JP2000256766A - HOT WORKING METHOD FOR CuNiFe ALLOY - Google Patents

HOT WORKING METHOD FOR CuNiFe ALLOY

Info

Publication number
JP2000256766A
JP2000256766A JP11058482A JP5848299A JP2000256766A JP 2000256766 A JP2000256766 A JP 2000256766A JP 11058482 A JP11058482 A JP 11058482A JP 5848299 A JP5848299 A JP 5848299A JP 2000256766 A JP2000256766 A JP 2000256766A
Authority
JP
Japan
Prior art keywords
hot
alloy
weight
powder
working method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11058482A
Other languages
Japanese (ja)
Inventor
Toshiyuki Sawada
俊之 澤田
Yodai Takada
揚大 高田
Masaru Yanagimoto
勝 柳本
Naoto Kuroda
直人 黒田
Akihiko Yanagiya
彰彦 柳谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP11058482A priority Critical patent/JP2000256766A/en
Publication of JP2000256766A publication Critical patent/JP2000256766A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hot working method for improving the hot workability of CuNiFe alloy to be used in a magnetic scale. SOLUTION: Cu-Ni-Fe alloy powder having the composition consisting of, by weight, 5-30% Ni, 5-30% Fe, 0.01-0.5% at least one kind of Mn, Al, Ti, Si and Zr as necessary, and the balance Cu with inevitable impurities is manufactured by a gas atomizing method, the powder is filled in a metallic container and the container is sealed, and the grain size is controlled to be <=5 μm in a base metal manufactured by the hot extrusion or upset. The Ni/Fe ratio of the base metal manufactured by the hot extrusion or upset is controlled to be 1.02-2.67 at the heating temperature of 800-1000 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、主に磁気スケール
などに使用されるCuNiFe合金における熱間加工性
の向上を図る熱間加工方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hot working method for improving hot workability of a CuNiFe alloy mainly used for a magnetic scale or the like.

【0002】[0002]

【従来の技術】従来、CuNiFe合金として、例えば
特開平10−223465号公報に開示されているよう
に、ガスアトマイズ法によりNi:5〜25重量%、F
e:5〜25重量%、残部Cuおよび不可避不純物から
なるCu−Ni−Fe合金粉末を作製し、該Cu−Ni
−Fe合金粉末を金属製の容器に充填・封入し、これを
熱間押出装置にて900℃以上、歪み速度10s-1以上
の大きな歪み速度で押出し、充填密度が実質95%以上
の高密度の粉末成形材を得た後、金属製容器を除去し、
次いで該粉末成形材を900℃以上で熱間圧延しコイル
状の圧延材を得た後、該圧延材を冷間加工して直径5m
m以下の線材を製造するCu−Ni−Fe合金磁石の線
材の製造方法が提案されている。
2. Description of the Related Art Conventionally, as a CuNiFe alloy, for example, as disclosed in Japanese Patent Application Laid-Open No. Hei 10-223465, Ni: 5 to 25% by weight,
e: preparing a Cu—Ni—Fe alloy powder composed of 5 to 25% by weight, with the balance being Cu and unavoidable impurities,
-Filling and enclosing the Fe alloy powder in a metal container, extruding it with a hot extruder at 900 ° C. or more and a large strain rate of 10 s −1 or more, and the packing density is substantially 95% or more. After obtaining the powder molding material, remove the metal container,
Next, the powder compact is hot-rolled at 900 ° C. or higher to obtain a coiled rolled material, and the rolled material is cold-worked to a diameter of 5 m.
A method for producing a wire of a Cu—Ni—Fe alloy magnet for producing a wire having a diameter of m or less has been proposed.

【0003】[0003]

【発明が解決しようとする課題】上述した特開平10−
223465号公報は、粉末成形材を900℃以上で熱
間圧延しコイル状の圧延材を得た後、該圧延材を冷間加
工して直径5mm以下の線材を製造するCu−Ni−F
e合金磁石の線材の製造方法であるが、この熱間加工に
当たっての熱間加工性と結晶粒径に関する調査がされて
いなかったため、熱間圧延時に割れが発生していた。す
なわち、Cu−Ni−Fe合金は、熱間加工性が非常に
悪いため、熱間圧延時に割れが発生し、大きなリダクシ
ョンをとることが困難となり、そのために生産性が悪い
という問題があった。
SUMMARY OF THE INVENTION The above-mentioned Japanese Patent Application Laid-Open No.
No. 223465 discloses a Cu-Ni-F for producing a wire rod having a diameter of 5 mm or less by hot rolling a powder compact at 900 ° C. or higher to obtain a coiled rolled material and then cold working the rolled material.
This is a method for producing a wire rod of an e-alloy magnet, but cracks were generated during hot rolling because no investigation was made on the hot workability and the crystal grain size in this hot working. That is, since the Cu-Ni-Fe alloy has very poor hot workability, cracks occur during hot rolling, making it difficult to obtain a large reduction, and thus causing a problem of low productivity.

【0004】[0004]

【課題を解決するための手段】上述したような問題を解
消するため、発明者らは鋭意開発を進めた結果、熱間加
工性と結晶粒径との相関を明らかにし、熱間圧延時に、
より大きなリダクションをとり、生産性を向上させるこ
とを目的とするCuNiFe合金の熱間加工方法を提供
することにある。その発明の要旨とするところは、 (1)ガスアトマイズ法により、Ni:5〜30重量
%、Fe:5〜30重量%、残部Cuおよび不可避的不
純物よりなるCu−Ni−Fe合金粉末を作製し、該粉
末を金属製容器に充填、封入した後、熱間押出しまたは
アップセットにて作製した母材を、結晶粒の大きさを5
μm以下にしたことを特徴とするCuNiFe合金の熱
間加工方法。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors have intensively developed and as a result, clarified the correlation between the hot workability and the crystal grain size.
It is an object of the present invention to provide a method for hot working a CuNiFe alloy for the purpose of achieving a greater reduction and improving productivity. The gist of the invention is as follows: (1) A Cu—Ni—Fe alloy powder composed of Ni: 5 to 30% by weight, Fe: 5 to 30% by weight, the balance being Cu and inevitable impurities is produced by a gas atomizing method. After filling and enclosing the powder in a metal container, the base material prepared by hot extrusion or upsetting is reduced to a crystal grain size of 5 mm.
A hot working method for a CuNiFe alloy, characterized in that the thickness is not more than μm.

【0005】(2)ガスアトマイズ法により、Ni:5
〜30重量%、Fe:5〜30重量%、Mn,Al,T
i,Si,Zrのうち少なくとも1種以上が0.01〜
0.5重量%添加し、残部Cuおよび不可避的不純物よ
りなるCu−Ni−Fe合金粉末を作製し、該粉末を金
属製容器に充填、封入した後、熱間押出しまたはアップ
セットにて作製した母材を、結晶粒の大きさを5μm以
下にしたことを特徴とするCuNiFe合金の熱間加工
方法。 (3)前記(1)または(2)記載において、熱間押出
しまたはアップセットにて作製した母材を、加熱温度8
00〜1000℃、Ni/Fe比1.02〜2.67と
することを特徴とするCuNiFe合金の熱間加工方法
にある。
(2) Ni: 5 by gas atomization
-30% by weight, Fe: 5-30% by weight, Mn, Al, T
at least one of i, Si and Zr is 0.01 to
After adding 0.5% by weight, a Cu-Ni-Fe alloy powder comprising the balance of Cu and unavoidable impurities was produced, and the powder was filled and sealed in a metal container, and then produced by hot extrusion or upset. A hot working method for a CuNiFe alloy, wherein the base material has a crystal grain size of 5 μm or less. (3) In the above (1) or (2), the base material produced by hot extrusion or upset is heated at a heating temperature of 8
A hot working method for a CuNiFe alloy, which is performed at a temperature of from 00 to 1000 ° C. and a Ni / Fe ratio of from 1.02 to 2.67.

【0006】[0006]

【発明の実施の形態】以下、本発明について詳細に説明
する。本発明においては、ガスアトマイズ法により合金
粉末を作製した後、これに続く熱間押出またはアップセ
ット工程により、熱間圧延の適用を実現したもので、合
金粉末を金属製の容器に充填、封入し、これを熱間押出
装置にて押出しするか、アップセットするものである。
この場合に結晶粒の大きさが熱間加工性に大きく影響を
与えるもので、結晶粒の成長した状態で熱間加工を加え
ると割れが発生し、しかもこの割れは粒界部から発生す
ることが判った。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. In the present invention, after the alloy powder is produced by the gas atomization method, the application of hot rolling is realized by the subsequent hot extrusion or upset process, and the alloy powder is filled and sealed in a metal container. This is extruded by a hot extruder or upset.
In this case, the size of the crystal grains greatly affects the hot workability. If hot working is performed while the crystal grains are growing, cracks will occur, and these cracks will occur from the grain boundaries. I understood.

【0007】上記した知見から、結晶粒の大きさを小さ
くする必要があり、そのためにはガスアトマイズ法によ
り急冷凝固させ、結晶粒の成長を抑制する必要がある。
また、熱間押出し、ないしはアップセットにより高密
度、微細組織の粉末成形材を得る必要がある。このよう
に、ガスアトマイズ法により急冷凝固させ、結晶粒の成
長を抑制することと、熱間押出し、ないしはアップセッ
トにより高密度、微細組織の粉末成形材を得ることによ
り、結晶粒径を小さく抑え、さらには圧延加熱温度とN
i/Fe比の組合せ条件を考慮し、熱間圧延時の結晶粒
径を5μm以下に抑制するものである。
[0007] From the above findings, it is necessary to reduce the size of the crystal grains, and for that purpose, it is necessary to rapidly solidify by a gas atomizing method to suppress the growth of the crystal grains.
Further, it is necessary to obtain a powder compact having a high density and a fine structure by hot extrusion or upsetting. In this way, rapid solidification by the gas atomization method to suppress the growth of crystal grains, and hot extrusion, or to obtain a high-density, fine-structured powder molding material by or upset, to reduce the crystal grain size, Furthermore, the rolling heating temperature and N
Considering the combination condition of the i / Fe ratio, the crystal grain size during hot rolling is suppressed to 5 μm or less.

【0008】すなわち、結晶粒径を5μm以下に抑える
と熱間加工性が向上し、一方、結晶粒径が5μm超に成
長すると熱間加工性が劣化し、この状態で熱間加工を加
えると割れが粒界部から発生する。また、Ni/Fe比
は結晶粒粗大化温度に影響を与え、Ni/Fe比の増加
に伴い粗大化温度は低下する。このため、必要とするN
i/Fe比において圧延加熱温度を抑制することによ
り、結晶粒径を5μm以下に抑えることが出来る。従っ
て、Ni/Fe比を1.02〜2.67に抑え、かつ加
熱温度を800〜1000℃にする必要がある。
That is, when the crystal grain size is suppressed to 5 μm or less, the hot workability is improved. On the other hand, when the crystal grain size exceeds 5 μm, the hot workability is deteriorated. Cracks occur from the grain boundaries. Further, the Ni / Fe ratio affects the crystal grain coarsening temperature, and the coarsening temperature decreases as the Ni / Fe ratio increases. Therefore, the required N
By controlling the rolling heating temperature in the i / Fe ratio, the crystal grain size can be suppressed to 5 μm or less. Therefore, it is necessary to suppress the Ni / Fe ratio to 1.02 to 2.67 and to set the heating temperature to 800 to 1000 ° C.

【0009】[0009]

【実施例】(実施例1)表1に示す化学成分組成に配合
し、真空誘導溶解炉にて溶解後、ガスアトマイズを行
い、平均粒径100μmの合金粉末を作製した。作製し
た合金粉末を金属製の容器に充填・脱気・封入後、温度
1020〜1040℃において、直径206mmから直
径70mmに押出し、空冷後金属製の容器を除去し、プ
レス矯正した後ターニングを行なって、直径70mmか
ら直径55mmとした粉末成形材料を圧延母材とし、結
晶粒5μm超のものと、5μm以下に制御したものを8
00〜1000℃で熱間圧延時に加熱し、直径55mm
から直径9.5mmに熱間圧延した。このときの熱間圧
延を行ったときの割れの状況を評価した。
EXAMPLES Example 1 An alloy powder having an average particle size of 100 μm was prepared by mixing the components shown in Table 1 and melting them in a vacuum induction melting furnace, followed by gas atomization. After filling, degassing and enclosing the prepared alloy powder in a metal container, at a temperature of 1020 to 1040 ° C., extruding from a diameter of 206 mm to a diameter of 70 mm, removing the metal container after air cooling, performing press straightening, and then turning. The powder molding material having a diameter of 70 mm to 55 mm was used as a rolling base material.
It is heated at the time of hot rolling at 00 to 1000 ° C. and has a diameter of 55 mm.
From 9.5 mm to a diameter of 9.5 mm. The state of cracking when hot rolling was performed at this time was evaluated.

【0010】(実施例2)表1に示す化学成分組成に配
合し、真空誘導溶解炉にて溶解後、ガスアトマイズを行
い、平均粒径100μmの合金粉末を作製した。作製し
た合金粉末を金属製の容器に充填・脱気・封入後、温度
980℃において、加圧圧縮用金型を用い、1500k
gf/cm2 の高圧下で固化成形し、結晶粒5μm超の
ものと、5μm以下に制御したものを800〜1000
℃で熱間圧延時に加熱し、直径70mmから直径9.5
mmに熱間圧延した。このときの熱間圧延を行ったとき
の割れの状況を評価した。
Example 2 An alloy powder having an average particle size of 100 μm was prepared by mixing the components shown in Table 1 and dissolving them in a vacuum induction melting furnace, followed by gas atomization. After filling, degassing and enclosing the prepared alloy powder in a metal container, at a temperature of 980 ° C., using a press compression mold, 1500 k
Solidification molding under a high pressure of gf / cm 2 , 800-1000 of crystal grains having a grain size of more than 5 μm and
At the time of hot rolling at a temperature of 70 ° C to a diameter of 70 to 9.5.
mm. The state of cracking when hot rolling was performed at this time was evaluated.

【0011】[0011]

【表1】 [Table 1]

【0012】表1のNo1〜13は本発明例であり、N
o14〜18は比較例である。この結果、本発明例では
熱間圧延を行ったときの割れは全く見られなかった。こ
れに対して、No14〜16のNiの範囲外の比較例お
よびNo17〜18のFeの範囲外のものは、いずれも
結晶粒が大きく熱間圧延を行ったときの割れが発生して
いることが判る。
Nos. 1 to 13 in Table 1 are examples of the present invention.
o14 to 18 are comparative examples. As a result, in the example of the present invention, no crack was observed when hot rolling was performed. On the other hand, the comparative examples out of the range of Ni of Nos. 14 to 16 and those of No. 17 to 18 out of the range of Fe each have large crystal grains and cracks when hot rolling is performed. I understand.

【0013】[0013]

【発明の効果】以上述べたように、本発明により結晶粒
径を5μm以下に保つことにより、CuNiFe合金の
熱間加工を向上させることが出来、熱間圧延時により大
きなリダクションを取ることができる。これにより、C
uNiFe合金の線材および薄板の生産性を向上させる
ことができた。さらに、加熱温度とNi/Fe比を組み
合わせることにより、加熱後の結晶粒径を5μm以下に
抑えることができ、Cu−Ni−Fe合金の熱間加工性
の向上を図ることが出来たことは工業上極めて有利なこ
とである。
As described above, by keeping the crystal grain size at 5 μm or less according to the present invention, the hot working of the CuNiFe alloy can be improved and a greater reduction can be taken during hot rolling. . Thereby, C
The productivity of the wires and thin plates of the uNiFe alloy could be improved. Further, by combining the heating temperature and the Ni / Fe ratio, the crystal grain size after heating can be suppressed to 5 μm or less, and the hot workability of the Cu—Ni—Fe alloy can be improved. This is extremely industrially advantageous.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01F 41/02 C22F 1/00 660 // C22F 1/00 660 683 683 687 687 691B 691 H01F 1/04 Z (72)発明者 柳本 勝 兵庫県姫路市飾磨区中島字一文字3007番地 山陽特殊製鋼株式会社内 (72)発明者 黒田 直人 兵庫県姫路市飾磨区中島字一文字3007番地 山陽特殊製鋼株式会社内 (72)発明者 柳谷 彰彦 兵庫県姫路市飾磨区中島字一文字3007番地 山陽特殊製鋼株式会社内 Fターム(参考) 4K018 AA30 BB04 BC11 EA34 KA42 5E040 AA19 AA20 CA20 HB07 NN01 NN06 NN18 5E062 CC03 CD04 CE03 CE05 CG01──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01F 41/02 C22F 1/00 660 // C22F 1/00 660 683 683 683 687 687 691B 691 H01F 1/04 Z (72) Inventor Masaru Yanagimoto 3007 character, Nakajima character, Shima, Himeji-shi, Hyogo prefecture, Sanyo Special Steel Co., Ltd. ) Inventor Akihiko Yanagiya 3007 one-letter character in Nakajima, Shima, Himeji-shi, Hyogo F-term (reference) in Sanyo Special Steel Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ガスアトマイズ法により、Ni:5〜3
0重量%、Fe:5〜30重量%、残部Cuおよび不可
避的不純物よりなるCu−Ni−Fe合金粉末を作製
し、該粉末を金属製容器に充填、封入した後、熱間押出
しまたはアップセットにて作製した母材を、結晶粒の大
きさを5μm以下にしたことを特徴とするCuNiFe
合金の熱間加工方法。
1. Ni: 5 to 3 by a gas atomizing method.
A Cu-Ni-Fe alloy powder comprising 0% by weight, Fe: 5 to 30% by weight, the balance being Cu and unavoidable impurities is produced, and the powder is filled and sealed in a metal container, and then hot-extruded or upset. Characterized in that the size of the crystal grains of the base material prepared in (1) was reduced to 5 μm or less.
Hot working method for alloys.
【請求項2】 ガスアトマイズ法により、Ni:5〜3
0重量%、Fe:5〜30重量%、Mn,Al,Ti,
Si,Zrのうち少なくとも1種以上が0.01〜0.
5重量%添加し、残部Cuおよび不可避的不純物よりな
るCu−Ni−Fe合金粉末を作製し、該粉末を金属製
容器に充填、封入した後、熱間押出しまたはアップセッ
トにて作製した母材を、結晶粒の大きさを5μm以下に
したことを特徴とするCuNiFe合金の熱間加工方
法。
2. Ni: 5 to 3 by a gas atomizing method.
0% by weight, Fe: 5 to 30% by weight, Mn, Al, Ti,
At least one of Si and Zr is 0.01 to 0.1.
5% by weight, Cu-Ni-Fe alloy powder composed of the balance Cu and inevitable impurities was produced, and the powder was filled and sealed in a metal container, and then hot-pressed or prepared by hot-set. Wherein the size of the crystal grains is set to 5 μm or less.
【請求項3】 請求項1または2記載において、熱間押
出しまたはアップセットにて作製した母材を、加熱温度
800〜1000℃、Ni/Fe比1.02〜2.67
とすることを特徴とするCuNiFe合金の熱間加工方
法。
3. The base material produced by hot extrusion or upset according to claim 1, wherein the base material is heated at a temperature of 800 to 1000 ° C. and a Ni / Fe ratio of 1.02 to 2.67.
A hot working method for a CuNiFe alloy.
JP11058482A 1999-03-05 1999-03-05 HOT WORKING METHOD FOR CuNiFe ALLOY Withdrawn JP2000256766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11058482A JP2000256766A (en) 1999-03-05 1999-03-05 HOT WORKING METHOD FOR CuNiFe ALLOY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11058482A JP2000256766A (en) 1999-03-05 1999-03-05 HOT WORKING METHOD FOR CuNiFe ALLOY

Publications (1)

Publication Number Publication Date
JP2000256766A true JP2000256766A (en) 2000-09-19

Family

ID=13085665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11058482A Withdrawn JP2000256766A (en) 1999-03-05 1999-03-05 HOT WORKING METHOD FOR CuNiFe ALLOY

Country Status (1)

Country Link
JP (1) JP2000256766A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1245690A1 (en) * 2001-03-27 2002-10-02 Nippon Mining &amp; Metals Co., Ltd. Copper, copper alloy, and manufacturing method therefor
CN103516414A (en) * 2012-06-27 2014-01-15 拉碧斯半导体株式会社 Diversity control method and wireless communication apparatus
WO2020013293A1 (en) * 2018-07-12 2020-01-16 住友金属鉱山株式会社 Alloy powder and method for producing same
CN111074091A (en) * 2019-12-25 2020-04-28 北京北冶功能材料有限公司 Copper-nickel-iron series permanent magnet alloy cold-rolled strip and processing method thereof
CN114717435A (en) * 2022-04-29 2022-07-08 中国铝业股份有限公司 High-strength electromagnetic shielding copper alloy and preparation method thereof
CN114807666A (en) * 2021-12-02 2022-07-29 东北大学 Preparation method of high-conductivity high-strength copper-iron alloy
EP3985140A4 (en) * 2019-06-11 2023-07-26 Kiswire Ltd. Kiniz alloy having homogeneous microstructure

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1245690A1 (en) * 2001-03-27 2002-10-02 Nippon Mining &amp; Metals Co., Ltd. Copper, copper alloy, and manufacturing method therefor
CN103516414A (en) * 2012-06-27 2014-01-15 拉碧斯半导体株式会社 Diversity control method and wireless communication apparatus
CN103516414B (en) * 2012-06-27 2018-03-30 拉碧斯半导体株式会社 Diversity control method and radio communication device
CN112423913B (en) * 2018-07-12 2023-05-23 住友金属矿山株式会社 Alloy powder and method for producing alloy powder
WO2020013293A1 (en) * 2018-07-12 2020-01-16 住友金属鉱山株式会社 Alloy powder and method for producing same
CN112423913A (en) * 2018-07-12 2021-02-26 住友金属矿山株式会社 Alloy powder and method for producing alloy powder
KR20210024051A (en) * 2018-07-12 2021-03-04 스미토모 긴조쿠 고잔 가부시키가이샤 Alloy powder and its manufacturing method
JPWO2020013293A1 (en) * 2018-07-12 2021-04-30 住友金属鉱山株式会社 Alloy powder and its manufacturing method
EP3822000A4 (en) * 2018-07-12 2022-04-20 Sumitomo Metal Mining Co., Ltd. Alloy powder and method for producing same
KR102390724B1 (en) 2018-07-12 2022-04-26 스미토모 긴조쿠 고잔 가부시키가이샤 Alloy powder and manufacturing method thereof
US11859264B2 (en) 2018-07-12 2024-01-02 Sumitomo Metal Mining Co., Ltd. Alloy powder and method for producing same
EP3985140A4 (en) * 2019-06-11 2023-07-26 Kiswire Ltd. Kiniz alloy having homogeneous microstructure
CN111074091A (en) * 2019-12-25 2020-04-28 北京北冶功能材料有限公司 Copper-nickel-iron series permanent magnet alloy cold-rolled strip and processing method thereof
CN114807666B (en) * 2021-12-02 2022-12-09 东北大学 Preparation method of high-conductivity high-strength copper-iron alloy
CN114807666A (en) * 2021-12-02 2022-07-29 东北大学 Preparation method of high-conductivity high-strength copper-iron alloy
CN114717435B (en) * 2022-04-29 2023-01-20 中国铝业股份有限公司 High-strength electromagnetic shielding copper alloy and preparation method thereof
WO2023207943A1 (en) * 2022-04-29 2023-11-02 中国铝业股份有限公司 High-strength electromagnetic shielding copper alloy and preparation method therefor
CN114717435A (en) * 2022-04-29 2022-07-08 中国铝业股份有限公司 High-strength electromagnetic shielding copper alloy and preparation method thereof

Similar Documents

Publication Publication Date Title
WO2007111342A1 (en) High-strength high-toughness magnesium alloy and method for producing the same
JPS60228659A (en) Malleable improvement for nickel base superalloy
JP6826766B1 (en) Manufacturing method of Ni-based super heat-resistant alloy and Ni-based super heat-resistant alloy
JPS5887244A (en) Copper base spinodal alloy strip and manufacture
JPS6312926B2 (en)
JP5759426B2 (en) Titanium alloy and manufacturing method thereof
JP2000256766A (en) HOT WORKING METHOD FOR CuNiFe ALLOY
JP2003277899A (en) Magnesium alloy member and its production method
JP2865499B2 (en) Superplastic aluminum-based alloy material and method for producing superplastic alloy material
JPH05117800A (en) Production of oxide-dispersed and reinforced iron base alloy
JPH0748646A (en) High strength magnesium base alloy and production thereof
JP3238516B2 (en) High strength magnesium alloy and method for producing the same
JPH0224883B2 (en)
JPH05247574A (en) Production of aluminum alloy for forging and forged product of aluminum alloy
JP3343045B2 (en) Method for producing wire or thin plate of Cu-Ni-Fe alloy magnet
JPH08134614A (en) Production of superplastic magnesium alloy material
JPH02502030A (en) Method for manufacturing semi-finished products consisting of sintered non-reactive metal alloys
JP3113893B2 (en) Manufacturing method of plastic working material and manufacturing method of plastic working material
JP3691399B2 (en) Method for producing hot-worked aluminum alloy powder
JP3355093B2 (en) Method for producing Cu-Ni-Fe alloy sheet material for magnetic scale
JP3261050B2 (en) Method of manufacturing spherical Cu-Ni-Fe alloy magnet anisotropically anisotropic
JP3442641B2 (en) Method for producing Cu-Ni-Fe alloy wire or thin plate for magnetic scale
JP2757204B2 (en) Giant grains or single crystals of chromium and methods for their production
JP2757203B2 (en) Method for producing large grains or single crystals of chromium
JP2004292846A (en) METHOD FOR MANUFACTURING Cu-Ni-Fe ALLOY MATERIAL FOR MAGNETIC SCALE

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060509