JPH05295501A - Method for controlling structure of nb-al-base intermetallic compound - Google Patents

Method for controlling structure of nb-al-base intermetallic compound

Info

Publication number
JPH05295501A
JPH05295501A JP10502092A JP10502092A JPH05295501A JP H05295501 A JPH05295501 A JP H05295501A JP 10502092 A JP10502092 A JP 10502092A JP 10502092 A JP10502092 A JP 10502092A JP H05295501 A JPH05295501 A JP H05295501A
Authority
JP
Japan
Prior art keywords
intermetallic compound
hot working
base intermetallic
deformation
forging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10502092A
Other languages
Japanese (ja)
Inventor
Keizo Hashimoto
敬三 橋本
Tatsuyuki Suyama
竜之 壽山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10502092A priority Critical patent/JPH05295501A/en
Publication of JPH05295501A publication Critical patent/JPH05295501A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To control the structure of an Nb-Al-base intermetallic compound hitherto brittle and difficult to work. CONSTITUTION:This method is a method for controlling the structure of an Nb-Al-base intermetallic compound, where the Nb-Al-base intermetallic compound containing 13-25atomic % Al is hot-worked in vacuum or in an inert gas atmosphere at 1200-1600 deg.C and subjected to recrystallization. Forging is done as hot working. In the structure-controlled Nb-Al-base intermetallic compound, the dendrite as a cast structure is formed into recrystallized fine crystalline grains by hot working, and toughness at room temp. can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超高温耐熱材料として
有望なNb−Al基金属間化合物に関するもので、高温
耐熱材料としての航空機用エンジンの燃焼器、タービン
等に応用されている。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a promising Nb-Al based intermetallic compound as an ultrahigh temperature heat resistant material, and is applied to a combustor of an aircraft engine, a turbine and the like as a high temperature heat resistant material.

【0002】[0002]

【従来の技術】近年、エンジンの高出力化、高性能化に
ともない、超高温耐熱材料への期待はますます高くなり
つつある。耐熱構造用材料としての可能性を秘めた高融
点金属間化合物の研究も活発に行なわれている(例え
ば、JOM,No.9,(1989)P12)。Nb−
Al系金属間化合物は、Nb3 Al、Nb2 Alそして
Al3 Nbが存在することが知られているが、その状態
図も十分整備されておらず、その特性も明らかにされて
いない。一方、Nb3 Alは超伝導材料として知られて
おり、線材化のための製造方法が公開されている。しか
しながら、Nb3 Al金属間化合物を構造材料として使
用することを目指した研究開発はされていなかった。そ
の理由は、Nb3 Al金属間化合物が室温で非常に脆い
こと、高温での耐酸化性が十分でないことが挙げられ
る。しかしながら、Nb−Al系材料が比較的低密度か
つ高融点であり、高温構造材としての可能性がある。N
b−Al系金属間化合物を粉末法によって作製し、その
機械的特性を研究した報告はなされているが、その中で
は高温強度と温度の関係が示されている(Proc.I
nt.Sypo.on Intermetallic
Compounds(JIMIS−6)1991 P6
33)。通常の金属あるいは合金は加工熱処理を行い組
織を制御することが行われている。しかしながら、金属
間化合物の場合は一般に難加工性であるため、加工方法
と加工条件が限定されており、従来の方法では、組織を
制御することが困難であった。
2. Description of the Related Art In recent years, expectations for ultra-high temperature heat resistant materials have been increasing with the increase in output and performance of engines. Research on high-melting-point intermetallic compounds, which have the potential as a heat-resistant structural material, is also being actively conducted (for example, JOM, No. 9, (1989) P12). Nb-
It is known that Nb 3 Al, Nb 2 Al and Al 3 Nb exist as Al-based intermetallic compounds, but their phase diagrams have not been sufficiently prepared and their characteristics have not been clarified. On the other hand, Nb 3 Al is known as a superconducting material, and a manufacturing method for forming a wire has been disclosed. However, no research and development aimed at using the Nb 3 Al intermetallic compound as a structural material was made. The reason is that the Nb 3 Al intermetallic compound is very brittle at room temperature and the oxidation resistance at high temperature is not sufficient. However, since the Nb-Al-based material has a relatively low density and a high melting point, it may be used as a high temperature structural material. N
It has been reported that a b-Al intermetallic compound was produced by a powder method and the mechanical properties thereof were studied. In the report, the relationship between high temperature strength and temperature is shown (Proc.I.
nt. Sypo. on Intermetallic
Compounds (JIMIS-6) 1991 P6
33). Ordinary metals or alloys are subjected to thermomechanical treatment to control their structure. However, since the intermetallic compound is generally difficult to process, the processing method and processing conditions are limited, and it has been difficult to control the structure by the conventional method.

【0003】[0003]

【発明が解決しようとする課題】本発明は、従来脆くて
加工が困難であったNb3 Alを中心とするNb−Al
基金属間化合物のミクロ組織を制御するとともに、組織
を改善し、室温に於ける脆さ、耐酸化性、高温強度等の
特性の優れた金属間化合物を容易に製造する方法を提供
しようとするものである。
DISCLOSURE OF THE INVENTION The present invention is based on Nb 3 Al, which is mainly Nb 3 Al, which has been brittle and difficult to process.
An object of the present invention is to provide a method for controlling the microstructure of a base intermetallic compound, improving the structure, and easily producing an intermetallic compound having excellent properties such as brittleness at room temperature, oxidation resistance, and high temperature strength. It is a thing.

【0004】[0004]

【課題を解決するための手段】本発明は原子%でAlを
13%以上25%以下含むNb−Al基金属間化合物を
真空あるいは不活性ガス雰囲気中で1200℃以上16
00℃以下の温度範囲内で熱間加工を施し、加工再結晶
を行なうことを特徴とする、Nb−Al基金属間化合物
の組織制御方法である。熱間加工としては、鍛造加工を
適用することが望ましい。原子%でAlを13%以上2
5%以下含むNb−Al基金属間化合物を溶製し、12
00℃以上1600℃以下の温度で熱間加工を施すこと
によってNb−Al金属間化合物の加工再結晶を行い組
織を均一に微細化することができる。熱間加工の方法と
しては、鍛造、熱間押出、熱間圧延等があり、この中で
も鍛造加工、特に恒温鍛造が適している。恒温鍛造は歪
速度を1×10-4/s程度迄遅くすることができ、難加
工性材料の加工が可能となる。その他熱間加工の際に、
変形速度は遅くすることが好ましい。
According to the present invention, an Nb-Al-based intermetallic compound containing 13% or more and 25% or less of Al in atomic% is used at 1200 ° C or higher in a vacuum or an inert gas atmosphere.
It is a method for controlling the structure of an Nb-Al-based intermetallic compound, which is characterized by performing hot working within a temperature range of 00 ° C or less and performing work recrystallization. It is desirable to apply forging as the hot working. 13% or more of Al in atomic% 2
Nb-Al based intermetallic compound containing 5% or less is melted,
By performing hot working at a temperature of 00 ° C. or more and 1600 ° C. or less, the Nb—Al intermetallic compound can be worked and recrystallized to uniformly refine the structure. Examples of hot working methods include forging, hot extrusion, and hot rolling. Among them, forging, particularly isothermal forging, is suitable. The isothermal forging can reduce the strain rate to about 1 × 10 −4 / s, and enables processing of difficult-to-process materials. In other hot working,
It is preferable that the deformation speed be slow.

【0005】Nb−Al基金属間化合物はプラズマアー
ク溶解、あるいは高周波誘導溶解等で所望の成分を溶解
しインゴットとする。インゴットは、Alの量が増加す
るにつれてクラック等の内部欠陥が増大する。インゴッ
トは拡散が十分に起こる温度において均質化熱処理を行
なう。均質化熱処理の変わりに、HIPをもちい、内部
欠陥を消滅させると同時に組織の均質化を行なうことも
可能である。インゴットは熱間加工に適した大きさに調
整し、真空あるいは不活性ガス雰囲気中において、12
00℃以上1600℃以下の温度で熱間加工を行なう。
この場合、加工時の歪速度を遅くし、均質な変形が生じ
るようにすることがよい。また試料と金型の間の反応を
防止し、試料と金属間の潤滑をよくする目的で、Ta等
の箔を試料と金型の間にはさむことが望ましい。変形に
は圧縮成分をかけることが望ましく、熱間加工として恒
温鍛造が適している。
The Nb-Al-based intermetallic compound is melted by plasma arc melting, high frequency induction melting, or the like to dissolve a desired component into an ingot. Internal defects such as cracks increase in the ingot as the amount of Al increases. The ingot undergoes a homogenizing heat treatment at a temperature at which sufficient diffusion occurs. Instead of the homogenizing heat treatment, HIP may be used to eliminate internal defects and simultaneously homogenize the structure. Adjust the ingot to a size suitable for hot working, and place it in a vacuum or in an inert gas atmosphere.
Hot working is performed at a temperature of 00 ° C or more and 1600 ° C or less.
In this case, it is preferable to reduce the strain rate during processing so that uniform deformation occurs. Further, for the purpose of preventing the reaction between the sample and the mold and improving the lubrication between the sample and the metal, it is desirable to sandwich a foil such as Ta between the sample and the mold. It is desirable to apply a compressive component to the deformation, and isothermal forging is suitable as hot working.

【0006】[0006]

【作用】原子%でAlを13%以上含むNb合金は、N
3 AlとNb固溶体の2層組織であり、室温では非常
に脆い。Al量が13%未満の場合、Nb3 Alの体積
率が下がり、Nb固溶体の性質が支配的となり室温での
脆さが改善され、従来の熱間加工が使用できる。さらに
Al量が25%を越えるとNb3 Alよりもさらに脆い
Nb2 Alが析出し、高温においても脆い化合物とな
る。従って、本発明で対象とするNb−Al基金属間化
合物としては、Al量が13%以上25%以下のものと
した。
Function: Nb alloy containing 13% or more of Al in atomic% is N
It has a two-layer structure of b 3 Al and Nb solid solution and is very brittle at room temperature. When the amount of Al is less than 13%, the volume ratio of Nb 3 Al decreases, the property of the Nb solid solution becomes dominant, the brittleness at room temperature is improved, and conventional hot working can be used. Further, when the amount of Al exceeds 25%, Nb 2 Al, which is more brittle than Nb 3 Al, precipitates and becomes a brittle compound even at high temperatures. Therefore, the Nb-Al-based intermetallic compound targeted in the present invention has an Al content of 13% or more and 25% or less.

【0007】熱間加工の雰囲気は、Nb−Al基金属間
化合物が800℃以上の温度で急激な酸化がおこるた
め、真空中あるいはAr,He等の不活性ガス雰囲気中
で行なうことが必要である。均質化熱処理を行なったN
b−Al基金属間化合物は液体とNb固溶体から包晶反
応によってNb3 Alが析出するため、デンドライトの
形態を引きずる。この組織を熱間加工することによっ
て、デンドライトが変形によって壊され、加工再結晶
し、Nb3 Al母相中にNb固溶体が微細に析出した組
織となる。熱間加工温度は1200℃未満の場合、10
%以下の歪量で破壊を起こすために、組織の変化をもた
らすだけの歪が蓄積されない。さらに1600℃超の温
度で変形を行うと、変形は進行するが同時に再結晶し、
結晶粒が粗大化するとともに、析出したNb固溶体が、
凝集し粗大化が起こる。結晶粒が粗大化したNb3 Al
は脆さが改善されていない。従って加工温度として、1
200℃以上1600℃以下の範囲とする。
The hot working atmosphere needs to be performed in vacuum or in an atmosphere of an inert gas such as Ar or He because the Nb-Al group intermetallic compound undergoes rapid oxidation at a temperature of 800 ° C. or higher. is there. N subjected to homogenization heat treatment
Since the b-Al-based intermetallic compound precipitates Nb 3 Al from the liquid and the Nb solid solution by a peritectic reaction, it causes a dendrite form. By hot working this structure, the dendrites are destroyed by deformation, processed and recrystallized, and a structure in which Nb solid solution is finely precipitated in the Nb 3 Al matrix phase is formed. If the hot working temperature is less than 1200 ° C, 10
Since the fracture occurs at a strain amount of less than%, the strain that causes the change in the structure is not accumulated. Further, when the deformation is performed at a temperature higher than 1600 ° C., the deformation proceeds, but at the same time, recrystallization occurs,
As the crystal grains coarsen, the precipitated Nb solid solution becomes
Aggregation causes coarsening. Nb 3 Al with coarse crystal grains
The brittleness is not improved. Therefore, the processing temperature is 1
The range is 200 ° C. or higher and 1600 ° C. or lower.

【0008】[0008]

【実施例】プラズマアーク溶解によって以下に示す成分
の溶解を行なった。溶解したインゴットは1600℃、
24時間均質化熱処理を行なった。熱間加工は鍛造加工
を行なった。熱電対をスポット溶接した円筒状試験片
(5φ×7mm)を真空雰囲気中で試料を通電加熱によ
って加熱しタングステンカーバイド治具によって圧縮変
形を行なった。初期歪速度は5×10-4/sで行なっ
た。Nb−19.4at%Al試料の熱間加工時の変形応
力と変形温度の関係を示す(図1)。1150℃におい
て変形した場合変形途中で脆性的な破断をしたが、12
00℃では変形が可能であり、特に1400℃、160
0℃においては、20%以上の変形が可能であった。1
400℃、1600℃において変形した試料について変
形後の組織変化を観察した。
EXAMPLE The following components were melted by plasma arc melting. The melted ingot is 1600 ℃,
The homogenization heat treatment was performed for 24 hours. For the hot working, forging was performed. A cylindrical test piece (5φ × 7 mm) to which a thermocouple was spot-welded was heated by electric heating in a vacuum atmosphere, and was compressed and deformed by a tungsten carbide jig. The initial strain rate was 5 × 10 −4 / s. The relationship between the deformation stress and the deformation temperature at the time of hot working of the Nb-19.4 at% Al sample is shown (FIG. 1). When deformed at 1150 ° C, a brittle fracture occurred during the deformation.
Deformation is possible at 00 ℃, especially 1400 ℃, 160
At 0 ° C, deformation of 20% or more was possible. 1
The microstructure change after deformation was observed for the sample deformed at 400 ° C and 1600 ° C.

【0009】図2(a)はNb−19.4at%Al変形
前の組織、(b)は1400℃、20%変形後の組織
(c)は1600℃、20%変形後の組織を示す。図2
(a)にNb−19.4at%Alの1600℃熱処理後
の組織、(b)1400℃、20%鍛造加工を行い加工
再結晶によってNb3 Al母相中にNb固溶体が微細に
分散した組織、(c)1600℃、20%鍛造加工を行
い加工再結晶をおこし、粒成長をおこした組織を示す。
図2に示すようにNb−19.4at%Al変形前の試料
はNb3 AlがNb固溶体と液体からの包晶反応によっ
て析出するため、デンドライト組織をもっている。14
00℃において熱間加工することにより、Nb3 Al母
相中にNb固溶体が微細に析出した組織となる。Nb固
溶体の大きさは3μm平均の間隔は8μmであった。1
600℃で変形した場合は第2相であるNb固溶体がN
3 Al母相中に分散しているものの1400℃の場合
よりも粗大化した組織になった。Nb固溶体の析出物の
大きさは10μm平均の間隔は15μmであった。熱間
加工により得られた組織を有するNb−Al基金属間化
合物の室温硬さと硬さ試験におけるクラック発生の有無
を観察し、靱性の評価を行なった。結果を表1に示す。
FIG. 2 (a) shows the structure before Nb-19.4 at% Al deformation, (b) shows the structure after 1400 ° C. and 20% deformation, and (c) shows the structure after 1600 ° C. and 20% deformation. Figure 2
(A) Microstructure of Nb-19.4 at% Al after heat treatment at 1600 ° C, (b) Microstructure of Nb 3 Al solid phase finely dispersed in Nb 3 Al matrix phase by recrystallization at 1400 ° C and 20% forging. , (C) 1600 ° C., 20% forging processing is performed, processing recrystallization is performed, and a structure in which grain growth is caused is shown.
As shown in FIG. 2, the sample before the Nb-19.4 at% Al deformation had a dendrite structure because Nb 3 Al was precipitated by the peritectic reaction from the Nb solid solution and the liquid. 14
By hot working at 00 ° C., a structure in which Nb solid solution is finely precipitated in the Nb 3 Al matrix phase is formed. The size of the Nb solid solution was 3 μm, and the average interval was 8 μm. 1
When deformed at 600 ° C, the second phase Nb solid solution is N
Although dispersed in the b 3 Al matrix, the structure became coarser than at 1400 ° C. The size of the precipitate of the Nb solid solution was 10 μm, and the average interval was 15 μm. The toughness was evaluated by observing the room temperature hardness of the Nb-Al-based intermetallic compound having the structure obtained by hot working and the presence or absence of cracks in the hardness test. The results are shown in Table 1.

【0010】[0010]

【表1】 [Table 1]

【0011】[0011]

【発明の効果】本発明で組織制御したNb−Al基金属
間化合物は、溶解時に導入されたマイクロクラックが完
全に消滅している。さらに、熱間加工によって鋳造組織
であるデンドライトが加工再結晶した微細結晶粒とな
る。この組織を有したNb−Al基金属間化合物は、イ
ンゴット材と比較して、微小硬さ計の圧痕によるクラッ
クの発生が抑えられ、室温での靱性が向上した。
INDUSTRIAL APPLICABILITY In the Nb-Al group intermetallic compound whose structure is controlled by the present invention, the microcracks introduced during dissolution are completely eliminated. Furthermore, the hot working causes the cast structure dendrite to be processed and recrystallized into fine crystal grains. In the Nb-Al-based intermetallic compound having this structure, the occurrence of cracks due to the indentation of the micro hardness meter was suppressed and the toughness at room temperature was improved, as compared with the ingot material.

【図面の簡単な説明】[Brief description of drawings]

【図1 】Nb−19.4at%Al試料の熱間加工時の変
形応力と変形温度の関係を示す図、
FIG. 1 is a diagram showing the relationship between deformation stress and deformation temperature during hot working of a Nb-19.4 at% Al sample,

【図2】Nb−19.4at%Alの1600℃、24時
間熱処理後の組織(a)、1400℃、20%鍛造加工
を行い加工再結晶によってNb3 Al母相中にNb固溶
体が微細に分散した組織(b)、1600℃、20%鍛
造加工を行い加工再結晶をおこし、粒成長をおこした組
織(c)の写真の模式図である。
FIG. 2 is a structure (a) after heat treatment of Nb-19.4 at% Al at 1600 ° C. for 24 hours, forging is performed at 1400 ° C. and 20%, and Nb solid solution is finely divided into a Nb 3 Al matrix phase by processing recrystallization. It is a schematic diagram of a photograph of a dispersed structure (b), 1600 ° C., 20% forging processing, processing recrystallization, and grain growth (c).

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 原子%でAlを13%以上25%以下含
むNb−Al基金属間化合物を、真空あるいは不活性ガ
ス雰囲気中で、1200℃以上1600℃以下の温度範
囲内で熱間加工を施し、加工再結晶を行なうことを特徴
とするNb−Al基金属間化合物の組織制御方法。
1. A Nb—Al-based intermetallic compound containing 13% or more and 25% or less of Al in atomic% is hot-worked in a temperature range of 1200 ° C. or more and 1600 ° C. or less in a vacuum or an inert gas atmosphere. A method for controlling a structure of an Nb-Al-based intermetallic compound, which comprises subjecting the material to processing and recrystallization.
【請求項2】 熱間加工が、鍛造加工である請求項1記
載のNb−Al金属間化合物の組織制御方法。
2. The method for controlling the structure of an Nb-Al intermetallic compound according to claim 1, wherein the hot working is forging.
JP10502092A 1992-04-24 1992-04-24 Method for controlling structure of nb-al-base intermetallic compound Withdrawn JPH05295501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10502092A JPH05295501A (en) 1992-04-24 1992-04-24 Method for controlling structure of nb-al-base intermetallic compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10502092A JPH05295501A (en) 1992-04-24 1992-04-24 Method for controlling structure of nb-al-base intermetallic compound

Publications (1)

Publication Number Publication Date
JPH05295501A true JPH05295501A (en) 1993-11-09

Family

ID=14396381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10502092A Withdrawn JPH05295501A (en) 1992-04-24 1992-04-24 Method for controlling structure of nb-al-base intermetallic compound

Country Status (1)

Country Link
JP (1) JPH05295501A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085837A (en) * 1993-09-22 1996-01-12 Fuji Photo Film Co Ltd Optical compensation sheet, its production and liquid crystal display device using the same
AU665774B2 (en) * 1991-07-10 1996-01-18 Hoefer, Dawn Annette Recovery of nickel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU665774B2 (en) * 1991-07-10 1996-01-18 Hoefer, Dawn Annette Recovery of nickel
JPH085837A (en) * 1993-09-22 1996-01-12 Fuji Photo Film Co Ltd Optical compensation sheet, its production and liquid crystal display device using the same

Similar Documents

Publication Publication Date Title
JP2782189B2 (en) Manufacturing method of nickel-based superalloy forgings
US5580403A (en) Titanium matrix composites
Loria The status and prospects of alloy 718
US3850702A (en) Method of making superalloy bodies
US5584947A (en) Method for forming a nickel-base superalloy having improved resistance to abnormal grain growth
US5558729A (en) Method to produce gamma titanium aluminide articles having improved properties
JP6826879B2 (en) Manufacturing method of Ni-based super heat-resistant alloy
US4386976A (en) Dispersion-strengthened nickel-base alloy
US5571345A (en) Thermomechanical processing method for achieving coarse grains in a superalloy article
US5417781A (en) Method to produce gamma titanium aluminide articles having improved properties
JP6315319B2 (en) Method for producing Fe-Ni base superalloy
JPH0138848B2 (en)
WO2020189215A1 (en) Titanium aluminide alloy material for hot forging, forging method for titanium aluminide alloy material, and forged body
JPS63162846A (en) Method for enhancing ductility of work composed of oxide dispersed and hardened nickel base superalloy
JPH0832934B2 (en) Manufacturing method of intermetallic compounds
JP3374553B2 (en) Method for producing Ti-Al-based intermetallic compound-based alloy
JPH05295501A (en) Method for controlling structure of nb-al-base intermetallic compound
Bhowal et al. Full scale gatorizing of fine grain inconel 718
JPH06340955A (en) Production of ti-al series intermetallic compound base alloy
JP2000345259A (en) CREEP RESISTANT gamma TYPE TITANIUM ALUMINIDE
WO2020189214A1 (en) Titanium aluminide alloy material for hot forging, and method for forging titanium aluminide alloy material
JP2709553B2 (en) Nb3 Al-based intermetallic compound
JPH0617486B2 (en) Method for forging powder-made Ni-base superalloy
Reichman et al. New developments in superalloy powders
RU2694098C1 (en) Method of producing semi-finished products from high-strength nickel alloys

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990706