JP3684008B2 - Intermetallic compound composite and method for producing the same - Google Patents

Intermetallic compound composite and method for producing the same Download PDF

Info

Publication number
JP3684008B2
JP3684008B2 JP31992596A JP31992596A JP3684008B2 JP 3684008 B2 JP3684008 B2 JP 3684008B2 JP 31992596 A JP31992596 A JP 31992596A JP 31992596 A JP31992596 A JP 31992596A JP 3684008 B2 JP3684008 B2 JP 3684008B2
Authority
JP
Japan
Prior art keywords
sintered body
powder
obtained sintered
same
mixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31992596A
Other languages
Japanese (ja)
Other versions
JPH10158776A (en
Inventor
雅礼 加藤
康広 五戸
孝幸 深澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP31992596A priority Critical patent/JP3684008B2/en
Publication of JPH10158776A publication Critical patent/JPH10158776A/en
Application granted granted Critical
Publication of JP3684008B2 publication Critical patent/JP3684008B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、ガスタービン、ジェットエンジン、高温バルブ等の高温耐熱部材に有用な金属間化合物を用いた材料に関する。
【0002】
【従来の技術】
A−B二元系金属間化合物のうち、fcc,hcp又はbccに属する構造をとるA3 B形金属間化合物及びAB形金属間化合物は、塑性変形が可能であり、靭性も高いことから、耐熱性構造用部材として広く利用されている。
【0003】
しかしながら、金属間化合物は、一旦金属を溶融した後に冷却することによって得るため、かなりの高温と時間とを要するというコスト面での欠点があった。そこで、より簡単かつ安価に金属間化合物を製造する方法として、特開平第5−117716号公報には、原料金属粉末をメカニカルアロイング法により微粉砕した後、プラズマ焼結法により焼結する方法が提案されている。しかし、この方法では、微粉末生成過程及び焼結過程の2つの行程があるため、コストの低減にはそれほど寄与しない。
【0004】
また、ガスタービン部材のような高温条件下で使用するには、金属間化合物は耐酸化性及び耐食性に劣るという欠点があった。これを克服するためには、酸素含有雰囲気中で熱処理して表面のみを酸化させ保護膜とすることが考えられるが、熱処理で得られる膜の厚さは数十μm程度であり、保護膜としては十分とは言えない。さらに、金属間化合物自体が摩耗しやすいという欠点も有った。
【0005】
【発明が解決しようとする課題】
上述したように、従来の金属間化合物には、製造コストが高いという点、耐酸化性および耐食性か劣る、及び摩耗しやすいという問題点があった。本発明は、この様な従来技術の課題を解決するためになされたもので、高温における高強度、高靭性及び高摩擦特性を保持し、且つ、耐酸化性を有する金属材料を安価に提供することを目的とするものである。
【0006】
【課題を解決するための手段】
上記目的を達成するために、本発明者らは鋭意研究を重ねた結果、金属粉末と酸化物粉末からる成形体をマイクロ波加熱することで、低温かつ短時間で金属間化合物を含有する材料が得られ、これが金属間化合物の複合体および表面に耐酸化被膜が形成された金属間化合物複合体であることを見出し、本発明の金属間化合物複合体及びその製造方法を発明するに至った。
【0007】
本発明の金属間化合物複合体は、Ti,Zr,Hfより選ばれる金属とCu,Co,Sn,Ni,Znより選ばれる金属とからなる金属間化合物を含有するマトリックスに、Cu,Co,Sn,Ni,Znより選ばれる金属酸化物が複合化されるものである。
【0008】
又、本発明の他の金属間化合物複合体は、Ti,Zr,Hfより選ばれる金属とCu,Co,Sn,Ni,Znより選ばれる金属とからなる金属間化合物を含有するマトリックスに、Cu,Co,Sn,Ni,Znより選ばれる金属酸化物が複合化され、Ti,Zr,Hfより選ばれる金属酸化物を含有する表面層を有するものである。
【0009】
本発明に係る金属間化合物複合体の製造方法は、Ti,Zr,Hfより選ばれる金属酸化物の粉末とCu,Co,Sn,Ni,Znより選ばれる金属の粉末とを混合し成形して成形体を得て、非酸化性雰囲気下あるいは真空下でマイクロ波を用いて該成形体を加熱するものである。
【0010】
又、本発明に係る金属間化合物複合体の他の製造方法は、Ti,Zr,Hfより選ばれる金属酸化物の粉末とCu,Co,Sn,Ni,Znより選ばれる金属の粉末とを混合し成形して成形体を得て、酸化性雰囲気下でマイクロ波を用いて該成形体を加熱するものである。
【0012】
【発明の実施の形態】
Ti,Zr,Hfといった金属元素(以下、第1の金属と称する)の酸化物は、マイクロ波の吸収率が400〜1000℃の間で急激に高くなる特長を有する。マイクロ波は吸収率の高い材料を選択的に加熱する性質が有るため、これらの酸化物と金属粉末が共存する成形体をマイクロ波で加熱すると、上記の酸化物が選択的に加熱され、成形体温度が500℃程度であっても、局所的に1000℃を超える高温となる場合もある。また、これらの酸化物は高温では酸素が解離し易く、金属粉末がCu,Co,Sn,Ni,Znといった金属(以下、第2の金属と称する)である場合、第1の金属の酸化物から解離した酸素と周囲の第2の金属とが反応して酸化物を形成するとともに、解離した第1の金属も周囲の第2の金属と反応して金属間化合物となる。その結果、金属間化合物と第2の金属の酸化物との複合体が得られる。この金属間化合物複合体は、金属間化合物マトリックス中にセラミックス粒子が分散した構造を有し、金属間化合物のみの材料と比較して強度及び耐摩耗性が向上する。
【0013】
又、成形体のマイクロ波加熱を真空中あるいは不活性ガス雰囲気中で行う場合には、均一な金属間化合物複合体が得られるのに対し、酸化性雰囲気で行う場合には、成形体の表層部分が酸化される。この結果、原料と同じ第1の金属の酸化物と第2の金属の酸化物との複合体の表面層が得られる。この表面層の厚さは雰囲気中の酸素含有量により制御することができ、全て酸化物とすることも可能である。
【0014】
以下に本発明を詳細に説明する。
【0015】
まず、Ti,Zr,Hfより選ばれる第1の金属酸化物の粉末とCu,Co,Sn,Ni,Znより選ばれる金属の粉末とを混合し、圧縮成形により成形体を得る。混合粉末の調製は、具体例としては、アセトン等の液媒を用いて3〜10時間程度ボールミルで混合した後にロータリーエバポレーター等を用いて液媒を除去し、篩を通して粒度を調整する等のことによって行うことができる。使用する金属酸化物粉末と金属粉末の混合割合によって生成する金属間化合物の組成は変化し、第1の金属の酸化物1に対し第2の金属をモル比3〜5となるように混合するのが好ましい。第2の金属がこの範囲より少ないと金属間化合物が生成されず、多い場合にはマトリクス中の金属間化合物の量が少なく第2の金属を多量に含むようになる。使用する原料粉末は必要に応じて適宜所望の粒径に調製すれば良く、0.1〜10μm程度のものは金属間化合物の生成が良好であり、粉末の取り扱いも行い易く、好ましい。得られた混合粉末は、金型に所定量充填して加圧成形することにより、成形体が得られる。加圧成形は、例えば、100〜1000kg/cm 程度の圧力で一軸加圧した後に、1〜10t/cm 程度の圧力で冷間等方静水圧成形を適用することにより、所望の形状に適切に行うことができる。
【0016】
得られた成形体は、断熱材で周囲を覆ってマイクロ波加熱装置のアプリケーター内に配置して加熱するのが好ましい。成形体から上述の金属間化合物複合体を製造する際に使用するマイクロ波の周波数は0.3〜30GHzの範囲が好ましく、20〜30GHzであればより好ましい。マイクロ波は、加熱温度が1200℃以上、好ましくは1400℃以上となるように照射する。加熱温度が高すぎると、成形体を覆う断熱材が溶融する可能性があるので好ましくない。このため、加熱温度は、好ましくは1200〜1700℃、より好ましくは1400〜1600℃に設定する。又、加熱時間は5分以上、望ましくは30分以上とする。
【0017】
窒素等の非酸化性雰囲気下で上記のマイクロ波加熱を行うと、図1に模式的に示すような上記第1の金属及び第2の金属からなる金属間化合物(図中参照符号1)と第2の金属の酸化物(図中参照符号2)との複合体が生成されるが、大気などの酸化性雰囲気中で加熱すると、複合体の表面で酸化が進行し、金属間化合物が酸化され第1の金属の酸化物と第2の金属の酸化物が生成される。この結果、図2に示すように、第1の金属及び第2の金属からなる金属間化合物(図中参照符号1)と第2の金属の酸化物(参照符号2)とによる複合体の表面に、第2の金属の酸化物(参照符号2)及び第1の金属の酸化物(参照符号3)を含む酸化膜(参照符号4)が形成される。この様な酸化膜の厚さは雰囲気中の酸化性ガスの分圧に依存し、例えば通常のガス置換に従って10-3〜10-4torr程度に減圧した後に窒素あるいはアルゴンなどの不活性ガスを導入した場合には残留する酸化性ガスは無視できる程度であり酸化膜は実質的に形成されない。
【0018】
【実施例】
以下、実施例を用いて本発明をさらに詳細に説明する。
【0019】
(実施例1)
TiO2 粉末とCu粉末とをモル比が1:3となるように秤量し、アセトンを分散媒として、ナイロンボールによるボールミル混合を行った。混合後、ロータリーエバポーレーターを用いて乾燥を行い、500μmの篩を通して粒度を調整した。得られた混合粉末を金型に充填し、200kg/cm2 の圧力で一軸加圧した後、2t/cm2 の圧力で冷間等方静水圧成形を行った。得られた成形体の周囲を断熱材で覆ってマイクロ波加熱装置のアプリケーター内に配置し、28GHz,15kwのマイクロ波によりN2 雰囲気下で30分間800℃に加熱した。得られた焼結体をX線回析により同定した結果、CuTiとCuOが生成していた。得られた焼結体の断面を顕微鏡写真で撮影した像は図1と同様のものであった。
【0020】
(実施例2)
TiO2 粉末とCu粉末とをモル比が1:5となるように秤量した以外は、実施例1と同様の条件で混合、乾燥、成形、マイクロ波加熱を行った。得られた焼結体の生成相をX線回析により同定した結果、Cu3 TiとCuOが生成していた。得られた焼結体の断面を顕微鏡写真で撮影した像は図1と同様のものであった。
【0021】
(実施例3)
加熱雰囲気を大気とした以外は、実施例1と同様の条件で混合、乾燥、成形、マイクロ波加熱を行った。得られた焼結体の生成相をX線回析により同定した結果、内部にはCuTiとCuOが、表層にはTiO2 とCuOが生成していた。得られた焼結体の断面を顕微鏡写真で撮影した像は図2と同様のものであった。
【0022】
(実施例4)
加熱雰囲気を大気とした以外は、実施例2と同様の条件で混合、乾燥、成形、マイクロ波加熱を行った。得られた焼結体の生成相をX線回析により同定した結果、内部にはCu3 TiとCuOが、表層にはTiO2 とCuOが生成していた。得られた焼結体の断面を顕微鏡写真で撮影した像は図2と同様のものであった。
【0023】
(実施例5)
TiO2 粉末に代えてZrO2 粉末を使用した以外は、実施例1と同様の条件で混合、乾燥、成形、マイクロ波加熱を行った。得られた焼結体の生成相をX線回析により同定した結果、CuZrとCuOが生成していた。得られた焼結体の断面を顕微鏡写真で撮影した像は図1と同様のものであった。
【0024】
(実施例6)
TiO2 粉末に代えてZrO2 粉末を使用した以外は、実施例2と同様の条件で混合、乾燥、成形、マイクロ波加熱を行った。得られた焼結体の生成相をX線回析により同定した結果、Cu3 ZrとCuOが生成していた。得られた焼結体の断面を顕微鏡写真で撮影した像は図1と同様のものであった。
【0025】
(実施例7)
加熱雰囲気を大気とした以外は、実施例5と同様の条件で混合、乾燥、成形、マイクロ波加熱を行った。得られた焼結体の生成相をX線回析により同定した結果、内部にはCuZrとCuOが、表層にはZrO2 とCuOが生成していた。得られた焼結体の断面を顕微鏡写真で撮影した像は図2と同様のものであった。
【0026】
(実施例8)
加熱雰囲気を大気とした以外は、実施例6と同様の条件で混合、乾燥、成形、マイクロ波加熱を行った。得られた焼結体の生成相をX線回析により同定した結果、内部にはCu3 ZrとCuOが、表層にはZrO2 とCuOが生成していた。得られた焼結体の断面を顕微鏡写真で撮影した像は図2と同様のものであった。
【0027】
(実施例9)
TiO2 粉末に代えてHfO2 粉末を使用した以外は、実施例1と同様の条件で混合、乾燥、成形、マイクロ波加熱を行った。得られた焼結体の生成相をX線回析により同定した結果、CuHfとCuOが生成していた。得られた焼結体の断面を顕微鏡写真で撮影した像は図1と同様のものであった。
【0028】
(実施例10)
TiO2 粉末をHfO2 粉末を使用した以外は、実施例2と同様の条件で混合、乾燥、成形、マイクロ波加熱を行った。得られた焼結体の生成相をX線回析により同定した結果、Cu3 HfとCuOが生成していた。得られた焼結体の断面を顕微鏡写真で撮影した像は図1と同様のものであった。
【0029】
(実施例11)
加熱雰囲気を大気とした以外は、実施例9と同様の条件で混合、乾燥、成形、マイクロ波加熱を行った。得られた焼結体の生成相をX線回析により同定した結果、内部にはCuHfとCuOが、表層にはHfO2 とCuOが生成していた。得られた焼結体の断面を顕微鏡写真で撮影した像は図2と同様のものであった。
【0030】
(実施例12)
加熱雰囲気を大気とした以外は、実施例10と同様の条件で混合、乾燥、成形、マイクロ波加熱を行った。得られた焼結体の生成相をX線回析により同定した結果、内部にはCu3 HfとCuOが、表層にはHfO2 とCuOが生成していた。得られた焼結体の断面を顕微鏡写真で撮影した像は図2と同様のものであった。
【0031】
(実施例13)
Cu粉末に代えてCo粉末を使用した以外は、実施例1と同様の条件で混合、乾燥、成形、マイクロ波加熱を行った。得られた焼結体の生成相をX線回析により同定した結果、CoTiとCoOが生成していた。得られた焼結体の断面を顕微鏡写真で撮影した像は図1と同様のものであった。
【0032】
(実施例14)
Cu粉末に代えてCo粉末を使用した以外は、実施例2と同様の条件で混合、乾燥、成形、マイクロ波加熱を行った。得られた焼結体の生成相をX線回析により同定した結果、Co3 TiとCoOが生成していた。得られた焼結体の断面を顕微鏡写真で撮影した像は図1と同様のものであった。
【0033】
(実施例15)
加熱雰囲気を大気とした以外は、実施例13と同様の条件で混合、乾燥、成形、マイクロ波加熱を行った。得られた焼結体の生成相をX線回析により同定した結果、内部にはCoTiとCoOが、表層にはTiO2 とCoOが生成していた。得られた焼結体の断面を顕微鏡写真で撮影した像は図2と同様のものであった。
【0034】
(実施例16)
加熱雰囲気を大気とした以外は、実施例14と同様の条件で混合、乾燥、成形、マイクロ波加熱を行った。得られた焼結体の生成相をX線回析により同定した結果、内部にはCo3 TiとCoOが、表層にはTiO2 とCoOが生成していた。得られた焼結体の断面を顕微鏡写真で撮影した像は図2と同様のものであった。
【0035】
(実施例17)
TiO2 粉末に代えてZrO2 粉末を使用した以外は、実施例13と同様の条件で混合、乾燥、成形、マイクロ波加熱を行った。得られた焼結体の生成相をX線回析により同定した結果、CoZrとCoOが生成していた。得られた焼結体の断面を顕微鏡写真で撮影した像は図1と同様のものであった。
【0036】
(実施例18)
TiO2 粉末に代えてZrO2 粉末を使用した以外は、実施例14と同様の条件で混合、乾燥、成形、マイクロ波加熱を行った。得られた焼結体の生成相をX線回析により同定した結果、Co3 ZrとCoOが生成していた。得られた焼結体の断面を顕微鏡写真で撮影した像は図1と同様のものであった。
【0037】
(実施例19)
加熱雰囲気を大気とした以外は、実施例17と同様の条件で混合、乾燥、成形、マイクロ波加熱を行った。得られた焼結体の生成相をX線回析により同定した結果、内部にはCoZrとCoOが、表層にはZrO2 とCoOが生成していた。得られた焼結体の断面を顕微鏡写真で撮影した像は図2と同様のものであった。
【0038】
(実施例20)
加熱雰囲気を大気とした以外は、実施例18と同様の条件で混合、乾燥、成形、マイクロ波加熱を行った。得られた焼結体の生成相をX線回析により同定した結果、内部にはCo3 ZrとCoOが、表層にはZrO2 とCoOが生成していた。得られた焼結体の断面を顕微鏡写真で撮影した像は図2と同様のものであった。
【0039】
(実施例21)
TiO2 粉末に代えてHfO2 粉末を使用した以外は、実施例13と同様の条件で混合、乾燥、成形、マイクロ波加熱を行った。得られた焼結体の生成相をX線回析により同定した結果、CoHfとCoOが生成していた。得られた焼結体の断面を顕微鏡写真で撮影した像は図1と同様のものであった。
【0040】
(実施例22)
TiO2 粉末に代えてHfO2 粉末を使用した以外は、実施例14と同様の条件で混合、乾燥、成形、マイクロ波加熱を行った。得られた焼結体の生成相をX線回析により同定した結果、Co3 HfとCoOが生成していた。得られた焼結体の断面を顕微鏡写真で撮影した像は図1と同様のものであった。
【0041】
(実施例23)
加熱雰囲気を大気とした以外は、実施例21と同様の条件で混合、乾燥、成形、マイクロ波加熱を行った。得られた焼結体の生成相をX線回析により同定した結果、内部にはCoHfとCoOが、表層にはHfO2 とCoOが生成していた。得られた焼結体の断面を顕微鏡写真で撮影した像は図2と同様のものであった。
【0042】
(実施例24)
加熱雰囲気を大気とした以外は、実施例22と同様の条件で混合、乾燥、成形、マイクロ波加熱を行った。得られた焼結体の生成相をX線回析により同定した結果、内部にはCo3 HfとCoOが、表層にはHfO2 とCoOが生成していた。得られた焼結体の断面を顕微鏡写真で撮影した像は図2と同様のものであった。
【0043】
(実施例25)
Cu粉末に代えてNi粉末を使用した以外は、実施例1と同様の条件で混合、乾燥、成形、マイクロ波加熱を行った。得られた焼結体の生成相をX線回析により同定した結果、NiTiとNiOが生成していた。得られた焼結体の断面を顕微鏡写真で撮影した像は図1と同様のものであった。
【0044】
(実施例26)
Cu粉末に代えてNi粉末を使用した以外は、実施例2と同様の条件で混合、乾燥、成形、マイクロ波加熱を行った。得られた焼結体の生成相をX線回析により同定した結果、Ni3 TiとNiOが生成していた。得られた焼結体の断面を顕微鏡写真で撮影した像は図1と同様のものであった。
【0045】
(実施例27)
加熱雰囲気を大気とした以外は、実施例25と同様の条件で混合、乾燥、成形、マイクロ波加熱を行った。得られた焼結体の生成相をX線回析により同定した結果、内部にはNiTiとNiOが、表層にはTiO2 とNiOが生成していた。得られた焼結体の断面を顕微鏡写真で撮影した像は図2と同様のものであった。
【0046】
(実施例28)
加熱雰囲気を大気とした以外は、実施例26と同様の条件で混合、乾燥、成形、マイクロ波加熱を行った。得られた焼結体の生成相をX線回析により同定した結果、内部にはNi3 TiとNiOが、表層にはTiO2 とNiOが生成していた。得られた焼結体の断面を顕微鏡写真で撮影した像は図2と同様のものであった。
【0047】
(実施例29)
TiO2 粉末に代えてZrO2 粉末を使用した以外は、実施例25と同様の条件で混合、乾燥、成形、マイクロ波加熱を行った。得られた焼結体の生成相をX線回析により同定した結果、NiZrとNiOが生成していた。得られた焼結体の断面を顕微鏡写真で撮影した像は図1と同様のものであった。
【0048】
(実施例30)
TiO2 粉末に代えてZrO2 粉末を使用した以外は、実施例26と同様の条件で混合、乾燥、成形、マイクロ波加熱を行った。得られた焼結体の生成相をX線回析により同定した結果、Ni3 ZrとNiOが生成していた。得られた焼結体の断面を顕微鏡写真で撮影した像は図1と同様のものであった。
【0049】
(実施例31)
加熱雰囲気を大気とした以外は、実施例29と同様の条件で混合、乾燥、成形、マイクロ波加熱を行った。得られた焼結体の生成相をX線回析により同定した結果、内部にはNiZrとNiOが、表層にはZrO2 とNiOが生成していた。得られた焼結体の断面を顕微鏡写真で撮影した像は図2と同様のものであった。
【0050】
(実施例32)
加熱雰囲気を大気とした以外は、実施例30と同様の条件で混合、乾燥、成形、マイクロ波加熱を行った。得られた焼結体の生成相をX線回析により同定した結果、内部にはNi3 ZrとNiOが、表層にはZrO2 とNiOが生成していた。得られた焼結体の断面を顕微鏡写真で撮影した像は図2と同様のものであった。
【0051】
(実施例33)
TiO2 粉末に代えてHfO2 粉末を使用した以外は、実施例25と同様の条件で混合、乾燥、成形、マイクロ波加熱を行った。得られた焼結体の生成相をX線回析により同定した結果、NiHfとNiOが生成していた。得られた焼結体の断面を顕微鏡写真で撮影した像は図1と同様のものであった。
【0052】
(実施例34)
TiO2 粉末に代えてHfO2 粉末を使用した以外は、実施例26と同様の条件で混合、乾燥、成形、マイクロ波加熱を行った。得られた焼結体の生成相をX線回析により同定した結果、Ni3 HfとNiOが生成していた。得られた焼結体の断面を顕微鏡写真で撮影した像は図1と同様のものであった。
【0053】
(実施例35)
加熱雰囲気を大気とした以外は、実施例33と同様の条件で混合、乾燥、成形、マイクロ波加熱を行った。得られた焼結体の生成相をX線回析により同定した結果、内部にはNiHfとNiOが、表層にはHfO2 とNiOが生成していた。得られた焼結体の断面を顕微鏡写真で撮影した像は図2と同様のものであった。
【0054】
(実施例36)
加熱雰囲気を大気とした以外は、実施例34と同様の条件で混合、乾燥、成形、マイクロ波加熱を行った。得られた焼結体の生成相をX線回析により同定した結果、内部にはNi3 HfとNiOが、表層にはHfO2 とNiOが生成していた。得られた焼結体の断面を顕微鏡写真で撮影した像は図2と同様のものであった。
【0055】
(実施例37)
Cu粉末に代えてSn粉末を使用した以外は、実施例1と同様の条件で混合、乾燥、成形、マイクロ波加熱を行った。得られた焼結体の生成相をX線回析により同定した結果、SnTiとSnOが生成していた。得られた焼結体の断面を顕微鏡写真で撮影した像は図1と同様のものであった。
【0056】
(実施例38)
Cu粉末に代えてSn粉末を使用した以外は、実施例2と同様の条件で混合、乾燥、成形、マイクロ波加熱を行った。得られた焼結体の生成相をX線回析により同定した結果、Sn3 TiとSnOが生成していた。得られた焼結体の断面を顕微鏡写真で撮影した像は図1と同様のものであった。
【0057】
(実施例39)
加熱雰囲気を大気とした以外は、実施例37と同様の条件で混合、乾燥、成形、マイクロ波加熱を行った。得られた焼結体の生成相をX線回析により同定した結果、内部にはSnTiとSnOが、表層にはTiO2 とSnOが生成していた。得られた焼結体の断面を顕微鏡写真で撮影した像は図2と同様のものであった。
【0058】
(実施例40)
加熱雰囲気を大気とした以外は、実施例38と同様の条件で混合、乾燥、成形、マイクロ波加熱を行った。得られた焼結体の生成相をX線回析により同定した結果、内部にはSn3 TiとSnOが、表層にはTiO2 とSnOが生成していた。得られた焼結体の断面を顕微鏡写真で撮影した像は図2と同様のものであった。
【0059】
(実施例41)
TiO2 粉末に代えてZrO2 粉末を使用した以外は、実施例37と同様の条件で混合、乾燥、成形、マイクロ波加熱を行った。得られた焼結体の生成相をX線回析により同定した結果、SnZrとSnOが生成していた。得られた焼結体の断面を顕微鏡写真で撮影した像は図1と同様のものであった。
【0060】
(実施例42)
TiO2 粉末に代えてZrO2 粉末を使用した以外は、実施例38と同様の条件で混合、乾燥、成形、マイクロ波加熱を行った。得られた焼結体の生成相をX線回析により同定した結果、Sn3 ZrとSnOが生成していた。得られた焼結体の断面を顕微鏡写真で撮影した像は図1と同様のものであった。
【0061】
(実施例43)
加熱雰囲気を大気とした以外は、実施例41と同様の条件で混合、乾燥、成形、マイクロ波加熱を行った。得られた焼結体の生成相をX線回析により同定した結果、内部にはSnZrとSnOが、表層にはZrO2 とSnOが生成していた。得られた焼結体の断面を顕微鏡写真で撮影した像は図2と同様のものであった。
【0062】
(実施例44)
加熱雰囲気を大気とした以外は、実施例42と同様の条件で混合、乾燥、成形、マイクロ波加熱を行った。得られた焼結体の生成相をX線回析により同定した結果、内部にはSn3 ZrとSnOが、表層にはZrO2 とSnOが生成していた。得られた焼結体の断面を顕微鏡写真で撮影した像は図2と同様のものであった。
【0063】
(実施例45)
TiO2 粉末に代えてHfO2 粉末を使用した以外は、実施例37と同様の条件で混合、乾燥、成形、マイクロ波加熱を行った。得られた焼結体の生成相をX線回析により同定した結果、SnHfとSnOが生成していた。得られた焼結体の断面を顕微鏡写真で撮影した像は図1と同様のものであった。
【0064】
(実施例46)
TiO2 粉末に代えてHfO2 粉末を使用した以外は、実施例38と同様の条件で混合、乾燥、成形、マイクロ波加熱を行った。得られた焼結体の生成相をX線回析により同定した結果、Sn3 HfとSnOが生成していた。得られた焼結体の断面を顕微鏡写真で撮影した像は図1と同様のものであった。
【0065】
(実施例47)
加熱雰囲気を大気とした以外は、実施例45と同様の条件で混合、乾燥、成形、マイクロ波加熱を行った。得られた焼結体の生成相をX線回析により同定した結果、内部にはSnHfとSnOが、表層にはHfO2 とSnOが生成していた。得られた焼結体の断面を顕微鏡写真で撮影した像は図2と同様のものであった。
【0066】
(実施例48)
加熱雰囲気を大気とした以外は、実施例46と同様の条件で混合、乾燥、成形、マイクロ波加熱を行った。得られた焼結体の生成相をX線回析により同定した結果、内部にはSn3 HfとSnOが、表層にはHfO2 とSnOが生成していた。得られた焼結体の断面を顕微鏡写真で撮影した像は図2と同様のものであった。
【0067】
(実施例49)
Cu粉末に代えてZn粉末を使用した以外は、実施例1と同様の条件で混合、乾燥、成形、マイクロ波加熱を行った。得られた焼結体の生成相をX線回析により同定した結果、ZnTiとZnOが生成していた。得られた焼結体の断面を顕微鏡写真で撮影した像は図1と同様のものであった。
【0068】
(実施例50)
Cu粉末に代えてZn粉末を使用した以外は、実施例2と同様の条件で混合、乾燥、成形、マイクロ波加熱を行った。得られた焼結体の生成相をX線回析により同定した結果、Zn3 TiとZnOが生成していた。得られた焼結体の断面を顕微鏡写真で撮影した像は図1と同様のものであった。
【0069】
(実施例51)
加熱雰囲気を大気とした以外は、実施例49と同様の条件で混合、乾燥、成形、マイクロ波加熱を行った。得られた焼結体の生成相をX線回析により同定した結果、内部にはZnTiとZnOが、表層にはTiO2 とZnOが生成していた。得られた焼結体の断面を顕微鏡写真で撮影した像は図2と同様のものであった。
【0070】
(実施例52)
加熱雰囲気を大気とした以外は、実施例50と同様の条件で混合、乾燥、成形、マイクロ波加熱を行った。得られた焼結体の生成相をX線回析により同定した結果、内部にはZn3 TiとZnOが、表層にはTiO2 とZnOが生成していた。得られた焼結体の断面を顕微鏡写真で撮影した像は図2と同様のものであった。
【0071】
(実施例53)
TiO2 粉末に代えてZrO2 粉末を使用した以外は、実施例49と同様の条件で混合、乾燥、成形、マイクロ波加熱を行った。得られた焼結体の生成相をX線回析により同定した結果、ZnZrとZnOが生成していた。得られた焼結体の断面を顕微鏡写真で撮影した像は図1と同様のものであった。
【0072】
(実施例54)
TiO2 粉末に代えてZrO2 粉末を使用した以外は、実施例50と同様の条件で混合、乾燥、成形、マイクロ波加熱を行った。得られた焼結体の生成相をX線回析により同定した結果、Zn3 ZrとZnOが生成していた。得られた焼結体の断面を顕微鏡写真で撮影した像は図1と同様のものであった。
【0073】
(実施例55)
加熱雰囲気を大気とした以外は、実施例53と同様の条件で混合、乾燥、成形、マイクロ波加熱を行った。得られた焼結体の生成相をX線回析により同定した結果、内部にはZnZrとZnOが、表層にはZrO2 とZnOが生成していた。得られた焼結体の断面を顕微鏡写真で撮影した像は図2と同様のものであった。
【0074】
(実施例56)
加熱雰囲気を大気とした以外は、実施例54と同様の条件で混合、乾燥、成形、マイクロ波加熱を行った。得られた焼結体の生成相をX線回析により同定した結果、内部にはZn3 ZrとZnOが、表層にはZrO2 とZnOが生成していた。得られた焼結体の断面を顕微鏡写真で撮影した像は図2と同様のものであった。
【0075】
(実施例57)
TiO2 粉末に代えてHfO2 粉末を使用した以外は、実施例49と同様の条件で混合、乾燥、成形、マイクロ波加熱を行った。得られた焼結体の生成相をX線回析により同定した結果、ZnHfとZnOが生成していた。得られた焼結体の断面を顕微鏡写真で撮影した像は図1と同様のものであった。
【0076】
(実施例58)
TiO2 粉末に代えてHfO2 粉末を使用した以外は、実施例50と同様の条件で混合、乾燥、成形、マイクロ波加熱を行った。得られた焼結体の生成相をX線回析により同定した結果、Zn3 HfとZnOが生成していた。得られた焼結体の断面を顕微鏡写真で撮影した像は図1と同様のものであった。
【0077】
(実施例59)
加熱雰囲気を大気とした以外は、実施例57と同様の条件で混合、乾燥、成形、マイクロ波加熱を行った。得られた焼結体の生成相をX線回析により同定した結果、内部にはZnHfとZnOが、表層にはHfO2 とZnOが生成していた。得られた焼結体の断面を顕微鏡写真で撮影した像は図2と同様のものであった。
【0078】
(実施例60)
加熱雰囲気を大気とした以外は、実施例58と同様の条件で混合、乾燥、成形、マイクロ波加熱を行った。得られた焼結体の生成相をX線回析により同定した結果、内部にはZn3 HfとZnOが、表層にはHfO2 とZnOが生成していた。得られた焼結体の断面を顕微鏡写真で撮影した像は図2と同様のものであった。
【0079】
(評価)
得られた実施例1〜60の焼結体の試験片について、JIS−1601Rに基づく3点曲げ試験を行い、室温における強度を測定した。また、各々の試験片について、鉄系の材料を相手材としてディスク−オン−ディスク法により摩擦試験を行った。さらに、各々の試験片を1500℃の大気中に1000時間放置して耐酸化性の試験を行った。
【0080】
上記3つの試験を、従来法により作製された金属間化合物のみの試験片についても行い、これによる値に対する上記実施例1〜60各々による値の比を比強度、比摩耗量及び比重量変化として求めた。結果を表1に示す。
【0081】
【表1】

Figure 0003684008
Figure 0003684008
Figure 0003684008
上記の結果から明らかなように、本発明に係る金属間化合物複合体は高い強度を有し、摩耗量及び酸化による重量変化が少ない。この傾向は、酸化物の表面層を形成したときに一段と顕著になる。
【0082】
【発明の効果】
以上説明したように、本発明によれば、高温における高強度、高靭性及び高摩擦特性を保持し、且つ、耐酸化性を有する金属間化合物複合体を提供でき、この材料は安価に製造することができるので、産業上極めて有用である。
【図面の簡単な説明】
【図1】本発明に係る焼結体の断面を顕微鏡写真で撮影した像を模式的に示した図。
【図2】本発明に係る他の焼結体の断面を顕微鏡写真で撮影した像を模式的に示した図。
【符号の説明】
1 金属間化合物
2 第2の金属の酸化物
3 第1の金属の酸化物
4 酸化物膜[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a material using an intermetallic compound that is useful for a high-temperature heat-resistant member such as a gas turbine, a jet engine, or a high-temperature valve.
[0002]
[Prior art]
Of the A-B binary intermetallic compounds, A has a structure belonging to fcc, hcp or bcc. Three B-type intermetallic compounds and AB-type intermetallic compounds are widely used as heat-resistant structural members because they can be plastically deformed and have high toughness.
[0003]
However, since the intermetallic compound is obtained by once melting the metal and then cooling it, there is a cost disadvantage in that it requires a considerably high temperature and time. Therefore, as a method for producing an intermetallic compound more easily and inexpensively, JP-A-5-117716 discloses a method in which a raw metal powder is finely pulverized by a mechanical alloying method and then sintered by a plasma sintering method. Has been proposed. However, in this method, there are two processes, a fine powder generation process and a sintering process, so that it does not contribute much to cost reduction.
[0004]
Further, when used under a high temperature condition such as a gas turbine member, the intermetallic compound has a defect that it is inferior in oxidation resistance and corrosion resistance. In order to overcome this, it is conceivable to heat-treat in an oxygen-containing atmosphere and oxidize only the surface to form a protective film. However, the thickness of the film obtained by the heat treatment is about several tens of μm. Is not enough. Furthermore, there is a drawback that the intermetallic compound itself is easily worn.
[0005]
[Problems to be solved by the invention]
As described above, the conventional intermetallic compounds have the problems of high production costs, inferior oxidation resistance and corrosion resistance, and easy wear. The present invention has been made to solve such problems of the prior art, and provides a metal material having high strength, high toughness and high friction characteristics at high temperatures and having oxidation resistance at low cost. It is for the purpose.
[0006]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the present inventors have conducted intensive research, and as a result, a material containing an intermetallic compound at a low temperature and in a short time by microwave heating a molded body made of a metal powder and an oxide powder. Was found to be an intermetallic compound complex and an intermetallic compound complex having an oxidation-resistant film formed on the surface, leading to the invention of the intermetallic compound complex of the present invention and the method for producing the same. .
[0007]
The intermetallic compound composite of the present invention comprises a metal selected from Ti, Zr, and Hf and a metal selected from Cu, Co, Sn, Ni, and Zn. Consist of Metal selected from Cu, Co, Sn, Ni, Zn for matrix containing intermetallic compound of The oxide is compounded.
[0008]
Another intermetallic compound composite of the present invention includes a metal selected from Ti, Zr, and Hf and a metal selected from Cu, Co, Sn, Ni, and Zn. Consist of Metal selected from Cu, Co, Sn, Ni, Zn for matrix containing intermetallic compound of A metal selected from Ti, Zr, and Hf in which oxides are compounded of It has a surface layer containing an oxide.
[0009]
The method for producing an intermetallic compound composite according to the present invention is a metal selected from Ti, Zr, and Hf. of An oxide powder and a metal powder selected from Cu, Co, Sn, Ni, and Zn are mixed and molded to obtain a molded body, and the molded body is obtained using a microwave in a non-oxidizing atmosphere or under vacuum. Is to heat.
[0010]
Another method for producing an intermetallic compound composite according to the present invention is a metal selected from Ti, Zr, and Hf. of An oxide powder and a metal powder selected from Cu, Co, Sn, Ni, and Zn are mixed and molded to obtain a molded body, and the molded body is heated using a microwave in an oxidizing atmosphere. It is.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
An oxide of a metal element such as Ti, Zr, and Hf (hereinafter referred to as a first metal) has a feature that the microwave absorption rate is rapidly increased between 400 to 1000 ° C. Since microwaves have the property of selectively heating materials with high absorptance, when the molded body in which these oxides and metal powder coexist is heated with microwaves, the above oxides are selectively heated and molded. Even if the body temperature is about 500 ° C., the temperature may locally exceed 1000 ° C. These oxides easily dissociate oxygen at high temperatures, and when the metal powder is a metal such as Cu, Co, Sn, Ni, Zn (hereinafter referred to as a second metal), the oxide of the first metal The dissociated oxygen reacts with the surrounding second metal to form an oxide, and the dissociated first metal also reacts with the surrounding second metal to become an intermetallic compound. As a result, a composite of the intermetallic compound and the second metal oxide is obtained. This intermetallic compound composite has a structure in which ceramic particles are dispersed in an intermetallic compound matrix, and has improved strength and wear resistance as compared with a material containing only an intermetallic compound.
[0013]
In addition, when microwave heating of the molded body is performed in a vacuum or in an inert gas atmosphere, a uniform intermetallic compound composite is obtained, whereas when it is performed in an oxidizing atmosphere, the surface layer of the molded body is obtained. Part is oxidized. As a result, a surface layer of a composite of the first metal oxide and the second metal oxide, which is the same as the raw material, is obtained. The thickness of the surface layer can be controlled by the oxygen content in the atmosphere, and can be all oxides.
[0014]
The present invention is described in detail below.
[0015]
First, the first metal selected from Ti, Zr, and Hf of An oxide powder and a metal powder selected from Cu, Co, Sn, Ni, and Zn are mixed, and a compact is obtained by compression molding. As a specific example, the mixed powder is prepared by mixing with a ball mill for about 3 to 10 hours using a liquid medium such as acetone, and then removing the liquid medium using a rotary evaporator and adjusting the particle size through a sieve. Can be done by. The composition of the intermetallic compound produced | generated changes with the mixing ratio of the metal oxide powder and metal powder to be used, and the 2nd metal is mixed so that it may become 3-5 molar ratio with respect to the oxide 1 of a 1st metal. Is preferred. When the amount of the second metal is less than this range, no intermetallic compound is generated. When the amount of the second metal is large, the amount of the intermetallic compound in the matrix is small and the second metal is contained in a large amount. The raw material powder to be used may be suitably adjusted to a desired particle size as necessary, and those having a particle size of about 0.1 to 10 μm are preferable because they produce good intermetallic compounds and are easy to handle the powder. The obtained mixed powder is filled into a mold in a predetermined amount and subjected to pressure molding to obtain a molded body. For example, the pressure molding is 100 to 1000 kg / cm. 2 1 to 10 t / cm after uniaxially pressing at a moderate pressure 2 By applying cold isostatic pressing with a moderate pressure, the desired shape can be appropriately achieved.
[0016]
The obtained molded body is preferably heated by being placed in an applicator of a microwave heating apparatus while being covered with a heat insulating material. The frequency of the microwave used when producing the above-mentioned intermetallic compound composite from the molded body is preferably in the range of 0.3 to 30 GHz, and more preferably 20 to 30 GHz. The microwave is irradiated so that the heating temperature is 1200 ° C. or higher, preferably 1400 ° C. or higher. If the heating temperature is too high, the heat insulating material covering the molded body may be melted, which is not preferable. For this reason, the heating temperature is preferably set to 1200 to 1700 ° C, more preferably 1400 to 1600 ° C. The heating time is 5 minutes or longer, preferably 30 minutes or longer.
[0017]
When the above microwave heating is performed in a non-oxidizing atmosphere such as nitrogen, an intermetallic compound (reference numeral 1 in the figure) composed of the first metal and the second metal as schematically shown in FIG. A complex with the second metal oxide (reference numeral 2 in the figure) is produced, but when heated in an oxidizing atmosphere such as the atmosphere, oxidation proceeds on the surface of the complex, and the intermetallic compound is oxidized. As a result, an oxide of the first metal and an oxide of the second metal are generated. As a result, as shown in FIG. 2, the surface of the composite of the intermetallic compound composed of the first metal and the second metal (reference numeral 1 in the figure) and the oxide of the second metal (reference numeral 2). In addition, an oxide film (reference numeral 4) including the second metal oxide (reference numeral 2) and the first metal oxide (reference numeral 3) is formed. The thickness of such an oxide film depends on the partial pressure of the oxidizing gas in the atmosphere. -3 -10 -Four When an inert gas such as nitrogen or argon is introduced after the pressure is reduced to about torr, the remaining oxidizing gas is negligible and an oxide film is not substantially formed.
[0018]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
[0019]
(Example 1)
TiO 2 The powder and Cu powder were weighed so that the molar ratio was 1: 3, and ball mill mixing with nylon balls was performed using acetone as a dispersion medium. After mixing, drying was performed using a rotary evaporator, and the particle size was adjusted through a 500 μm sieve. The obtained mixed powder is filled into a mold, and 200 kg / cm. 2 After uniaxial pressing at a pressure of 2 t / cm 2 Cold isostatic pressing was performed at a pressure of The periphery of the obtained molded body was covered with a heat insulating material and placed in an applicator of a microwave heating apparatus, and N was applied by a microwave of 28 GHz and 15 kw. 2 Heated to 800 ° C. for 30 minutes under atmosphere. As a result of identifying the obtained sintered body by X-ray diffraction, CuTi and CuO were produced. An image obtained by photographing a cross section of the obtained sintered body with a micrograph was the same as that shown in FIG.
[0020]
(Example 2)
TiO 2 Mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 1 except that the powder and Cu powder were weighed so that the molar ratio was 1: 5. As a result of identifying the formed phase of the obtained sintered body by X-ray diffraction, Cu Three Ti and CuO were generated. An image obtained by photographing a cross section of the obtained sintered body with a micrograph was the same as that shown in FIG.
[0021]
(Example 3)
Mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 1 except that the heating atmosphere was air. As a result of identifying the formed phase of the obtained sintered body by X-ray diffraction, CuTi and CuO are contained inside, and TiO is contained on the surface layer. 2 And CuO were produced. An image obtained by photographing a cross section of the obtained sintered body with a micrograph was the same as that shown in FIG.
[0022]
(Example 4)
Mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 2 except that the heating atmosphere was air. As a result of identifying the formed phase of the obtained sintered body by X-ray diffraction, Cu was contained inside. Three Ti and CuO, the surface layer is TiO 2 And CuO were produced. An image obtained by photographing a cross section of the obtained sintered body with a micrograph was the same as that shown in FIG.
[0023]
(Example 5)
TiO 2 ZrO instead of powder 2 Except for using the powder, mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 1. As a result of identifying the production phase of the obtained sintered body by X-ray diffraction, CuZr and CuO were produced. An image obtained by photographing a cross section of the obtained sintered body with a micrograph was the same as that shown in FIG.
[0024]
(Example 6)
TiO 2 ZrO instead of powder 2 Mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 2 except that the powder was used. As a result of identifying the formed phase of the obtained sintered body by X-ray diffraction, Cu Three Zr and CuO were generated. An image obtained by photographing a cross section of the obtained sintered body with a micrograph was the same as that shown in FIG.
[0025]
(Example 7)
Mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 5 except that the heating atmosphere was air. As a result of identifying the formed phase of the obtained sintered body by X-ray diffraction, CuZr and CuO are contained inside, and ZrO is contained in the surface layer. 2 And CuO were produced. An image obtained by photographing a cross section of the obtained sintered body with a micrograph was the same as that shown in FIG.
[0026]
(Example 8)
Mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 6 except that the heating atmosphere was air. As a result of identifying the formed phase of the obtained sintered body by X-ray diffraction, Cu was contained inside. Three Zr and CuO, ZrO on the surface layer 2 And CuO were produced. An image obtained by photographing a cross section of the obtained sintered body with a micrograph was the same as that shown in FIG.
[0027]
Example 9
TiO 2 HfO instead of powder 2 Except for using the powder, mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 1. As a result of identifying the production phase of the obtained sintered body by X-ray diffraction, CuHf and CuO were produced. An image obtained by photographing a cross section of the obtained sintered body with a micrograph was the same as that shown in FIG.
[0028]
(Example 10)
TiO 2 HfO powder 2 Mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 2 except that the powder was used. As a result of identifying the formed phase of the obtained sintered body by X-ray diffraction, Cu Three Hf and CuO were generated. An image obtained by photographing a cross section of the obtained sintered body with a micrograph was the same as that shown in FIG.
[0029]
(Example 11)
Mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 9 except that the heating atmosphere was air. As a result of identifying the formed phase of the obtained sintered body by X-ray diffraction, CuHf and CuO are contained inside, and HfO is contained in the surface layer. 2 And CuO were produced. An image obtained by photographing a cross section of the obtained sintered body with a micrograph was the same as that shown in FIG.
[0030]
(Example 12)
Mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 10 except that the heating atmosphere was air. As a result of identifying the formed phase of the obtained sintered body by X-ray diffraction, Cu was contained inside. Three Hf and CuO, HfO on the surface 2 And CuO were produced. An image obtained by photographing a cross section of the obtained sintered body with a micrograph was the same as that shown in FIG.
[0031]
(Example 13)
Mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 1, except that Co powder was used instead of Cu powder. As a result of identifying the production phase of the obtained sintered body by X-ray diffraction, CoTi and CoO were produced. An image obtained by photographing a cross section of the obtained sintered body with a micrograph was the same as that shown in FIG.
[0032]
(Example 14)
Mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 2 except that Co powder was used instead of Cu powder. As a result of identifying the formed phase of the obtained sintered body by X-ray diffraction, Co Three Ti and CoO were generated. An image obtained by photographing a cross section of the obtained sintered body with a micrograph was the same as that shown in FIG.
[0033]
(Example 15)
Mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 13 except that the heating atmosphere was air. As a result of identifying the formed phase of the obtained sintered body by X-ray diffraction, CoTi and CoO are contained inside, and TiO is contained on the surface layer. 2 And CoO were generated. An image obtained by photographing a cross section of the obtained sintered body with a micrograph was the same as that shown in FIG.
[0034]
(Example 16)
Mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 14 except that the heating atmosphere was air. As a result of identifying the formation phase of the obtained sintered body by X-ray diffraction, Three Ti and CoO, the surface layer is TiO 2 And CoO were generated. An image obtained by photographing a cross section of the obtained sintered body with a micrograph was the same as that shown in FIG.
[0035]
(Example 17)
TiO 2 ZrO instead of powder 2 Except for using the powder, mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 13. As a result of identifying the production phase of the obtained sintered body by X-ray diffraction, CoZr and CoO were produced. An image obtained by photographing a cross section of the obtained sintered body with a micrograph was the same as that shown in FIG.
[0036]
(Example 18)
TiO 2 ZrO instead of powder 2 Except for using the powder, mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 14. As a result of identifying the formed phase of the obtained sintered body by X-ray diffraction, Co Three Zr and CoO were generated. An image obtained by photographing a cross section of the obtained sintered body with a micrograph was the same as that shown in FIG.
[0037]
(Example 19)
Mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 17 except that the heating atmosphere was air. As a result of identifying the formed phase of the obtained sintered body by X-ray diffraction, CoZr and CoO were contained inside, and ZrO was contained in the surface layer. 2 And CoO were generated. An image obtained by photographing a cross section of the obtained sintered body with a micrograph was the same as that shown in FIG.
[0038]
(Example 20)
Mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 18 except that the heating atmosphere was air. As a result of identifying the formation phase of the obtained sintered body by X-ray diffraction, Three Zr and CoO, ZrO on the surface layer 2 And CoO were generated. An image obtained by photographing a cross section of the obtained sintered body with a micrograph was the same as that shown in FIG.
[0039]
(Example 21)
TiO 2 HfO instead of powder 2 Except for using the powder, mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 13. As a result of identifying the production phase of the obtained sintered body by X-ray diffraction, CoHf and CoO were produced. An image obtained by photographing a cross section of the obtained sintered body with a micrograph was the same as that shown in FIG.
[0040]
(Example 22)
TiO 2 HfO instead of powder 2 Except for using the powder, mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 14. As a result of identifying the formed phase of the obtained sintered body by X-ray diffraction, Co Three Hf and CoO were generated. An image obtained by photographing a cross section of the obtained sintered body with a micrograph was the same as that shown in FIG.
[0041]
(Example 23)
Mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 21 except that the heating atmosphere was air. As a result of identifying the formed phase of the obtained sintered body by X-ray diffraction, CoHf and CoO are contained inside, and HfO is contained in the surface layer. 2 And CoO were generated. An image obtained by photographing a cross section of the obtained sintered body with a micrograph was the same as that shown in FIG.
[0042]
(Example 24)
Mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 22 except that the heating atmosphere was air. As a result of identifying the formation phase of the obtained sintered body by X-ray diffraction, Three Hf and CoO, HfO on the surface layer 2 And CoO were generated. An image obtained by photographing a cross section of the obtained sintered body with a micrograph was the same as that shown in FIG.
[0043]
(Example 25)
Mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 1 except that Ni powder was used instead of Cu powder. As a result of identifying the production phase of the obtained sintered body by X-ray diffraction, NiTi and NiO were produced. An image obtained by photographing a cross section of the obtained sintered body with a micrograph was the same as that shown in FIG.
[0044]
(Example 26)
Mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 2 except that Ni powder was used instead of Cu powder. As a result of identifying the formed phase of the obtained sintered body by X-ray diffraction, Ni Three Ti and NiO were generated. An image obtained by photographing a cross section of the obtained sintered body with a micrograph was the same as that shown in FIG.
[0045]
(Example 27)
Mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 25 except that the heating atmosphere was air. As a result of identifying the formed phase of the obtained sintered body by X-ray diffraction, NiTi and NiO are contained inside, and TiO is contained on the surface layer. 2 And NiO were produced. An image obtained by photographing a cross section of the obtained sintered body with a micrograph was the same as that shown in FIG.
[0046]
(Example 28)
Mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 26 except that the heating atmosphere was air. As a result of identifying the formation phase of the obtained sintered body by X-ray diffraction, Ni inside Three Ti and NiO, the surface layer is TiO 2 And NiO were produced. An image obtained by photographing a cross section of the obtained sintered body with a micrograph was the same as that shown in FIG.
[0047]
(Example 29)
TiO 2 ZrO instead of powder 2 Except for using the powder, mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 25. As a result of identifying the production phase of the obtained sintered body by X-ray diffraction, NiZr and NiO were produced. An image obtained by photographing a cross section of the obtained sintered body with a micrograph was the same as that shown in FIG.
[0048]
(Example 30)
Mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 26 except that ZrO2 powder was used instead of TiO2 powder. As a result of identifying the formed phase of the obtained sintered body by X-ray diffraction, Ni Three Zr and NiO were generated. An image obtained by photographing a cross section of the obtained sintered body with a micrograph was the same as that shown in FIG.
[0049]
(Example 31)
Mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 29 except that the heating atmosphere was air. As a result of identifying the formed phase of the obtained sintered body by X-ray diffraction, NiZr and NiO are contained inside, and ZrO is contained in the surface layer. 2 And NiO were produced. An image obtained by photographing a cross section of the obtained sintered body with a micrograph was the same as that shown in FIG.
[0050]
(Example 32)
Mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 30, except that the heating atmosphere was air. As a result of identifying the formation phase of the obtained sintered body by X-ray diffraction, Ni inside Three Zr and NiO, ZrO on the surface layer 2 And NiO were produced. An image obtained by photographing a cross section of the obtained sintered body with a micrograph was the same as that shown in FIG.
[0051]
(Example 33)
TiO 2 HfO instead of powder 2 Except for using the powder, mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 25. As a result of identifying the production phase of the obtained sintered body by X-ray diffraction, NiHf and NiO were produced. An image obtained by photographing a cross section of the obtained sintered body with a micrograph was the same as that shown in FIG.
[0052]
(Example 34)
TiO 2 HfO instead of powder 2 Except for using powder, mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 26. As a result of identifying the formed phase of the obtained sintered body by X-ray diffraction, Ni Three Hf and NiO were generated. An image obtained by photographing a cross section of the obtained sintered body with a micrograph was the same as that shown in FIG.
[0053]
(Example 35)
Mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 33 except that the heating atmosphere was air. As a result of identifying the formed phase of the obtained sintered body by X-ray diffraction, NiHf and NiO are contained inside, and HfO is contained on the surface layer. 2 And NiO were produced. An image obtained by photographing a cross section of the obtained sintered body with a micrograph was the same as that shown in FIG.
[0054]
(Example 36)
Mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 34 except that the heating atmosphere was air. As a result of identifying the formation phase of the obtained sintered body by X-ray diffraction, Ni inside Three Hf and NiO, HfO on the surface 2 And NiO were produced. An image obtained by photographing a cross section of the obtained sintered body with a micrograph was the same as that shown in FIG.
[0055]
(Example 37)
Mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 1 except that Sn powder was used instead of Cu powder. As a result of identifying the production phase of the obtained sintered body by X-ray diffraction, SnTi and SnO were produced. An image obtained by photographing a cross section of the obtained sintered body with a micrograph was the same as that shown in FIG.
[0056]
(Example 38)
Mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 2, except that Sn powder was used instead of Cu powder. As a result of identifying the formed phase of the obtained sintered body by X-ray diffraction, Sn Three Ti and SnO were generated. An image obtained by photographing a cross section of the obtained sintered body with a micrograph was the same as that shown in FIG.
[0057]
(Example 39)
Mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 37 except that the heating atmosphere was air. As a result of identifying the formed phase of the obtained sintered body by X-ray diffraction, SnTi and SnO are contained inside, and TiO is contained on the surface layer. 2 And SnO were produced. An image obtained by photographing a cross section of the obtained sintered body with a micrograph was the same as that shown in FIG.
[0058]
(Example 40)
Mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 38 except that the heating atmosphere was air. As a result of identifying the formed phase of the obtained sintered body by X-ray diffraction, Sn was found inside. Three Ti and SnO, the surface layer is TiO 2 And SnO were produced. An image obtained by photographing a cross section of the obtained sintered body with a micrograph was the same as that shown in FIG.
[0059]
(Example 41)
TiO 2 ZrO instead of powder 2 Except for using powder, mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 37. As a result of identifying the production phase of the obtained sintered body by X-ray diffraction, SnZr and SnO were produced. An image obtained by photographing a cross section of the obtained sintered body with a micrograph was the same as that shown in FIG.
[0060]
(Example 42)
TiO 2 ZrO instead of powder 2 Mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 38 except that the powder was used. As a result of identifying the formed phase of the obtained sintered body by X-ray diffraction, Sn Three Zr and SnO were produced. An image obtained by photographing a cross section of the obtained sintered body with a micrograph was the same as that shown in FIG.
[0061]
(Example 43)
Mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 41 except that the heating atmosphere was air. As a result of identifying the formed phase of the obtained sintered body by X-ray diffraction, SnZr and SnO are contained inside, and ZrO is contained in the surface layer. 2 And SnO were produced. An image obtained by photographing a cross section of the obtained sintered body with a micrograph was the same as that shown in FIG.
[0062]
(Example 44)
Mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 42 except that the heating atmosphere was air. As a result of identifying the formed phase of the obtained sintered body by X-ray diffraction, Sn was found inside. Three Zr and SnO, ZrO on the surface layer 2 And SnO were produced. An image obtained by photographing a cross section of the obtained sintered body with a micrograph was the same as that shown in FIG.
[0063]
(Example 45)
TiO 2 HfO instead of powder 2 Except for using powder, mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 37. As a result of identifying the production phase of the obtained sintered body by X-ray diffraction, SnHf and SnO were produced. An image obtained by photographing a cross section of the obtained sintered body with a micrograph was the same as that shown in FIG.
[0064]
(Example 46)
TiO 2 HfO instead of powder 2 Mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 38 except that the powder was used. As a result of identifying the formed phase of the obtained sintered body by X-ray diffraction, Sn Three Hf and SnO were generated. An image obtained by photographing a cross section of the obtained sintered body with a micrograph was the same as that shown in FIG.
[0065]
(Example 47)
Mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 45 except that the heating atmosphere was air. As a result of identifying the formed phase of the obtained sintered body by X-ray diffraction, SnHf and SnO are contained inside, and HfO is contained in the surface layer. 2 And SnO were produced. An image obtained by photographing a cross section of the obtained sintered body with a micrograph was the same as that shown in FIG.
[0066]
(Example 48)
Mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 46 except that the heating atmosphere was air. As a result of identifying the formed phase of the obtained sintered body by X-ray diffraction, Sn was found inside. Three Hf and SnO, HfO on the surface 2 And SnO were produced. An image obtained by photographing a cross section of the obtained sintered body with a micrograph was the same as that shown in FIG.
[0067]
(Example 49)
Mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 1 except that Zn powder was used instead of Cu powder. As a result of identifying the production phase of the obtained sintered body by X-ray diffraction, ZnTi and ZnO were produced. An image obtained by photographing a cross section of the obtained sintered body with a micrograph was the same as that shown in FIG.
[0068]
(Example 50)
Mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 2 except that Zn powder was used instead of Cu powder. As a result of identifying the formed phase of the obtained sintered body by X-ray diffraction, Zn Three Ti and ZnO were generated. An image obtained by photographing a cross section of the obtained sintered body with a micrograph was the same as that shown in FIG.
[0069]
(Example 51)
Mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 49 except that the heating atmosphere was air. As a result of identifying the formed phase of the obtained sintered body by X-ray diffraction, ZnTi and ZnO are contained inside, and TiO is contained on the surface layer. 2 And ZnO were produced. An image obtained by photographing a cross section of the obtained sintered body with a micrograph was the same as that shown in FIG.
[0070]
(Example 52)
Mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 50 except that the heating atmosphere was air. As a result of identifying the formed phase of the obtained sintered body by X-ray diffraction, it was found that Zn was contained inside. Three Ti and ZnO, the surface layer is TiO 2 And ZnO were produced. An image obtained by photographing a cross section of the obtained sintered body with a micrograph was the same as that shown in FIG.
[0071]
(Example 53)
TiO 2 ZrO instead of powder 2 Except for using the powder, mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 49. As a result of identifying the production phase of the obtained sintered body by X-ray diffraction, ZnZr and ZnO were produced. An image obtained by photographing a cross section of the obtained sintered body with a micrograph was the same as that shown in FIG.
[0072]
(Example 54)
TiO 2 ZrO instead of powder 2 Except for using the powder, mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 50. As a result of identifying the formed phase of the obtained sintered body by X-ray diffraction, Zn Three Zr and ZnO were generated. An image obtained by photographing a cross section of the obtained sintered body with a micrograph was the same as that shown in FIG.
[0073]
(Example 55)
Mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 53 except that the heating atmosphere was air. As a result of identifying the formed phase of the obtained sintered body by X-ray diffraction, ZnZr and ZnO are contained inside, and ZrO is contained in the surface layer. 2 And ZnO were produced. An image obtained by photographing a cross section of the obtained sintered body with a micrograph was the same as that shown in FIG.
[0074]
(Example 56)
Mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 54 except that the heating atmosphere was air. As a result of identifying the formed phase of the obtained sintered body by X-ray diffraction, it was found that Zn was contained inside. Three Zr and ZnO, ZrO on the surface layer 2 And ZnO were produced. An image obtained by photographing a cross section of the obtained sintered body with a micrograph was the same as that shown in FIG.
[0075]
(Example 57)
TiO 2 HfO instead of powder 2 Except for using the powder, mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 49. As a result of identifying the production phase of the obtained sintered body by X-ray diffraction, ZnHf and ZnO were produced. An image obtained by photographing a cross section of the obtained sintered body with a micrograph was the same as that shown in FIG.
[0076]
(Example 58)
TiO 2 HfO instead of powder 2 Except for using the powder, mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 50. As a result of identifying the formed phase of the obtained sintered body by X-ray diffraction, Zn Three Hf and ZnO were generated. An image obtained by photographing a cross section of the obtained sintered body with a micrograph was the same as that shown in FIG.
[0077]
(Example 59)
Mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 57 except that the heating atmosphere was air. As a result of identifying the formed phase of the obtained sintered body by X-ray diffraction, ZnHf and ZnO are contained inside, and HfO is contained in the surface layer. 2 And ZnO were produced. An image obtained by photographing a cross section of the obtained sintered body with a micrograph was the same as that shown in FIG.
[0078]
(Example 60)
Mixing, drying, molding, and microwave heating were performed under the same conditions as in Example 58 except that the heating atmosphere was air. As a result of identifying the formed phase of the obtained sintered body by X-ray diffraction, it was found that Zn was contained inside. Three Hf and ZnO, HfO on the surface layer 2 And ZnO were produced. An image obtained by photographing a cross section of the obtained sintered body with a micrograph was the same as that shown in FIG.
[0079]
(Evaluation)
About the obtained test piece of the sintered compact of Examples 1-60, the 3 point | piece bending test based on JIS-1601R was done, and the intensity | strength in room temperature was measured. Further, each test piece was subjected to a friction test by a disk-on-disk method using an iron-based material as a counterpart material. Further, each test piece was left in an atmosphere of 1500 ° C. for 1000 hours to perform an oxidation resistance test.
[0080]
The above three tests were also performed on a test piece of only an intermetallic compound produced by a conventional method, and the ratio of the values according to each of the above Examples 1 to 60 with respect to the values obtained thereby was defined as specific strength, specific wear amount, and specific weight change. Asked. The results are shown in Table 1.
[0081]
[Table 1]
Figure 0003684008
Figure 0003684008
Figure 0003684008
As is clear from the above results, the intermetallic compound composite according to the present invention has high strength, and has little wear change and weight change due to oxidation. This tendency becomes more prominent when an oxide surface layer is formed.
[0082]
【The invention's effect】
As described above, according to the present invention, it is possible to provide an intermetallic compound composite that retains high strength, high toughness and high friction characteristics at high temperatures and has oxidation resistance, and this material is manufactured at low cost. It is extremely useful industrially.
[Brief description of the drawings]
FIG. 1 is a diagram schematically showing an image obtained by photographing a cross section of a sintered body according to the present invention with a micrograph.
FIG. 2 is a diagram schematically showing an image obtained by photographing a cross section of another sintered body according to the present invention with a micrograph.
[Explanation of symbols]
1 Intermetallic compound
2 Second metal oxide
3 Oxide of the first metal
4 Oxide film

Claims (4)

Ti,Zr,Hfより選ばれる金属とCu,Co,Sn,Ni,Znより選ばれる金属とからなる金属間化合物を含有するマトリックスに、Cu,Co,Sn,Ni,Znより選ばれる金属酸化物が複合化されることを特徴とする金属間化合物複合体。Ti, Zr, oxides of metals metal and Cu selected from Hf, Co, Sn, Ni, in a matrix containing the intermetallic compound made of a metal selected from Zn, the Cu, Co, Sn, Ni, selected from Zn An intermetallic compound complex characterized in that a compound is compounded. Ti,Zr,Hfより選ばれる金属とCu,Co,Sn,Ni,Znより選ばれる金属とからなる金属間化合物を含有するマトリックスに、Cu,Co,Sn,Ni,Znより選ばれる金属酸化物が複合化され、Ti,Zr,Hfより選ばれる金属酸化物を含有する表面層を有することを特徴とする金属間化合物複合体。Ti, Zr, oxides of metals metal and Cu selected from Hf, Co, Sn, Ni, in a matrix containing the intermetallic compound made of a metal selected from Zn, the Cu, Co, Sn, Ni, selected from Zn things complexed, Ti, Zr, intermetallic matrix composite characterized by having a surface layer containing an oxide of a metal selected from Hf. Ti,Zr,Hfより選ばれる金属酸化物の粉末とCu,Co,Sn,Ni,Znより選ばれる金属の粉末とを混合し成形して成形体を得て、非酸化性雰囲気下あるいは真空下でマイクロ波を用いて該成形体を加熱することを特徴とする請求項1記載の金属間化合物複合体の製造方法。Ti, Zr, powder and Cu oxide of a metal selected from Hf, Co, Sn, Ni, to obtain a molded body by mixing and molding powder of metal selected from Zn, non-oxidizing atmosphere or vacuum The method for producing an intermetallic compound composite according to claim 1, wherein the compact is heated using microwaves. Ti,Zr,Hfより選ばれる金属酸化物の粉末とCu,Co,Sn,Ni,Znより選ばれる金属の粉末とを混合し成形して成形体を得て、酸化性雰囲気下でマイクロ波を用いて該成形体を加熱することを特徴とする請求項2記載の金属間化合物複合体の製造方法。Ti, to obtain Zr, powder and Cu oxide of a metal selected from Hf, Co, Sn, Ni, and a powder metal mixture molded to shaped bodies selected from Zn, microwave in an oxidizing atmosphere The method for producing an intermetallic compound composite according to claim 2, wherein the formed body is heated using a material.
JP31992596A 1996-11-29 1996-11-29 Intermetallic compound composite and method for producing the same Expired - Fee Related JP3684008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31992596A JP3684008B2 (en) 1996-11-29 1996-11-29 Intermetallic compound composite and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31992596A JP3684008B2 (en) 1996-11-29 1996-11-29 Intermetallic compound composite and method for producing the same

Publications (2)

Publication Number Publication Date
JPH10158776A JPH10158776A (en) 1998-06-16
JP3684008B2 true JP3684008B2 (en) 2005-08-17

Family

ID=18115774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31992596A Expired - Fee Related JP3684008B2 (en) 1996-11-29 1996-11-29 Intermetallic compound composite and method for producing the same

Country Status (1)

Country Link
JP (1) JP3684008B2 (en)

Also Published As

Publication number Publication date
JPH10158776A (en) 1998-06-16

Similar Documents

Publication Publication Date Title
JP2843900B2 (en) Method for producing oxide-particle-dispersed metal-based composite material
CN101245431A (en) Gamma-group Ti-Al alloy material with high-temperature resistance oxidation and manufacture method thereof
US3044867A (en) Method for the production of metallicceramic materials
JP3684008B2 (en) Intermetallic compound composite and method for producing the same
JP2531701B2 (en) Manufacturing method of dispersion strengthened copper alloy
CN108624771A (en) A method of preparing nano-oxide particles enhancing metallic composite
JPS6033335A (en) Heat resistant molybdenum material
EP1709209A2 (en) Light metal alloy sintering method
EP1965940B1 (en) Enhancement of thermal stability of porous bodies comprised of stainless steel or an alloy
Talijan et al. Processing and properties of silver-metal oxide electrical contact materials
EP0568705A1 (en) Method for degassing and solidifying aluminum alloy powder
JPH0790432A (en) Ultralow-chlorine alpha+beta type sintered titanium alloy made of isometric structure
JPS62188735A (en) Manufacture of tini alloy wire or plate
JPH1192846A (en) Sintered friction material and its production
JP2000144301A (en) Tungsten carbide sintered body and its production
JPH1046208A (en) Production of ti-ni base alloy sintered body
JPS6358897B2 (en)
JPS6026621A (en) Manufacture of heat resistant molybdenum material
JPH05263177A (en) Manufacture of nb3al intermetallic compound base alloy having a15 type crystalline structure
JP2605866B2 (en) Manufacturing method of composite compound dispersion type Cu-Zn-A (1) sintered alloy with excellent wear resistance
JPS61159539A (en) Manufacture of shape memory alloy
JP2762520B2 (en) Method for producing TiAl intermetallic compound sintered member
JPS63241126A (en) Production of dispersion strengthened copper alloy material
JPH051340A (en) Production of silver-metal oxide composite material
JPH03193848A (en) Wear resistant roll and its production

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050527

LAPS Cancellation because of no payment of annual fees