も50kgf/mm2程度以下であり、塑性
変形が比較的容易である。
In the case of the Ni-base superalloy according to the present embodiment, the complete solid solution temperature of the γ'phase is about 1200 ° C, so the high temperature die forging temperature is 10
It is better to set it to about 00 ° C or higher, and at such a temperature
From the figure, the maximum deformation resistance is also about 50 kgf / mm 2 or less, and plastic deformation is relatively easy.

(発明の効果) 本発明は第1表に例示した組成の粉末製Ni基合金につい
て種々の実験を重ね、素材の熱間加工性を向上させる条
件と適正な鍛造条件を見出し、同条件に沿う処理によっ
て高能率(高歪速度)の鍛造を可能としたものであり、
本発明の鍛造方法は上記例示の合金のみならず、Ni≧30
%を含む他の粉末製Ni基超耐熱合金に対しても適用可能
であり、本発明によってこれら鍛造困難な素材による部
材の品質向上、あるいはこれら素材の新たな部材への適
用等も考えられ、本発明の工業的価値は著大である。
(Effects of the Invention) The present invention has conducted various experiments on powdered Ni-based alloys having the compositions shown in Table 1, found conditions for improving the hot workability of the raw material and appropriate forging conditions, and follows the same conditions. It is possible to forge with high efficiency (high strain rate) by processing,
The forging method of the present invention is not limited to the alloys exemplified above, but Ni ≧ 30
It is also applicable to other powdered Ni-base superalloys containing 100% by weight, the present invention may improve the quality of members made of these difficult-to-forge materials, or may be applied to new members of these materials. The industrial value of the present invention is enormous.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明実施例材(HIP材以下同じ)のミクロ
金属顕微鏡組織写真、第2図は本発明実施例素材試験片
の引張試験による破断状態を示す図面、第3図は本発明
実施例素材の押出し加工後のミクロ金属顕微鏡組織写
真、第4図は本発明実施例素材押出し材試験片の引張試
験による破断状態を示す図面。第5図は本発明実施例素
材における破断絞りに及ぼす押出温度の影響を示すグラ
フ。第6図は本発明実施例素材における破断絞り値に及
ぼす押出し比と歪速度の影響を示すグラフ。第7図は本
発明実施例押出し材(押出し比1.6)のミクロ金属顕微
鏡組織写真、第8図は同押出し材(押出し比3.6)のミ
クロ金属顕微鏡組織写真、第9図は本発明実施例押出し
材における破断絞り値に及ぼす引張試験温度の影響を示
すグラフ、第10図は本発明実施例押出し材における最大
変形抵抗に及ぼす引張試験温度の影響を示すグラフ。
FIG. 1 is a photograph of a micro-metallographic microstructure of an example material of the present invention (the same applies to the following HIP material), FIG. 2 is a drawing showing a fractured state of a test piece of a material example of the present invention by a tensile test, and FIG. 3 is an embodiment of the present invention. Micro metallographic micrograph of extruded example material, FIG. 4 is a drawing showing a fractured state of a test piece of extruded material of an example of the present invention by a tensile test. FIG. 5 is a graph showing the influence of the extrusion temperature on the breaking reduction in the material of Example of the present invention. FIG. 6 is a graph showing the influence of the extrusion ratio and the strain rate on the breaking reduction value of the material of the present invention. FIG. 7 is a micro-metallographic micrograph of the extruded material of the present invention (extrusion ratio 1.6), FIG. 8 is a micro-microscopic microscopic photograph of the extruded material (extrusion ratio of 3.6), and FIG. 10 is a graph showing the influence of the tensile test temperature on the breaking reduction value of the material, and FIG. 10 is a graph showing the influence of the tensile test temperature on the maximum deformation resistance of the extruded material of the present invention.

フロントページの続き (56)参考文献 特開 昭62−96604(JP,A) 特開 昭61−73851(JP,A) 特開 昭52−50908(JP,A) 特公 昭52−26721(JP,B2)Continuation of the front page (56) References JP-A-62-96604 (JP, A) JP-A-61-73851 (JP, A) JP-A-52-50908 (JP, A) JP-B-52-26721 (JP , B2)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】重量百分率で、Ni≧30%を含む粉末製Ni基
超耐熱合金の製造において、原料粉末を熱間静水圧処理
によって実質上理論密度に固化して後、該合金をその再
結晶温度以下でかつ同温度より250 ℃以内で、押出し比
1.5 以上の押出し加工を施し、次いでγ′相の完全固溶
体化温度以下でかつ同温度より200 ℃以内で高速型鍛造
を行うことを特徴とする粉末製Ni基超耐熱合金の鍛造方
法。
1. In the production of a powder-made Ni-base superalloy containing Ni ≧ 30% by weight, the raw material powder is solidified to a substantially theoretical density by hot isostatic pressing, and then the alloy is reprocessed. Extrusion ratio below the crystallization temperature and within 250 ℃ of the same temperature
A method for forging a powder-made Ni-base superalloy, which comprises performing an extrusion process of 1.5 or more, and then performing high-speed die forging at a temperature not higher than the temperature of the complete solid solution of the γ'phase and within 200 ° C of the temperature.
JP61053420A 1986-03-10 1986-03-10 Method for forging powder-made Ni-base superalloy Expired - Lifetime JPH0617486B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61053420A JPH0617486B2 (en) 1986-03-10 1986-03-10 Method for forging powder-made Ni-base superalloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61053420A JPH0617486B2 (en) 1986-03-10 1986-03-10 Method for forging powder-made Ni-base superalloy

Publications (2)

Publication Number Publication Date
JPS62211333A JPS62211333A (en) 1987-09-17
JPH0617486B2 true JPH0617486B2 (en) 1994-03-09

Family

ID=12942350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61053420A Expired - Lifetime JPH0617486B2 (en) 1986-03-10 1986-03-10 Method for forging powder-made Ni-base superalloy

Country Status (1)

Country Link
JP (1) JPH0617486B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3567691B2 (en) * 1997-08-08 2004-09-22 東陶機器株式会社 Closed forging method
US9592547B2 (en) 2012-12-10 2017-03-14 Mitsubishi Materials Corporation Method of manufacturing annular molding
JP6292761B2 (en) 2013-03-28 2018-03-14 日立金属Mmcスーパーアロイ株式会社 Method for producing annular molded body
CN110116203A (en) * 2019-06-06 2019-08-13 西北有色金属研究院 A method of eliminating Ni-base P/M Superalloy primary granule border

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5226721A (en) * 1975-08-22 1977-02-28 Ina Seito Kk Earth tile
CH599348A5 (en) * 1975-10-20 1978-05-31 Bbc Brown Boveri & Cie
JPS6173851A (en) * 1984-09-17 1986-04-16 Natl Res Inst For Metals Superplastic ni alloy for forging and its manufacture
DE3530741C1 (en) * 1985-08-28 1993-01-14 Avesta Nyby Powder AB, Torshälla Process for the manufacture of powder metallurgical objects

Also Published As

Publication number Publication date
JPS62211333A (en) 1987-09-17

Similar Documents

Publication Publication Date Title
JP2782189B2 (en) Manufacturing method of nickel-based superalloy forgings
US5284620A (en) Investment casting a titanium aluminide article having net or near-net shape
US5584947A (en) Method for forming a nickel-base superalloy having improved resistance to abnormal grain growth
US5433799A (en) Method of making Cr-bearing gamma titanium aluminides
US4359352A (en) Nickel base superalloys which contain boron and have been processed by a rapid solidification process
US5558729A (en) Method to produce gamma titanium aluminide articles having improved properties
JPS6362584B2 (en)
JPS60228659A (en) Malleable improvement for nickel base superalloy
JPH09302450A (en) Control of grain size of nickel-base superalloy
JP6826879B2 (en) Manufacturing method of Ni-based super heat-resistant alloy
JPH07145441A (en) Superplastic aluminum alloy and its production
JP2009097095A (en) Titanium-aluminum based alloy
Beddoes et al. The technology of titanium aluminides for aerospace applications
US3702791A (en) Method of forming superalloys
JPH0832934B2 (en) Manufacturing method of intermetallic compounds
JPH0617486B2 (en) Method for forging powder-made Ni-base superalloy
JPH0874012A (en) Production of superplastic aluminum alloy
JP3374553B2 (en) Method for producing Ti-Al-based intermetallic compound-based alloy
Kikuchi et al. Superplastic deformation and microstructure evolution in PM IN-100 superalloy
JPS60149751A (en) Metal composition
JP4704720B2 (en) Heat-resistant Al-based alloy with excellent high-temperature fatigue properties
OHNO et al. Isothermal forging of Waspaloy in air with a new die material
JP7485243B1 (en) Hot forging die and manufacturing method thereof
Reichman et al. New developments in superalloy powders
JPH05295501A (en) Method for controlling structure of nb-al-base intermetallic compound