JP3238516B2 - High strength magnesium alloy and method for producing the same - Google Patents

High strength magnesium alloy and method for producing the same

Info

Publication number
JP3238516B2
JP3238516B2 JP05402693A JP5402693A JP3238516B2 JP 3238516 B2 JP3238516 B2 JP 3238516B2 JP 05402693 A JP05402693 A JP 05402693A JP 5402693 A JP5402693 A JP 5402693A JP 3238516 B2 JP3238516 B2 JP 3238516B2
Authority
JP
Japan
Prior art keywords
atomic
alloy
magnesium alloy
same
intermetallic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP05402693A
Other languages
Japanese (ja)
Other versions
JPH073375A (en
Inventor
健 増本
明久 井上
秀彦 堀切
晃 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP05402693A priority Critical patent/JP3238516B2/en
Publication of JPH073375A publication Critical patent/JPH073375A/en
Application granted granted Critical
Publication of JP3238516B2 publication Critical patent/JP3238516B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Continuous Casting (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は高強度マグネシウム合金
及びその製造法に関するものであり、さらに詳しく述べ
るならば微結晶マグネシウム合金の強度及び靭性を高め
る技術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength magnesium alloy and a method for producing the same, and more particularly to a technique for increasing the strength and toughness of a microcrystalline magnesium alloy.

【0002】[0002]

【従来の技術】本出願人らは特願平3−74681号
(平成3年3月14日出願)及び欧州公開特許公報05
03880号において、Mga Mb Alc Xd Ze (た
だし、MはLa,Ce,及び/又はMm(ミッシュメタ
ル)、XはNi及び/Cu,ZはMn,Zn,Zr及び
/又はTi,a=70〜90at%,b=2〜15at
%,d=2〜15at%,e=0.1〜8at%、a+
b+c+d+e=100at%)からなる組成の高強度
耐熱性非晶質マグネシウム合金を提案した。この合金の
引張強度は実施例では約80〜100kg/mm2 であ
り、従来のマグネシウム合金よりも遥かに高い強度をも
っている。
2. Description of the Related Art Applicants have filed Japanese Patent Application No. 3-74881 (filed on Mar. 14, 1991) and European Patent Publication No. 05.
No. 03880, Mga Mb Alc Xd Ze (where M is La, Ce, and / or Mm (mish metal), X is Ni and / or Cu, Z is Mn, Zn, Zr and / or Ti, a = 70 to 90 at%, b = 2 to 15 at
%, D = 2 to 15 at%, e = 0.1 to 8 at%, a +
A high-strength heat-resistant amorphous magnesium alloy having a composition of (b + c + d + e = 100 at%) was proposed. The tensile strength of this alloy is about 80 to 100 kg / mm 2 in the embodiment, and is much higher than that of the conventional magnesium alloy.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記の
マグネシウム合金は組織が非晶質であるために、形態が
箔などに限定されており、各種部品として実用する面で
は問題がある。したがって、本発明は強度が高く、靭性
にすぐれかつ各種形状に加工できるマグネシウム合金及
びその加工方法を提供することを目的とする。
However, since the above magnesium alloy has an amorphous structure, its form is limited to foil or the like, and there is a problem in practical use as various parts. Accordingly, an object of the present invention is to provide a magnesium alloy having high strength, excellent toughness, and capable of being processed into various shapes, and a method for processing the same.

【0004】上記した目的を達成する本発明の第一は、
一般式でMgaZnbc(ただし、XはY,Ce,L
a,Nd,Pr,Sm,Mm(ミッシュメタル)からな
る群から選ばれる1種または2種以上の元素、87原子
%≦a≦98原子%、b及びcは図1のA,B点を結ぶ
線上を除くB−C−D−E−F−Aの線上及びA−B−
C−D−E−Fの線で囲まれた範囲であり、かつ0≦Y
(イットリウム)≦4.5原子%、0≦Ce,La,N
d,Pr,Sm,Mm≦3原子%で表される組成を有
し、サブミクロンの微結晶からなる母相にMg−Zn系
及びMg−X系金属間化合物が分散したことを特徴とす
靭性に優れた高強度マグネシウム合金粉末固化材であ
り、また本発明の第二は、一般式でMgaZnbc(た
だし、XはY,Ce,La,Nd,Pr,Sm,Mm
(ミッシュメタル)からなる群から選ばれる1種または
2種以上の元素、87原子%≦a≦98原子%、b及び
cは図1のA,B点を結ぶ線上を除くB−C−D−E−
F−Aの線上及びA−B−C−D−E−Fの線で囲まれ
た範囲であり、かつ0≦Y(イットリウム)≦4.5原
子%、0≦Ce,La,Nd,Pr,Sm,Mm≦3原
子%で表される組成を有する合金溶湯を急冷凝固し、そ
の後該急冷凝固合金に300〜450℃の温度で塑性加
工を施し、サブミクロンの微結晶からなる母相にMg−
Zn系及びMg−X系金属間化合物を分散させたことを
特徴とする高強度マグネシウム合金粉末固化材の製造方
法である。
[0004] The first of the present invention to achieve the above object is as follows.
In the general formula, Mg a Zn b X c (where X is Y, Ce, L
One or more elements selected from the group consisting of a, Nd, Pr, Sm, and Mm (Misch metal), 87 at% ≦ a ≦ 98 at%, b and c are points A and B in FIG. Except on the connecting line, on the BCDEFA line and on the AB-
A range surrounded by a line of CDEF and 0 ≦ Y
(Yttrium) ≦ 4.5 atomic%, 0 ≦ Ce, La, N
It has a composition represented by d, Pr, Sm, and Mm ≦ 3 atomic%, and is characterized in that a Mg—Zn-based and Mg—X-based intermetallic compound is dispersed in a parent phase composed of submicron microcrystals. A high-strength magnesium alloy powder solidified material having excellent toughness. The second aspect of the present invention is a general formula of Mg a Zn b X c (where X is Y, Ce, La, Nd, Pr, Sm, Mm).
(Misch metal) One or more elements selected from the group consisting of 87 atomic% ≦ a ≦ 98 atomic%, b and c are BCD except for the line connecting points A and B in FIG. -E-
It is the range enclosed by the line of FA and the line of ABCDCEF, and 0 ≦ Y (yttrium) ≦ 4.5 atomic%, 0 ≦ Ce, La, Nd, Pr , Sm, Mm ≦ 3 atomic% is rapidly solidified, and then the rapidly solidified alloy is subjected to plastic working at a temperature of 300 to 450 ° C. to form a parent phase composed of submicron microcrystals. Mg-
A method for producing a high-strength magnesium alloy powder solidified material, in which Zn-based and Mg-X-based intermetallic compounds are dispersed.

【0005】本発明の第一にかかるマグネシウム合金に
おいて、Mgは母相となる微結晶をつくる元素である。
Mgの量が87原子%未満であると、軽量であるという
マグネシウム合金の特長が失われ、母相の結晶が粗大化
し、また靭性の低下などが招かれる。一方Mgの量が9
8原子%を越えると母相中に析出する金属間化合物の量
が不足して強度の低下を招く。
[0005] In the magnesium alloy according to the first aspect of the present invention, Mg is an element for forming microcrystals to be a parent phase.
If the amount of Mg is less than 87 atomic%, the feature of the magnesium alloy that it is lightweight is lost, the crystal of the parent phase becomes coarse, and the toughness is reduced. On the other hand, when the amount of Mg is 9
If it exceeds 8 atomic%, the amount of the intermetallic compound precipitated in the mother phase becomes insufficient, resulting in a decrease in strength.

【0006】ZnはMgとの金属間化合物を形成し、こ
の金属間化合物が微細なMg母相中に微細に分散して靭
性を損なうことなく強度を高める。また、XはY,C
e,La,Nd,Pr,Sm,Mm(ミッシュメタル)
からなる群から選ばれる1種または2種以上の元素はM
gの母相を微細化するとともに、Mgとの金属間化合物
を形成し、この金属間化合物が微細なMg母相中に微細
に分散して靭性を損なうことなく強度を高める。これら
の元素の量は図1に示された範囲とすることが必要であ
る。すなわち、AFE線より上側、ED線より右側及び
BCD線より下側では分散する金属間化合物が粗大化し
て材料が脆くなるので、これらの線上あるいは線で囲ま
れた範囲内とする必要がある。
[0006] Zn forms an intermetallic compound with Mg, and this intermetallic compound is finely dispersed in a fine Mg matrix to increase the strength without impairing the toughness. X is Y, C
e, La, Nd, Pr, Sm, Mm (Misch metal)
One or more elements selected from the group consisting of
In addition to miniaturizing the matrix of g, an intermetallic compound with Mg is formed, and the intermetallic compound is finely dispersed in the fine Mg matrix to increase the strength without impairing the toughness. It is necessary that the amounts of these elements be in the range shown in FIG. That is, since the dispersed intermetallic compound is coarsened above the AFE line, to the right of the ED line, and below the BCD line to make the material brittle, it is necessary to set the range above or within the range surrounded by these lines.

【0007】さらに、Y(イットリウム)を添加する場
合は本発明の合金で析出するY(イットリウム)とMg
の金属間化合物は、Ce,La,Nd,Pr,Sm,M
mとMgの金属間化合物に比べ、X元素の原子%が高
い。このためY(イットリウム)を添加する場合は4.
5原子%まで脆化することがない。他方Ce,La,N
d,Pr,Sm,Mmの場合は上限を3原子%とする必
要がある。
Furthermore, when Y (yttrium) is added, Y (yttrium) and Mg which precipitate in the alloy of the present invention are added.
Is an intermetallic compound of Ce, La, Nd, Pr, Sm, M
Atomic% of the X element is higher than that of the intermetallic compound of m and Mg. Therefore, when Y (yttrium) is added, 4.
No embrittlement up to 5 atomic%. On the other hand, Ce, La, N
In the case of d, Pr, Sm, and Mm, the upper limit needs to be 3 atomic%.

【0008】続いて本発明のマグネシウム合金の組織を
説明する。この合金はMg母相(Mgの結晶構造をもつ
相)とMg−Zn系及びMg−X系金属間化合物の分散
相とから構成されており、分散相は母相中に微細に分散
している。Mg母相はサブミクロンの微結晶であり、こ
のなかにさらに微細な金属間化合物相が分散している。
Next, the structure of the magnesium alloy of the present invention will be described. This alloy is composed of a Mg parent phase (a phase having a crystal structure of Mg) and a dispersed phase of an Mg-Zn-based or Mg-X-based intermetallic compound, and the dispersed phase is finely dispersed in the matrix. I have. The Mg parent phase is a submicron microcrystal, in which a finer intermetallic compound phase is dispersed.

【0009】さらに、本発明の第二にかかるマグネシウ
ム合金の加工方法について説明する。この方法では上記
組成を有するMg合金溶湯を急冷凝固する。得られた合
金は、X線回折法により特有のハローパターを示す非
晶質組織、結晶特有の回折ピークを示す微細結晶質ある
いはハローパターンと回折ピークが混在する非結晶と結
晶質の混合組織のいずれかである。
Further, a description will be given of a second method for processing a magnesium alloy according to the present invention. In this method, a molten Mg alloy having the above composition is rapidly solidified. The resulting alloys, amorphous structure showing a specific halo pattern by X-ray diffractometry, the diffraction peak fine crystalline or halo pattern showing a crystal characteristic diffraction peaks are mixed amorphous mixed structure of crystalline Is one of

【0010】この合金を450℃以下の温度で加工を行
う。この加工により上記した組織の内非晶質組織は金属
間化合物が分散した微結晶組織に変わり、所望の組織が
得られる。また微細結晶質では若干の粒成長は起こる
が、再結晶による粗大化は起こらず所望の組織が得られ
る。加工は引抜、圧延、鍛造、押出などの塑性加工法に
よることができ、得られるバルク材は円柱、板、異形な
どの種々の形状である。以下、さらに本発明の実施態様
につき説明する。
This alloy is processed at a temperature of 450 ° C. or less. By this processing, the amorphous structure among the above-mentioned structures is changed to a microcrystalline structure in which an intermetallic compound is dispersed, and a desired structure is obtained. In the case of the fine crystalline material, although a slight grain growth occurs, a desired structure can be obtained without coarsening due to recrystallization. The processing can be performed by a plastic working method such as drawing, rolling, forging, or extrusion, and the obtained bulk material has various shapes such as a cylinder, a plate, and an irregular shape. Hereinafter, embodiments of the present invention will be further described.

【0011】Mg合金溶湯の急冷凝固は、一般的に急冷
凝固法として知られているガン法、ピストン・アンビル
法、あるいは連続的な薄帯を作製する遠心法、単ロール
法、双ロール法、あるいは粉末を作製するスプレー法、
細線を作製する回転液中紡糸法などによることができ
る。これらの方法の中でも、102 〜106 K/sの冷
却速度が容易に得られる単ロール法、双ロール法または
高圧ガス噴射法が特に適している。
The quenching and solidification of the molten Mg alloy can be performed by a gun method, a piston-anvil method, a centrifugal method for producing a continuous ribbon, a single-roll method, a twin-roll method, which is generally known as a rapid solidification method. Or a spray method to make powder,
A spinning method in a rotating liquid for producing a fine wire can be used. Among these methods, a single roll method, a twin roll method, or a high pressure gas injection method, which can easily obtain a cooling rate of 10 2 to 10 6 K / s, is particularly suitable.

【0012】単ロール法、双ロール法によりMg合金薄
帯を作製するためには300〜10000rpmで回転
する直径30〜300mmの銅製又は鋼製ノズルに合金
溶湯を噴射する。これにより幅が1〜300mm,厚さ
が5〜500μmの薄帯が得られる。
In order to produce an Mg alloy ribbon by a single roll method or a twin roll method, a molten alloy is injected into a copper or steel nozzle having a diameter of 30 to 300 mm rotating at 300 to 10000 rpm. Thereby, a ribbon having a width of 1 to 300 mm and a thickness of 5 to 500 μm is obtained.

【0013】また、高圧ガス噴射法によりMg合金薄帯
を得るには、溶湯ノズルから流下させた合金溶湯に4〜
15MPaの高圧窒素ガス、アルゴンガス、ヘリウムガ
スなどを吹きつけ、溶湯を微細に分断し同時に急冷凝固
させる。
In order to obtain a Mg alloy ribbon by the high-pressure gas injection method, it is necessary to apply 4 to 4 times to the molten alloy flowing down from the molten metal nozzle.
A high-pressure nitrogen gas, argon gas, helium gas, or the like of 15 MPa is blown, and the molten metal is finely divided and simultaneously solidified by rapid cooling.

【0014】上述の急冷凝固法で得られたMg合金はそ
のまま塑性加工することも可能であるが、薄帯あるいは
細線の場合は粉砕した後銅、アルミニウム又はそれらの
合金製の缶に充填して塑性加工することが好ましい。こ
の際急冷凝固してから金属缶に充填するまでの急冷凝固
材の酸化を抑制するため酸素量1ppm以下の高清浄度
の雰囲気中で急冷凝固粉末を取り扱うことが好ましい。
また金属缶に充填された粉末には塑性加工するに先立っ
て真空脱ガスを施すことが好ましい。加工温度は200
℃以上であることが好ましい。200℃未満の加工温度
では粉末の固化とバルク化が困難になる。
The Mg alloy obtained by the above-mentioned rapid solidification method can be subjected to plastic working as it is. However, in the case of a thin ribbon or a thin wire, it is pulverized and then filled in a can made of copper, aluminum or an alloy thereof. Plastic working is preferred. At this time, it is preferable to handle the rapidly solidified powder in a highly clean atmosphere having an oxygen content of 1 ppm or less in order to suppress oxidation of the rapidly solidified material from rapid solidification to filling in a metal can.
Further, it is preferable that the powder filled in the metal can be subjected to vacuum degassing prior to plastic working. Processing temperature is 200
It is preferable that the temperature is not lower than ° C. If the processing temperature is less than 200 ° C., solidification and bulking of the powder become difficult.

【0015】[0015]

【作用】母相組織を微結晶質とし、特定の金属間化合物
を母相に分散させたMga Znb Xc 合金は強度と靭性
を兼備している。上記した組成では加工により組織の粗
大化が起こり難いので、高強度と高靭性を保ちつつ部品
に近い形状のバルク材を得ることができる。以下、実施
例により本発明をさらに詳しく説明する。
The MgA Znb Xc alloy in which the matrix structure is microcrystalline and a specific intermetallic compound is dispersed in the matrix has both strength and toughness. With the above-described composition, the coarsening of the structure is unlikely to occur by processing, so that a bulk material having a shape close to a part can be obtained while maintaining high strength and high toughness. Hereinafter, the present invention will be described in more detail with reference to examples.

【0016】[0016]

【実施例】実施例1 表1に化学組成を示す本発明実施例のNo.1〜3及び
参考例No.4のMg合金をAr雰囲気中で高周波溶解
して、母合金を溶製した。この母合金をAr雰囲気中で
高周波炉で775℃で溶解した後、9.8MPaのAr
ガスで高圧ガス噴射法により微細な結晶質金属からなる
粉末とした。
EXAMPLES Example 1 Nos. 1 to 3 of Examples of the present invention whose chemical compositions are shown in Table 1 and
The Mg alloy of Reference Example No. 4 was subjected to high frequency melting in an Ar atmosphere to produce a mother alloy. This master alloy was melted at 775 ° C. in a high-frequency furnace in an Ar atmosphere, and then 9.8 MPa Ar was melted.
The powder was made of fine crystalline metal by high-pressure gas injection with a gas.

【0017】アトマイズされた粉末のうち粒径の小さい
ものはより急冷されており、析出粒子が小さく、また添
加元素の固溶量も大きい。そこで、得られた粉末を分級
し、25μm以下の粉末を温度300〜400℃、加圧
力400〜1000MPa押出比10:1で押出を行
い、直径6mm,長さ270mm,密度100%の円柱
材を得た。なお粉末作製から押出までの段階で粉末が暴
露された雰囲気は酸素分圧、水蒸気分圧がともに1pp
m以下の高清浄度雰囲気であった。
Among the atomized powders, those having a small particle diameter are more rapidly cooled, and the precipitated particles are small and the solid solution amount of the added element is large. Then, the obtained powder is classified, and a powder having a diameter of 25 μm or less is extruded at a temperature of 300 to 400 ° C. and a pressure of 400 to 1000 MPa at an extrusion ratio of 10: 1 to obtain a cylindrical material having a diameter of 6 mm, a length of 270 mm and a density of 100%. Obtained. The atmosphere to which the powder was exposed during the stages from powder preparation to extrusion had an oxygen partial pressure and a water vapor partial pressure of 1 pp both.
m or less.

【0018】円柱材をX線回折したところ、表1に示す
金属間化合物がMg相と共に観察された。またMg母相
の平均粒径は約0.3μm,金属間化合物の平均粒径は
約50nmであり、微細な母相中に微細な金属間化合物
が分散していることがTEMで観察された。
When the columnar material was subjected to X-ray diffraction, intermetallic compounds shown in Table 1 were observed together with the Mg phase. The average particle size of the Mg matrix was about 0.3 μm and the average grain size of the intermetallic compound was about 50 nm, and it was observed by TEM that the fine intermetallic compound was dispersed in the fine matrix. .

【0019】次に円柱材をインストロン型引張試験機に
よる引張試験に供した。この結果も表1に示す。本発明
のMg合金の引張強度は600〜700MPaであって
極めて高い値であることがわかる。
Next, the columnar material was subjected to a tensile test using an Instron type tensile tester. The results are also shown in Table 1. It turns out that the tensile strength of the Mg alloy of the present invention is 600 to 700 MPa, which is an extremely high value.

【0020】[0020]

【表1】 組成 押出 金属間化合物相 引張 硬さ 温度℃ 耐力MPa Hv 1 Mg95Zn2Mm3 300 Mg17La2, Mg12Nd, CeMg12, Mg2Zn3 726 152 2 Mg92Zn5Mm3 400 同上 620 150 3 Mg92Zn10Mm2 375 同上 610 130 4 Mg95.5Y2.5Mm2 325 Mg17La2, Mg12Nd, CeMg12, Mg24Y5 600 160 [Table 1] Composition Extrusion Intermetallic phase Tensile hardness Temperature ℃ MP a Hv 1 Mg95Zn2Mm3 300 Mg17La2, Mg12Nd, CeMg12, Mg2Zn3 726 152 2 Mg92Zn5Mm3 400 Same as above 620 150 3 Mg92Zn10Mm2 375 Same as above 610 130 4 Mg95.5Y2.5Mm2 325 Mg17La2, Mg12Nd, CeMg12 160

【0021】実施例2 表2に化学組成を示すMg合金を実施例1と同様の方法
により溶解し、同様の条件で急冷凝固して微細結晶質の
合金を作製した。この粉末を実施例1と同様の条件で熱
間押出成形して円柱材を作製した。この円柱材のビッカ
ース硬度を測定した結果を表2に示す。
Example 2 An Mg alloy having a chemical composition shown in Table 2 was melted in the same manner as in Example 1 and rapidly solidified under the same conditions to produce a fine crystalline alloy. This powder was subjected to hot extrusion under the same conditions as in Example 1 to produce a columnar material. Table 2 shows the results of measuring the Vickers hardness of the cylindrical material.

【0022】また同じ組成をもつ合金を単ロール法でリ
ボン材に作製し、これを熱間押出温度に相当する温度に
加熱して押出材と同じ組織にした後、密着曲げにより靭
性を評価した。密着曲げ試験ではリボン材が破壊するこ
となく密着曲げ可能かどうかを調べた。密着曲げ可能な
材料は靭性をもつductile材料であり、不可能な
材料は脆い材料である。この結果も表2に示す。
An alloy having the same composition was prepared into a ribbon material by a single roll method, heated to a temperature corresponding to the hot extrusion temperature to obtain the same structure as the extruded material, and the toughness was evaluated by tight bending. . In the contact bending test, it was examined whether the ribbon material could be contact bent without breaking. A material that can be closely bent is a ductile material having toughness, and an impossible material is a brittle material. The results are also shown in Table 2.

【0023】[0023]

【表2】 No 組成 押出 金属間化合物相 密着 硬さ 温度℃ 曲げ Hv 5 Mg89Zn10Mm1 300 Mg17La2, Mg12Nd, CeMg12, Mg2Zn3 可能 123 6 Mg87Zn10Mm3 400 同上 可能 180 7 Mg91.5Zn7.5Mm1 300 同上 可能 121 8 Mg90.5Zn7.5Mm2 300 同上 可能 130 9 Mg93Zn5Mm2 400 同上 可能 125 10 Mg94Zn5Mm1 300 同上 可能 115 11 Mg94.5Zn2.5Mm3 300 同上 可能 154 12 Mg95.5Zn2.5Mm2 300 同上 可能 151 [Table 2] No Composition Extrusion Intermetallic Compound Phase Adhesion Hardness Temperature ℃ Bending Hv 5 Mg89Zn10Mm1 300 Mg17La2, Mg12Nd, CeMg12, Mg2Zn3 possible 123 6 Mg87Zn10Mm3 400 Same as above possible 180 7 Mg91.5Zn7.5Mm1 300 Same as above possible 121 8 Mg90.5Zn7.5Mm2 300 Same as above possible 130 9 Mg93Zn5Mm2 10300 above 94 above Same as above Possible 115 11 Mg94.5Zn2.5Mm3 300 Same as above Possible 154 12 Mg95.5Zn2.5Mm2 300 Same as above Possible 151

【0024】比較例1 実施例2と同様の試験を表3に組成を示すMg合金につ
いて行った。結果を表3に示す。
Comparative Example 1 The same test as in Example 2 was performed on an Mg alloy having the composition shown in Table 3. Table 3 shows the results.

【0025】[0025]

【表3】 No 組成 押出 金属間化合物相 密着 硬さ 温度℃ 曲げ Hv 13 Mg86Zn10Mm4 300 Mg17La2, Mg12Nd, CeMg12, Mg2Zn3 不可 301 14 Mg86Zn10Mm4 400 同上 不可 230 15 Mg88.5Zn7.5Mm4 300 同上 不可 283 16 Mg88.5Zn7.5Mm4 400 同上 不可 227 17 Mg90Zn5Mm5 300 同上 不可 271 18 Mg90Zn5Mm5 400 同上 不可 231 19 Mg90Zn10 300 同上 不可 96 20 Mg95Zn5 300 (Mgのみ) 可能 70 21 Mg97Zn2Mm1 300 Mg17La2, Mg12Nd, CeMg12, Mg2Zn3 可能 68 比較例の材料はすべて脆いかあるいは硬度が低い材料で
あることがわかった。
[Table 3] No Composition Extrusion Intermetallic Compound Phase Adhesion Hardness Temperature ℃ Bending Hv 13 Mg86Zn10Mm4 300 Mg17La2, Mg12Nd, CeMg12, Mg2Zn3 Not possible 301 14 Mg86Zn10Mm4 400 Same as above Not possible 230 230 Not possible 231 19 Mg90Zn10 300 Same as above Not possible 96 20 Mg95Zn5 300 (Mg only) Possible 70 21 Mg97Zn2Mm1 300 Mg17La2, Mg12Nd, CeMg12, Mg2Zn3 Possible 68 All of the comparative examples were found to be brittle or low in hardness.

【0026】[0026]

【発明の効果】以上説明したように、本発明のMg合金
は高い強度と靭性を兼備し、かつ円柱材などのバルク材
料として提供されるから高い比強度が要求される部品に
好適に適用できるものである。
As described above, the Mg alloy of the present invention has both high strength and toughness and is provided as a bulk material such as a columnar material, so that it can be suitably applied to parts requiring high specific strength. Things.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明のZnとX成分の範囲に、本願実施例のN
o.5,6,10の組成点を付記したグラフである。
FIG. 1 shows the range of Zn and X components of the present invention,
It is the graph which added the composition point of o.5,6,10.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C22F 1/00 630 C22F 1/00 630K 681 681 683 683 694 694B 1/06 1/06 (72)発明者 増本 健 宮城県仙台市青葉区上杉3丁目8番22号 (72)発明者 井上 明久 宮城県仙台市青葉区川内無番地 川内住 宅11−806 (72)発明者 堀切 秀彦 東京都中央区八重洲1丁目9番9号 帝 国ピストンリング株式会社内 (72)発明者 加藤 晃 愛知県豊田市トヨタ町1番地 トヨタ自 動車株式会社内 (56)参考文献 特開 平6−41701(JP,A) 特開 平5−306424(JP,A) 特開 平5−70880(JP,A) 特開 平3−47941(JP,A) 特開 平3−10041(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 23/00 - 23/06 C22F 1/06 ────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification code FI C22F 1/00 630 C22F 1/00 630K 681 681 683 683 694 694 694B 1/06 1/06 (72) Inventor Ken Masumoto Sendai, Miyagi 3-8-22 Uesugi, Aoba-ku, Aichi-ku (72) Inventor Akihisa Inoue No.1, Kawauchi, Aoba-ku, Sendai-shi, Miyagi 11-806 (72) Inventor Hidehiko Horikiri 1-9-9, Yaesu, Chuo-ku, Tokyo Inside Teikoku Piston Ring Co., Ltd. (72) Inventor Akira Kato 1 Toyota Town, Toyota City, Aichi Prefecture Inside Toyota Motor Co., Ltd. (56) References JP-A-6-41701 (JP, A) JP-A-5-306424 (JP, A) JP-A-5-70880 (JP, A) JP-A-3-47941 (JP, A) JP-A-3-10041 (JP, A) (58) Fields investigated (Int. Cl. 7) , DB ) C22C 23/00 - 23/06 C22F 1/06

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一般式でMgaZnbc(ただし、Xは
Y,Ce,La,Nd,Pr,Sm,Mm(ミッシュメ
タル)からなる群から選ばれる1種または2種以上の元
素、87原子%≦a≦98原子%、b及びcは図1の
A,B点を結ぶ線上を除くB−C−D−E−F−Aの線
上及びA−B−C−D−E−Fの線で囲まれた範囲であ
り、かつ0≦Y(イットリウム)≦4.5原子%、0≦
Ce,La,Nd,Pr,Sm,Mm≦3原子%で表さ
れる組成を有し、サブミクロンの微結晶からなる母相に
Mg−Zn系及びMg−X系金属間化合物が分散したこ
とを特徴とする靭性に優れた高強度マグネシウム合金粉
固化材。
In the general formula, Mg a Zn b X c (where X is one or more elements selected from the group consisting of Y, Ce, La, Nd, Pr, Sm, Mm (Misch metal)) , 87 at% ≦ a ≦ 98 at%, b and c are on the line of BCDDEFA except for the line connecting the points A and B in FIG. 1 and ABCDE. -F, and 0 ≦ Y (yttrium) ≦ 4.5 atomic%, 0 ≦
It has a composition represented by Ce, La, Nd, Pr, Sm, and Mm ≦ 3 atomic%, and a Mg—Zn-based and Mg—X-based intermetallic compound is dispersed in a parent phase composed of submicron microcrystals. High strength magnesium alloy powder solidified material with excellent toughness characterized by:
【請求項2】 一般式でMgaZnbc(ただし、Xは
Y,Ce,La,Nd,Pr,Sm,Mm(ミッシュメ
タル)からなる群から選ばれる1種または2種以上の元
素、87原子%≦a≦98原子%、b及びcは図1の
A,B点を結ぶ線上を除くB−C−D−E−F−Aの線
上及びA−B−C−D−E−Fの線で囲まれた範囲であ
り、かつ0≦Y(イットリウム)≦4.5原子%、0≦
Ce,La,Nd,Pr,Sm,Mm≦3原子%で表さ
れる組成を有する合金溶湯を急冷凝固し、その後該急冷
凝固合金に300〜450℃の温度で塑性加工を施し、
サブミクロンの微結晶からなる母相にMg−Zn系及び
Mg−X系金属間化合物を分散させたことを特徴とする
高強度マグネシウム合金粉末固化材の製造方法。
2. A compound represented by the general formula: Mg a Zn b X c (where X is one or more elements selected from the group consisting of Y, Ce, La, Nd, Pr, Sm, and Mm (Misch metal)) , 87 atomic% ≦ a ≦ 98 atomic%, b and c in FIG. 1
BCDDEFA line excluding the line connecting points A and B
It is a range surrounded by the upper and ABCDEF lines , and 0 ≦ Y (yttrium) ≦ 4.5 atomic%, 0 ≦
An alloy melt having a composition represented by Ce, La, Nd, Pr, Sm, and Mm ≦ 3 atomic% is rapidly solidified, and then the rapidly solidified alloy is subjected to plastic working at a temperature of 300 to 450 ° C.
Mg-Zn based and
A method for producing a high-strength magnesium alloy powder solidified material, wherein an Mg-X-based intermetallic compound is dispersed .
JP05402693A 1993-03-15 1993-03-15 High strength magnesium alloy and method for producing the same Expired - Lifetime JP3238516B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05402693A JP3238516B2 (en) 1993-03-15 1993-03-15 High strength magnesium alloy and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05402693A JP3238516B2 (en) 1993-03-15 1993-03-15 High strength magnesium alloy and method for producing the same

Publications (2)

Publication Number Publication Date
JPH073375A JPH073375A (en) 1995-01-06
JP3238516B2 true JP3238516B2 (en) 2001-12-17

Family

ID=12959080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05402693A Expired - Lifetime JP3238516B2 (en) 1993-03-15 1993-03-15 High strength magnesium alloy and method for producing the same

Country Status (1)

Country Link
JP (1) JP3238516B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10184165B2 (en) 2003-11-26 2019-01-22 Yoshihito Kawamura High strength and high toughness magnesium alloy and method of producing the same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2807400B2 (en) * 1993-08-04 1998-10-08 ワイケイケイ株式会社 High strength magnesium-based alloy material and method of manufacturing the same
JP5161414B2 (en) * 2001-01-26 2013-03-13 能人 河村 High strength magnesium alloy
JP3592310B2 (en) 2001-06-05 2004-11-24 住友電工スチールワイヤー株式会社 Magnesium-based alloy wire and method of manufacturing the same
WO2004085689A1 (en) * 2003-03-25 2004-10-07 Yoshihito Kawamura Magnesium alloy of high strength and high toughness and method for production thereof
KR100985310B1 (en) 2004-06-30 2010-10-04 스미토모덴키고교가부시키가이샤 Producing method for magnesium alloy material
WO2006095999A1 (en) * 2005-03-08 2006-09-14 Dong-Hyun Bae Mg alloys containing misch metal, manufacturing method of wrought mg alloys containing misch metal, and wrought mg alloys thereby
WO2008117890A1 (en) 2007-03-26 2008-10-02 Toyota Jidosha Kabushiki Kaisha Magnesium alloys and process for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10184165B2 (en) 2003-11-26 2019-01-22 Yoshihito Kawamura High strength and high toughness magnesium alloy and method of producing the same

Also Published As

Publication number Publication date
JPH073375A (en) 1995-01-06

Similar Documents

Publication Publication Date Title
JP5239022B2 (en) High strength and high toughness magnesium alloy and method for producing the same
JPH02503331A (en) Magnesium alloy with high mechanical resistance and manufacturing method by rapid solidification of the alloy
US4347076A (en) Aluminum-transition metal alloys made using rapidly solidified powers and method
US4359352A (en) Nickel base superalloys which contain boron and have been processed by a rapid solidification process
JPH0621326B2 (en) High strength, heat resistant aluminum base alloy
JPH0637696B2 (en) Method for manufacturing high-strength, heat-resistant aluminum-based alloy material
EP0584596A2 (en) High strength and anti-corrosive aluminum-based alloy
JPH06184712A (en) Production of high strength aluminum alloy
EP0558957B1 (en) High-strength, wear-resistant aluminum alloy
JPWO2004085689A1 (en) High strength and high toughness magnesium alloy and method for producing the same
JP3238516B2 (en) High strength magnesium alloy and method for producing the same
JP3110512B2 (en) High strength and high toughness magnesium alloy material
JP2705996B2 (en) High strength magnesium based alloy
EP0564814B1 (en) Compacted and consolidated material of a high-strength, heat-resistant aluminum-based alloy and process for producing the same
EP0533780B1 (en) Method for forging rapidly solidified magnesium base metal alloy billet
JPH0748646A (en) High strength magnesium base alloy and production thereof
JP2807374B2 (en) High-strength magnesium-based alloy and its solidified material
JP2703481B2 (en) High strength and high rigidity aluminum base alloy
JPH06316740A (en) High strength magnesium-base alloy and its production
JP3504401B2 (en) High strength and high rigidity aluminum base alloy
EP0577944B1 (en) High-strength aluminum-based alloy, and compacted and consolidated material thereof
JP3193208B2 (en) High strength magnesium alloy and method for producing the same
JP3485961B2 (en) High strength aluminum base alloy
JPH0693393A (en) Aluminum-base alloy with high strength and corrosion resistance
JP3203564B2 (en) Aluminum-based alloy integrated solidified material and method for producing the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081005

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081005

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091005

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091005

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131005

Year of fee payment: 12