JP2000256766A - HOT WORKING METHOD FOR CuNiFe ALLOY - Google Patents
HOT WORKING METHOD FOR CuNiFe ALLOYInfo
- Publication number
- JP2000256766A JP2000256766A JP11058482A JP5848299A JP2000256766A JP 2000256766 A JP2000256766 A JP 2000256766A JP 11058482 A JP11058482 A JP 11058482A JP 5848299 A JP5848299 A JP 5848299A JP 2000256766 A JP2000256766 A JP 2000256766A
- Authority
- JP
- Japan
- Prior art keywords
- hot
- alloy
- weight
- powder
- working method
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0206—Manufacturing of magnetic cores by mechanical means
- H01F41/0246—Manufacturing of magnetic circuits by moulding or by pressing powder
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
- Powder Metallurgy (AREA)
- Hard Magnetic Materials (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、主に磁気スケール
などに使用されるCuNiFe合金における熱間加工性
の向上を図る熱間加工方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hot working method for improving hot workability of a CuNiFe alloy mainly used for a magnetic scale or the like.
【0002】[0002]
【従来の技術】従来、CuNiFe合金として、例えば
特開平10−223465号公報に開示されているよう
に、ガスアトマイズ法によりNi:5〜25重量%、F
e:5〜25重量%、残部Cuおよび不可避不純物から
なるCu−Ni−Fe合金粉末を作製し、該Cu−Ni
−Fe合金粉末を金属製の容器に充填・封入し、これを
熱間押出装置にて900℃以上、歪み速度10s-1以上
の大きな歪み速度で押出し、充填密度が実質95%以上
の高密度の粉末成形材を得た後、金属製容器を除去し、
次いで該粉末成形材を900℃以上で熱間圧延しコイル
状の圧延材を得た後、該圧延材を冷間加工して直径5m
m以下の線材を製造するCu−Ni−Fe合金磁石の線
材の製造方法が提案されている。2. Description of the Related Art Conventionally, as a CuNiFe alloy, for example, as disclosed in Japanese Patent Application Laid-Open No. Hei 10-223465, Ni: 5 to 25% by weight,
e: preparing a Cu—Ni—Fe alloy powder composed of 5 to 25% by weight, with the balance being Cu and unavoidable impurities,
-Filling and enclosing the Fe alloy powder in a metal container, extruding it with a hot extruder at 900 ° C. or more and a large strain rate of 10 s −1 or more, and the packing density is substantially 95% or more. After obtaining the powder molding material, remove the metal container,
Next, the powder compact is hot-rolled at 900 ° C. or higher to obtain a coiled rolled material, and the rolled material is cold-worked to a diameter of 5 m.
A method for producing a wire of a Cu—Ni—Fe alloy magnet for producing a wire having a diameter of m or less has been proposed.
【0003】[0003]
【発明が解決しようとする課題】上述した特開平10−
223465号公報は、粉末成形材を900℃以上で熱
間圧延しコイル状の圧延材を得た後、該圧延材を冷間加
工して直径5mm以下の線材を製造するCu−Ni−F
e合金磁石の線材の製造方法であるが、この熱間加工に
当たっての熱間加工性と結晶粒径に関する調査がされて
いなかったため、熱間圧延時に割れが発生していた。す
なわち、Cu−Ni−Fe合金は、熱間加工性が非常に
悪いため、熱間圧延時に割れが発生し、大きなリダクシ
ョンをとることが困難となり、そのために生産性が悪い
という問題があった。SUMMARY OF THE INVENTION The above-mentioned Japanese Patent Application Laid-Open No.
No. 223465 discloses a Cu-Ni-F for producing a wire rod having a diameter of 5 mm or less by hot rolling a powder compact at 900 ° C. or higher to obtain a coiled rolled material and then cold working the rolled material.
This is a method for producing a wire rod of an e-alloy magnet, but cracks were generated during hot rolling because no investigation was made on the hot workability and the crystal grain size in this hot working. That is, since the Cu-Ni-Fe alloy has very poor hot workability, cracks occur during hot rolling, making it difficult to obtain a large reduction, and thus causing a problem of low productivity.
【0004】[0004]
【課題を解決するための手段】上述したような問題を解
消するため、発明者らは鋭意開発を進めた結果、熱間加
工性と結晶粒径との相関を明らかにし、熱間圧延時に、
より大きなリダクションをとり、生産性を向上させるこ
とを目的とするCuNiFe合金の熱間加工方法を提供
することにある。その発明の要旨とするところは、 (1)ガスアトマイズ法により、Ni:5〜30重量
%、Fe:5〜30重量%、残部Cuおよび不可避的不
純物よりなるCu−Ni−Fe合金粉末を作製し、該粉
末を金属製容器に充填、封入した後、熱間押出しまたは
アップセットにて作製した母材を、結晶粒の大きさを5
μm以下にしたことを特徴とするCuNiFe合金の熱
間加工方法。Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors have intensively developed and as a result, clarified the correlation between the hot workability and the crystal grain size.
It is an object of the present invention to provide a method for hot working a CuNiFe alloy for the purpose of achieving a greater reduction and improving productivity. The gist of the invention is as follows: (1) A Cu—Ni—Fe alloy powder composed of Ni: 5 to 30% by weight, Fe: 5 to 30% by weight, the balance being Cu and inevitable impurities is produced by a gas atomizing method. After filling and enclosing the powder in a metal container, the base material prepared by hot extrusion or upsetting is reduced to a crystal grain size of 5 mm.
A hot working method for a CuNiFe alloy, characterized in that the thickness is not more than μm.
【0005】(2)ガスアトマイズ法により、Ni:5
〜30重量%、Fe:5〜30重量%、Mn,Al,T
i,Si,Zrのうち少なくとも1種以上が0.01〜
0.5重量%添加し、残部Cuおよび不可避的不純物よ
りなるCu−Ni−Fe合金粉末を作製し、該粉末を金
属製容器に充填、封入した後、熱間押出しまたはアップ
セットにて作製した母材を、結晶粒の大きさを5μm以
下にしたことを特徴とするCuNiFe合金の熱間加工
方法。 (3)前記(1)または(2)記載において、熱間押出
しまたはアップセットにて作製した母材を、加熱温度8
00〜1000℃、Ni/Fe比1.02〜2.67と
することを特徴とするCuNiFe合金の熱間加工方法
にある。(2) Ni: 5 by gas atomization
-30% by weight, Fe: 5-30% by weight, Mn, Al, T
at least one of i, Si and Zr is 0.01 to
After adding 0.5% by weight, a Cu-Ni-Fe alloy powder comprising the balance of Cu and unavoidable impurities was produced, and the powder was filled and sealed in a metal container, and then produced by hot extrusion or upset. A hot working method for a CuNiFe alloy, wherein the base material has a crystal grain size of 5 μm or less. (3) In the above (1) or (2), the base material produced by hot extrusion or upset is heated at a heating temperature of 8
A hot working method for a CuNiFe alloy, which is performed at a temperature of from 00 to 1000 ° C. and a Ni / Fe ratio of from 1.02 to 2.67.
【0006】[0006]
【発明の実施の形態】以下、本発明について詳細に説明
する。本発明においては、ガスアトマイズ法により合金
粉末を作製した後、これに続く熱間押出またはアップセ
ット工程により、熱間圧延の適用を実現したもので、合
金粉末を金属製の容器に充填、封入し、これを熱間押出
装置にて押出しするか、アップセットするものである。
この場合に結晶粒の大きさが熱間加工性に大きく影響を
与えるもので、結晶粒の成長した状態で熱間加工を加え
ると割れが発生し、しかもこの割れは粒界部から発生す
ることが判った。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. In the present invention, after the alloy powder is produced by the gas atomization method, the application of hot rolling is realized by the subsequent hot extrusion or upset process, and the alloy powder is filled and sealed in a metal container. This is extruded by a hot extruder or upset.
In this case, the size of the crystal grains greatly affects the hot workability. If hot working is performed while the crystal grains are growing, cracks will occur, and these cracks will occur from the grain boundaries. I understood.
【0007】上記した知見から、結晶粒の大きさを小さ
くする必要があり、そのためにはガスアトマイズ法によ
り急冷凝固させ、結晶粒の成長を抑制する必要がある。
また、熱間押出し、ないしはアップセットにより高密
度、微細組織の粉末成形材を得る必要がある。このよう
に、ガスアトマイズ法により急冷凝固させ、結晶粒の成
長を抑制することと、熱間押出し、ないしはアップセッ
トにより高密度、微細組織の粉末成形材を得ることによ
り、結晶粒径を小さく抑え、さらには圧延加熱温度とN
i/Fe比の組合せ条件を考慮し、熱間圧延時の結晶粒
径を5μm以下に抑制するものである。[0007] From the above findings, it is necessary to reduce the size of the crystal grains, and for that purpose, it is necessary to rapidly solidify by a gas atomizing method to suppress the growth of the crystal grains.
Further, it is necessary to obtain a powder compact having a high density and a fine structure by hot extrusion or upsetting. In this way, rapid solidification by the gas atomization method to suppress the growth of crystal grains, and hot extrusion, or to obtain a high-density, fine-structured powder molding material by or upset, to reduce the crystal grain size, Furthermore, the rolling heating temperature and N
Considering the combination condition of the i / Fe ratio, the crystal grain size during hot rolling is suppressed to 5 μm or less.
【0008】すなわち、結晶粒径を5μm以下に抑える
と熱間加工性が向上し、一方、結晶粒径が5μm超に成
長すると熱間加工性が劣化し、この状態で熱間加工を加
えると割れが粒界部から発生する。また、Ni/Fe比
は結晶粒粗大化温度に影響を与え、Ni/Fe比の増加
に伴い粗大化温度は低下する。このため、必要とするN
i/Fe比において圧延加熱温度を抑制することによ
り、結晶粒径を5μm以下に抑えることが出来る。従っ
て、Ni/Fe比を1.02〜2.67に抑え、かつ加
熱温度を800〜1000℃にする必要がある。That is, when the crystal grain size is suppressed to 5 μm or less, the hot workability is improved. On the other hand, when the crystal grain size exceeds 5 μm, the hot workability is deteriorated. Cracks occur from the grain boundaries. Further, the Ni / Fe ratio affects the crystal grain coarsening temperature, and the coarsening temperature decreases as the Ni / Fe ratio increases. Therefore, the required N
By controlling the rolling heating temperature in the i / Fe ratio, the crystal grain size can be suppressed to 5 μm or less. Therefore, it is necessary to suppress the Ni / Fe ratio to 1.02 to 2.67 and to set the heating temperature to 800 to 1000 ° C.
【0009】[0009]
【実施例】(実施例1)表1に示す化学成分組成に配合
し、真空誘導溶解炉にて溶解後、ガスアトマイズを行
い、平均粒径100μmの合金粉末を作製した。作製し
た合金粉末を金属製の容器に充填・脱気・封入後、温度
1020〜1040℃において、直径206mmから直
径70mmに押出し、空冷後金属製の容器を除去し、プ
レス矯正した後ターニングを行なって、直径70mmか
ら直径55mmとした粉末成形材料を圧延母材とし、結
晶粒5μm超のものと、5μm以下に制御したものを8
00〜1000℃で熱間圧延時に加熱し、直径55mm
から直径9.5mmに熱間圧延した。このときの熱間圧
延を行ったときの割れの状況を評価した。EXAMPLES Example 1 An alloy powder having an average particle size of 100 μm was prepared by mixing the components shown in Table 1 and melting them in a vacuum induction melting furnace, followed by gas atomization. After filling, degassing and enclosing the prepared alloy powder in a metal container, at a temperature of 1020 to 1040 ° C., extruding from a diameter of 206 mm to a diameter of 70 mm, removing the metal container after air cooling, performing press straightening, and then turning. The powder molding material having a diameter of 70 mm to 55 mm was used as a rolling base material.
It is heated at the time of hot rolling at 00 to 1000 ° C. and has a diameter of 55 mm.
From 9.5 mm to a diameter of 9.5 mm. The state of cracking when hot rolling was performed at this time was evaluated.
【0010】(実施例2)表1に示す化学成分組成に配
合し、真空誘導溶解炉にて溶解後、ガスアトマイズを行
い、平均粒径100μmの合金粉末を作製した。作製し
た合金粉末を金属製の容器に充填・脱気・封入後、温度
980℃において、加圧圧縮用金型を用い、1500k
gf/cm2 の高圧下で固化成形し、結晶粒5μm超の
ものと、5μm以下に制御したものを800〜1000
℃で熱間圧延時に加熱し、直径70mmから直径9.5
mmに熱間圧延した。このときの熱間圧延を行ったとき
の割れの状況を評価した。Example 2 An alloy powder having an average particle size of 100 μm was prepared by mixing the components shown in Table 1 and dissolving them in a vacuum induction melting furnace, followed by gas atomization. After filling, degassing and enclosing the prepared alloy powder in a metal container, at a temperature of 980 ° C., using a press compression mold, 1500 k
Solidification molding under a high pressure of gf / cm 2 , 800-1000 of crystal grains having a grain size of more than 5 μm and
At the time of hot rolling at a temperature of 70 ° C to a diameter of 70 to 9.5.
mm. The state of cracking when hot rolling was performed at this time was evaluated.
【0011】[0011]
【表1】 [Table 1]
【0012】表1のNo1〜13は本発明例であり、N
o14〜18は比較例である。この結果、本発明例では
熱間圧延を行ったときの割れは全く見られなかった。こ
れに対して、No14〜16のNiの範囲外の比較例お
よびNo17〜18のFeの範囲外のものは、いずれも
結晶粒が大きく熱間圧延を行ったときの割れが発生して
いることが判る。Nos. 1 to 13 in Table 1 are examples of the present invention.
o14 to 18 are comparative examples. As a result, in the example of the present invention, no crack was observed when hot rolling was performed. On the other hand, the comparative examples out of the range of Ni of Nos. 14 to 16 and those of No. 17 to 18 out of the range of Fe each have large crystal grains and cracks when hot rolling is performed. I understand.
【0013】[0013]
【発明の効果】以上述べたように、本発明により結晶粒
径を5μm以下に保つことにより、CuNiFe合金の
熱間加工を向上させることが出来、熱間圧延時により大
きなリダクションを取ることができる。これにより、C
uNiFe合金の線材および薄板の生産性を向上させる
ことができた。さらに、加熱温度とNi/Fe比を組み
合わせることにより、加熱後の結晶粒径を5μm以下に
抑えることができ、Cu−Ni−Fe合金の熱間加工性
の向上を図ることが出来たことは工業上極めて有利なこ
とである。As described above, by keeping the crystal grain size at 5 μm or less according to the present invention, the hot working of the CuNiFe alloy can be improved and a greater reduction can be taken during hot rolling. . Thereby, C
The productivity of the wires and thin plates of the uNiFe alloy could be improved. Further, by combining the heating temperature and the Ni / Fe ratio, the crystal grain size after heating can be suppressed to 5 μm or less, and the hot workability of the Cu—Ni—Fe alloy can be improved. This is extremely industrially advantageous.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01F 41/02 C22F 1/00 660 // C22F 1/00 660 683 683 687 687 691B 691 H01F 1/04 Z (72)発明者 柳本 勝 兵庫県姫路市飾磨区中島字一文字3007番地 山陽特殊製鋼株式会社内 (72)発明者 黒田 直人 兵庫県姫路市飾磨区中島字一文字3007番地 山陽特殊製鋼株式会社内 (72)発明者 柳谷 彰彦 兵庫県姫路市飾磨区中島字一文字3007番地 山陽特殊製鋼株式会社内 Fターム(参考) 4K018 AA30 BB04 BC11 EA34 KA42 5E040 AA19 AA20 CA20 HB07 NN01 NN06 NN18 5E062 CC03 CD04 CE03 CE05 CG01──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01F 41/02 C22F 1/00 660 // C22F 1/00 660 683 683 683 687 687 691B 691 H01F 1/04 Z (72) Inventor Masaru Yanagimoto 3007 character, Nakajima character, Shima, Himeji-shi, Hyogo prefecture, Sanyo Special Steel Co., Ltd. ) Inventor Akihiko Yanagiya 3007 one-letter character in Nakajima, Shima, Himeji-shi, Hyogo F-term (reference) in Sanyo Special Steel Co., Ltd.
Claims (3)
0重量%、Fe:5〜30重量%、残部Cuおよび不可
避的不純物よりなるCu−Ni−Fe合金粉末を作製
し、該粉末を金属製容器に充填、封入した後、熱間押出
しまたはアップセットにて作製した母材を、結晶粒の大
きさを5μm以下にしたことを特徴とするCuNiFe
合金の熱間加工方法。1. Ni: 5 to 3 by a gas atomizing method.
A Cu-Ni-Fe alloy powder comprising 0% by weight, Fe: 5 to 30% by weight, the balance being Cu and unavoidable impurities is produced, and the powder is filled and sealed in a metal container, and then hot-extruded or upset. Characterized in that the size of the crystal grains of the base material prepared in (1) was reduced to 5 μm or less.
Hot working method for alloys.
0重量%、Fe:5〜30重量%、Mn,Al,Ti,
Si,Zrのうち少なくとも1種以上が0.01〜0.
5重量%添加し、残部Cuおよび不可避的不純物よりな
るCu−Ni−Fe合金粉末を作製し、該粉末を金属製
容器に充填、封入した後、熱間押出しまたはアップセッ
トにて作製した母材を、結晶粒の大きさを5μm以下に
したことを特徴とするCuNiFe合金の熱間加工方
法。2. Ni: 5 to 3 by a gas atomizing method.
0% by weight, Fe: 5 to 30% by weight, Mn, Al, Ti,
At least one of Si and Zr is 0.01 to 0.1.
5% by weight, Cu-Ni-Fe alloy powder composed of the balance Cu and inevitable impurities was produced, and the powder was filled and sealed in a metal container, and then hot-pressed or prepared by hot-set. Wherein the size of the crystal grains is set to 5 μm or less.
出しまたはアップセットにて作製した母材を、加熱温度
800〜1000℃、Ni/Fe比1.02〜2.67
とすることを特徴とするCuNiFe合金の熱間加工方
法。3. The base material produced by hot extrusion or upset according to claim 1, wherein the base material is heated at a temperature of 800 to 1000 ° C. and a Ni / Fe ratio of 1.02 to 2.67.
A hot working method for a CuNiFe alloy.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11058482A JP2000256766A (en) | 1999-03-05 | 1999-03-05 | HOT WORKING METHOD FOR CuNiFe ALLOY |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11058482A JP2000256766A (en) | 1999-03-05 | 1999-03-05 | HOT WORKING METHOD FOR CuNiFe ALLOY |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000256766A true JP2000256766A (en) | 2000-09-19 |
Family
ID=13085665
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11058482A Withdrawn JP2000256766A (en) | 1999-03-05 | 1999-03-05 | HOT WORKING METHOD FOR CuNiFe ALLOY |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000256766A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1245690A1 (en) * | 2001-03-27 | 2002-10-02 | Nippon Mining & Metals Co., Ltd. | Copper, copper alloy, and manufacturing method therefor |
CN103516414A (en) * | 2012-06-27 | 2014-01-15 | 拉碧斯半导体株式会社 | Diversity control method and wireless communication apparatus |
WO2020013293A1 (en) * | 2018-07-12 | 2020-01-16 | 住友金属鉱山株式会社 | Alloy powder and method for producing same |
CN111074091A (en) * | 2019-12-25 | 2020-04-28 | 北京北冶功能材料有限公司 | Copper-nickel-iron series permanent magnet alloy cold-rolled strip and processing method thereof |
CN114717435A (en) * | 2022-04-29 | 2022-07-08 | 中国铝业股份有限公司 | High-strength electromagnetic shielding copper alloy and preparation method thereof |
CN114807666A (en) * | 2021-12-02 | 2022-07-29 | 东北大学 | Preparation method of high-conductivity high-strength copper-iron alloy |
EP3985140A4 (en) * | 2019-06-11 | 2023-07-26 | Kiswire Ltd. | Kiniz alloy having homogeneous microstructure |
-
1999
- 1999-03-05 JP JP11058482A patent/JP2000256766A/en not_active Withdrawn
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1245690A1 (en) * | 2001-03-27 | 2002-10-02 | Nippon Mining & Metals Co., Ltd. | Copper, copper alloy, and manufacturing method therefor |
CN103516414A (en) * | 2012-06-27 | 2014-01-15 | 拉碧斯半导体株式会社 | Diversity control method and wireless communication apparatus |
CN103516414B (en) * | 2012-06-27 | 2018-03-30 | 拉碧斯半导体株式会社 | Diversity control method and radio communication device |
CN112423913B (en) * | 2018-07-12 | 2023-05-23 | 住友金属矿山株式会社 | Alloy powder and method for producing alloy powder |
WO2020013293A1 (en) * | 2018-07-12 | 2020-01-16 | 住友金属鉱山株式会社 | Alloy powder and method for producing same |
CN112423913A (en) * | 2018-07-12 | 2021-02-26 | 住友金属矿山株式会社 | Alloy powder and method for producing alloy powder |
KR20210024051A (en) * | 2018-07-12 | 2021-03-04 | 스미토모 긴조쿠 고잔 가부시키가이샤 | Alloy powder and its manufacturing method |
JPWO2020013293A1 (en) * | 2018-07-12 | 2021-04-30 | 住友金属鉱山株式会社 | Alloy powder and its manufacturing method |
EP3822000A4 (en) * | 2018-07-12 | 2022-04-20 | Sumitomo Metal Mining Co., Ltd. | Alloy powder and method for producing same |
KR102390724B1 (en) | 2018-07-12 | 2022-04-26 | 스미토모 긴조쿠 고잔 가부시키가이샤 | Alloy powder and manufacturing method thereof |
US11859264B2 (en) | 2018-07-12 | 2024-01-02 | Sumitomo Metal Mining Co., Ltd. | Alloy powder and method for producing same |
EP3985140A4 (en) * | 2019-06-11 | 2023-07-26 | Kiswire Ltd. | Kiniz alloy having homogeneous microstructure |
CN111074091A (en) * | 2019-12-25 | 2020-04-28 | 北京北冶功能材料有限公司 | Copper-nickel-iron series permanent magnet alloy cold-rolled strip and processing method thereof |
CN114807666B (en) * | 2021-12-02 | 2022-12-09 | 东北大学 | Preparation method of high-conductivity high-strength copper-iron alloy |
CN114807666A (en) * | 2021-12-02 | 2022-07-29 | 东北大学 | Preparation method of high-conductivity high-strength copper-iron alloy |
CN114717435B (en) * | 2022-04-29 | 2023-01-20 | 中国铝业股份有限公司 | High-strength electromagnetic shielding copper alloy and preparation method thereof |
WO2023207943A1 (en) * | 2022-04-29 | 2023-11-02 | 中国铝业股份有限公司 | High-strength electromagnetic shielding copper alloy and preparation method therefor |
CN114717435A (en) * | 2022-04-29 | 2022-07-08 | 中国铝业股份有限公司 | High-strength electromagnetic shielding copper alloy and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2007111342A1 (en) | High-strength high-toughness magnesium alloy and method for producing the same | |
JPS60228659A (en) | Malleable improvement for nickel base superalloy | |
JP6826766B1 (en) | Manufacturing method of Ni-based super heat-resistant alloy and Ni-based super heat-resistant alloy | |
JPS5887244A (en) | Copper base spinodal alloy strip and manufacture | |
JPS6312926B2 (en) | ||
JP5759426B2 (en) | Titanium alloy and manufacturing method thereof | |
JP2000256766A (en) | HOT WORKING METHOD FOR CuNiFe ALLOY | |
JP2003277899A (en) | Magnesium alloy member and its production method | |
JP2865499B2 (en) | Superplastic aluminum-based alloy material and method for producing superplastic alloy material | |
JPH05117800A (en) | Production of oxide-dispersed and reinforced iron base alloy | |
JPH0748646A (en) | High strength magnesium base alloy and production thereof | |
JP3238516B2 (en) | High strength magnesium alloy and method for producing the same | |
JPH0224883B2 (en) | ||
JPH05247574A (en) | Production of aluminum alloy for forging and forged product of aluminum alloy | |
JP3343045B2 (en) | Method for producing wire or thin plate of Cu-Ni-Fe alloy magnet | |
JPH08134614A (en) | Production of superplastic magnesium alloy material | |
JPH02502030A (en) | Method for manufacturing semi-finished products consisting of sintered non-reactive metal alloys | |
JP3113893B2 (en) | Manufacturing method of plastic working material and manufacturing method of plastic working material | |
JP3691399B2 (en) | Method for producing hot-worked aluminum alloy powder | |
JP3355093B2 (en) | Method for producing Cu-Ni-Fe alloy sheet material for magnetic scale | |
JP3261050B2 (en) | Method of manufacturing spherical Cu-Ni-Fe alloy magnet anisotropically anisotropic | |
JP3442641B2 (en) | Method for producing Cu-Ni-Fe alloy wire or thin plate for magnetic scale | |
JP2757204B2 (en) | Giant grains or single crystals of chromium and methods for their production | |
JP2757203B2 (en) | Method for producing large grains or single crystals of chromium | |
JP2004292846A (en) | METHOD FOR MANUFACTURING Cu-Ni-Fe ALLOY MATERIAL FOR MAGNETIC SCALE |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20060509 |