JPH10152450A - Production of butanediol - Google Patents

Production of butanediol

Info

Publication number
JPH10152450A
JPH10152450A JP9250287A JP25028797A JPH10152450A JP H10152450 A JPH10152450 A JP H10152450A JP 9250287 A JP9250287 A JP 9250287A JP 25028797 A JP25028797 A JP 25028797A JP H10152450 A JPH10152450 A JP H10152450A
Authority
JP
Japan
Prior art keywords
butanediol
diacetoxybutane
weight
reaction
distillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9250287A
Other languages
Japanese (ja)
Other versions
JP3959793B2 (en
Inventor
Nobuyuki Murai
信行 村井
Youji Iwasaka
洋司 岩阪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP25028797A priority Critical patent/JP3959793B2/en
Publication of JPH10152450A publication Critical patent/JPH10152450A/en
Application granted granted Critical
Publication of JP3959793B2 publication Critical patent/JP3959793B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing highly pure butanediol useful as a raw material for a polyester resin, etc., by performing acetoxylation of butadiene used as a raw material, further hydrogenating the product to provide diacetoxybutane and hydrating the diacetoxybutane. SOLUTION: This method for producing butanediol is performed by reducing the content of diacetoxyoctane of <=0.5wt.%, and the reduction of the content is preferably performed by distilling and removing the one because the process is simplified. The acetoxylation is performed at 40-180 deg.C, preferably 60-150 deg.C at a pressure over a normal pressure, and normally <=300kg/cm<2> . The hydrogenation reaction is performed at 40-180 deg.C at a pressure equal to or over a normal pressure and normally <=150kg/cm<2> in the presence of a catalyst such as Pd. The amount of hydrogen is usually 1-50 mol per mol diacetoxybuytene and the hydration reaction is performed in the presence of a solid acid catalyst by using 2-100 mol water per mol diacetoxybutane at 30-110 deg.C usually under a pressure between a normal pressure and 10kg/cm<2> G.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高純度ブタンジオ
ールの製造方法に関する。詳しくは、ブタジエンをアセ
トキシ化及び水素化して得られるジアセトキシブタンを
加水分解してブタンジオールを製造する方法の改良に関
する。ブタンジオールは、溶剤或いは、ポリエステル樹
脂、γ−ブチロラクトンやテトラヒドロフラン等の合成
原料として有用な化合物である。
The present invention relates to a method for producing high-purity butanediol. More specifically, the present invention relates to an improvement in a method for producing butanediol by hydrolyzing diacetoxybutane obtained by acetoxylation and hydrogenation of butadiene. Butanediol is a compound useful as a solvent or a synthetic material such as a polyester resin, γ-butyrolactone, and tetrahydrofuran.

【0002】[0002]

【従来の技術】ブタンジオールの製造方法として、ブタ
ジエン、酢酸、及び酸素を、パラジウム系触媒の存在
下、反応させてジアセトキシブテンを得、次いで、パラ
ジウム系又はニッケル系触媒等を使用して、水添反応さ
せて得られるジアセトキシブタンを加水分解してブタン
ジオールとする方法が知られている(例えば、特開昭5
2−7909、同52−133912、特開平7−82
191号公報等)。
2. Description of the Related Art As a method for producing butanediol, butadiene, acetic acid and oxygen are reacted in the presence of a palladium-based catalyst to obtain diacetoxybutene, and then a palladium-based or nickel-based catalyst is used. A method is known in which diacetoxybutane obtained by hydrogenation reaction is hydrolyzed into butanediol (see, for example,
2-7909, 52-133912, JP-A-7-82
No. 191).

【0003】このブタジエンを原料とする方法では、ブ
タジエンのアセトキシ化工程では多量の酢酸を使用し、
未反応の酢酸と副生する水を除去する必要があり、ジア
セトキシブタンの加水分解工程では多量の水を使用し、
未反応の水と副生する酢酸を除去する必要があるため、
製品純度を保持しながら、これらを回収してリサイクル
する各種の提案がなされている(上記各公報等参照)。
一方、ブタンジオールの用途、特に、ポリエステル樹脂
原料や、ポリテトラメチレンエーテルグリコール等のポ
リエーテル原料として用いられるテトラヒドロフラン向
け等には、ブタンジオールの純度が重合反応の速度や得
られるポリマーの分子量に対して影響を与えることか
ら、重合反応に影響を与えない高純度のブタンジオール
が要求されている。
In this method using butadiene as a raw material, a large amount of acetic acid is used in the acetoxylation step of butadiene,
It is necessary to remove unreacted acetic acid and by-produced water, and a large amount of water is used in the hydrolysis process of diacetoxybutane.
Because it is necessary to remove unreacted water and acetic acid produced as a by-product,
Various proposals have been made to collect and recycle these while maintaining product purity (see the above publications).
On the other hand, for the use of butanediol, particularly for polyester resin raw materials, and for tetrahydrofuran used as a polyether raw material such as polytetramethylene ether glycol, the purity of butanediol depends on the speed of the polymerization reaction and the molecular weight of the obtained polymer. Therefore, high-purity butanediol that does not affect the polymerization reaction is required.

【0004】[0004]

【発明が解決しようとする課題】上記の方法では、ジア
セトキシブタンを加水分解して得られる反応生成物を蒸
留に供し、通常、水と酢酸及び他の軽沸物を留去させた
塔底液としてブタンジオールを含む成分を得、この缶出
液を更に蒸留して、例えば、塔頂より軽沸分、上部側流
よりジアセトキシブタン、ヒドロキシアセトキシブタン
等を留出させ、中若しくは下部側流又は塔底より留出さ
せるブタンジオールを精留して高純度ブタンジオールを
得ているが、この方法では不純物の除去が必ずしも十分
とは言えなかった。本発明は、ブタジエンを原料とし、
これをアセトキシ化し、次いで水素化して得られるジア
セトキシブタンを加水分解して、ポリエステル樹脂原料
やテトラヒドロフラン原料等として用いるに適した高純
度ブタンジオールを、工業的に有利に製造する方法を提
供することを目的とする。
In the above-mentioned method, the reaction product obtained by hydrolyzing diacetoxybutane is subjected to distillation, and usually, the bottom of the column obtained by distilling off water, acetic acid and other light boilers is removed. A component containing butanediol is obtained as a liquid, and the bottoms are further distilled to distill, for example, light boiling components from the top, diacetoxybutane, hydroxyacetoxybutane, etc. High-purity butanediol is obtained by rectifying butanediol distilled from a stream or the bottom of the column, but this method does not always sufficiently remove impurities. The present invention uses butadiene as a raw material,
To provide a method for industrially and advantageously producing high-purity butanediol suitable for use as a polyester resin raw material, a tetrahydrofuran raw material, or the like, by acetoxylating this and then hydrolyzing diacetoxybutane obtained by hydrogenation. With the goal.

【0005】[0005]

【課題を解決するための手段】本発明者らは、高純度ブ
タンジオールの製造方法について鋭意検討した結果、ブ
タジエンを原料として得られるブタンジオール中には蒸
留によっては分離困難な不純物が含まれること、この分
離し難い不純物がモノアセトキシオクタノールであるこ
と、モノアセトキシオクタノールの沸点は約270℃と
推算されるが、気液平衡の実測結果からは、1,4−ブ
タンジオール(沸点230℃)との沸点差約40℃から
予想される以上に蒸留による分離が困難であること、更
に、この不純物モノアセトキシオクタノールはジアセト
キシブタン中に含まれるジアセトキシオクタンの加水分
解により生成していることを見出し本発明を完成した。
Means for Solving the Problems As a result of intensive studies on a method for producing high-purity butanediol, the present inventors have found that butanediol obtained from butadiene contains impurities which are difficult to separate by distillation. The impurity that is difficult to separate is monoacetoxyoctanol, and the boiling point of monoacetoxyoctanol is estimated to be about 270 ° C. From the measurement results of the vapor-liquid equilibrium, it is found that 1,4-butanediol (boiling point 230 ° C) It was found that separation by distillation was more difficult than expected from the boiling point difference of about 40 ° C., and that the impurity monoacetoxyoctanol was formed by hydrolysis of diacetoxyoctane contained in diacetoxybutane. The present invention has been completed.

【0006】即ち本発明は、ジアセトキシブタンを加水
分解してブタンジオールを製造する方法において、加水
分解反応に供されるジアセトキシブタン中のジアセトキ
シオクタンの含有量が0.5重量%以下であることを特
徴とするブタンジオールの製造方法を提供するものであ
る。ジアセトキシオクタンの含有量を0.5重量%以
下、好ましくは0.01〜0.2重量%とすることによ
り、加水分解反応生成物を常法に従って蒸留に供し、水
と酢酸及び他の軽沸物を留去させた塔底缶出液を蒸留し
て軽沸分を留出させたブタンジオール留分を精留するこ
とにより不純物モノアセトキシオクタノール含量が1重
量%以下の、即ち、純度99重量%以上の高純度1,4
−ブタンジオールを得ることができる。
That is, the present invention relates to a method for producing butanediol by hydrolyzing diacetoxybutane, wherein the content of diacetoxyoctane in the diacetoxybutane subjected to the hydrolysis reaction is 0.5% by weight or less. An object of the present invention is to provide a method for producing butanediol, which is characterized in that: By adjusting the content of diacetoxyoctane to 0.5% by weight or less, preferably 0.01 to 0.2% by weight, the hydrolysis reaction product is subjected to distillation according to a conventional method, and water and acetic acid and other light The bottoms bottoms from which the boiled substances have been distilled off are distilled to distill the butanediol fraction from which the light boiling point has been distilled off, whereby the content of the impurity monoacetoxyoctanol is 1% by weight or less, that is, the purity is 99%. High purity 1,4% by weight or more
-Butanediol can be obtained.

【0007】[0007]

【発明の実施の形態】ジアセトキシブタン中のジアセト
キシオクタンの含有量を0.5重量%以下とする方法と
しては、アセトキシ化反応生成物からジアセトキシブテ
ンを蒸留回収する際に、得られるジアセトキシブテン中
のジアセトキシオクタジエンの量を所定量(0.5重量
%)以下とする方法、ジアセトキシブテンを水素化して
得られる水添反応生成物であるジアセトキシブタン中の
ジアセトキシオクタンを蒸留除去して0.5重量%以下
とする方法、及び、上記各工程での該当不純物の低減化
法の一部又は全部を組合わせて全体としてジアセトキシ
ブタン中のジアセトキシオクタンの量を0.5重量%以
下とする方法等を、適宜、採用することができる。工程
全体のエネルギー負荷とプロセスの簡略化の面から、ジ
アセトキシオクタジエンを蒸留除去する方法が好まし
い。
BEST MODE FOR CARRYING OUT THE INVENTION As a method for reducing the content of diacetoxyoctane in diacetoxybutane to 0.5% by weight or less, a diacetoxybutane obtained by distilling and recovering diacetoxybutene from an acetoxylation reaction product is used. A method of reducing the amount of diacetoxyoctadiene in acetoxybutene to a predetermined amount (0.5% by weight) or less, and diacetoxyoctane in diacetoxybutane which is a hydrogenation reaction product obtained by hydrogenating diacetoxybutene. The total amount of diacetoxyoctane in diacetoxybutane is reduced to 0 by combining the method of removing by distillation to 0.5% by weight or less and the method of reducing the corresponding impurities in each of the above steps, in whole or in part. A method of adjusting the content to 0.5% by weight or less can be appropriately adopted. From the viewpoint of energy load of the entire process and simplification of the process, a method of distilling and removing diacetoxyoctadiene is preferable.

【0008】以下、図面を用いてブタジエンを原料にア
セトキシ化反応によりジアセトキシブテンを得、これを
水添反応、加水分解反応を経てブタンジオールとする製
造工程の一例を説明する。図1において、1はアセトキ
シ化反応器、2は第1蒸留塔、3は第2蒸留塔、4は水
添反応器、5は第3蒸留塔、6は加水分解反応器、7は
第4蒸留塔、8は第5蒸留塔、9は第6蒸留塔である。
Hereinafter, an example of a production process for obtaining diacetoxybutene from butadiene as a raw material by an acetoxylation reaction and subjecting it to a hydrogenation reaction and a hydrolysis reaction to form butanediol will be described with reference to the drawings. In FIG. 1, 1 is an acetoxylation reactor, 2 is a first distillation column, 3 is a second distillation column, 4 is a hydrogenation reactor, 5 is a third distillation column, 6 is a hydrolysis reactor, and 7 is a fourth reactor. A distillation column, 8 is a fifth distillation column, and 9 is a sixth distillation column.

【0009】(1)ブタジエンを、酢酸及び分子状酸素
と反応させて、ジアセトキシブテンを得るアセトキシ化
反応工程:アセトキシ化反応は、ブタジエン、酢酸、及
び分子状酸素を、パラジウム系触媒の存在下、反応器
(1)内で反応させる公知の方法により行われる。パラ
ジウム系触媒としては、パラジウム金属又はその塩(例
えば、塩化パラジウム、硝酸パラジウム、酢酸パラジウ
ム等の有機又は無機酸塩)を単独で、或いは、助触媒と
してビスマス、セレン、アンチモン、テルル、銅等の金
属又はそれらの塩や酸、酸化物(例えば、酸化ビスマ
ス、セレン酸、酸化テルル、塩化アンチモン、オルトテ
ルル酸、塩化銅等)を組み合わせて用いられる。触媒
は、シリカ、アルミナ、活性炭等の担体に担持させて用
いることが好ましく、担持触媒中の触媒金属量は、通
常、パラジウム金属が0.1〜20重量%、他の助触媒
金属を使用する場合は当該金属が0.01〜30重量%
の範囲で選定される。
(1) Acetoxylation reaction step of reacting butadiene with acetic acid and molecular oxygen to obtain diacetoxybutene: In the acetoxylation reaction, butadiene, acetic acid, and molecular oxygen are converted in the presence of a palladium-based catalyst. The reaction is carried out by a known method for causing a reaction in the reactor (1). As the palladium-based catalyst, palladium metal or a salt thereof (for example, an organic or inorganic acid salt such as palladium chloride, palladium nitrate, and palladium acetate) alone or as a co-catalyst such as bismuth, selenium, antimony, tellurium, and copper is used. Metals or their salts, acids, and oxides (for example, bismuth oxide, selenic acid, tellurium oxide, antimony chloride, orthotelluric acid, copper chloride, and the like) are used in combination. The catalyst is preferably used by being supported on a carrier such as silica, alumina or activated carbon. The amount of the catalyst metal in the supported catalyst is usually 0.1 to 20% by weight of palladium metal, and another promoter metal is used. In this case, the metal is 0.01 to 30% by weight.
Is selected in the range.

【0010】アセトキシ化反応は、公知の固定床方式、
流動床方式、触媒懸濁方式等の任意の方法で実施され
る。反応は40〜180℃、好ましくは60〜150℃
の温度範囲で、常圧以上、通常、300kg/cm
2 〔29.4MPa〕以下、好ましくは30〜150k
g/cm2 〔2.94〜14.7MPa〕の圧力下で実
施される。このようにして得られるアセトキシ化の反応
生成物には、未反応のブタジエン等が含まれているの
で、脱ガス処理した後、蒸留してジアセトキシブテンを
得るのが一般的である。
The acetoxylation reaction is carried out by a known fixed bed method,
It is carried out by any method such as a fluidized bed system and a catalyst suspension system. The reaction is carried out at 40 to 180 ° C, preferably at 60 to 150 ° C.
Above normal pressure, usually 300 kg / cm
2 [29.4 MPa] or less, preferably 30 to 150 k
It is carried out under a pressure of g / cm 2 [2.94 to 14.7 MPa]. Since the reaction product of acetoxylation thus obtained contains unreacted butadiene and the like, it is general to obtain diacetoxybutene after degassing and distillation.

【0011】蒸留は、通常、第1蒸留塔(2)で、水、
酢酸を塔頂から留去し、その塔底液を第2蒸留塔(3)
に供給し、塔頂からジアセトキシブテンを得、ジアセト
キシオクタジエンを含む高沸物を塔底から抜き出す。こ
の際、第2蒸留塔(3)の塔底液を薄膜蒸発器に供給し
て高沸物との分離効率を上げる方法(詳細は特開平6−
321861号公報参照)を採用してもよい。
The distillation is usually carried out in a first distillation column (2) using water,
Acetic acid is distilled off from the top of the column, and the bottom liquid is removed from the second distillation column (3).
And diacetoxybutene is obtained from the top of the column, and a high-boiling substance containing diacetoxyoctadiene is withdrawn from the bottom of the column. At this time, the bottom liquid of the second distillation column (3) is supplied to a thin-film evaporator to increase the efficiency of separation from high-boiling substances (for details, see Japanese Patent Application Laid-Open No.
321861).

【0012】塔頂から回収されるジアセトキシブテン中
に含まれるジアセトキシオクタジエンの量は、第2蒸留
塔(3)に供給されるジアセトキシブテン中のジアセト
キシオクタジエンの量と第2蒸留塔の操作条件によって
定められるが、通常、第2蒸留塔(3)に供給されるジ
アセトキシブテン中のジアセトキシオクタジエンの量は
約3重量%程度である。第2蒸留塔(3)は、理論段5
〜10段で、塔頂圧力5〜200mmHg(0.7〜2
6.7kPa)、塔底温度190℃以下、還流比0.1
〜1、塔頂からの留出率70〜99%で操作される。
The amount of diacetoxyoctadiene contained in the diacetoxybutene recovered from the top is determined by the amount of diacetoxyoctadiene in the diacetoxybutene supplied to the second distillation column (3) and the amount of diacetoxyoctadiene in the second distillation column. Usually, the amount of diacetoxyoctadiene in diacetoxybutene supplied to the second distillation column (3) is about 3% by weight, which is determined by the operating conditions of the column. The second distillation column (3) has a theoretical plate of 5
In 10 to 10 stages, the top pressure is 5 to 200 mmHg (0.7 to 2
6.7 kPa), tower bottom temperature 190 ° C. or less, reflux ratio 0.1
1, operating at a distillation rate of 70 to 99% from the top.

【0013】上記操作条件の第2蒸留塔の塔頂から抜き
出されるジアセトキシブテン中のジアセトキシオクタジ
エンの量は、約0.1〜2.5重量%であるが、ジアセ
トキシブタン中のジアセトキシオクタンを蒸留除去する
方法と組み合わせる場合は、1.0〜2.5重量%、好
ましくは1.5重量%以下となるように蒸留条件を設定
し、ジアセトキシオクタジエンのみを蒸留除去する場合
は0.5重量%以下、好ましくは0.1重量%以下とな
るように蒸留条件を設定する。ジアセトキシブテン中の
不純物の切れをよくするためには、通常、蒸留条件の
中、例えば理論段数又は還流比を上げると共に留出率を
絞る等の方法が採用され、具体的には、第2蒸留塔は、
理論段5〜20段で、還流比0.1〜10、塔頂からの
留出率70〜97%で操作される。
The amount of diacetoxyoctadiene in diacetoxybutene withdrawn from the top of the second distillation column under the above operating conditions is about 0.1 to 2.5% by weight. When combined with the method of removing diacetoxyoctane by distillation, the distillation conditions are set so as to be 1.0 to 2.5% by weight, preferably 1.5% by weight or less, and only diacetoxyoctadiene is removed by distillation. In this case, the distillation conditions are set so as to be 0.5% by weight or less, preferably 0.1% by weight or less. In order to improve the removal of impurities in diacetoxybutene, a method of increasing the number of theoretical plates or the reflux ratio and narrowing the distilling rate under distillation conditions is usually employed. The distillation column
The operation is carried out at 5 to 20 theoretical stages, with a reflux ratio of 0.1 to 10 and a distillate rate of 70 to 97% from the top.

【0014】(2)アセトキシ化反応工程で得られる反
応生成物を水添してジアセトキシブタンを得る水素化工
程:第2蒸留塔(3)の塔頂から得られたジアセトキシ
ブテンは、次いで水添反応に供されジアセトキシブタン
を生成する。水添反応は、反応器(4)内で通常、パラ
ジウム、ルテニウム等の貴金属触媒又はニッケル触媒の
存在下に、アセトキシブテンと水素を接触させ、40〜
180℃の温度範囲で、常圧以上、通常、150kg/
cm2 〔14.7MPa〕までの圧力下で反応させるこ
とにより実施される。
(2) Hydrogenation step of hydrogenating the reaction product obtained in the acetoxylation reaction step to obtain diacetoxybutane: Diacetoxybutene obtained from the top of the second distillation column (3) is then It is subjected to a hydrogenation reaction to produce diacetoxybutane. The hydrogenation reaction is usually carried out by contacting acetoxybutene with hydrogen in the reactor (4) in the presence of a noble metal catalyst such as palladium or ruthenium or a nickel catalyst, and
In a temperature range of 180 ° C., normal pressure or higher, usually 150 kg /
It is carried out by reacting under a pressure up to cm 2 [14.7 MPa].

【0015】水素化反応は、公知の固定床方式、流動床
方式、触媒懸濁方式等の任意の方法で実施される。水素
化反応に使用される水素は高純度のものはもとより、反
応に悪影響を及ぼさない他のガスで希釈されているもの
でも使用することができる。その使用量は、ジアセトキ
シブテン1モルに対して通常1〜50モル、好ましくは
2〜20モルである。
The hydrogenation reaction is carried out by any known method such as a fixed bed system, a fluidized bed system and a catalyst suspension system. The hydrogen used in the hydrogenation reaction may be not only high-purity hydrogen but also hydrogen diluted with another gas that does not adversely affect the reaction. The amount used is usually 1 to 50 mol, preferably 2 to 20 mol, per 1 mol of diacetoxybutene.

【0016】水添反応生成物は、未反応水素の脱ガス処
理をした後、第3蒸留塔(5)で蒸留してジアセトキシ
ブタンを得る。蒸留は、通常、塔頂からジアセトキシブ
タンを留出し、塔底からジアセトキシオクタジエンの水
素化物であるジアセトキシオクタンを含む高沸物を缶出
する。第3蒸留塔(5)は、理論段5〜10段で、塔頂
圧力5〜200mmHg[0.7〜26.7kPa]、
塔底温度190℃以下、還流比0.1〜1、塔頂からの
留出率70〜99%で操作される。
The hydrogenated reaction product is subjected to degassing of unreacted hydrogen and then distilled in a third distillation column (5) to obtain diacetoxybutane. In the distillation, diacetoxybutane is generally distilled from the top of the column, and a high-boiling product containing diacetoxyoctane, which is a hydride of diacetoxyoctadiene, is removed from the bottom of the column. The third distillation column (5) has 5 to 10 theoretical plates and a top pressure of 5 to 200 mmHg [0.7 to 26.7 kPa];
The operation is performed at a bottom temperature of 190 ° C. or lower, a reflux ratio of 0.1 to 1, and a distilling rate of 70 to 99% from the top of the column.

【0017】第3蒸留塔(5)に供給されるジアセトキ
シブタン中のジアセトキシオクタンの量は、第2蒸留塔
(3)の操作条件によって定まるが、前記の操作条件で
は約0.1〜2.5重量%であり、第2蒸留塔でジアセ
トキシオクタジエンを0.5重量%以下に除去した場合
は0.5重量%以下、好ましくは0.1重量%以下であ
り、第2蒸留塔でジアセトキシオクタジエンを1.0〜
2.5重量%、好ましくは1.5重量%以下とした場合
は1.0〜2.5重量%、好ましくは1.5重量%以下
である。第2蒸留塔でのジアセトキシオクタジエンの蒸
留除去が不十分で2.5重量%超える場合は、第3蒸留
塔に供給されるジアセトキシブタン中のジアセトキシオ
クタンが2.5重量%超え、第3蒸留塔の蒸留条件によ
りジアセトキシオクタジエンを0.5重量%以下とする
必要がある。
The amount of diacetoxyoctane in diacetoxybutane supplied to the third distillation column (5) is determined by the operating conditions of the second distillation column (3). When the diacetoxyoctadiene is removed to 0.5% by weight or less in the second distillation column, the content is 0.5% by weight or less, preferably 0.1% by weight or less. Diacetoxyoctadiene in the tower
When it is 2.5% by weight, preferably 1.5% by weight or less, it is 1.0 to 2.5% by weight, preferably 1.5% by weight or less. If the diacetoxyoctadiene is not sufficiently distilled off in the second distillation column and exceeds 2.5% by weight, the diacetoxyoctane in the diacetoxybutane supplied to the third distillation column exceeds 2.5% by weight, Depending on the distillation conditions of the third distillation column, diacetoxyoctadiene needs to be 0.5% by weight or less.

【0018】第2蒸留塔でのジアセトキシオクタジエン
の除去と第3蒸留塔でのジアセトキシオクタンの除去と
を組み合わせる場合の両塔での除去量の関係について
は、各塔の蒸留負荷見合いで適宜設定されるが、第2蒸
留塔でのジアセトキシオクタジエンの除去の割合が所定
除去量の50%以上であることが好ましい。塔頂から抜
き出されるジアセトキシブタン中のジアセトキシオクタ
ンの量は、第2蒸留塔が通常の操作条件の場合、1.0
〜2.5重量%であり、本発明の方法では0.5重量%
以下、好ましくは0.2重量%以下となるように第3蒸
留塔の条件を設定する。具体的には、第3蒸留塔(5)
は、理論段5〜20段で、還流比0.1〜10、塔頂か
らの留出率70〜97%で操作される。ジアセトキシオ
クタンの含有量が0.5重量を越えると、これを加水分
解して得られるブタンジオール中にモノアセトキシオク
タノールとして含有され、蒸留によってこれを除去する
ことが困難となる。
When the removal of diacetoxyoctadiene in the second distillation column and the removal of diacetoxyoctane in the third distillation column are combined, the relationship between the removal amounts of the two distillation columns depends on the distillation load of each column. Although appropriately set, it is preferable that the removal ratio of diacetoxyoctadiene in the second distillation column is 50% or more of the predetermined removal amount. The amount of diacetoxyoctane in diacetoxybutane withdrawn from the top is 1.0 when the second distillation column is under normal operating conditions.
To 2.5% by weight, and 0.5% by weight in the method of the present invention.
Hereinafter, the conditions of the third distillation column are set so as to be preferably 0.2% by weight or less. Specifically, the third distillation column (5)
Is operated in 5 to 20 theoretical stages, with a reflux ratio of 0.1 to 10 and a distillate rate of 70 to 97% from the top of the column. When the content of diacetoxyoctane exceeds 0.5 weight, it is contained as monoacetoxyoctanol in butanediol obtained by hydrolyzing it, and it is difficult to remove it by distillation.

【0019】(3)水素化反応生成物を加水分解してブ
タンジオールを得る工程:加水分解反応は、通常、反応
器(6)内で陽イオン交換樹脂等の固体酸触媒の存在下
に、ジアセトキシブタンと水を接触させ、30〜110
℃、好ましくは40〜90℃の温度範囲で、反応中、沸
騰状態を生起したり或いは溶存ガス等による著しい気泡
が発生するのを阻止する程度の圧力下、通常、常圧〜1
0kg/cm2 G〔0.098〜1.08MPa〕の範
囲で実施される。反応に使用する水の量は、ジアセトキ
シブタン1モルに対し、通常、2〜100モル、好まし
くは4〜50モルであり、水の量が少なすぎると反応率
が低下し、他方、水の量が多過ぎると反応生成物からブ
タンジオールを回収する際に多量の熱エネルギーを要す
るので好ましくない。
(3) Step of hydrolyzing the hydrogenation reaction product to obtain butanediol: The hydrolysis reaction is usually carried out in a reactor (6) in the presence of a solid acid catalyst such as a cation exchange resin. Contacting diacetoxybutane and water, 30-110
C., preferably in a temperature range of 40 to 90.degree. C., under such a pressure as to prevent a boiling state from occurring or to generate remarkable gas bubbles due to a dissolved gas during the reaction.
It is performed in the range of 0 kg / cm 2 G [0.098 to 1.08 MPa]. The amount of water used for the reaction is usually 2 to 100 mol, preferably 4 to 50 mol, based on 1 mol of diacetoxybutane. When the amount of water is too small, the reaction rate decreases, while If the amount is too large, a large amount of heat energy is required to recover butanediol from the reaction product, which is not preferable.

【0020】反応は、回分式、連続式等の任意の方法で
実施される。また、イオン交換樹脂を用いる場合、懸濁
状態で反応させる方式でも、イオン交換樹脂の充填層に
反応原料を通過させる方式でもよく、工業的には固定床
連続法が有利である。懸濁床で反応を実施する場合、イ
オン交換樹脂の使用量は液重量に対して0.1〜50重
量%、好ましくは1〜10重量%である。固定床連続法
の場合は、所定温度に保たれたイオン交換樹脂充填層反
応器に、水とジアセトキシブタンを連続的に供給すると
ともに、生成したブタンジオールと酢酸を過剰水との混
合液として連続的に抜き出すことにより行われる。
The reaction is carried out by any method such as a batch system and a continuous system. When the ion exchange resin is used, the reaction may be carried out in a suspended state, or the reaction raw material may be passed through a packed bed of the ion exchange resin. The fixed bed continuous method is industrially advantageous. When the reaction is carried out in a suspension bed, the amount of the ion exchange resin used is 0.1 to 50% by weight, preferably 1 to 10% by weight, based on the weight of the liquid. In the case of the fixed bed continuous method, water and diacetoxybutane are continuously supplied to the ion-exchange resin packed bed reactor maintained at a predetermined temperature, and the produced butanediol and acetic acid are mixed as an excess water. It is performed by extracting continuously.

【0021】ジアセトキシブタン及び水の反応器(6)
内への供給は、別々でも、混合して供給してもよく、ま
た、反応生成物であるブタンジオールやモノヒドロキシ
アセトキシブタン等を共存させて均一液相で供給するこ
ともできる。固定床の場合には、反応を円滑に促進する
上で均一液相で供給することが好ましい。反応生成液
は、目的とするブタンジオールの他に、酢酸と水、並び
に部分加水分解生成物及び若干の副生テトラヒドロフラ
ン等を含んでいる。反応終了後、必要に応じ反応液から
触媒を濾別し、蒸留してブタンジオールを得る。蒸留
は、通常、第4蒸留塔(7)で、水、酢酸を塔頂から留
去し、その塔底液を第5蒸留塔(8)に供給し、塔頂か
ら未反応のジアセトキシブタンや異性体を分離し、1,
4−ブタンジオールを主成分とする塔底液を第6蒸留塔
(9)に供給し、その塔頂から目的とする製品1,4−
ブタンジオールを得、塔底から高沸物を缶出する。製品
1,4−ブタンジオール中のモノアセトキシオクタノー
ルの量は1重量%以下、好ましくは0〜0.5重量%で
ある。
Diacetoxybutane and water reactor (6)
The components may be supplied separately or in a mixture, or may be supplied in a uniform liquid phase in the presence of butanediol or monohydroxyacetoxybutane as a reaction product. In the case of a fixed bed, it is preferable to supply a uniform liquid phase in order to smoothly promote the reaction. The reaction product liquid contains acetic acid and water, a partial hydrolysis product, some by-product tetrahydrofuran, and the like, in addition to the intended butanediol. After completion of the reaction, the catalyst is filtered off from the reaction solution, if necessary, and distilled to obtain butanediol. In the distillation, usually, water and acetic acid are distilled off from the top in a fourth distillation column (7), and the bottom liquid is supplied to a fifth distillation column (8), and unreacted diacetoxybutane is supplied from the top. And isomers,
The bottom liquid mainly containing 4-butanediol is supplied to the sixth distillation column (9), and the desired product 1,4-
Butanediol is obtained and high boilers are removed from the bottom of the column. The amount of monoacetoxyoctanol in the product 1,4-butanediol is less than 1% by weight, preferably 0-0.5% by weight.

【0022】[0022]

【実施例】以下に実験例を挙げ、本発明を更に具体的に
説明する。尚、実施例において「部」とは「重量部」
を、「%」は「重量%」を意味する。 (参考例1)アセトキシ化反応 アセトキシ化反応器に、1,3−ブタジエン170部/
hr、酢酸3000部/hr、及び酸素530部/hr
を供給し、パラジウム3%、テルル0.6%を活性炭に
担持した触媒の存在下、9MPa、100℃で反応した
後、脱ガス処理して、ジアセトキシブテン14.2%、
ジアセトキシオクタジエン0.6%を含む反応生成物を
得た。該反応生成物を3100部/hrで第1蒸留塔に
供給し、水及び酢酸の大部分を252部/hrで塔頂よ
り留去し、ジアセトキシブテン84.5%、ジアセトキ
シオクタジエン3.2重量%を含む塔底液を580部/
hrで缶出した。
The present invention will be described more specifically with reference to the following experimental examples. In the examples, “parts” means “parts by weight”.
And “%” means “% by weight”. (Reference Example 1) Acetoxylation reaction In an acetoxylation reactor, 1,3-butadiene 170 parts /
hr, acetic acid 3000 parts / hr, and oxygen 530 parts / hr
And reacted at 9 MPa and 100 ° C. in the presence of a catalyst in which 3% of palladium and 0.6% of tellurium are supported on activated carbon, followed by degassing, and 14.2% of diacetoxybutene.
A reaction product containing 0.6% of diacetoxyoctadiene was obtained. The reaction product was fed to the first distillation column at 3100 parts / hr, most of water and acetic acid were distilled off at the top at 252 parts / hr, and diacetoxybutene 84.5%, diacetoxyoctadiene 3 Of the bottom liquid containing 0.2% by weight of 580 parts /
Canned at hr.

【0023】(実施例1)参考例1で得た缶出液を第2
蒸留塔(実段数20段)に580部/hrで供給して、
塔頂圧力2.7kPa、還流比0.5の条件で蒸留し、
塔頂からジアセトキシブテン86.3%、ジアセトキシ
オクタジエン1.0%を含む液を550部/hrで留出
させた。得られたジアセトキシブテン留分を、パラジウ
ム触媒及びルテニウム触媒を充填した水添反応器に供給
し、水素流通下、反応圧5MPa、温度70℃で水添反
応を行い、ジアセトキシブタン86.5%、ジアセトキ
シオクタン1.0%を含む反応液を得た。該反応液を、
気液分離後、第3蒸留塔(実段数20段)に550部/
hrで供給して、塔頂圧力2.0kPa、還流比0.2
5の条件で蒸留し、塔頂からジアセトキシブタン87.
1%、ジアセトキシオクタン0.2%を含む液を520
部/hrで留出させた。
Example 1 The bottom liquid obtained in Reference Example 1 was used for the second step.
It is supplied at 580 parts / hr to a distillation column (actual number of plates is 20),
Distillation was performed under the conditions of a top pressure of 2.7 kPa and a reflux ratio of 0.5.
A liquid containing 86.3% of diacetoxybutene and 1.0% of diacetoxyoctadiene was distilled at 550 parts / hr from the top of the tower. The obtained diacetoxybutene fraction is supplied to a hydrogenation reactor filled with a palladium catalyst and a ruthenium catalyst, and a hydrogenation reaction is carried out at a reaction pressure of 5 MPa and a temperature of 70 ° C. under a hydrogen flow, and diacetoxybutane 86.5. % And diacetoxyoctane 1.0%. The reaction solution is
After the gas-liquid separation, 550 parts /
hr, an overhead pressure of 2.0 kPa and a reflux ratio of 0.2
Distilled under the conditions of 5 and diacetoxybutane from the top of the column.
A solution containing 1% and diacetoxyoctane 0.2% is 520
Parts / hr.

【0024】得られた水添反応液を520部/hrで、
水500部/hrと共に、強酸性イオン交換樹脂(ダイ
ヤイオンSK−1B;三菱化学(株)商品名)を充填し
た加水分解反応器に供給し、温度50℃で加水分解反応
を行い、1,4−ブタンジオール10.2%、モノアセ
トキシオクタノール0.04%を含む反応液を得た。該
反応液を、第4蒸留塔に1020部/hrで供給し、水
及び酢酸の大部分を660部/hrで塔頂より留去し、
1,4−ブタンジオール28.9%、モノアセトキシオ
クタノール0.1%を含む塔底液を360部/hrで缶
出し、缶出液を第5蒸留塔に供給して塔頂より未反応の
ジアセトキシブタン等を留去した後、第5蒸留塔の缶出
液を第6蒸留塔に供給して、高沸物を塔底から除去し
て、塔頂より純度99.3%の1,4−ブタンジオール
を得た。1,4−ブタンジオール中のモノアセトキシオ
クタノール濃度は0.4%であった。
The obtained hydrogenated reaction solution was charged at 520 parts / hr.
The mixture was supplied to a hydrolysis reactor filled with a strongly acidic ion exchange resin (Diaion SK-1B; trade name of Mitsubishi Chemical Corporation) together with 500 parts of water / hr, and a hydrolysis reaction was performed at a temperature of 50 ° C. A reaction solution containing 10.2% of 4-butanediol and 0.04% of monoacetoxyoctanol was obtained. The reaction solution was supplied to the fourth distillation column at 1020 parts / hr, and most of water and acetic acid were distilled off at the top at 660 parts / hr,
A bottom liquid containing 28.9% of 1,4-butanediol and 0.1% of monoacetoxyoctanol was withdrawn at 360 parts / hr, and the bottom liquid was supplied to a fifth distillation column, and unreacted from the top of the column. After distilling diacetoxybutane and the like, the bottom product of the fifth distillation column is supplied to the sixth distillation column to remove high-boiling substances from the bottom of the column, and from the top of the column, 99.3% pure 1,9 is removed. 4-butanediol was obtained. The monoacetoxyoctanol concentration in 1,4-butanediol was 0.4%.

【0025】(実施例2)実施例1において、参考例1
で得た缶出液を供給した第2蒸留塔の還流比を5とした
他は実施例1と同様の条件で蒸留し、塔頂からジアセト
キシブテン87.1%、ジアセトキシオクタジエン0.
1%を含む留出液を得た。得られたジアセトキシブテン
留分を、実施例1と同様の条件で水添反応に供給し、ジ
アセトキシブタン87.3%、ジアセトキシオクタン
0.1%を含む反応液を得た。
(Embodiment 2) In Embodiment 1, reference example 1
Distillation was carried out under the same conditions as in Example 1 except that the reflux ratio of the second distillation column to which the bottom liquid obtained in the above was supplied was set to 5, 87.1% of diacetoxybutene and 0.1% of diacetoxyoctadiene from the top of the column.
A distillate containing 1% was obtained. The obtained diacetoxybutene fraction was supplied to a hydrogenation reaction under the same conditions as in Example 1 to obtain a reaction solution containing 87.3% of diacetoxybutane and 0.1% of diacetoxyoctane.

【0026】得られた水添反応液を、気液分離後、第3
蒸留塔に供給せず、そのまま実施例1と同様の条件で加
水分解反応を行い、1,4−ブタンジオール10.4
%、モノアセトキシオクタノール0.02%を含む反応
液を得た。該反応液を、実施例1と同様にして、第4蒸
留塔、第5蒸留塔、及び第6蒸留塔に供給して、第6蒸
留塔の塔頂より純度99.5%の1,4−ブタンジオー
ルを得た。モノアセトキシオクタノール濃度は0.2%
であった。
After the obtained hydrogenated reaction solution is subjected to gas-liquid separation,
Without supplying to the distillation column, a hydrolysis reaction was directly carried out under the same conditions as in Example 1 to give 1,4-butanediol 10.4
%, And a reaction liquid containing 0.02% of monoacetoxyoctanol was obtained. The reaction solution was supplied to the fourth, fifth, and sixth distillation columns in the same manner as in Example 1, and from the top of the sixth distillation column, 1,4 with a purity of 99.5% was added. -Butanediol was obtained. Monoacetoxyoctanol concentration 0.2%
Met.

【0027】(比較例1)実施例1において、第2蒸留
塔の還流比を0.05とした他は実施例1と同様の条件
で蒸留し、塔頂からジアセトキシブテン85.0%、ジ
アセトキシオクタジエン1.7%を含む留出液を得た。
得られたジアセトキシブテン留分を用いて、実施例2と
同様にして、水添反応に供給し、得られた水添反応液
(ジアセトキシブタン85.1%、ジアセトキシオクタ
ン1.6%含有)を、気液分離後、第3蒸留塔に供給せ
ず、そのまま実施例1と同様の条件で加水分解反応を行
い、1,4−ブタンジオール9.9%、モノアセトキシ
オクタノール0.3%を含む反応液を得た。該反応液
を、実施例1と同様にして、第4蒸留塔、第5蒸留塔、
及び第6蒸留塔に供給して、第6蒸留塔の塔頂より純度
95.1%の1,4−ブタンジオールを得た。モノアセ
トキシオクタノール濃度は3.2%であった。
(Comparative Example 1) Distillation was carried out under the same conditions as in Example 1 except that the reflux ratio of the second distillation column was changed to 0.05, and 85.0% of diacetoxybutene was added from the top of the column. A distillate containing 1.7% of diacetoxyoctadiene was obtained.
The obtained diacetoxybutene fraction was supplied to a hydrogenation reaction in the same manner as in Example 2, and the obtained hydrogenation reaction solution (diacetoxybutane 85.1%, diacetoxyoctane 1.6%) Was not supplied to the third distillation column after gas-liquid separation, and the hydrolysis reaction was directly carried out under the same conditions as in Example 1 to obtain 9.9% of 1,4-butanediol and 0.3 of monoacetoxyoctanol. % Was obtained. The reaction solution was subjected to a fourth distillation tower, a fifth distillation tower,
And a sixth distillation column to obtain 1,4-butanediol having a purity of 95.1% from the top of the sixth distillation column. The monoacetoxyoctanol concentration was 3.2%.

【0028】[0028]

【発明の効果】本発明によれば、ブタジエン法により得
られるブタンジオール中に含まれる蒸留により分離困難
な不純物であるモノアセトキシオクタノールの含有量が
1重量%以下の、ポリエステル、テトラヒドロフラン等
の原料として用いるに適した高純度の1,4−ブタンジ
オールを工業的に有利に得ることができる。
According to the present invention, as a raw material for polyester, tetrahydrofuran or the like having a content of monoacetoxyoctanol, which is an impurity difficult to separate by distillation contained in butanediol obtained by a butadiene method, being 1% by weight or less. High-purity 1,4-butanediol suitable for use can be industrially advantageously obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施態様の一例を示すフローシートで
ある。
FIG. 1 is a flow sheet showing an example of an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 アセトキシ化反応器 2 第1蒸留塔 3 第2蒸留塔 4 水添反応器 5 第3蒸留塔 6 加水分解反応器 7 第4蒸留塔 8 第5蒸留塔 9 第6蒸留塔 DESCRIPTION OF SYMBOLS 1 Acetoxylation reactor 2 1st distillation tower 3 2nd distillation tower 4 Hydrogenation reactor 5 3rd distillation tower 6 Hydrolysis reactor 7 4th distillation tower 8 5th distillation tower 9 6th distillation tower

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C07C 67/283 C07C 67/283 69/16 69/16 // C07B 61/00 300 C07B 61/00 300 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI C07C 67/283 C07C 67/283 69/16 69/16 // C07B 61/00 300 C07B 61/00 300

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 ジアセトキシブタンを加水分解してブタ
ンジオールを製造する方法において、加水分解反応に供
されるジアセトキシブタン中のジアセトキシオクタンの
含有量が0.5重量%以下であることを特徴とするブタ
ンジオールの製造方法。
1. A method for producing butanediol by hydrolyzing diacetoxybutane, wherein the content of diacetoxyoctane in diacetoxybutane subjected to the hydrolysis reaction is 0.5% by weight or less. A method for producing butanediol, which is characterized by:
【請求項2】 ジアセトキシブタンが、ジアセトキシブ
テンを水素化して得られるものである請求項1に記載の
製造方法。
2. The method according to claim 1, wherein the diacetoxybutane is obtained by hydrogenating diacetoxybutene.
【請求項3】 ジアセトキシブタンが、ブタジエンを原
料とし、これをアセトキシ化し、更に水素化して得られ
るものである請求項1に記載の方法。
3. The method according to claim 1, wherein the diacetoxybutane is obtained by using butadiene as a raw material, acetoxylating this, and further hydrogenating it.
【請求項4】 ブタジエンのアセトキシ化が、パラジウ
ム系触媒の存在下、ブタジエン、酢酸及び分子状酸素を
反応させて、ジアセトキシブテンを得るものである請求
項3に記載の製造方法。
4. The method according to claim 3, wherein the acetoxylation of butadiene is obtained by reacting butadiene, acetic acid and molecular oxygen in the presence of a palladium-based catalyst to obtain diacetoxybutene.
【請求項5】 ジアセトキシオクタンの含有量が0.2
重量%以下である請求項1に記載の製造方法。
5. A diacetoxyoctane content of 0.2
The production method according to claim 1, wherein the content is not more than% by weight.
【請求項6】 ジアセトキシブテン中のジアセトキシオ
クタジエンの含有量が0.2重量%以下である請求項1
に記載の製造方法。
6. The diacetoxybutene having a diacetoxyoctadiene content of 0.2% by weight or less.
The production method described in 1.
【請求項7】 ブタンジオールが1,4−ブタンジオー
ルである請求項1に記載の製造方法。
7. The method according to claim 1, wherein the butanediol is 1,4-butanediol.
【請求項8】 1,4−ブタンジオール中のモノアセト
キシオクタノールの含有量が1重量%以下である請求項
7に記載の製造方法。
8. The method according to claim 7, wherein the content of monoacetoxyoctanol in 1,4-butanediol is 1% by weight or less.
JP25028797A 1996-09-24 1997-09-16 Method for producing butanediol Expired - Fee Related JP3959793B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25028797A JP3959793B2 (en) 1996-09-24 1997-09-16 Method for producing butanediol

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-251455 1996-09-24
JP25145596 1996-09-24
JP25028797A JP3959793B2 (en) 1996-09-24 1997-09-16 Method for producing butanediol

Publications (2)

Publication Number Publication Date
JPH10152450A true JPH10152450A (en) 1998-06-09
JP3959793B2 JP3959793B2 (en) 2007-08-15

Family

ID=26539717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25028797A Expired - Fee Related JP3959793B2 (en) 1996-09-24 1997-09-16 Method for producing butanediol

Country Status (1)

Country Link
JP (1) JP3959793B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11040334B2 (en) 2017-02-13 2021-06-22 Daicel Corporation Catalyst for reduction reaction of 3,4-dihydroxytetrahydrofuran, and method for producing 3,4-dihydroxytetrahydrofuran reduced product

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11040334B2 (en) 2017-02-13 2021-06-22 Daicel Corporation Catalyst for reduction reaction of 3,4-dihydroxytetrahydrofuran, and method for producing 3,4-dihydroxytetrahydrofuran reduced product

Also Published As

Publication number Publication date
JP3959793B2 (en) 2007-08-15

Similar Documents

Publication Publication Date Title
EP0601571B1 (en) Method for purifying 1,4-butanediol, by hydrogenation and distillation
KR860001853B1 (en) Process for continuously preparing ethylene glycol
JPH0635404B2 (en) Purification method of crude 1,4-butanediol
JPH10265418A (en) Purification of crude 1, 4-butanediol
EP0885864B1 (en) Process for purifying 1,4-butanediol by melt cristallisation
JP2557099B2 (en) Method for separating dimethyl carbonate
JP5147138B2 (en) Process for purification and production of cyclohexene
WO2023170409A1 (en) Process for producing a refined 1,4-butanediol stream
JP3959993B2 (en) Method for producing 1,4-butanediol
JP3959793B2 (en) Method for producing butanediol
JPH0572371B2 (en)
JP3991513B2 (en) Method for producing butanediol
JP3995313B2 (en) Process for producing 1,2-butanediol and 1,4-butanediol
JP3572636B2 (en) Method for producing butanediol
JP3995312B2 (en) Process for simultaneous production of 1,2-butanediol and 1,4-butanediol
JP3903513B2 (en) Method for producing diacetoxybutene
JP3682805B2 (en) Method for producing saturated aliphatic carboxylic acid amide
JP3744097B2 (en) Method for producing 1,4-butanediol
JP3956442B2 (en) Method for producing butanediol
JP3956444B2 (en) Method for producing butanediol
CA2215544A1 (en) Process for producing butanediol
JPS6115851A (en) Manufacture of 1,4-butandiol
JP3463326B2 (en) Method for producing 1,4-butanediol and tetrahydrofuran
JP2003089694A (en) Method for purifying tetrahydrofuran
JP4356342B2 (en) Purification method of ethylene glycol

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070507

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140525

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees