JPH10162847A - Solid electrolyte fuel cell, and manufacture thereof - Google Patents

Solid electrolyte fuel cell, and manufacture thereof

Info

Publication number
JPH10162847A
JPH10162847A JP8320497A JP32049796A JPH10162847A JP H10162847 A JPH10162847 A JP H10162847A JP 8320497 A JP8320497 A JP 8320497A JP 32049796 A JP32049796 A JP 32049796A JP H10162847 A JPH10162847 A JP H10162847A
Authority
JP
Japan
Prior art keywords
cell
air electrode
sealing member
solid electrolyte
cell body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8320497A
Other languages
Japanese (ja)
Other versions
JP3285779B2 (en
Inventor
Masahito Nishihara
雅人 西原
Yuji Tateishi
勇二 立石
Shoji Yamashita
祥二 山下
Masahide Akiyama
雅英 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP32049796A priority Critical patent/JP3285779B2/en
Publication of JPH10162847A publication Critical patent/JPH10162847A/en
Application granted granted Critical
Publication of JP3285779B2 publication Critical patent/JP3285779B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solid electrolyte fuel cell, and a manufacturing method thereof in which gas seal to a cell main body can be easily and securely achieved, and in which recognition of the gas seal is easy. SOLUTION: An air electrode 2 is formed on one surface of a cylindrical solid electrolyte, a fuel electrode 4 is formed on the other surface, and a cap- shaped seal member 11 comprising ceramic is engaged with an outer circumferential surface at one end part of a cylindrical cell main body 8 having a collector 5 electrically connected to the air electrode 2 or the fuel electrode 4 and exposed to an outer surface through a gas seal layer 9 comprising ceramic.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、有底筒状の固体電
解質型燃料電池セルおよびその製造方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bottomed tubular solid oxide fuel cell and a method for producing the same.

【0002】[0002]

【従来技術】従来より、固体電解質型燃料電池はその作
動温度が900〜1050℃と高温であるため発電効率
が高く、第3世代の発電システムとして期待されてい
る。
2. Description of the Related Art Conventionally, since a solid oxide fuel cell has a high operating temperature of 900 to 1050 ° C., it has a high power generation efficiency and is expected as a third generation power generation system.

【0003】一般に、固体電解質型燃料電池セルには、
円筒型と平板型が知られている。平板型燃料電池セル
は、発電の単位体積当り出力密度が高いという特長を有
するが、実用化に関してはガスシール不完全性やセル内
の温度分布の不均一性などの問題がある。それに対し
て、円筒型燃料電池セルでは、出力密度は低いものの、
セルの機械的強度が高く、またセル内の温度の均一性が
保てるという特長がある。
[0003] In general, solid oxide fuel cells include:
A cylindrical type and a flat type are known. The flat fuel cell has the feature that the power density per unit volume of power generation is high, but there are problems such as imperfect gas sealing and non-uniformity of the temperature distribution in the cell in practical use. In contrast, cylindrical fuel cells have a low power density,
It has the features that the mechanical strength of the cell is high and that the temperature inside the cell can be kept uniform.

【0004】両形状の固体電解質型燃料電池セルとも、
それぞれの特長を生かして積極的に研究開発が進められ
ている。
In both types of solid oxide fuel cells,
R & D is being actively promoted by taking advantage of each feature.

【0005】円筒型燃料電池の単セルは、図3に示した
ように開気孔率40%程度のCaO安定化ZrO2 を支
持管1とし、その上にLaMnO3 系材料からなる多孔
性の空気極2を形成し、その表面にY2 3 安定化Zr
2 からなる固体電解質3を被覆し、さらにこの表面に
多孔性のNi−ジルコニアの燃料極4が設けられてい
る。燃料電池のモジュールにおいては、各単セルはLa
CrO3 系の集電体(インターコネクタ)5を介して接
続される。発電は、支持管1内部に空気(酸素)6を、
外部に燃料(水素)7を流し、1000〜1050℃の
温度で行なわれる。
As shown in FIG. 3, a single cell of a cylindrical fuel cell has a support tube 1 made of CaO-stabilized ZrO 2 having an open porosity of about 40%, and a porous air made of LaMnO 3 material on the support tube 1. A pole 2 is formed, and Y 2 O 3 stabilized Zr is formed on its surface.
A solid electrolyte 3 made of O 2 is covered, and a porous Ni-zirconia fuel electrode 4 is provided on this surface. In the fuel cell module, each single cell is La
It is connected via a CrO 3 -based current collector (interconnector) 5. For power generation, air (oxygen) 6 inside the support tube 1,
The fuel (hydrogen) 7 is allowed to flow to the outside, and the heating is performed at a temperature of 1000 to 1050C.

【0006】近年、このセル作製の工程においてプロセ
スを単純化するため、空気極材料であるLaMnO3
材料が直接多孔性の支持管として使用されている。空気
極としての機能を合わせ持つ支持管材料としては、La
をCaで20原子%又はSrで10〜15原子%置換し
たLaMnO3 固溶体材料が用いられている。
In recent years, a LaMnO 3 -based material, which is an air electrode material, has been used directly as a porous support tube in order to simplify the process in the cell manufacturing process. As a support tube material having the function as an air electrode, La
The LaMnO 3 solid solution material obtained by substituting 10-15 atomic% in 20 atomic% or Sr with Ca is used.

【0007】また、上記のような燃料電池セルを製造す
る方法としては、例えばCaO安定化ZrO2 からなる
絶縁粉末を押出成形法などにより円筒状に成形後、これ
を焼成して円筒状支持体を作製し、この支持体の外周面
に空気極、固体電解質、燃料極、集電体のスラリーを塗
布してこれを順次焼成して積層するか、あるいは円筒状
支持体の表面に電気化学的蒸着法(EVD法)やプラズ
マ溶射法などにより空気極、固体電解質、燃料極、集電
体を順次形成することも行われている。
As a method of manufacturing the above-described fuel cell, for example, an insulating powder composed of CaO-stabilized ZrO 2 is formed into a cylindrical shape by an extrusion molding method or the like, and then fired to form a cylindrical support. A slurry of an air electrode, a solid electrolyte, a fuel electrode, and a current collector is applied to the outer peripheral surface of the support, and the slurry is sequentially fired and laminated, or the surface of the cylindrical support is electrochemically coated. An air electrode, a solid electrolyte, a fuel electrode, and a current collector are sequentially formed by a vapor deposition method (EVD method), a plasma spraying method, or the like.

【0008】最近では、セルの製造工程を簡略化するた
めに、各構成材料のうち少なくとも2つを同時焼成す
る、いわゆる共焼結法も提案されている。この共焼結法
は、例えば、円筒状の空気極支持管の成形体に固体電解
質成形体及び集電体用成形体をロール状に巻き付けて同
時焼成を行い、その後固体電解質層表面に燃料極層を形
成する方法である。この共焼結法は製造工程数が少なく
なるためにセルの製造時の歩留り向上、コスト低減に有
利である。
Recently, a so-called co-sintering method has been proposed in which at least two of the constituent materials are simultaneously fired in order to simplify the manufacturing process of the cell. In this co-sintering method, for example, a solid electrolyte molded body and a molded body for a current collector are wound around a molded body of a cylindrical air electrode support tube in a roll shape and simultaneously fired, and then the fuel electrode is formed on the surface of the solid electrolyte layer. This is a method of forming a layer. This co-sintering method is advantageous for improving the yield and manufacturing cost during the production of the cell since the number of production steps is reduced.

【0009】そして、従来、セルの一端の封止は、焼結
して得られた円筒状のセル本体を実際に発電を行う炉内
の取付部材にセットし、取付部材に形成されたガラス層
をセル本体の一端に当接し、発電を行う際の昇温時に前
記ガラス層を溶融させ、セル本体の一端を前記取付部材
により封止していた。
Conventionally, one end of the cell is sealed by setting a cylindrical cell body obtained by sintering to a mounting member in a furnace for actually generating power, and forming a glass layer formed on the mounting member. Was brought into contact with one end of the cell body, the glass layer was melted at the time of temperature rise during power generation, and one end of the cell body was sealed with the mounting member.

【0010】また、空気極成形体、および空気極成形体
と同一材料により有底筒状の封止部材用成形体を作製
し、空気極成形体の一端と封止部材用成形体の一端を当
接し焼成した後、上記したように、電気化学的蒸着法
(EVD法)やプラズマ溶射法などにより固体電解質、
燃料極、集電体を順次形成するとともに、封止部材の表
面に電気化学的蒸着法(EVD法)やプラズマ溶射法な
どにより緻密質セラミック層を形成し、封止部材からの
ガスリークを防止していた。
Further, a bottomed cylindrical molded body for a sealing member is made of the same material as the air electrode molded body and the air electrode molded body, and one end of the air electrode molded body and one end of the molded body for the sealing member are connected. After the contact and firing, as described above, a solid electrolyte, such as an electrochemical deposition method (EVD method) or a plasma spray method,
A fuel electrode and a current collector are sequentially formed, and a dense ceramic layer is formed on the surface of the sealing member by an electrochemical vapor deposition method (EVD method) or a plasma spraying method to prevent gas leakage from the sealing member. I was

【0011】[0011]

【発明が解決しようとする課題】しかしながら、燃料電
池セルの一端をガラス材を用いて取付部材により封止す
る従来の方法では、実際に発電を行う際に封止すること
になるため完全に封止されているか否かの確認が困難で
あり、シール不良による単セル出力の低下が生じ易く、
特にスタック化した場合には封止箇所の増加によるシー
ル不良が発生し易く、結果として出力が低下するという
問題があった。
However, according to the conventional method of sealing one end of a fuel cell with a mounting member using a glass material, the fuel cell is completely sealed when power is actually generated. It is difficult to confirm whether or not it is stopped, and it is easy for the single cell output to decrease due to poor sealing,
In particular, in the case of stacking, there is a problem that sealing failure is likely to occur due to an increase in the number of sealing portions, and as a result, the output is reduced.

【0012】また、空気極成形体の一端と封止部材用成
形体の一端を当接した状態で焼成する方法では、空気極
成形体と封止部材との接合が困難であり、しかも、ガス
リークを防止するため、電気化学的蒸着法(EVD法)
やプラズマ溶射法などにより封止部材の表面に緻密質セ
ラミック層を形成する必要があり、封止工程が面倒であ
り、コスト高であるという問題があった。
Further, in the method of firing in a state in which one end of the cathode forming body and one end of the sealing member forming body are in contact with each other, it is difficult to join the cathode forming body and the sealing member, and furthermore, the gas leakage Electrochemical deposition method (EVD method)
It is necessary to form a dense ceramic layer on the surface of the sealing member by a plasma spraying method or the like, and there is a problem that the sealing step is troublesome and costly.

【0013】本発明は、セル本体のガスシールを容易か
つ確実に行うことができるとともに、ガスシールの確認
が容易な固体電解質型燃料電池セルおよびその製造方法
を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a solid oxide fuel cell capable of easily and reliably performing gas sealing of a cell main body and easily confirming the gas seal, and a method of manufacturing the same.

【0014】[0014]

【課題を解決するための手段】本発明者らは上記問題点
に対して検討を重ねた結果、セル本体の一端部外周面に
セラミックスラリーを塗布し、その上に封止部材用のセ
ラミック成形体を外嵌して焼成し、封止部材の焼成収縮
によりセル本体の一端部に嵌着することにより、セル本
体の一端を容易にかつ確実に封止することができ、しか
も封止状態を容易に確認し得ることを見出し、本発明に
至った。
Means for Solving the Problems As a result of repeated studies on the above problems, the present inventors have applied a ceramic slurry to the outer peripheral surface of one end of a cell body, and formed a ceramic molding for a sealing member thereon. The body is externally fitted and fired, and fitted to one end of the cell body by firing shrinkage of the sealing member, whereby one end of the cell body can be easily and reliably sealed, and the sealed state can be improved. They have found that they can be easily confirmed, and have reached the present invention.

【0015】即ち、本発明の固体電解質型燃料電池セル
は、円筒状の固体電解質の片面に空気極、他面に燃料極
が形成されるとともに、前記空気極または前記燃料極に
電気的に接続され、かつ外面に露出する集電体を具備す
る円筒状のセル本体の一端部外周面に、セラミックスか
らなるガスシール層を介して、セラミックスからなるキ
ャップ形状の封止部材を外嵌してなるものである。
That is, in the solid oxide fuel cell of the present invention, an air electrode is formed on one surface and a fuel electrode is formed on the other surface of a cylindrical solid electrolyte, and the solid electrolyte is electrically connected to the air electrode or the fuel electrode. A cap-shaped sealing member made of ceramics is externally fitted to the outer peripheral surface of one end of a cylindrical cell body having a current collector exposed on the outer surface via a gas seal layer made of ceramics. Things.

【0016】また、本発明の固体電解質型燃料電池セル
の製造方法は、少なくとも固体電解質、空気極および集
電体を具備するセル本体を作製する工程と、該セル本体
の一端部外周面にセラミックスラリーを塗布する工程
と、該セラミックスラリーが塗布されたセル本体の一端
部をキャップ形状の封止部材用セラミック成形体に挿入
する工程と、焼成してセル本体の一端部に封止部材を外
嵌する工程とを具備する方法である。
Further, the method of manufacturing a solid oxide fuel cell according to the present invention comprises a step of manufacturing a cell body having at least a solid electrolyte, an air electrode and a current collector; A step of applying a rally, a step of inserting one end of the cell body to which the ceramic slurry has been applied into a cap-shaped ceramic molding for a sealing member, and baking to remove the sealing member to one end of the cell body. Fitting step.

【0017】ここで、セル本体が、円筒状の空気極仮焼
体を作製する工程と、該空気極仮焼体の表面に固体電解
質成形体を積層して仮焼する工程と、該固体電解質仮焼
体の表面を研磨して前記空気極仮焼体の一部を露出さ
せ、前記固体電解質仮焼体および前記空気極仮焼体の表
面に集電体用成形体を積層する工程と、該積層成形体を
焼成する工程とを具備して形成されることが望ましい。
Here, a step of producing a cylindrical air electrode calcined body having a cell body, a step of laminating a solid electrolyte molded body on the surface of the air electrode calcined body and calcining the same, Polishing the surface of the calcined body to expose a part of the air electrode calcined body, and laminating a current collector compact on the surface of the solid electrolyte calcined body and the air electrode calcined body; And baking the laminated molded body.

【0018】[0018]

【作用】本発明の固体電解質型燃料電池セルでは、従来
のように、発電用セル本体を炉内にセットし発電を行う
際にセル本体の一端を取付部材により封止するのではな
く、セル製造段階でセル本体の一端を緻密質セラミック
スにより封止するため、セル本体の一端の封止を容易か
つ確実に行うことができるとともに、発電用セル本体を
炉内にセットする前に封止状態を確認することができ、
発電の際のガスシール性が十分に保証される。
In the solid oxide fuel cell according to the present invention, one end of the cell body is not sealed with the mounting member when the cell body for power generation is set in the furnace and the power is generated as in the prior art. At the manufacturing stage, one end of the cell body is sealed with dense ceramics, so that one end of the cell body can be easily and reliably sealed, and the sealed state before setting the power generation cell body in the furnace. Can be confirmed,
Gas sealing performance during power generation is sufficiently ensured.

【0019】即ち、本発明の固体電解質型燃料電池セル
では、セル本体の一端部外周面にセラミックスラリーを
塗布し、その上面に封止部材用セラミック成形体を外嵌
して焼成することにより、封止部材用セラミック成形体
が焼成収縮しセル本体の一端部に嵌着すると同時に、焼
成時にセル本体の外面と封止部材の内面とが接合するた
め、セル本体の一端の封止を容易かつ確実に行うことが
できる。
That is, in the solid oxide fuel cell of the present invention, a ceramic slurry is applied to the outer peripheral surface of one end portion of the cell body, and a ceramic molded body for a sealing member is fitted on the upper surface and fired. The ceramic molded body for the sealing member is fired and shrunk and fitted to one end of the cell body, and at the same time, the outer surface of the cell body and the inner surface of the sealing member are joined at the time of firing, so that one end of the cell body can be easily and easily sealed. It can be done reliably.

【0020】特に、本発明の固体電解質型燃料電池セル
では、セル本体の一端部外周面にセラミックスラリーを
塗布し、セラミックスからなるガスシール層を形成し、
その外周面に封止部材を嵌着したため、集電体がセル本
体から突出する等によりセル本体の外周面に凹凸が形成
されている場合でも、ガスシール層により封止部材が嵌
着される部分のセル本体外周面が平滑化され、封止部材
とセル本体を隙間なくより密着させることができ、ガス
シール性を向上できる。
In particular, in the solid oxide fuel cell according to the present invention, a ceramic slurry is applied to the outer peripheral surface of one end of the cell body to form a gas seal layer made of ceramic.
Since the sealing member is fitted on the outer peripheral surface, the sealing member is fitted by the gas seal layer even when the outer peripheral surface of the cell main body has irregularities due to the current collector protruding from the cell main body. Part of the outer peripheral surface of the cell body is smoothed, and the sealing member and the cell body can be more closely adhered to each other without gaps, so that the gas sealing property can be improved.

【0021】また本発明の方法によれば、例えば、封止
部材としてZrO2 やLaCrO系の磁器を用いた場
合には、この磁器の焼成温度(1300℃以上)は、実
際の発電温度(1000℃)よりも高いので、発電時に
おけるガスリークの恐れが無く、結果としてセル出力の
信頼性、長寿命化が図れる。さらに、複数のセルを用い
てスタックを組む際においては、発電を行う段階でのシ
ール箇所を極力少なくすることができるためにシステム
設計を容易にすることが可能となる。
According to the method of the present invention, for example, when a ZrO 2 or LaCrO 3 based porcelain is used as the sealing member, the firing temperature (1300 ° C. or higher) of the porcelain is changed to the actual power generation temperature (1300 ° C.). (1000 ° C.), there is no risk of gas leak during power generation, and as a result, the reliability of the cell output and the long life can be achieved. Furthermore, when assembling a stack using a plurality of cells, the number of sealing portions at the stage of generating power can be reduced as much as possible, thereby facilitating system design.

【0022】[0022]

【発明の実施の形態】本発明の固体電解質型燃料電池セ
ルは、図1および図2に示すように、円筒状の空気極2
の表面に固体電解質3を形成し、この固体電解質3の表
面に燃料極4を形成し、さらに、空気極2と電気的に接
続する集電体5を設けてセル本体8が形成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A solid oxide fuel cell according to the present invention has a cylindrical air electrode 2 as shown in FIGS.
A solid electrolyte 3 is formed on the surface of the solid electrolyte 3, a fuel electrode 4 is formed on the surface of the solid electrolyte 3, and a current collector 5 electrically connected to the air electrode 2 is provided to form a cell body 8. .

【0023】そして、セル本体8の一端部の外周面に
は、セラミックスからなるガスシール層9が形成され、
このガスシール層9の表面には、キャップ形状の緻密質
セラミックスからなる封止部材11が外嵌されており、
セル本体8とガスシール層9、封止部材11が焼成によ
り一体化されている。即ち、セル本体8の一端部外周面
にセラミックスラリーを塗布することにより、セル本体
8外周面の凹凸を無くし、平坦化した後、封止部材用セ
ラミック成形体を外嵌して焼成することにより、封止部
材用セラミック成形体が焼成収縮し、セル本体8の一端
部に嵌着すると同時に、焼成時にセル本体8の外周面と
封止部材11の内面とが、ガスシール層9を介して接合
している。
A gas seal layer 9 made of ceramic is formed on the outer peripheral surface of one end of the cell body 8.
A sealing member 11 made of a cap-shaped dense ceramic is externally fitted on the surface of the gas seal layer 9.
The cell body 8, the gas seal layer 9, and the sealing member 11 are integrated by firing. That is, by applying a ceramic slurry to the outer peripheral surface of one end of the cell main body 8 to eliminate and flatten the outer peripheral surface of the cell main body 8, the ceramic molded body for a sealing member is externally fitted and fired. At the same time, the ceramic molded body for the sealing member shrinks by firing, and is fitted to one end of the cell body 8, and at the same time, the outer peripheral surface of the cell body 8 and the inner surface of the sealing member 11 are interposed via the gas seal layer 9 during firing. Are joined.

【0024】ガスシール層9は、例えば、部分安定化Z
rOや安定化ZrO2 、LaCrO3 系等の種々の
材料を用いることができるが、特には、熱膨張率の観点
から固体電解質材料と同一の材料から構成することが望
ましい。ガスシール層9の厚みはセル本体8外表面の凹
凸を無くす程度あれば良いが、50〜300mmが望ま
しい。
The gas seal layer 9 is made of, for example, a partially stabilized Z
Various materials such as rO 2 , stabilized ZrO 2 , and LaCrO 3 can be used, but it is particularly preferable to use the same material as the solid electrolyte material from the viewpoint of the coefficient of thermal expansion. The thickness of the gas seal layer 9 may be such as to eliminate irregularities on the outer surface of the cell body 8, but is preferably 50 to 300 mm.

【0025】封止部材11はガスリークを防止するため
緻密質セラミックスからなるものであるが、緻密質セラ
ミックスとは、例えば、ガスシール層9と同様の材料を
用いることができる。またガスシール層9と同様に、熱
膨張率の観点から固体電解質材料と同一の材料から構成
することが望ましい。セル本体8の外表面に当接する封
止部材11の外嵌部13の厚みtは、セルの直径の増大
を抑え、焼結時の収縮の応力で破損しないようにするた
めに、0.3〜1.2mmが望ましい。
The sealing member 11 is made of dense ceramics in order to prevent gas leakage. For the dense ceramics, for example, the same material as the gas seal layer 9 can be used. Further, similarly to the gas seal layer 9, it is desirable to form the same material as the solid electrolyte material from the viewpoint of the coefficient of thermal expansion. The thickness t of the outer fitting portion 13 of the sealing member 11 abutting on the outer surface of the cell body 8 is set at 0.3 to suppress the increase in the diameter of the cell and to prevent the cell from being damaged by shrinkage stress during sintering. ~ 1.2 mm is desirable.

【0026】このような固体電解質型燃料電池セルの製
造方法について詳述する。まず、セル本体を作製するた
めに、自己支持管としての機能を有する円筒状の空気極
成形体を押出成形により作製し、その後1200〜13
00℃の温度で5〜20時間程度脱バインダー・仮焼を
行い、空気極仮焼体を作製する。この空気極仮焼体は、
ペロブスカイト型結晶相を主相とするLaMnO3 系の
材料で、その平均結晶粒径は3〜20μm、特に5〜1
5μmであることが望ましい。これは、主結晶相の粒径
が3μmより小さいと強度は高いもののガス透過性が低
く、20μmを越えるとガス透過性は高くなるものの強
度が不十分となるためである。なお、空気極の開気孔率
は20〜45%、特に30〜40%が適当である。また
平均細孔径は1.0〜5.0μmの範囲がガス透過性に
優れる。
A method for manufacturing such a solid oxide fuel cell will be described in detail. First, in order to produce a cell main body, a cylindrical air electrode molded body having a function as a self-supporting tube is produced by extrusion molding, and thereafter, 1200 to 13
The binder is decalcified and calcined at a temperature of 00 ° C. for about 5 to 20 hours to produce a calcined cathode. This calcined cathode is
A LaMnO 3 -based material having a perovskite-type crystal phase as a main phase, and having an average crystal grain size of 3 to 20 μm, particularly 5 to 1 μm.
Desirably, it is 5 μm. This is because if the particle diameter of the main crystal phase is smaller than 3 μm, the gas permeability is low although the strength is high, and if it exceeds 20 μm, the gas permeability is high but the strength is insufficient. The open porosity of the air electrode is suitably from 20 to 45%, particularly from 30 to 40%. An average pore diameter in the range of 1.0 to 5.0 μm is excellent in gas permeability.

【0027】次に、空気極仮焼体の表面に固体電解質を
構成する材料の成形体層を形成する。この固体電解質成
形体層は、平均粒径が0.5〜3μmのY2 3 等の周
知の安定化剤により安定化されたZrO2 からなる粉体
を用いてスラリーを調製し、その後ドクターブレード法
等により作製されたグリーンシートを巻き付けて形成さ
れる。
Next, a molded layer of the material constituting the solid electrolyte is formed on the surface of the calcined cathode. This solid electrolyte molded body layer is prepared by using a powder of ZrO 2 stabilized with a known stabilizer such as Y 2 O 3 having an average particle diameter of 0.5 to 3 μm to prepare a slurry, and then a doctor is prepared. It is formed by winding a green sheet produced by a blade method or the like.

【0028】そして空気極/固体電解質成形体を100
0〜1300℃の温度で1〜3時間程度仮焼し、その後
集電体の積層箇所となる固体電解質仮焼体の表面を平滑
に研磨し、空気極仮焼体を露出させ、固体電解質仮焼体
および空気極仮焼体の表面に集電体用成形体を積層す
る。集電体用成形体はLaCrO3 系の材料を使用し、
固体電解質成形体と同様にグリーンシートを積層して形
成される。
Then, the air electrode / solid electrolyte molded body is
The calcined body is calcined at a temperature of 0 to 1300 ° C. for about 1 to 3 hours, and thereafter, the surface of the calcined solid electrolyte, which is a laminated portion of the current collector, is smoothly polished to expose the calcined cathode. A molded body for a current collector is laminated on the surface of the calcined body and the calcined cathode. The molded body for the current collector uses a LaCrO 3 material,
It is formed by laminating green sheets in the same manner as the solid electrolyte molded body.

【0029】このようにして作製した積層体は、大気等
の酸化性雰囲気中、1300〜1600℃の温度で3〜
15時間程度同時焼成することにより共焼結させ、円筒
状のセル本体を作製する。
The laminate thus manufactured is placed in an oxidizing atmosphere such as the air at a temperature of 1300 to 1600 ° C. for 3 to 3 hours.
Co-sintering is performed by simultaneous firing for about 15 hours to produce a cylindrical cell body.

【0030】また、燃料極はNiを30〜80重量%含
有し残部が安定化ZrO2 (Y2 3 等の安定化剤を含
む)からなる多孔質のサーメット材料を使用し、前記積
層焼結体の所定箇所に成形体層を形成して焼結させる
か、あるいは前記空気極/固体電解質/集電体成形体を
形成した後、さらに燃料極成形体を積層し、これらを同
時に焼成し、円筒状のセル本体を作製することもでき
る。
The fuel electrode uses a porous cermet material containing 30 to 80% by weight of Ni and the balance of stabilized ZrO 2 (including a stabilizer such as Y 2 O 3 ). After forming a molded body layer at a predetermined portion of the sintered body and sintering, or after forming the air electrode / solid electrolyte / current collector molded body, a fuel electrode molded body is further laminated and fired simultaneously. Alternatively, a cylindrical cell body can be manufactured.

【0031】次に、例えば、固体電解質成形体と同様の
スラリーを用い、例えば、スラリー中にセル本体の一端
部を浸漬(ディッピング)することにより、セル本体の
一端部の外表面にセラミックスラリーを塗布し、100
〜150℃で1〜3時間乾燥する。セラミックスラリー
を塗布する方法としては、他にスプレー、刷毛等による
塗布がある。セラミックスラリーは、封止部材が外嵌さ
れる部分よりも僅かに広い面積で塗布されることが望ま
しい。塗布厚みについては、セル本体外周面の凹凸がな
くなる程度であれば、特に限定されない。
Next, for example, the same slurry as that of the solid electrolyte molded body is used, and for example, one end of the cell body is immersed (dipped) in the slurry, so that the ceramic slurry is applied to the outer surface of one end of the cell body. Apply, 100
Dry at ~ 150 ° C for 1-3 hours. Other methods of applying the ceramic slurry include spraying, brushing, and the like. It is desirable that the ceramic slurry be applied in an area slightly larger than a portion where the sealing member is externally fitted. The coating thickness is not particularly limited as long as the unevenness on the outer peripheral surface of the cell body is eliminated.

【0032】封止部材は発電の際にガスシール性を要求
されるため、例えば、平均結晶粒径が0.5〜3μm程
度のZrO2 系やLaCrO3 系酸化物粉末を押出成形
や静水圧成形(ラバープレス)等により成形し、キャッ
プ形状に切削加工を行い封止部材用セラミック成形体を
作製する。
Since the sealing member is required to have gas sealing properties during power generation, for example, ZrO 2 -based or LaCrO 3 -based oxide powder having an average crystal grain size of about 0.5 to 3 μm is extruded or subjected to hydrostatic pressure. It is formed by molding (rubber press) or the like, and cut into a cap shape to produce a ceramic molded body for a sealing member.

【0033】この時の封止部材用セラミック成形体は、
セル本体の外周面に当接し、締めつける外嵌部の成形体
厚みは、0.7〜2.0mmであることが望ましい。こ
れは、0.7mmよりも薄い場合には焼成時に封止部材
が割れる場合があり、また2.0mmよりも厚い場合に
は、複数の固体電解質型燃料電池セルによりスタックを
作製する際のセル間の電気的な接続が困難になるからで
ある。
At this time, the ceramic molding for a sealing member is
It is desirable that the thickness of the molded body of the outer fitting portion which abuts on the outer peripheral surface of the cell body and is tightened is 0.7 to 2.0 mm. This is because if the sealing member is thinner than 0.7 mm, the sealing member may be broken at the time of firing, and if it is thicker than 2.0 mm, a cell when a stack is formed by a plurality of solid oxide fuel cells. This is because electrical connection between them becomes difficult.

【0034】また、セル本体の一端が挿入される封止部
材用セラミック成形体の内径は、セル本体の外径の1.
15〜1.4倍であることが望ましい。これは、封止部
材用セラミック成形体の内径が、セル本体の外径の1.
15倍よりも小さい場合には、封止部材に歪みによる割
れが生じ易く、また1.4倍よりも大きい場合には封止
部材とセル本体との間に隙間が生成し、封止できなくな
る場合があるからである。
The inner diameter of the ceramic molding for a sealing member into which one end of the cell main body is inserted is 1.10 times the outer diameter of the cell main body.
It is desirable that the ratio be 15 to 1.4 times. This is because the inner diameter of the ceramic molded body for the sealing member is 1.times. The outer diameter of the cell body.
If it is smaller than 15 times, cracks due to distortion are likely to occur in the sealing member, and if it is larger than 1.4 times, a gap is generated between the sealing member and the cell body, and sealing cannot be performed. This is because there are cases.

【0035】この後、セル本体の一端部を封止部材用セ
ラミック成形体に挿入し、大気等の酸化性雰囲気中、1
300〜1600℃の温度で1〜5時間程度焼成し、セ
ル本体の一端部に、ガスシール層を介して封止部材を嵌
着し、本発明の固体電解質型燃料電池セルを得る。封止
部材とガスシール層とは焼成時に一体化し、さらにガス
シール層とセル本体の一端部外周面とも焼成時に一体化
し、これにより、封止部材がガスシール層を介してセル
本体の一端部外周面に接合されることになる。
Thereafter, one end of the cell body is inserted into the ceramic molding for a sealing member, and the cell body is placed in an oxidizing atmosphere such as air.
It is fired at a temperature of 300 to 1600 ° C. for about 1 to 5 hours, and a sealing member is fitted to one end of the cell body via a gas seal layer to obtain a solid oxide fuel cell of the present invention. The sealing member and the gas seal layer are integrated at the time of firing, and the gas seal layer and the outer peripheral surface of one end of the cell body are also integrated at the time of firing, whereby the sealing member is connected to the one end of the cell body via the gas seal layer. It will be joined to the outer peripheral surface.

【0036】ガスシール層および緻密質セラミックから
なる封止部材は、ガスリークを防止することができれば
良く、特に気孔率5%以下であることが望ましい。
The gas seal layer and the sealing member made of the dense ceramic only need to be able to prevent gas leakage, and preferably have a porosity of 5% or less.

【0037】尚、本発明は、セル本体の一端をガスシー
ル層を介して封止部材により封止した点に特徴があり、
セル本体の作製方法については特に限定されず、上記し
た方法以外の公知の方法で作製しても良い。
The present invention is characterized in that one end of the cell body is sealed with a sealing member via a gas seal layer.
The method for manufacturing the cell body is not particularly limited, and the cell body may be manufactured by a known method other than the method described above.

【0038】また、本発明では、燃料極スラリーを、空
気極、固体電解質、集電体を有するセル本体に塗布した
後、セル本体を封止部材用セラミック成形体に挿入し、
燃料極塗布膜と同時に前記封止部材用セラミック成形体
を焼成し、燃料極を固体電解質表面に焼き付けても良
い。この場合には、燃料極のみを焼き付けるための熱処
理工程を省略できる。
Further, in the present invention, after the fuel electrode slurry is applied to a cell body having an air electrode, a solid electrolyte and a current collector, the cell body is inserted into a ceramic molding for a sealing member.
At the same time as the fuel electrode coating film, the ceramic molded body for a sealing member may be baked to bake the fuel electrode on the surface of the solid electrolyte. In this case, a heat treatment step for burning only the fuel electrode can be omitted.

【0039】[0039]

【実施例】円筒型の固体電解質型燃料電池セルを共焼結
により作製するため、まず円筒状空気極成形体を以下の
ようにして作製した。市販の純度99.9%以上のLa
23 ,Y2 3 ,CaCO3 ,Mn2 3 を出発原料
として、これをLa0.560.14Ca0.3 MnO3 の組成
になるように秤量混合した後、1500℃で3時間仮焼
し粉砕して平均粒径が5μmの固溶体粉末を得た。ま
た、この固溶体粉末にバインダーを添加し、押出成形法
で円筒状の空気極成形体を作製した。前記空気極成形体
は、乾燥後1250℃で10時間脱バインダー・仮焼す
ることにより円筒状の空気極仮焼体を作製した。
EXAMPLES In order to produce a cylindrical solid oxide fuel cell by co-sintering, first, a cylindrical air electrode molded body was produced as follows. La with commercial purity of 99.9% or more
Starting materials such as 2 O 3 , Y 2 O 3 , CaCO 3 , and Mn 2 O 3 were weighed and mixed so as to have a composition of La 0.56 Y 0.14 Ca 0.3 MnO 3 , and then calcined at 1500 ° C. for 3 hours. By pulverization, a solid solution powder having an average particle size of 5 μm was obtained. Further, a binder was added to the solid solution powder, and a cylindrical air electrode molded body was produced by an extrusion molding method. After drying, the air electrode molded body was subjected to binder removal and calcination at 1250 ° C. for 10 hours to produce a cylindrical air electrode calcined body.

【0040】次に、共沈法により得られたY2 3 を8
mol%の割合で含有する平均粒径が1μmのZrO2
粉末に、トルエンとバインダーを添加してスラリーを調
製し、ドクターブレード法により厚み130μmの固体
電解質シートを作製した。
Next, the Y 2 O 3 obtained by the coprecipitation method was added to 8
mol% ZrO 2 having an average particle size of 1 μm
Toluene and a binder were added to the powder to prepare a slurry, and a 130 μm-thick solid electrolyte sheet was prepared by a doctor blade method.

【0041】次に、市販の純度99.9%以上のLa2
3 ,Cr2 3 ,MgOを出発原料として、これをL
a(Mg0.3 Cr0.7 0.973 の組成になるように秤
量混合した後、1500℃で3時間仮焼し粉砕して、平
均粒径が2μmの固溶体粉末を得た。次に、この固溶体
粉末にトルエンとバインダーを添加してスラリーを調製
し、ドクターブレード法により厚み130μmの集電体
シートを作製した。
Next, commercially available La 2 having a purity of 99.9% or more is used.
Starting from O 3 , Cr 2 O 3 and MgO, this is
a (Mg 0.3 Cr 0.7 ) 0.97 O 3 The mixture was weighed and mixed so as to obtain a composition, and then calcined at 1500 ° C. for 3 hours and pulverized to obtain a solid solution powder having an average particle diameter of 2 μm. Next, toluene and a binder were added to the solid solution powder to prepare a slurry, and a current collector sheet having a thickness of 130 μm was prepared by a doctor blade method.

【0042】前記円筒状空気極仮焼体に前記固体電解質
シートをロール状に巻き付け、1100℃で3時間の仮
焼を行なった。仮焼後、集電体シートの積層箇所となる
固体電解質仮焼体の表面を平面研磨し、露出した空気極
仮焼体まで表面上を平面研磨し、前記集電体シートを所
定箇所に帯状に巻き付けた。その後、大気中1500℃
で6時間の条件で共焼結を試みた。
The solid electrolyte sheet was wound around the cylindrical air electrode calcined body in a roll shape and calcined at 1100 ° C. for 3 hours. After calcination, the surface of the solid electrolyte calcined body which is to be a laminated portion of the current collector sheet is polished flat, and the surface is polished up to the exposed air electrode calcined body. Wrapped around. Then, at 1500 ° C in air
For 6 hours.

【0043】共焼結後、NiO粉末にZrO2 (10m
ol%Y2 3 含有)粉末を重量比で80:20の割合
で混合した混合粉末に水を溶媒として加えて燃料極スラ
リーを調整し、厚み50μmの燃料極スラリーを積層焼
結体表面に塗布乾燥した。
After co-sintering, ZrO 2 (10 m
ol% Y 2 O 3 ) powder was mixed at a weight ratio of 80:20, water was added as a solvent to prepare a fuel electrode slurry, and a 50 μm thick fuel electrode slurry was applied to the surface of the laminated sintered body. The coating was dried.

【0044】次に、Y2 3 を3、8及び10mol%
の割合でそれぞれ含有する平均粒径が1μmのZrO2
系の粉末、またLa0.8 Ca0.22CrO3 、La0.7
0. 32CrO3 及びLa(Mg0.1 Cr0.9 0.993
のLaCrO3 系の各粉末に水を溶媒として加えてスラ
リーを調整し、このスラリーにセル本体の一端部を浸漬
し、ディッピング法により、厚み100μmのセラミッ
クスラリーをセル片端部の外周面に塗布し、120℃で
1時間乾燥した。
Next, 3 , 8 and 10 mol% of Y 2 O 3 were added.
Of ZrO 2 having an average particle size of 1 μm, respectively.
Powder, La 0.8 Ca 0.22 CrO 3 , La 0.7 C
a 0. 32 CrO 3 and La (Mg 0.1 Cr 0.9) 0.99 O 3
A slurry is prepared by adding water as a solvent to each of the LaCrO 3 -based powders, and one end of the cell body is immersed in the slurry, and a 100 μm-thick ceramic slurry is applied to the outer peripheral surface of one end of the cell by dipping. And dried at 120 ° C. for 1 hour.

【0045】次に、封止部材としてのキャップ形状の成
形体を作製する。まず、前記スラリー組成と同じ組成で
ある、Y2 3 を3、8及び10mol%の割合でそれ
ぞれ含有する平均粒径が1μmのZrO2 系の粉末、ま
たLa0.8 Ca0.22CrO3、La0.7 Ca0.32CrO
3 及びLa(Mg0.1 Cr0.9 0.993 のLaCrO
3 系の各粉末を用いて静水圧成形(ラバープレス)を行
いキャップ形状に切削加工した。その後、前記スラリー
を被覆した前記セル片端部を封止部材用成形体に挿入し
た。
Next, a cap-shaped molded body as a sealing member is prepared. First, a ZrO 2 -based powder having the same composition as the slurry and containing Y 2 O 3 at a ratio of 3 , 8, and 10 mol% and an average particle size of 1 μm, La 0.8 Ca 0.22 CrO 3 , La 0.7 Ca 0.32 CrO
3 and La (Mg 0.1 Cr 0.9) 0.99 O 3 LaCrO
Hydrostatic pressing (rubber pressing) was performed using each of the three types of powder, and the powder was cut into a cap shape. Thereafter, one end of the cell coated with the slurry was inserted into a molded body for a sealing member.

【0046】セル本体の外周面と当接し、セル本体を締
めつける封止部材用成形体の外嵌部の肉厚tを1mmに
設定し、また、キャップ形状の成形体の内径をセル本体
の外径の1.2倍とした。尚、セル本体の外径は14m
mであった。
The thickness t of the outer fitting portion of the molded body for a sealing member which comes into contact with the outer peripheral surface of the cell body and tightens the cell body is set to 1 mm, and the inner diameter of the cap-shaped molded body is set to the outside of the cell body. The diameter was set to 1.2 times. The outer diameter of the cell body is 14m.
m.

【0047】その後、大気中で1400℃で2時間の焼
成を行うことにより、燃料極層を形成するとともに、セ
ル本体の一端部外周面に、ガスシール層を介してキャッ
プ形状の封止部材を嵌合した。
Thereafter, the fuel electrode layer is formed by baking at 1400 ° C. for 2 hours in the atmosphere, and a cap-shaped sealing member is provided on the outer peripheral surface of one end of the cell body via a gas seal layer. Mated.

【0048】このようにして作製した片端封着型の上記
円筒型セルにおいて、表面リーク量とセル出力密度、ま
た室温から1000℃までの熱サイクルを20サイクル
通過した後の表面リーク量とセル出力密度の結果を表2
に示した。表面リーク量を、セル内部を真空状態に吸引
した後、10分後にセル内部の真空度の値を読み取るこ
とにより測定し、表面リーク量とセル出力密度の結果を
表2に示した。尚、セル片端部に直接キャップ形状の成
形体を外嵌したセルについて記載した(試料No.1、
3)。また、表2において、試料No.9は、取付部材に
形成されたガラス層(商品名:パイレックスガラスから
なる)をセル本体の一端に当接し、1000℃に加熱し
前記ガラス層を溶融させ、セル本体の一端を前記取付部
材により封止した従来の固体電解質型燃料電池セルの特
性である。
In the above-mentioned cylindrical cell of one end sealing type, the amount of surface leakage and cell output density, and the amount of surface leakage and cell output after passing through 20 thermal cycles from room temperature to 1000 ° C. Table 2 shows the density results.
It was shown to. The surface leak was measured by reading the value of the degree of vacuum inside the cell 10 minutes after suctioning the inside of the cell to a vacuum state. The results of the surface leak and the cell output density are shown in Table 2. Note that a cell in which a cap-shaped molded body is directly fitted to one end of the cell is described (Sample No. 1,
3). In Table 2, in Sample No. 9, a glass layer (commercial name: made of Pyrex glass) formed on the mounting member was brought into contact with one end of the cell body and heated to 1000 ° C. to melt the glass layer. 4 shows characteristics of a conventional solid oxide fuel cell in which one end of a cell body is sealed with the attachment member.

【0049】[0049]

【表1】 [Table 1]

【0050】[0050]

【表2】 [Table 2]

【0051】表1、2の結果から明らかなように、本発
明品の試料No.2、4〜8はいずれも表面リーク量が
100mmTorr以下で従来品(No.9)と比較す
るとガスシール性に優れ、また出力密度においてもいず
れも0.3W/cm2 以上であり、燃料電池セルの発電
性能において性能向上を示唆するものであった。
As is clear from the results in Tables 1 and 2, the sample No. Nos. 2, 4 to 8 each had a surface leak amount of 100 mmTorr or less and were superior in gas sealing properties as compared with the conventional product (No. 9), and each had a power density of 0.3 W / cm 2 or more. This suggests an improvement in the power generation performance of the cell.

【0052】また、本発明品の試料No.2、4〜8は
熱サイクルを20サイクル通過しても表面リーク量が1
00mmTorr以下で、従来品(No.9)及びN
o.1、3のセル片端部に直接キャップ形状の成形体を
外嵌したセルに比べガスシール性に優れた。また本発明
の試料は出力密度においても性能劣化がみられず、0.
3W/cm2 以上の値を維持した。これらの結果より、
長期的なセルの耐久性においても性能劣化を抑制するこ
とが可能となる。
In addition, the sample No. of the product of the present invention. 2, 4 to 8 have a surface leak amount of 1 even after passing through 20 thermal cycles.
Conventional products (No. 9) and N
o. The gas sealing properties were superior to those of the cells in which the cap-shaped molded body was directly fitted to one end of one or three cells. In addition, the sample of the present invention did not show any deterioration in performance even at the output density.
The value of 3 W / cm 2 or more was maintained. From these results,
It is possible to suppress performance degradation even in long-term cell durability.

【0053】[0053]

【発明の効果】以上詳述したように、本発明によれば、
セル製造段階でセル本体の一端を、ガスシール層を介し
て緻密質セラミックスの封止部材により封止するため、
セル本体の一端の封止を容易かつ確実に行うことができ
るとともに、発電用セル本体を炉内にセットする前に封
止状態を確認することができ、発電の際のガスシール性
が十分に保証され、長期的に安定したセル性能を維持で
きる。
As described in detail above, according to the present invention,
At the cell manufacturing stage, one end of the cell body is sealed with a dense ceramic sealing member via a gas seal layer,
One end of the cell body can be easily and reliably sealed, and the sealed state can be checked before the power generation cell body is set in the furnace. Guaranteed and long-term stable cell performance can be maintained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の円筒型燃料電池セルの構造を示す概念
図である。
FIG. 1 is a conceptual diagram showing the structure of a cylindrical fuel cell according to the present invention.

【図2】図1の封止部材の外嵌部部分の断面図である。FIG. 2 is a sectional view of an outer fitting portion of the sealing member of FIG.

【図3】固体電解質型燃料電池セルのセル本体を示す斜
視図である。
FIG. 3 is a perspective view showing a cell body of the solid oxide fuel cell.

【符号の説明】[Explanation of symbols]

2・・・空気極 3・・・固体電解質 4・・・燃料極 5・・・集電体 8・・・セル本体 9・・・ガスシール層 11・・・封止部材 13・・・外嵌部 2 ... air electrode 3 ... solid electrolyte 4 ... fuel electrode 5 ... current collector 8 ... cell body 9 ... gas seal layer 11 ... sealing member 13 ... outside Fitting part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 秋山 雅英 鹿児島県国分市山下町1番4号 京セラ株 式会社総合研究所内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Masahide Akiyama 1-4-4 Yamashita-cho, Kokubu-shi, Kagoshima Inside the Kyocera Research Institute

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】円筒状の固体電解質の片面に空気極、他面
に燃料極が形成されるとともに、前記空気極または前記
燃料極に電気的に接続され、かつ外面に露出する集電体
を具備する円筒状のセル本体の一端部外周面に、セラミ
ックスからなるガスシール層を介して、セラミックスか
らなるキャップ形状の封止部材を外嵌してなることを特
徴とする固体電解質型燃料電池セル。
An air electrode is formed on one surface of a cylindrical solid electrolyte, and a fuel electrode is formed on the other surface, and a current collector electrically connected to the air electrode or the fuel electrode and exposed on the outer surface is provided. A solid oxide fuel cell comprising a cap-shaped sealing member made of ceramics externally fitted to an outer peripheral surface of one end of a cylindrical cell body provided through a gas seal layer made of ceramics. .
【請求項2】少なくとも固体電解質、空気極および集電
体を具備するセル本体を作製する工程と、該セル本体の
一端部外周面にセラミックスラリーを塗布する工程と、
該セラミックスラリーが塗布されたセル本体の一端部を
キャップ形状の封止部材用セラミック成形体に挿入する
工程と、焼成してセル本体の一端部に封止部材を外嵌す
る工程とを具備することを特徴とする固体電解質型燃料
電池セルの製造方法。
2. A step of producing a cell body having at least a solid electrolyte, an air electrode and a current collector, and a step of applying a ceramic slurry to an outer peripheral surface of one end of the cell body.
A step of inserting one end of the cell body coated with the ceramic slurry into a cap-shaped ceramic molding for a sealing member, and a step of firing and externally fitting the sealing member to one end of the cell body. A method for producing a solid oxide fuel cell unit, comprising:
【請求項3】セル本体が、円筒状の空気極仮焼体を作製
する工程と、該空気極仮焼体の表面に固体電解質成形体
を積層して仮焼する工程と、該固体電解質仮焼体の表面
を研磨して前記空気極仮焼体の一部を露出させ、前記固
体電解質仮焼体および前記空気極仮焼体の表面に集電体
用成形体を積層する工程と、該積層成形体を焼成する工
程とを具備して形成される請求項2記載の固体電解質型
燃料電池セルの製造方法。
3. A process in which a cell body forms a cylindrical air electrode calcined body, a step in which a solid electrolyte molded body is laminated on the surface of the air electrode calcined body and calcined, Polishing the surface of the fired body to expose a part of the air electrode calcined body, and laminating a current collector compact on the surface of the solid electrolyte calcined body and the air electrode calcined body; 3. The method for producing a solid oxide fuel cell according to claim 2, comprising a step of firing the laminated molded body.
JP32049796A 1996-11-29 1996-11-29 Solid oxide fuel cell and method of manufacturing the same Expired - Lifetime JP3285779B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32049796A JP3285779B2 (en) 1996-11-29 1996-11-29 Solid oxide fuel cell and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32049796A JP3285779B2 (en) 1996-11-29 1996-11-29 Solid oxide fuel cell and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH10162847A true JPH10162847A (en) 1998-06-19
JP3285779B2 JP3285779B2 (en) 2002-05-27

Family

ID=18122118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32049796A Expired - Lifetime JP3285779B2 (en) 1996-11-29 1996-11-29 Solid oxide fuel cell and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3285779B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999054949A3 (en) * 1998-04-09 2000-03-23 Siemens Westinghouse Power Method of making closed end ceramic fuel cell tubes
US20110189588A1 (en) * 2010-01-29 2011-08-04 Samsung Sdi Co., Ltd. Solid oxide fuel cell and brazing method between cell and cap

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999054949A3 (en) * 1998-04-09 2000-03-23 Siemens Westinghouse Power Method of making closed end ceramic fuel cell tubes
US6379485B1 (en) * 1998-04-09 2002-04-30 Siemens Westinghouse Power Corporation Method of making closed end ceramic fuel cell tubes
US20110189588A1 (en) * 2010-01-29 2011-08-04 Samsung Sdi Co., Ltd. Solid oxide fuel cell and brazing method between cell and cap
KR101132064B1 (en) 2010-01-29 2012-04-02 삼성에스디아이 주식회사 Soild oxide fuel cell and brazing method between cell and cap

Also Published As

Publication number Publication date
JP3285779B2 (en) 2002-05-27

Similar Documents

Publication Publication Date Title
JP2706197B2 (en) Method of forming ceramic thin film
JP4462727B2 (en) Solid electrolyte fuel cell
JP3434883B2 (en) Method for manufacturing fuel cell
JP3350313B2 (en) Solid oxide fuel cell and method of manufacturing the same
JP3285779B2 (en) Solid oxide fuel cell and method of manufacturing the same
JP3238086B2 (en) Solid oxide fuel cell
JP3389468B2 (en) Solid oxide fuel cell
JP3238087B2 (en) Solid oxide fuel cell
JP3281814B2 (en) Solid oxide fuel cell and method of manufacturing the same
JP3342610B2 (en) Solid oxide fuel cell
JPH0997621A (en) Cell of cylindrical fuel cell
JP3389469B2 (en) Solid oxide fuel cell
JP3638489B2 (en) Solid oxide fuel cell
JP4748863B2 (en) Solid oxide fuel cell and fuel cell
JPH07130385A (en) Cylindrical lateral band type solid electrolyte electrolytic cell
JP3336171B2 (en) Solid oxide fuel cell
JP2002134132A (en) Solid electrolyte fuel cell and its manufacturing method
JP3455054B2 (en) Manufacturing method of cylindrical solid oxide fuel cell
JPH11283640A (en) Cylindrical solid-electrolyte fuel cell
JPH103932A (en) Cylindrical lateral stripe type solid electrolyte fuel cell
JP3285856B2 (en) Solid oxide fuel cell
JP3217695B2 (en) Cylindrical fuel cell
JP3638488B2 (en) Solid oxide fuel cell and method for producing the same
JP3339995B2 (en) Cylindrical fuel cell and method of manufacturing the same
JPH11283634A (en) Cylindrical solid electrolyte fuel cell

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090308

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090308

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100308

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110308

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110308

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120308

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120308

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130308

Year of fee payment: 11