JPH10158776A - Compound material of intermetallic compound, and its production - Google Patents

Compound material of intermetallic compound, and its production

Info

Publication number
JPH10158776A
JPH10158776A JP31992596A JP31992596A JPH10158776A JP H10158776 A JPH10158776 A JP H10158776A JP 31992596 A JP31992596 A JP 31992596A JP 31992596 A JP31992596 A JP 31992596A JP H10158776 A JPH10158776 A JP H10158776A
Authority
JP
Japan
Prior art keywords
sintered body
obtained sintered
powder
generated
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31992596A
Other languages
Japanese (ja)
Other versions
JP3684008B2 (en
Inventor
Masahiro Katou
雅礼 加藤
Yasuhiro Itsudo
康広 五戸
Takayuki Fukazawa
孝幸 深澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP31992596A priority Critical patent/JP3684008B2/en
Publication of JPH10158776A publication Critical patent/JPH10158776A/en
Application granted granted Critical
Publication of JP3684008B2 publication Critical patent/JP3684008B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To inexpensively obtain a material using an intermetallic compound excellent in strength, toughness, and wear resistance at high temp. and also having oxidation resistance. SOLUTION: A powder of the oxide of a metal selected from Ti, Zr, and Hf and a powder of a metal selected from Cu, Co, Sn, Ni, and Zn are mixed, compacted, and heated by using microwaves, by which a compound material, where an oxide 2 of the metal selected from Cu, Co, Sn, Ni, and Zn is compounded with a matrix containing an intermetallic compound 1 constituted of the metal selected from Ti, Zr, and Hf and the metal selected from Cu, Co, Sn, Ni, and Zn, is obtained. When the heating atmosphere is formed into oxidizing atmosphere, a surface layer containing the oxide of the metal selected from Cu, Co, Sn, Ni, and Zn is further formed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガスタービン、ジ
ェットエンジン、高温バルブ等の高温耐熱部材に有用な
金属間化合物を用いた材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a material using an intermetallic compound which is useful for high-temperature heat-resistant members such as gas turbines, jet engines, and high-temperature valves.

【0002】[0002]

【従来の技術】A−B二元系金属間化合物のうち、fc
c,hcp又はbccに属する構造をとるA3 B形金属
間化合物及びAB形金属間化合物は、塑性変形が可能で
あり、靭性も高いことから、耐熱性構造用部材として広
く利用されている。
2. Description of the Related Art Among AB binary intermetallic compounds, fc
A 3 B-type intermetallic compounds and AB-type intermetallic compounds having a structure belonging to c, hcp or bcc can be plastically deformed and have high toughness, and thus are widely used as heat-resistant structural members.

【0003】しかしながら、金属間化合物は、一旦金属
を溶融した後に冷却することによって得るため、かなり
の高温と時間とを要するというコスト面での欠点があっ
た。そこで、より簡単かつ安価に金属間化合物を製造す
る方法として、特開平第5−117716号公報には、
原料金属粉末をメカニカルアロイング法により微粉砕し
た後、プラズマ焼結法により焼結する方法が提案されて
いる。しかし、この方法では、微粉末生成過程及び焼結
過程の2つの行程があるため、コストの低減にはそれほ
ど寄与しない。
However, since the intermetallic compound is obtained by once melting the metal and then cooling it, there is a disadvantage in terms of cost that a considerable high temperature and time are required. Therefore, Japanese Patent Application Laid-Open No. 5-117716 discloses a simpler and cheaper method for producing an intermetallic compound.
A method has been proposed in which a raw metal powder is finely pulverized by a mechanical alloying method and then sintered by a plasma sintering method. However, in this method, there are two steps of a fine powder generation step and a sintering step, so that it does not contribute much to cost reduction.

【0004】また、ガスタービン部材のような高温条件
下で使用するには、金属間化合物は耐酸化性及び耐食性
に劣るという欠点があった。これを克服するためには、
酸素含有雰囲気中で熱処理して表面のみを酸化させ保護
膜とすることが考えられるが、熱処理で得られる膜の厚
さは数十μm程度であり、保護膜としては十分とは言え
ない。さらに、金属間化合物自体が摩耗しやすいという
欠点も有った。
Further, when used under high temperature conditions such as gas turbine members, there is a disadvantage that the intermetallic compound is inferior in oxidation resistance and corrosion resistance. To overcome this,
Although it is conceivable that only the surface is oxidized to form a protective film by heat treatment in an oxygen-containing atmosphere, the thickness of the film obtained by the heat treatment is about several tens of μm, which is not sufficient as a protective film. Further, there is a disadvantage that the intermetallic compound itself is easily worn.

【0005】[0005]

【発明が解決しようとする課題】上述したように、従来
の金属間化合物には、製造コストが高いという点、耐酸
化性および耐食性か劣る、及び摩耗しやすいという問題
点があった。本発明は、この様な従来技術の課題を解決
するためになされたもので、高温における高強度、高靭
性及び高摩擦特性を保持し、且つ、耐酸化性を有する金
属材料を安価に提供することを目的とするものである。
As described above, the conventional intermetallic compounds have problems that the production cost is high, oxidation resistance and corrosion resistance are inferior, and that they are easily worn. The present invention has been made in order to solve such problems of the prior art, and provides a metal material having high strength at high temperatures, high toughness and high frictional properties, and having oxidation resistance at low cost. The purpose is to do so.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明者らは鋭意研究を重ねた結果、金属粉末と酸
化物粉末からる成形体をマイクロ波加熱することで、低
温かつ短時間で金属間化合物を含有する材料が得られ、
これが金属間化合物の複合体および表面に耐酸化被膜が
形成された金属間化合物複合体であることを見出し、本
発明の金属間化合物複合体及びその製造方法を発明する
に至った。
Means for Solving the Problems In order to achieve the above object, the present inventors have conducted intensive studies, and as a result, a compact formed of a metal powder and an oxide powder is microwave-heated to obtain a low-temperature, short-form product. In time, a material containing an intermetallic compound is obtained,
This was found to be an intermetallic compound composite and an intermetallic compound composite having an oxidation-resistant film formed on the surface, and the inventors have invented an intermetallic compound composite of the present invention and a method for producing the same.

【0007】本発明の金属間化合物複合体は、Ti,Z
r,Hfより選ばれる金属とCu,Co,Sn,Ni,
Znより選ばれる金属とを要素とする金属間化合物を含
有するマトリックスに、Cu,Co,Sn,Ni,Zn
より選ばれる金属を要素とする酸化物が複合化されるも
のである。
[0007] The intermetallic compound composite of the present invention comprises Ti, Z
r, Hf and a metal selected from Cu, Co, Sn, Ni,
Cu, Co, Sn, Ni, Zn are added to a matrix containing an intermetallic compound containing a metal selected from Zn as an element.
An oxide containing a metal selected from the elements as a component is compounded.

【0008】又、本発明の他の金属間化合物複合体は、
Ti,Zr,Hfより選ばれる金属とCu,Co,S
n,Ni,Znより選ばれる金属とを要素とする金属間
化合物を含有するマトリックスに、Cu,Co,Sn,
Ni,Znより選ばれる金属を要素とする酸化物が複合
化され、Ti,Zr,Hfより選ばれる金属を要素とす
る酸化物を含有する表面層を有するものである。
Further, another intermetallic compound composite of the present invention comprises:
Metal selected from Ti, Zr, Hf and Cu, Co, S
In a matrix containing an intermetallic compound containing a metal selected from n, Ni, and Zn as elements, Cu, Co, Sn,
An oxide containing a metal selected from Ni and Zn as an element is compounded and has a surface layer containing an oxide containing a metal selected from Ti, Zr and Hf as an element.

【0009】本発明に係る金属間化合物複合体の製造方
法は、Ti,Zr,Hfより選ばれる金属を要素とする
酸化物の粉末とCu,Co,Sn,Ni,Znより選ば
れる金属の粉末とを混合し成形して成形体を得て、非酸
化性雰囲気下あるいは真空下でマイクロ波を用いて該成
形体を加熱するものである。
The method for producing an intermetallic compound composite according to the present invention is characterized in that an oxide powder containing a metal selected from Ti, Zr and Hf as an element and a metal powder selected from Cu, Co, Sn, Ni and Zn are used. Are mixed and molded to obtain a molded body, and the molded body is heated using a microwave in a non-oxidizing atmosphere or under vacuum.

【0010】又、本発明に係る金属間化合物複合体の他
の製造方法は、Ti,Zr,Hfより選ばれる金属を要
素とする酸化物の粉末とCu,Co,Sn,Ni,Zn
より選ばれる金属の粉末とを混合し成形して成形体を得
て、酸化性雰囲気下でマイクロ波を用いて該成形体を加
熱するものである。
Further, another method for producing an intermetallic compound composite according to the present invention is directed to an oxide powder containing a metal selected from Ti, Zr, and Hf as an element and Cu, Co, Sn, Ni, Zn.
A molded body is obtained by mixing with a powder of a metal selected from the above and molding, and the molded body is heated using microwaves in an oxidizing atmosphere.

【0011】上記表面層は、更に、Ti,Zr,Hfよ
り選ばれる金属を要素とする酸化物を含有する。
The surface layer further contains an oxide containing a metal selected from Ti, Zr and Hf as an element.

【0012】[0012]

【発明の実施の形態】Ti,Zr,Hfといった金属元
素(以下、第1の金属と称する)の酸化物は、マイクロ
波の吸収率が400〜1000℃の間で急激に高くなる
特長を有する。マイクロ波は吸収率の高い材料を選択的
に加熱する性質が有るため、これらの酸化物と金属粉末
が共存する成形体をマイクロ波で加熱すると、上記の酸
化物が選択的に加熱され、成形体温度が500℃程度で
あっても、局所的に1000℃を超える高温となる場合
もある。また、これらの酸化物は高温では酸素が解離し
易く、金属粉末がCu,Co,Sn,Ni,Znといっ
た金属(以下、第2の金属と称する)である場合、第1
の金属の酸化物から解離した酸素と周囲の第2の金属と
が反応して酸化物を形成するとともに、解離した第1の
金属も周囲の第2の金属と反応して金属間化合物とな
る。その結果、金属間化合物と第2の金属の酸化物との
複合体が得られる。この金属間化合物複合体は、金属間
化合物マトリックス中にセラミックス粒子が分散した構
造を有し、金属間化合物のみの材料と比較して強度及び
耐摩耗性が向上する。
BEST MODE FOR CARRYING OUT THE INVENTION An oxide of a metal element such as Ti, Zr, Hf (hereinafter referred to as a first metal) has a feature that its microwave absorptivity rapidly increases between 400 and 1000 ° C. . Since microwaves have the property of selectively heating materials having high absorptivity, when a molded body in which these oxides and metal powder coexist is heated by microwaves, the above oxides are selectively heated and formed. Even when the body temperature is about 500 ° C., the temperature may locally become higher than 1000 ° C. In addition, oxygen is easily dissociated at a high temperature in these oxides, and when the metal powder is a metal such as Cu, Co, Sn, Ni, and Zn (hereinafter, referred to as a second metal), the first powder is used.
The oxygen dissociated from the metal oxide and the surrounding second metal react to form an oxide, and the dissociated first metal also reacts with the surrounding second metal to become an intermetallic compound. . As a result, a composite of the intermetallic compound and the oxide of the second metal is obtained. This intermetallic compound composite has a structure in which ceramic particles are dispersed in an intermetallic compound matrix, and has improved strength and wear resistance as compared with a material containing only an intermetallic compound.

【0013】又、成形体のマイクロ波加熱を真空中ある
いは不活性ガス雰囲気中で行う場合には、均一な金属間
化合物複合体が得られるのに対し、酸化性雰囲気で行う
場合には、成形体の表層部分が酸化される。この結果、
原料と同じ第1の金属の酸化物と第2の金属の酸化物と
の複合体の表面層が得られる。この表面層の厚さは雰囲
気中の酸素含有量により制御することができ、全て酸化
物とすることも可能である。
When microwave heating of the molded body is performed in a vacuum or in an inert gas atmosphere, a uniform intermetallic compound composite is obtained. The body surface is oxidized. As a result,
A surface layer of a composite of the first metal oxide and the second metal oxide, which is the same as the raw material, is obtained. The thickness of this surface layer can be controlled by the oxygen content in the atmosphere, and it is also possible to use an oxide entirely.

【0014】以下に本発明を詳細に説明する。Hereinafter, the present invention will be described in detail.

【0015】まず、Ti,Zr,Hfより選ばれる第1
の金属を要素とする酸化物の粉末とCu,Co,Sn,
Ni,Znより選ばれる金属の粉末とを混合し、圧縮成
形により成形体を得る。混合粉末の調製は、具体例とし
ては、アセトン等の液媒を用いて3〜10時間程度ボー
ルミルで混合した後にロータリーエバポレーター等を用
いて液媒を除去し、篩を通して粒度を調整する等のこと
によって行うことができる。使用する金属酸化物粉末と
金属粉末の混合割合によって生成する金属間化合物の組
成は変化し、第1の金属の酸化物1に対し第2の金属を
モル比3〜5となるように混合するのが好ましい。第2
の金属がこの範囲より少ないと金属間化合物が生成され
ず、多い場合にはマトリクス中の金属間化合物の量が少
なく第2の金属を多量に含むようになる。使用する原料
粉末は必要に応じて適宜所望の粒径に調製すれば良く、
0.1〜10μm程度のものは金属間化合物の生成が良
好であり、粉末の取り扱いも行い易く、好ましい。得ら
れた混合粉末は、金型に所定量充填して加圧成形するこ
とにより、成形体が得られる。加圧成形は、例えば、1
00〜1000kg/cm2 程度の圧力で一軸加圧した後
に、1〜10t/cm2程度の圧力で冷間等方静水圧成形
を適用することにより、所望の形状に適切に行うことが
できる。
First, the first selected from Ti, Zr and Hf
Powder of an oxide containing a metal of Cu, Co, Sn,
A powder of a metal selected from Ni and Zn is mixed, and a compact is obtained by compression molding. Preparation of the mixed powder is, as a specific example, mixing with a ball mill for about 3 to 10 hours using a liquid medium such as acetone, removing the liquid medium using a rotary evaporator or the like, and adjusting the particle size through a sieve. Can be done by The composition of the intermetallic compound formed varies depending on the mixing ratio of the metal oxide powder and the metal powder used, and the second metal is mixed with the oxide 1 of the first metal in a molar ratio of 3 to 5. Is preferred. Second
If the metal is less than this range, no intermetallic compound will be generated, and if it is too large, the amount of the intermetallic compound in the matrix will be small and the second metal will be contained in large amounts. The raw material powder to be used may be appropriately adjusted to a desired particle size as needed,
Those having a thickness of about 0.1 to 10 μm are preferable because the formation of the intermetallic compound is good and the handling of the powder is easy. The obtained mixed powder is filled into a mold in a predetermined amount, and is subjected to pressure molding to obtain a molded body. Pressure molding is performed by, for example, 1
After uniaxially pressing at a pressure of about 00 to 1000 kg / cm 2 and then applying cold isostatic isostatic pressing at a pressure of about 1 to 10 t / cm 2 , the desired shape can be appropriately obtained.

【0016】得られた成形体は、断熱材で周囲を覆って
マイクロ波加熱装置のアプリケーター内に配置して加熱
するのが好ましい。成形体から上述の金属間化合物複合
体を製造する際に使用するマイクロ波の周波数は0.3
〜30GHzの範囲が好ましく、20〜30GHzであ
ればより好ましい。マイクロ波は、加熱温度が1200
℃以上、好ましくは1400℃以上となるように照射す
る。加熱温度が高すぎると、成形体を覆う断熱材が溶融
する可能性があるので好ましくない。このため、加熱温
度は、好ましくは1200〜1700℃、より好ましく
は1400〜1600℃に設定する。又、加熱時間は5
分以上、望ましくは30分以上とする。
It is preferable that the obtained molded body is placed in an applicator of a microwave heating device and heated by covering the periphery with a heat insulating material. The frequency of the microwave used when producing the above-mentioned intermetallic compound composite from the molded product is 0.3
The range is preferably 30 to 30 GHz, and more preferably 20 to 30 GHz. The microwave has a heating temperature of 1200
Irradiation is performed at a temperature of at least 1 ° C, preferably at least 1400 ° C. If the heating temperature is too high, there is a possibility that the heat insulating material covering the molded body may melt, which is not preferable. For this reason, the heating temperature is preferably set to 1200 to 1700 ° C, more preferably 1400 to 1600 ° C. The heating time is 5
Minutes or more, preferably 30 minutes or more.

【0017】窒素等の非酸化性雰囲気下で上記のマイク
ロ波加熱を行うと、図1に模式的に示すような上記第1
の金属及び第2の金属からなる金属間化合物(図中参照
符号1)と第2の金属の酸化物(図中参照符号2)との
複合体が生成されるが、大気などの酸化性雰囲気中で加
熱すると、複合体の表面で酸化が進行し、金属間化合物
が酸化され第1の金属の酸化物と第2の金属の酸化物が
生成される。この結果、図2に示すように、第1の金属
及び第2の金属からなる金属間化合物(図中参照符号
1)と第2の金属の酸化物(参照符号2)とによる複合
体の表面に、第2の金属の酸化物(参照符号2)及び第
1の金属の酸化物(参照符号3)を含む酸化膜(参照符
号4)が形成される。この様な酸化膜の厚さは雰囲気中
の酸化性ガスの分圧に依存し、例えば通常のガス置換に
従って10-3〜10-4torr程度に減圧した後に窒素ある
いはアルゴンなどの不活性ガスを導入した場合には残留
する酸化性ガスは無視できる程度であり酸化膜は実質的
に形成されない。
When the above-mentioned microwave heating is performed in a non-oxidizing atmosphere such as nitrogen, the above-described first heating as schematically shown in FIG.
A complex of an intermetallic compound (reference numeral 1 in the drawing) and an oxide of the second metal (reference numeral 2 in the drawing) is formed in the oxidizing atmosphere such as air. When heated in the atmosphere, oxidation proceeds on the surface of the composite, the intermetallic compound is oxidized, and an oxide of the first metal and an oxide of the second metal are generated. As a result, as shown in FIG. 2, the surface of the complex formed by the intermetallic compound composed of the first metal and the second metal (reference numeral 1 in the figure) and the oxide of the second metal (reference numeral 2) Then, an oxide film (reference numeral 4) including an oxide of the second metal (reference numeral 2) and an oxide of the first metal (reference numeral 3) is formed. The thickness of such an oxide film depends on the partial pressure of the oxidizing gas in the atmosphere. For example, after reducing the pressure to about 10 -3 to 10 -4 torr according to ordinary gas replacement, an inert gas such as nitrogen or argon is removed. When introduced, the remaining oxidizing gas is negligible and an oxide film is not substantially formed.

【0018】[0018]

【実施例】以下、実施例を用いて本発明をさらに詳細に
説明する。
The present invention will be described in more detail with reference to the following examples.

【0019】(実施例1)TiO2 粉末とCu粉末とを
モル比が1:3となるように秤量し、アセトンを分散媒
として、ナイロンボールによるボールミル混合を行っ
た。混合後、ロータリーエバポーレーターを用いて乾燥
を行い、500μmの篩を通して粒度を調整した。得ら
れた混合粉末を金型に充填し、200kg/cm2 の圧力で
一軸加圧した後、2t/cm2 の圧力で冷間等方静水圧成
形を行った。得られた成形体の周囲を断熱材で覆ってマ
イクロ波加熱装置のアプリケーター内に配置し、28G
Hz,15kwのマイクロ波によりN2 雰囲気下で30
分間800℃に加熱した。得られた焼結体をX線回析に
より同定した結果、CuTiとCuOが生成していた。
得られた焼結体の断面を顕微鏡写真で撮影した像は図1
と同様のものであった。
(Example 1) TiO 2 powder and Cu powder were weighed so that the molar ratio became 1: 3, and ball mill mixing with nylon balls was performed using acetone as a dispersion medium. After mixing, drying was performed using a rotary evaporator, and the particle size was adjusted through a 500 μm sieve. The obtained mixed powder was filled in a mold, uniaxially pressed at a pressure of 200 kg / cm 2 , and then subjected to cold isostatic pressing at a pressure of 2 t / cm 2 . The periphery of the obtained molded body is covered with a heat insulating material, and placed in an applicator of a microwave heating device.
30 Hz under N 2 atmosphere by microwave of 15 kW
Heated to 800 ° C. for minutes. As a result of identifying the obtained sintered body by X-ray diffraction, CuTi and CuO were generated.
FIG. 1 shows a micrograph of the cross section of the obtained sintered body.
Was similar to

【0020】(実施例2)TiO2 粉末とCu粉末とを
モル比が1:5となるように秤量した以外は、実施例1
と同様の条件で混合、乾燥、成形、マイクロ波加熱を行
った。得られた焼結体の生成相をX線回析により同定し
た結果、Cu3 TiとCuOが生成していた。得られた
焼結体の断面を顕微鏡写真で撮影した像は図1と同様の
ものであった。
Example 2 Example 1 was repeated except that the TiO 2 powder and the Cu powder were weighed so that the molar ratio was 1: 5.
Under the same conditions as described above, mixing, drying, molding, and microwave heating were performed. As a result of identifying the generated phase of the obtained sintered body by X-ray diffraction, Cu 3 Ti and CuO were generated. An image of a cross section of the obtained sintered body taken with a micrograph was the same as that in FIG.

【0021】(実施例3)加熱雰囲気を大気とした以外
は、実施例1と同様の条件で混合、乾燥、成形、マイク
ロ波加熱を行った。得られた焼結体の生成相をX線回析
により同定した結果、内部にはCuTiとCuOが、表
層にはTiO2 とCuOが生成していた。得られた焼結
体の断面を顕微鏡写真で撮影した像は図2と同様のもの
であった。
Example 3 Mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 1 except that the heating atmosphere was air. As a result of identifying the generated phase of the obtained sintered body by X-ray diffraction, CuTi and CuO were generated inside, and TiO 2 and CuO were generated in the surface layer. An image of a cross section of the obtained sintered body taken by a micrograph was the same as that in FIG.

【0022】(実施例4)加熱雰囲気を大気とした以外
は、実施例2と同様の条件で混合、乾燥、成形、マイク
ロ波加熱を行った。得られた焼結体の生成相をX線回析
により同定した結果、内部にはCu3 TiとCuOが、
表層にはTiO2 とCuOが生成していた。得られた焼
結体の断面を顕微鏡写真で撮影した像は図2と同様のも
のであった。
Example 4 Mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 2 except that the heating atmosphere was air. As a result of identifying the formed phase of the obtained sintered body by X-ray diffraction, Cu 3 Ti and CuO were contained therein,
TiO 2 and CuO were generated on the surface layer. An image of a cross section of the obtained sintered body taken by a micrograph was the same as that in FIG.

【0023】(実施例5)TiO2 粉末に代えてZrO
2 粉末を使用した以外は、実施例1と同様の条件で混
合、乾燥、成形、マイクロ波加熱を行った。得られた焼
結体の生成相をX線回析により同定した結果、CuZr
とCuOが生成していた。得られた焼結体の断面を顕微
鏡写真で撮影した像は図1と同様のものであった。
Example 5 ZrO was used instead of TiO 2 powder.
Mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 1 except that two powders were used. As a result of identifying the formed phase of the obtained sintered body by X-ray diffraction, CuZr
And CuO were generated. An image of a cross section of the obtained sintered body taken with a micrograph was the same as that in FIG.

【0024】(実施例6)TiO2 粉末に代えてZrO
2 粉末を使用した以外は、実施例2と同様の条件で混
合、乾燥、成形、マイクロ波加熱を行った。得られた焼
結体の生成相をX線回析により同定した結果、Cu3
rとCuOが生成していた。得られた焼結体の断面を顕
微鏡写真で撮影した像は図1と同様のものであった。
Example 6 Instead of TiO 2 powder, ZrO
Mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 2 except that two powders were used. The product phase of the obtained sintered body was identified by X-ray diffraction, and as a result, Cu 3 Z
r and CuO were generated. An image of a cross section of the obtained sintered body taken with a micrograph was the same as that in FIG.

【0025】(実施例7)加熱雰囲気を大気とした以外
は、実施例5と同様の条件で混合、乾燥、成形、マイク
ロ波加熱を行った。得られた焼結体の生成相をX線回析
により同定した結果、内部にはCuZrとCuOが、表
層にはZrO2 とCuOが生成していた。得られた焼結
体の断面を顕微鏡写真で撮影した像は図2と同様のもの
であった。
Example 7 Mixing, drying, molding and microwave heating were performed under the same conditions as in Example 5 except that the heating atmosphere was air. As a result of identifying the generated phase of the obtained sintered body by X-ray diffraction, CuZr and CuO were generated inside, and ZrO 2 and CuO were generated in the surface layer. An image of a cross section of the obtained sintered body taken by a micrograph was the same as that in FIG.

【0026】(実施例8)加熱雰囲気を大気とした以外
は、実施例6と同様の条件で混合、乾燥、成形、マイク
ロ波加熱を行った。得られた焼結体の生成相をX線回析
により同定した結果、内部にはCu3 ZrとCuOが、
表層にはZrO2 とCuOが生成していた。得られた焼
結体の断面を顕微鏡写真で撮影した像は図2と同様のも
のであった。
Example 8 Mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 6 except that the heating atmosphere was air. As a result of identifying the generated phase of the obtained sintered body by X-ray diffraction, Cu 3 Zr and CuO were contained therein,
ZrO 2 and CuO were generated on the surface layer. An image of a cross section of the obtained sintered body taken by a micrograph was the same as that in FIG.

【0027】(実施例9)TiO2 粉末に代えてHfO
2 粉末を使用した以外は、実施例1と同様の条件で混
合、乾燥、成形、マイクロ波加熱を行った。得られた焼
結体の生成相をX線回析により同定した結果、CuHf
とCuOが生成していた。得られた焼結体の断面を顕微
鏡写真で撮影した像は図1と同様のものであった。
Example 9 HfO was used instead of TiO 2 powder.
Mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 1 except that two powders were used. As a result of identifying the generated phase of the obtained sintered body by X-ray diffraction, CuHf
And CuO were generated. An image of a cross section of the obtained sintered body taken with a micrograph was the same as that in FIG.

【0028】(実施例10)TiO2 粉末をHfO2
末を使用した以外は、実施例2と同様の条件で混合、乾
燥、成形、マイクロ波加熱を行った。得られた焼結体の
生成相をX線回析により同定した結果、Cu3 HfとC
uOが生成していた。得られた焼結体の断面を顕微鏡写
真で撮影した像は図1と同様のものであった。
Example 10 Mixing, drying, molding and microwave heating were performed under the same conditions as in Example 2 except that HfO 2 powder was used as the TiO 2 powder. As a result of identifying the formed phase of the obtained sintered body by X-ray diffraction, Cu 3 Hf and C
uO had been produced. An image of a cross section of the obtained sintered body taken with a micrograph was the same as that in FIG.

【0029】(実施例11)加熱雰囲気を大気とした以
外は、実施例9と同様の条件で混合、乾燥、成形、マイ
クロ波加熱を行った。得られた焼結体の生成相をX線回
析により同定した結果、内部にはCuHfとCuOが、
表層にはHfO2 とCuOが生成していた。得られた焼
結体の断面を顕微鏡写真で撮影した像は図2と同様のも
のであった。
(Example 11) Mixing, drying, molding and microwave heating were performed under the same conditions as in Example 9 except that the heating atmosphere was air. As a result of identifying the generated phase of the obtained sintered body by X-ray diffraction, CuHf and CuO were
HfO 2 and CuO were generated on the surface layer. An image of a cross section of the obtained sintered body taken by a micrograph was the same as that in FIG.

【0030】(実施例12)加熱雰囲気を大気とした以
外は、実施例10と同様の条件で混合、乾燥、成形、マ
イクロ波加熱を行った。得られた焼結体の生成相をX線
回析により同定した結果、内部にはCu3 HfとCuO
が、表層にはHfO2 とCuOが生成していた。得られ
た焼結体の断面を顕微鏡写真で撮影した像は図2と同様
のものであった。
(Example 12) Mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 10 except that the heating atmosphere was air. As a result of identifying the generated phase of the obtained sintered body by X-ray diffraction, Cu 3 Hf and CuO
However, HfO 2 and CuO were generated on the surface layer. An image of a cross section of the obtained sintered body taken by a micrograph was the same as that in FIG.

【0031】(実施例13)Cu粉末に代えてCo粉末
を使用した以外は、実施例1と同様の条件で混合、乾
燥、成形、マイクロ波加熱を行った。得られた焼結体の
生成相をX線回析により同定した結果、CoTiとCo
Oが生成していた。得られた焼結体の断面を顕微鏡写真
で撮影した像は図1と同様のものであった。
Example 13 Mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 1 except that a Co powder was used instead of the Cu powder. As a result of identifying the formed phase of the obtained sintered body by X-ray diffraction, CoTi and Co
O had formed. An image of a cross section of the obtained sintered body taken with a micrograph was the same as that in FIG.

【0032】(実施例14)Cu粉末に代えてCo粉末
を使用した以外は、実施例2と同様の条件で混合、乾
燥、成形、マイクロ波加熱を行った。得られた焼結体の
生成相をX線回析により同定した結果、Co3 TiとC
oOが生成していた。得られた焼結体の断面を顕微鏡写
真で撮影した像は図1と同様のものであった。
Example 14 Mixing, drying, molding and microwave heating were performed under the same conditions as in Example 2 except that Co powder was used instead of Cu powder. As a result of identifying the generated phase of the obtained sintered body by X-ray diffraction, Co 3 Ti and C
oO had been generated. An image of a cross section of the obtained sintered body taken with a micrograph was the same as that in FIG.

【0033】(実施例15)加熱雰囲気を大気とした以
外は、実施例13と同様の条件で混合、乾燥、成形、マ
イクロ波加熱を行った。得られた焼結体の生成相をX線
回析により同定した結果、内部にはCoTiとCoO
が、表層にはTiO2 とCoOが生成していた。得られ
た焼結体の断面を顕微鏡写真で撮影した像は図2と同様
のものであった。
Example 15 Mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 13 except that the heating atmosphere was air. As a result of identifying the formed phase of the obtained sintered body by X-ray diffraction, CoTi and CoO
However, TiO 2 and CoO were generated on the surface layer. An image of a cross section of the obtained sintered body taken by a micrograph was the same as that in FIG.

【0034】(実施例16)加熱雰囲気を大気とした以
外は、実施例14と同様の条件で混合、乾燥、成形、マ
イクロ波加熱を行った。得られた焼結体の生成相をX線
回析により同定した結果、内部にはCo3 TiとCoO
が、表層にはTiO2 とCoOが生成していた。得られ
た焼結体の断面を顕微鏡写真で撮影した像は図2と同様
のものであった。
Example 16 Mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 14 except that the heating atmosphere was air. As a result of identifying the generated phase of the obtained sintered body by X-ray diffraction, Co 3 Ti and CoO
However, TiO 2 and CoO were generated on the surface layer. An image of a cross section of the obtained sintered body taken by a micrograph was the same as that in FIG.

【0035】(実施例17)TiO2 粉末に代えてZr
2 粉末を使用した以外は、実施例13と同様の条件で
混合、乾燥、成形、マイクロ波加熱を行った。得られた
焼結体の生成相をX線回析により同定した結果、CoZ
rとCoOが生成していた。得られた焼結体の断面を顕
微鏡写真で撮影した像は図1と同様のものであった。
(Example 17) Zr was used instead of TiO 2 powder.
Mixing, drying, molding and microwave heating were performed under the same conditions as in Example 13 except that O 2 powder was used. The product phase of the obtained sintered body was identified by X-ray diffraction.
r and CoO had been produced. An image of a cross section of the obtained sintered body taken with a micrograph was the same as that in FIG.

【0036】(実施例18)TiO2 粉末に代えてZr
2 粉末を使用した以外は、実施例14と同様の条件で
混合、乾燥、成形、マイクロ波加熱を行った。得られた
焼結体の生成相をX線回析により同定した結果、Co3
ZrとCoOが生成していた。得られた焼結体の断面を
顕微鏡写真で撮影した像は図1と同様のものであった。
Example 18 Instead of TiO 2 powder, Zr
Mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 14 except that the O 2 powder was used. Results generated phase of the obtained sintered body was identified by X-ray diffraction, Co 3
Zr and CoO were generated. An image of a cross section of the obtained sintered body taken with a micrograph was the same as that in FIG.

【0037】(実施例19)加熱雰囲気を大気とした以
外は、実施例17と同様の条件で混合、乾燥、成形、マ
イクロ波加熱を行った。得られた焼結体の生成相をX線
回析により同定した結果、内部にはCoZrとCoO
が、表層にはZrO2 とCoOが生成していた。得られ
た焼結体の断面を顕微鏡写真で撮影した像は図2と同様
のものであった。
Example 19 Mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 17 except that the heating atmosphere was air. As a result of identifying the generated phase of the obtained sintered body by X-ray diffraction, CoZr and CoO
However, ZrO 2 and CoO were generated on the surface layer. An image of a cross section of the obtained sintered body taken by a micrograph was the same as that in FIG.

【0038】(実施例20)加熱雰囲気を大気とした以
外は、実施例18と同様の条件で混合、乾燥、成形、マ
イクロ波加熱を行った。得られた焼結体の生成相をX線
回析により同定した結果、内部にはCo3 ZrとCoO
が、表層にはZrO2 とCoOが生成していた。得られ
た焼結体の断面を顕微鏡写真で撮影した像は図2と同様
のものであった。
Example 20 Mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 18 except that the heating atmosphere was air. The product phase of the obtained sintered body was identified by X-ray diffraction. As a result, Co 3 Zr and CoO
However, ZrO 2 and CoO were generated on the surface layer. An image of a cross section of the obtained sintered body taken by a micrograph was the same as that in FIG.

【0039】(実施例21)TiO2 粉末に代えてHf
2 粉末を使用した以外は、実施例13と同様の条件で
混合、乾燥、成形、マイクロ波加熱を行った。得られた
焼結体の生成相をX線回析により同定した結果、CoH
fとCoOが生成していた。得られた焼結体の断面を顕
微鏡写真で撮影した像は図1と同様のものであった。
(Example 21) Hf instead of TiO 2 powder
Mixing, drying, molding and microwave heating were performed under the same conditions as in Example 13 except that O 2 powder was used. The product phase of the obtained sintered body was identified by X-ray diffraction.
f and CoO had been produced. An image of a cross section of the obtained sintered body taken with a micrograph was the same as that in FIG.

【0040】(実施例22)TiO2 粉末に代えてHf
2 粉末を使用した以外は、実施例14と同様の条件で
混合、乾燥、成形、マイクロ波加熱を行った。得られた
焼結体の生成相をX線回析により同定した結果、Co3
HfとCoOが生成していた。得られた焼結体の断面を
顕微鏡写真で撮影した像は図1と同様のものであった。
Example 22 Hf was used instead of TiO 2 powder.
Mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 14 except that the O 2 powder was used. Results generated phase of the obtained sintered body was identified by X-ray diffraction, Co 3
Hf and CoO were generated. An image of a cross section of the obtained sintered body taken with a micrograph was the same as that in FIG.

【0041】(実施例23)加熱雰囲気を大気とした以
外は、実施例21と同様の条件で混合、乾燥、成形、マ
イクロ波加熱を行った。得られた焼結体の生成相をX線
回析により同定した結果、内部にはCoHfとCoO
が、表層にはHfO2 とCoOが生成していた。得られ
た焼結体の断面を顕微鏡写真で撮影した像は図2と同様
のものであった。
Example 23 Mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 21 except that the heating atmosphere was air. As a result of identifying the generated phase of the obtained sintered body by X-ray diffraction, CoHf and CoO
However, HfO 2 and CoO were generated on the surface layer. An image of a cross section of the obtained sintered body taken by a micrograph was the same as that in FIG.

【0042】(実施例24)加熱雰囲気を大気とした以
外は、実施例22と同様の条件で混合、乾燥、成形、マ
イクロ波加熱を行った。得られた焼結体の生成相をX線
回析により同定した結果、内部にはCo3 HfとCoO
が、表層にはHfO2 とCoOが生成していた。得られ
た焼結体の断面を顕微鏡写真で撮影した像は図2と同様
のものであった。
Example 24 Mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 22 except that the heating atmosphere was air. As a result of identifying the generated phase of the obtained sintered body by X-ray diffraction, Co 3 Hf and CoO
However, HfO 2 and CoO were generated on the surface layer. An image of a cross section of the obtained sintered body taken by a micrograph was the same as that in FIG.

【0043】(実施例25)Cu粉末に代えてNi粉末
を使用した以外は、実施例1と同様の条件で混合、乾
燥、成形、マイクロ波加熱を行った。得られた焼結体の
生成相をX線回析により同定した結果、NiTiとNi
Oが生成していた。得られた焼結体の断面を顕微鏡写真
で撮影した像は図1と同様のものであった。
Example 25 Mixing, drying, molding and microwave heating were performed under the same conditions as in Example 1 except that Ni powder was used instead of Cu powder. As a result of identifying the formed phase of the obtained sintered body by X-ray diffraction, NiTi and Ni
O had formed. An image of a cross section of the obtained sintered body taken with a micrograph was the same as that in FIG.

【0044】(実施例26)Cu粉末に代えてNi粉末
を使用した以外は、実施例2と同様の条件で混合、乾
燥、成形、マイクロ波加熱を行った。得られた焼結体の
生成相をX線回析により同定した結果、Ni3 TiとN
iOが生成していた。得られた焼結体の断面を顕微鏡写
真で撮影した像は図1と同様のものであった。
Example 26 Mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 2 except that Ni powder was used instead of Cu powder. As a result of identifying the formed phase of the obtained sintered body by X-ray diffraction, Ni 3 Ti and N
iO had been generated. An image of a cross section of the obtained sintered body taken with a micrograph was the same as that in FIG.

【0045】(実施例27)加熱雰囲気を大気とした以
外は、実施例25と同様の条件で混合、乾燥、成形、マ
イクロ波加熱を行った。得られた焼結体の生成相をX線
回析により同定した結果、内部にはNiTiとNiO
が、表層にはTiO2 とNiOが生成していた。得られ
た焼結体の断面を顕微鏡写真で撮影した像は図2と同様
のものであった。
Example 27 Mixing, drying, molding and microwave heating were performed under the same conditions as in Example 25 except that the heating atmosphere was air. As a result of identifying the generated phase of the obtained sintered body by X-ray diffraction, NiTi and NiO
However, TiO 2 and NiO were formed on the surface layer. An image of a cross section of the obtained sintered body taken by a micrograph was the same as that in FIG.

【0046】(実施例28)加熱雰囲気を大気とした以
外は、実施例26と同様の条件で混合、乾燥、成形、マ
イクロ波加熱を行った。得られた焼結体の生成相をX線
回析により同定した結果、内部にはNi3 TiとNiO
が、表層にはTiO2 とNiOが生成していた。得られ
た焼結体の断面を顕微鏡写真で撮影した像は図2と同様
のものであった。
Example 28 Mixing, drying, molding and microwave heating were performed under the same conditions as in Example 26 except that the heating atmosphere was air. As a result of identifying the formed phase of the obtained sintered body by X-ray diffraction, Ni 3 Ti and NiO
However, TiO 2 and NiO were formed on the surface layer. An image of a cross section of the obtained sintered body taken by a micrograph was the same as that in FIG.

【0047】(実施例29)TiO2 粉末に代えてZr
2 粉末を使用した以外は、実施例25と同様の条件で
混合、乾燥、成形、マイクロ波加熱を行った。得られた
焼結体の生成相をX線回析により同定した結果、NiZ
rとNiOが生成していた。得られた焼結体の断面を顕
微鏡写真で撮影した像は図1と同様のものであった。
(Example 29) Zr instead of TiO 2 powder
Mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 25 except that O 2 powder was used. As a result of identifying the generated phase of the obtained sintered body by X-ray diffraction, it was found that NiZ
r and NiO were generated. An image of a cross section of the obtained sintered body taken with a micrograph was the same as that in FIG.

【0048】(実施例30)TiO2 粉末に代えてZr
O2 粉末を使用した以外は、実施例26と同様の条件で
混合、乾燥、成形、マイクロ波加熱を行った。得られた
焼結体の生成相をX線回析により同定した結果、Ni3
ZrとNiOが生成していた。得られた焼結体の断面を
顕微鏡写真で撮影した像は図1と同様のものであった。
(Example 30) Instead of TiO2 powder, Zr
Mixing, drying, molding and microwave heating were performed under the same conditions as in Example 26 except that O2 powder was used. Results generated phase of the obtained sintered body was identified by X-ray diffraction, Ni 3
Zr and NiO were generated. An image of a cross section of the obtained sintered body taken with a micrograph was the same as that in FIG.

【0049】(実施例31)加熱雰囲気を大気とした以
外は、実施例29と同様の条件で混合、乾燥、成形、マ
イクロ波加熱を行った。得られた焼結体の生成相をX線
回析により同定した結果、内部にはNiZrとNiO
が、表層にはZrO2 とNiOが生成していた。得られ
た焼結体の断面を顕微鏡写真で撮影した像は図2と同様
のものであった。
Example 31 Mixing, drying, molding and microwave heating were performed under the same conditions as in Example 29 except that the heating atmosphere was air. As a result of identifying the formed phase of the obtained sintered body by X-ray diffraction, NiZr and NiO
However, ZrO 2 and NiO were generated on the surface layer. An image of a cross section of the obtained sintered body taken by a micrograph was the same as that in FIG.

【0050】(実施例32)加熱雰囲気を大気とした以
外は、実施例30と同様の条件で混合、乾燥、成形、マ
イクロ波加熱を行った。得られた焼結体の生成相をX線
回析により同定した結果、内部にはNi3 ZrとNiO
が、表層にはZrO2 とNiOが生成していた。得られ
た焼結体の断面を顕微鏡写真で撮影した像は図2と同様
のものであった。
Example 32 Mixing, drying, molding and microwave heating were performed under the same conditions as in Example 30 except that the heating atmosphere was air. As a result of identifying the formed phase of the obtained sintered body by X-ray diffraction, Ni 3 Zr and NiO
However, ZrO 2 and NiO were generated on the surface layer. An image of a cross section of the obtained sintered body taken by a micrograph was the same as that in FIG.

【0051】(実施例33)TiO2 粉末に代えてHf
2 粉末を使用した以外は、実施例25と同様の条件で
混合、乾燥、成形、マイクロ波加熱を行った。得られた
焼結体の生成相をX線回析により同定した結果、NiH
fとNiOが生成していた。得られた焼結体の断面を顕
微鏡写真で撮影した像は図1と同様のものであった。
Example 33 Instead of TiO 2 powder, Hf
Mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 25 except that O 2 powder was used. The product phase of the obtained sintered body was identified by X-ray diffraction.
f and NiO had been produced. An image of a cross section of the obtained sintered body taken with a micrograph was the same as that in FIG.

【0052】(実施例34)TiO2 粉末に代えてHf
2 粉末を使用した以外は、実施例26と同様の条件で
混合、乾燥、成形、マイクロ波加熱を行った。得られた
焼結体の生成相をX線回析により同定した結果、Ni3
HfとNiOが生成していた。得られた焼結体の断面を
顕微鏡写真で撮影した像は図1と同様のものであった。
(Example 34) Hf was used instead of TiO 2 powder.
Mixing, drying, molding and microwave heating were performed under the same conditions as in Example 26 except that O 2 powder was used. Results generated phase of the obtained sintered body was identified by X-ray diffraction, Ni 3
Hf and NiO were generated. An image of a cross section of the obtained sintered body taken with a micrograph was the same as that in FIG.

【0053】(実施例35)加熱雰囲気を大気とした以
外は、実施例33と同様の条件で混合、乾燥、成形、マ
イクロ波加熱を行った。得られた焼結体の生成相をX線
回析により同定した結果、内部にはNiHfとNiO
が、表層にはHfO2 とNiOが生成していた。得られ
た焼結体の断面を顕微鏡写真で撮影した像は図2と同様
のものであった。
Example 35 Mixing, drying, molding and microwave heating were performed under the same conditions as in Example 33 except that the heating atmosphere was air. As a result of identifying the generated phase of the obtained sintered body by X-ray diffraction, NiHf and NiO
However, HfO 2 and NiO were formed on the surface layer. An image of a cross section of the obtained sintered body taken by a micrograph was the same as that in FIG.

【0054】(実施例36)加熱雰囲気を大気とした以
外は、実施例34と同様の条件で混合、乾燥、成形、マ
イクロ波加熱を行った。得られた焼結体の生成相をX線
回析により同定した結果、内部にはNi3 HfとNiO
が、表層にはHfO2 とNiOが生成していた。得られ
た焼結体の断面を顕微鏡写真で撮影した像は図2と同様
のものであった。
Example 36 Mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 34 except that the heating atmosphere was air. As a result of identifying the generated phase of the obtained sintered body by X-ray diffraction, Ni 3 Hf and NiO
However, HfO 2 and NiO were formed on the surface layer. An image of a cross section of the obtained sintered body taken by a micrograph was the same as that in FIG.

【0055】(実施例37)Cu粉末に代えてSn粉末
を使用した以外は、実施例1と同様の条件で混合、乾
燥、成形、マイクロ波加熱を行った。得られた焼結体の
生成相をX線回析により同定した結果、SnTiとSn
Oが生成していた。得られた焼結体の断面を顕微鏡写真
で撮影した像は図1と同様のものであった。
Example 37 Mixing, drying, molding and microwave heating were performed under the same conditions as in Example 1 except that Sn powder was used instead of Cu powder. As a result of identifying the formed phase of the obtained sintered body by X-ray diffraction, SnTi and Sn
O had formed. An image of a cross section of the obtained sintered body taken with a micrograph was the same as that in FIG.

【0056】(実施例38)Cu粉末に代えてSn粉末
を使用した以外は、実施例2と同様の条件で混合、乾
燥、成形、マイクロ波加熱を行った。得られた焼結体の
生成相をX線回析により同定した結果、Sn3 TiとS
nOが生成していた。得られた焼結体の断面を顕微鏡写
真で撮影した像は図1と同様のものであった。
Example 38 Mixing, drying, molding and microwave heating were performed under the same conditions as in Example 2 except that Sn powder was used instead of Cu powder. As a result of identifying the generated phase of the obtained sintered body by X-ray diffraction, Sn 3 Ti and S
nO was generated. An image of a cross section of the obtained sintered body taken with a micrograph was the same as that in FIG.

【0057】(実施例39)加熱雰囲気を大気とした以
外は、実施例37と同様の条件で混合、乾燥、成形、マ
イクロ波加熱を行った。得られた焼結体の生成相をX線
回析により同定した結果、内部にはSnTiとSnO
が、表層にはTiO2 とSnOが生成していた。得られ
た焼結体の断面を顕微鏡写真で撮影した像は図2と同様
のものであった。
Example 39 Mixing, drying, molding and microwave heating were performed under the same conditions as in Example 37 except that the heating atmosphere was air. As a result of identifying the formed phase of the obtained sintered body by X-ray diffraction, SnTi and SnO
However, TiO 2 and SnO were generated on the surface layer. An image of a cross section of the obtained sintered body taken by a micrograph was the same as that in FIG.

【0058】(実施例40)加熱雰囲気を大気とした以
外は、実施例38と同様の条件で混合、乾燥、成形、マ
イクロ波加熱を行った。得られた焼結体の生成相をX線
回析により同定した結果、内部にはSn3 TiとSnO
が、表層にはTiO2 とSnOが生成していた。得られ
た焼結体の断面を顕微鏡写真で撮影した像は図2と同様
のものであった。
Example 40 Mixing, drying, molding and microwave heating were performed under the same conditions as in Example 38 except that the heating atmosphere was air. As a result of identifying the formed phase of the obtained sintered body by X-ray diffraction, Sn 3 Ti and SnO
However, TiO 2 and SnO were generated on the surface layer. An image of a cross section of the obtained sintered body taken by a micrograph was the same as that in FIG.

【0059】(実施例41)TiO2 粉末に代えてZr
2 粉末を使用した以外は、実施例37と同様の条件で
混合、乾燥、成形、マイクロ波加熱を行った。得られた
焼結体の生成相をX線回析により同定した結果、SnZ
rとSnOが生成していた。得られた焼結体の断面を顕
微鏡写真で撮影した像は図1と同様のものであった。
Example 41 Zr was used instead of TiO 2 powder.
Mixing, drying, molding and microwave heating were performed under the same conditions as in Example 37 except that O 2 powder was used. As a result of identifying the formed phase of the obtained sintered body by X-ray diffraction, SnZ
r and SnO were generated. An image of a cross section of the obtained sintered body taken with a micrograph was the same as that in FIG.

【0060】(実施例42)TiO2 粉末に代えてZr
2 粉末を使用した以外は、実施例38と同様の条件で
混合、乾燥、成形、マイクロ波加熱を行った。得られた
焼結体の生成相をX線回析により同定した結果、Sn3
ZrとSnOが生成していた。得られた焼結体の断面を
顕微鏡写真で撮影した像は図1と同様のものであった。
(Example 42) Zr was used instead of TiO 2 powder.
Mixing, drying, molding and microwave heating were performed under the same conditions as in Example 38 except that O 2 powder was used. Results generated phase of the obtained sintered body was identified by X-ray diffraction, Sn 3
Zr and SnO were generated. An image of a cross section of the obtained sintered body taken with a micrograph was the same as that in FIG.

【0061】(実施例43)加熱雰囲気を大気とした以
外は、実施例41と同様の条件で混合、乾燥、成形、マ
イクロ波加熱を行った。得られた焼結体の生成相をX線
回析により同定した結果、内部にはSnZrとSnO
が、表層にはZrO2 とSnOが生成していた。得られ
た焼結体の断面を顕微鏡写真で撮影した像は図2と同様
のものであった。
Example 43 Mixing, drying, molding and microwave heating were performed under the same conditions as in Example 41 except that the heating atmosphere was air. As a result of identifying the formed phase of the obtained sintered body by X-ray diffraction, SnZr and SnO
However, ZrO 2 and SnO were generated on the surface layer. An image of a cross section of the obtained sintered body taken by a micrograph was the same as that in FIG.

【0062】(実施例44)加熱雰囲気を大気とした以
外は、実施例42と同様の条件で混合、乾燥、成形、マ
イクロ波加熱を行った。得られた焼結体の生成相をX線
回析により同定した結果、内部にはSn3 ZrとSnO
が、表層にはZrO2 とSnOが生成していた。得られ
た焼結体の断面を顕微鏡写真で撮影した像は図2と同様
のものであった。
Example 44 Mixing, drying, molding and microwave heating were performed under the same conditions as in Example 42 except that the heating atmosphere was air. As a result of identifying the formed phase of the obtained sintered body by X-ray diffraction, Sn 3 Zr and SnO
However, ZrO 2 and SnO were generated on the surface layer. An image of a cross section of the obtained sintered body taken by a micrograph was the same as that in FIG.

【0063】(実施例45)TiO2 粉末に代えてHf
2 粉末を使用した以外は、実施例37と同様の条件で
混合、乾燥、成形、マイクロ波加熱を行った。得られた
焼結体の生成相をX線回析により同定した結果、SnH
fとSnOが生成していた。得られた焼結体の断面を顕
微鏡写真で撮影した像は図1と同様のものであった。
(Example 45) Hf was used instead of TiO 2 powder.
Mixing, drying, molding and microwave heating were performed under the same conditions as in Example 37 except that O 2 powder was used. The product phase of the obtained sintered body was identified by X-ray diffraction.
f and SnO were generated. An image of a cross section of the obtained sintered body taken with a micrograph was the same as that in FIG.

【0064】(実施例46)TiO2 粉末に代えてHf
2 粉末を使用した以外は、実施例38と同様の条件で
混合、乾燥、成形、マイクロ波加熱を行った。得られた
焼結体の生成相をX線回析により同定した結果、Sn3
HfとSnOが生成していた。得られた焼結体の断面を
顕微鏡写真で撮影した像は図1と同様のものであった。
(Example 46) Hf was used instead of TiO 2 powder.
Mixing, drying, molding and microwave heating were performed under the same conditions as in Example 38 except that O 2 powder was used. Results generated phase of the obtained sintered body was identified by X-ray diffraction, Sn 3
Hf and SnO were generated. An image of a cross section of the obtained sintered body taken with a micrograph was the same as that in FIG.

【0065】(実施例47)加熱雰囲気を大気とした以
外は、実施例45と同様の条件で混合、乾燥、成形、マ
イクロ波加熱を行った。得られた焼結体の生成相をX線
回析により同定した結果、内部にはSnHfとSnO
が、表層にはHfO2 とSnOが生成していた。得られ
た焼結体の断面を顕微鏡写真で撮影した像は図2と同様
のものであった。
Example 47 Mixing, drying, molding and microwave heating were performed under the same conditions as in Example 45 except that the heating atmosphere was air. As a result of identifying the generated phase of the obtained sintered body by X-ray diffraction, SnHf and SnO
However, HfO 2 and SnO were generated on the surface layer. An image of a cross section of the obtained sintered body taken by a micrograph was the same as that in FIG.

【0066】(実施例48)加熱雰囲気を大気とした以
外は、実施例46と同様の条件で混合、乾燥、成形、マ
イクロ波加熱を行った。得られた焼結体の生成相をX線
回析により同定した結果、内部にはSn3 HfとSnO
が、表層にはHfO2 とSnOが生成していた。得られ
た焼結体の断面を顕微鏡写真で撮影した像は図2と同様
のものであった。
Example 48 Mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 46 except that the heating atmosphere was air. As a result of identifying the formed phase of the obtained sintered body by X-ray diffraction, Sn 3 Hf and SnO
However, HfO 2 and SnO were generated on the surface layer. An image of a cross section of the obtained sintered body taken by a micrograph was the same as that in FIG.

【0067】(実施例49)Cu粉末に代えてZn粉末
を使用した以外は、実施例1と同様の条件で混合、乾
燥、成形、マイクロ波加熱を行った。得られた焼結体の
生成相をX線回析により同定した結果、ZnTiとZn
Oが生成していた。得られた焼結体の断面を顕微鏡写真
で撮影した像は図1と同様のものであった。
Example 49 Mixing, drying, molding and microwave heating were performed under the same conditions as in Example 1 except that Zn powder was used instead of Cu powder. As a result of identifying the formed phase of the obtained sintered body by X-ray diffraction, ZnTi and Zn
O had formed. An image of a cross section of the obtained sintered body taken with a micrograph was the same as that in FIG.

【0068】(実施例50)Cu粉末に代えてZn粉末
を使用した以外は、実施例2と同様の条件で混合、乾
燥、成形、マイクロ波加熱を行った。得られた焼結体の
生成相をX線回析により同定した結果、Zn3 TiとZ
nOが生成していた。得られた焼結体の断面を顕微鏡写
真で撮影した像は図1と同様のものであった。
Example 50 Mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 2 except that Zn powder was used instead of Cu powder. As a result of identifying the generated phase of the obtained sintered body by X-ray diffraction, Zn 3 Ti and Z
nO was generated. An image of a cross section of the obtained sintered body taken with a micrograph was the same as that in FIG.

【0069】(実施例51)加熱雰囲気を大気とした以
外は、実施例49と同様の条件で混合、乾燥、成形、マ
イクロ波加熱を行った。得られた焼結体の生成相をX線
回析により同定した結果、内部にはZnTiとZnO
が、表層にはTiO2 とZnOが生成していた。得られ
た焼結体の断面を顕微鏡写真で撮影した像は図2と同様
のものであった。
Example 51 Mixing, drying, molding and microwave heating were performed under the same conditions as in Example 49 except that the heating atmosphere was air. As a result of identifying the formed phase of the obtained sintered body by X-ray diffraction, ZnTi and ZnO
However, TiO 2 and ZnO were generated on the surface layer. An image of a cross section of the obtained sintered body taken by a micrograph was the same as that in FIG.

【0070】(実施例52)加熱雰囲気を大気とした以
外は、実施例50と同様の条件で混合、乾燥、成形、マ
イクロ波加熱を行った。得られた焼結体の生成相をX線
回析により同定した結果、内部にはZn3 TiとZnO
が、表層にはTiO2 とZnOが生成していた。得られ
た焼結体の断面を顕微鏡写真で撮影した像は図2と同様
のものであった。
Example 52 Mixing, drying, molding and microwave heating were performed under the same conditions as in Example 50 except that the heating atmosphere was air. As a result of identifying the generated phase of the obtained sintered body by X-ray diffraction, Zn 3 Ti and ZnO
However, TiO 2 and ZnO were generated on the surface layer. An image of a cross section of the obtained sintered body taken by a micrograph was the same as that in FIG.

【0071】(実施例53)TiO2 粉末に代えてZr
2 粉末を使用した以外は、実施例49と同様の条件で
混合、乾燥、成形、マイクロ波加熱を行った。得られた
焼結体の生成相をX線回析により同定した結果、ZnZ
rとZnOが生成していた。得られた焼結体の断面を顕
微鏡写真で撮影した像は図1と同様のものであった。
(Example 53) Zr was used instead of TiO 2 powder.
Mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 49 except that O 2 powder was used. As a result of identifying the formed phase of the obtained sintered body by X-ray diffraction, ZnZ
r and ZnO were generated. An image of a cross section of the obtained sintered body taken with a micrograph was the same as that in FIG.

【0072】(実施例54)TiO2 粉末に代えてZr
2 粉末を使用した以外は、実施例50と同様の条件で
混合、乾燥、成形、マイクロ波加熱を行った。得られた
焼結体の生成相をX線回析により同定した結果、Zn3
ZrとZnOが生成していた。得られた焼結体の断面を
顕微鏡写真で撮影した像は図1と同様のものであった。
(Example 54) Zr was used instead of TiO 2 powder.
Mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 50 except that O 2 powder was used. Results generated phase of the obtained sintered body was identified by X-ray diffraction, Zn 3
Zr and ZnO were generated. An image of a cross section of the obtained sintered body taken with a micrograph was the same as that in FIG.

【0073】(実施例55)加熱雰囲気を大気とした以
外は、実施例53と同様の条件で混合、乾燥、成形、マ
イクロ波加熱を行った。得られた焼結体の生成相をX線
回析により同定した結果、内部にはZnZrとZnO
が、表層にはZrO2 とZnOが生成していた。得られ
た焼結体の断面を顕微鏡写真で撮影した像は図2と同様
のものであった。
Example 55 Mixing, drying, molding and microwave heating were carried out under the same conditions as in Example 53 except that the heating atmosphere was air. As a result of identifying the generated phase of the obtained sintered body by X-ray diffraction, ZnZr and ZnO
However, ZrO 2 and ZnO were generated on the surface layer. An image of a cross section of the obtained sintered body taken by a micrograph was the same as that in FIG.

【0074】(実施例56)加熱雰囲気を大気とした以
外は、実施例54と同様の条件で混合、乾燥、成形、マ
イクロ波加熱を行った。得られた焼結体の生成相をX線
回析により同定した結果、内部にはZn3 ZrとZnO
が、表層にはZrO2 とZnOが生成していた。得られ
た焼結体の断面を顕微鏡写真で撮影した像は図2と同様
のものであった。
Example 56 Mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 54 except that the heating atmosphere was air. As a result of identifying the formed phase of the obtained sintered body by X-ray diffraction, Zn 3 Zr and ZnO
However, ZrO 2 and ZnO were generated on the surface layer. An image of a cross section of the obtained sintered body taken by a micrograph was the same as that in FIG.

【0075】(実施例57)TiO2 粉末に代えてHf
2 粉末を使用した以外は、実施例49と同様の条件で
混合、乾燥、成形、マイクロ波加熱を行った。得られた
焼結体の生成相をX線回析により同定した結果、ZnH
fとZnOが生成していた。得られた焼結体の断面を顕
微鏡写真で撮影した像は図1と同様のものであった。
(Example 57) Hf was used instead of TiO 2 powder.
Mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 49 except that O 2 powder was used. The product phase of the obtained sintered body was identified by X-ray diffraction.
f and ZnO were generated. An image of a cross section of the obtained sintered body taken with a micrograph was the same as that in FIG.

【0076】(実施例58)TiO2 粉末に代えてHf
2 粉末を使用した以外は、実施例50と同様の条件で
混合、乾燥、成形、マイクロ波加熱を行った。得られた
焼結体の生成相をX線回析により同定した結果、Zn3
HfとZnOが生成していた。得られた焼結体の断面を
顕微鏡写真で撮影した像は図1と同様のものであった。
(Example 58) Hf was used instead of TiO 2 powder.
Mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 50 except that O 2 powder was used. Results generated phase of the obtained sintered body was identified by X-ray diffraction, Zn 3
Hf and ZnO were generated. An image of a cross section of the obtained sintered body taken with a micrograph was the same as that in FIG.

【0077】(実施例59)加熱雰囲気を大気とした以
外は、実施例57と同様の条件で混合、乾燥、成形、マ
イクロ波加熱を行った。得られた焼結体の生成相をX線
回析により同定した結果、内部にはZnHfとZnO
が、表層にはHfO2 とZnOが生成していた。得られ
た焼結体の断面を顕微鏡写真で撮影した像は図2と同様
のものであった。
Example 59 Mixing, drying, molding and microwave heating were performed under the same conditions as in Example 57 except that the heating atmosphere was air. As a result of identifying the generated phase of the obtained sintered body by X-ray diffraction, ZnHf and ZnO
However, HfO 2 and ZnO were generated on the surface layer. An image of a cross section of the obtained sintered body taken by a micrograph was the same as that in FIG.

【0078】(実施例60)加熱雰囲気を大気とした以
外は、実施例58と同様の条件で混合、乾燥、成形、マ
イクロ波加熱を行った。得られた焼結体の生成相をX線
回析により同定した結果、内部にはZn3 HfとZnO
が、表層にはHfO2 とZnOが生成していた。得られ
た焼結体の断面を顕微鏡写真で撮影した像は図2と同様
のものであった。
Example 60 Mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 58 except that the heating atmosphere was air. As a result of identifying the generated phase of the obtained sintered body by X-ray diffraction, Zn 3 Hf and ZnO
However, HfO 2 and ZnO were generated on the surface layer. An image of a cross section of the obtained sintered body taken by a micrograph was the same as that in FIG.

【0079】(評価)得られた実施例1〜60の焼結体
の試験片について、JIS−1601Rに基づく3点曲
げ試験を行い、室温における強度を測定した。また、各
々の試験片について、鉄系の材料を相手材としてディス
ク−オン−ディスク法により摩擦試験を行った。さら
に、各々の試験片を1500℃の大気中に1000時間
放置して耐酸化性の試験を行った。
(Evaluation) The obtained test pieces of the sintered bodies of Examples 1 to 60 were subjected to a three-point bending test based on JIS-1601R, and the strength at room temperature was measured. Further, a friction test was performed on each test piece by a disk-on-disk method using an iron-based material as a mating material. Further, each test piece was left in the air at 1500 ° C. for 1000 hours to perform an oxidation resistance test.

【0080】上記3つの試験を、従来法により作製され
た金属間化合物のみの試験片についても行い、これによ
る値に対する上記実施例1〜60各々による値の比を比
強度、比摩耗量及び比重量変化として求めた。結果を表
1に示す。
The above three tests were also performed on test pieces of only intermetallic compounds prepared by a conventional method, and the ratios of the values obtained in Examples 1 to 60 to the values obtained therefrom were defined as specific strength, specific wear amount and specific ratio. It was determined as a change in weight. Table 1 shows the results.

【0081】[0081]

【表1】 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 比強度 比摩耗量 比重量変化 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 実施例1 1.17 0.28 0.78 実施例2 1.14 0.33 0.69 実施例3 1.53 0.18 0.12 実施例4 1.52 0.16 0.10 実施例5 1.16 0.26 0.80 実施例6 1.17 0.23 0.68 実施例7 1.51 0.14 0.10 実施例8 1.47 0.12 0.09 実施例9 1.25 0.31 0.77 実施例10 1.30 0.29 0.74 実施例11 1.42 0.13 0.11 実施例12 1.44 0.15 0.13 実施例13 1.16 0.26 0.74 実施例14 1.12 0.30 0.67 実施例15 1.58 0.20 0.10 実施例16 1.55 0.17 0.10 実施例17 1.12 0.22 0.81 実施例18 1.17 0.23 0.69 実施例19 1.53 0.15 0.13 実施例20 1.58 0.15 0.07 実施例21 1.23 0.29 0.76 実施例22 1.27 0.27 0.72 実施例23 1.40 0.15 0.10 実施例24 1.44 0.15 0.12 実施例25 1.12 0.21 0.79 実施例26 1.14 0.23 0.76 実施例27 1.63 0.12 0.08 実施例28 1.59 0.13 0.10 実施例29 1.10 0.20 0.61 実施例30 1.15 0.23 0.64 実施例31 1.56 0.12 0.15 実施例32 1.57 0.12 0.14 実施例33 1.22 0.23 0.75 実施例34 1.26 0.21 0.72 実施例35 1.52 0.11 0.11 実施例36 1.54 0.13 0.13 実施例37 1.19 0.23 0.74 実施例38 1.16 0.26 0.69 実施例39 1.52 0.18 0.12 実施例40 1.52 0.17 0.10 実施例41 1.13 0.20 0.78 実施例42 1.17 0.23 0.79 実施例43 1.67 0.13 0.11 実施例44 1.58 0.12 0.09 実施例45 1.23 0.28 0.69 実施例46 1.30 0.29 0.74 実施例47 1.52 0.13 0.11 実施例48 1.54 0.17 0.13 実施例49 1.17 0.28 0.70 実施例50 1.14 0.31 0.69 実施例51 1.53 0.18 0.12 実施例52 1.51 0.14 0.11 実施例53 1.13 0.23 0.82 実施例54 1.19 0.21 0.80 実施例55 1.54 0.14 0.10 実施例56 1.57 0.12 0.09 実施例57 1.22 0.25 0.77 実施例58 1.26 0.29 0.73 実施例59 1.62 0.13 0.11 実施例60 1.52 0.15 0.13 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 上記の結果から明らかなように、本発明に係る金属間化
合物複合体は高い強度を有し、摩耗量及び酸化による重
量変化が少ない。この傾向は、酸化物の表面層を形成し
たときに一段と顕著になる。
Table 1------------------------------------------------------Specific strength ---------------------------------------------------------------------------------------------------------- Example 1 1.17 0.28 0.78 Example 2 1.14 0.33 0.69 Example 3 1.53 0.18 0.12 Example 4 1.52 0.16 0.10 Example 5 1.16 0.26 0.80 Example 6 1.17 0. 23 0.68 Example 7 1.51 0.14 0.10 Example 8 1.47 0.12 0.09 Example 9 1.25 0.31 0.77 Example 10 1.30 0.29 0 0.74 Example 11 1.42 0.13 0.11 Example 12 1.44 0.15 0.13 Example 13 1.16 0.26 0.74 Example 14 1.12 0.30 67 Example 15 1.58 0.20 0.10 Example 16 1.55 0.17 0.10 Example 17 1.12 0.22 0.81 Example 18 1.17 0.23 0.69 Operation Example 19 1.53 0.15 0.13 Example 20 1.58 0.15 0.07 Example 21 1.23 0.29 0.76 Example 22 1.27 0.27 0.72 Example 23 1.40 0.15 0.10 Example 24 1.44 0.15 0.12 Example 25 1.12 0.21 0.79 Example 26 1.14 0.23 0.76 Example 27 1. 63 0.12 0.08 Example 28 1.59 0.13 0.10 Example 29 1.10 0.20 0.61 Example 30 1.15 0.23 0.64 Example 31 1.56 0 .12 0.15 Example 32 1.57 0.12 0.14 Example 33 1.22 0.23 0.75 Example 34 1.26 0.21 0.72 Example 35 1.52 0.11 0.11 Example 36 1.54 0.13 0.13 Example 37 1.19 0.23 0.74 Example 38 1.16 0.26 0.69 Example 39 1.52 0.18 0.12 Example 40 1.52 0.17 0.10 Example 41 1 .13 0.20 0.78 Example 42 1.17 0.23 0.79 Example 43 1.67 0.13 0.11 Example 44 1.58 0.12 0.09 Example 45 1.23 0.28 0.69 Example 46 1.30 0.29 0.74 Example 47 1.52 0.13 0.11 Example 48 1.54 0.17 0.13 Example 49 1.17 0. 28 0.70 Example 50 1.14 0.31 0.69 Example 5 1.53 0.18 0.12 Example 52 1.51 0.14 0.11 Example 53 1.13 0.23 0.82 Example 54 1.19 0.21 0.80 Example 55 1. 54 0.14 0.10 Example 56 1.57 0.12 0.09 Example 57 1.22 0.25 0.77 Example 58 1.26 0.29 0.73 Example 59 1.62 0 .13 0.11 Example 60 1.52 0.15 0.13 ------------------------------------------------------------------------------------ --- As is clear from the above results, the intermetallic compound composite according to the present invention has high strength, and has a small amount of wear and a small weight change due to oxidation. This tendency becomes more remarkable when an oxide surface layer is formed.

【0082】[0082]

【発明の効果】以上説明したように、本発明によれば、
高温における高強度、高靭性及び高摩擦特性を保持し、
且つ、耐酸化性を有する金属間化合物複合体を提供で
き、この材料は安価に製造することができるので、産業
上極めて有用である。
As described above, according to the present invention,
Maintains high strength, high toughness and high friction characteristics at high temperatures,
In addition, an intermetallic compound composite having oxidation resistance can be provided, and this material can be manufactured at low cost, which is extremely useful in industry.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る焼結体の断面を顕微鏡写真で撮影
した像を模式的に示した図。
FIG. 1 is a diagram schematically showing an image obtained by photographing a cross section of a sintered body according to the present invention with a micrograph.

【図2】本発明に係る他の焼結体の断面を顕微鏡写真で
撮影した像を模式的に示した図。
FIG. 2 is a diagram schematically showing an image of a cross section of another sintered body according to the present invention taken by a micrograph.

【符号の説明】[Explanation of symbols]

1 金属間化合物 2 第2の金属の酸化物 3 第1の金属の酸化物 4 酸化物膜 Reference Signs List 1 intermetallic compound 2 oxide of second metal 3 oxide of first metal 4 oxide film

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Ti,Zr,Hfより選ばれる金属とC
u,Co,Sn,Ni,Znより選ばれる金属とを要素
とする金属間化合物を含有するマトリックスに、Cu,
Co,Sn,Ni,Znより選ばれる金属を要素とする
酸化物が複合化されることを特徴とする金属間化合物複
合体。
1. A metal selected from Ti, Zr, Hf and C
A matrix containing an intermetallic compound containing a metal selected from u, Co, Sn, Ni, and Zn as elements
An intermetallic compound composite, wherein an oxide containing a metal selected from Co, Sn, Ni, and Zn as an element is composited.
【請求項2】 Ti,Zr,Hfより選ばれる金属とC
u,Co,Sn,Ni,Znより選ばれる金属とを要素
とする金属間化合物を含有するマトリックスに、Cu,
Co,Sn,Ni,Znより選ばれる金属を要素とする
酸化物が複合化され、Ti,Zr,Hfより選ばれる金
属を要素とする酸化物を含有する表面層を有することを
特徴とする金属間化合物複合体。
2. A metal selected from Ti, Zr, Hf and C
A matrix containing an intermetallic compound containing a metal selected from u, Co, Sn, Ni, and Zn as elements
A metal characterized in that an oxide containing a metal selected from Co, Sn, Ni, and Zn is compounded, and a surface layer containing an oxide containing a metal selected from Ti, Zr, and Hf is provided. Compound complex.
【請求項3】 Ti,Zr,Hfより選ばれる金属を要
素とする酸化物の粉末とCu,Co,Sn,Ni,Zn
より選ばれる金属の粉末とを混合し成形して成形体を得
て、非酸化性雰囲気下あるいは真空下でマイクロ波を用
いて該成形体を加熱することを特徴とする請求項1記載
の金属間化合物複合体の製造方法。
3. An oxide powder containing a metal selected from Ti, Zr, and Hf as an element and Cu, Co, Sn, Ni, Zn
2. The metal according to claim 1, wherein a molded body is obtained by mixing and molding with a powder of a metal selected from the group, and the molded body is heated using microwaves in a non-oxidizing atmosphere or under vacuum. Method for producing intermetallic compound complex.
【請求項4】 Ti,Zr,Hfより選ばれる金属を要
素とする酸化物の粉末とCu,Co,Sn,Ni,Zn
より選ばれる金属の粉末とを混合し成形して成形体を得
て、酸化性雰囲気下でマイクロ波を用いて該成形体を加
熱することを特徴とする請求項2記載の金属間化合物複
合体の製造方法。
4. An oxide powder containing a metal selected from Ti, Zr and Hf as an element and Cu, Co, Sn, Ni, Zn
3. An intermetallic compound composite according to claim 2, wherein a molded body is obtained by mixing and molding with a powder of a metal selected from the group, and the molded body is heated using a microwave in an oxidizing atmosphere. Manufacturing method.
JP31992596A 1996-11-29 1996-11-29 Intermetallic compound composite and method for producing the same Expired - Fee Related JP3684008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31992596A JP3684008B2 (en) 1996-11-29 1996-11-29 Intermetallic compound composite and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31992596A JP3684008B2 (en) 1996-11-29 1996-11-29 Intermetallic compound composite and method for producing the same

Publications (2)

Publication Number Publication Date
JPH10158776A true JPH10158776A (en) 1998-06-16
JP3684008B2 JP3684008B2 (en) 2005-08-17

Family

ID=18115774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31992596A Expired - Fee Related JP3684008B2 (en) 1996-11-29 1996-11-29 Intermetallic compound composite and method for producing the same

Country Status (1)

Country Link
JP (1) JP3684008B2 (en)

Also Published As

Publication number Publication date
JP3684008B2 (en) 2005-08-17

Similar Documents

Publication Publication Date Title
JP2843900B2 (en) Method for producing oxide-particle-dispersed metal-based composite material
WO2001017034A1 (en) Process for producing thermoelectric material and thermoelectric material thereof
US3044867A (en) Method for the production of metallicceramic materials
JPS63274736A (en) Niobium alloy
WO1991012912A1 (en) Metal/superconducting oxide composites and preparation thereof
JPH10158776A (en) Compound material of intermetallic compound, and its production
JPS6033335A (en) Heat resistant molybdenum material
US4386970A (en) Production method of compound-type superconducting wire
JPH0119448B2 (en)
JPH1192846A (en) Sintered friction material and its production
JPH07188702A (en) Ag-base alloy powder and its production
JPH06128604A (en) Production of metallic material
JP2973390B2 (en) Method for producing metal in which fine particles of metal or metal oxide are dispersed
JPH05263177A (en) Manufacture of nb3al intermetallic compound base alloy having a15 type crystalline structure
JPH0193464A (en) Superconductor of oxidated superconductive material
JPH09275228A (en) Sb-containing thermoelectric material molding and manufacturing method thereof
CN117464011A (en) Method for rapidly preparing high-performance GeTe thermoelectric material
JPH1046208A (en) Production of ti-ni base alloy sintered body
JPS61108132A (en) Manufacture of material containing metallic silicide radical
Scheithauer Jr et al. The Manufacture and Properties of High-Conductivity High-Strength Cu-ThO2
JPH1093147A (en) Thermo-element material and its manufacture
Buekenhout et al. A new approach to the problem of room temperature ductility of polycrystalline cobalt
JPS63227730A (en) Manufacture of high-density amorphous compact
JPH0119449B2 (en)
JPH02129344A (en) Oxide-dispersed heat resisting steel and its production

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041130

A521 Written amendment

Effective date: 20050131

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20050517

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20050527

Free format text: JAPANESE INTERMEDIATE CODE: A61

LAPS Cancellation because of no payment of annual fees