JPH10145039A - Printed circuit board and evaluation and manufacture thereof - Google Patents

Printed circuit board and evaluation and manufacture thereof

Info

Publication number
JPH10145039A
JPH10145039A JP8299981A JP29998196A JPH10145039A JP H10145039 A JPH10145039 A JP H10145039A JP 8299981 A JP8299981 A JP 8299981A JP 29998196 A JP29998196 A JP 29998196A JP H10145039 A JPH10145039 A JP H10145039A
Authority
JP
Japan
Prior art keywords
thickness
layer
component
circuit board
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8299981A
Other languages
Japanese (ja)
Other versions
JP3182354B2 (en
Inventor
Yoshihiko Tsujimura
好彦 辻村
Yoshiyuki Nakamura
美幸 中村
Yasuto Fushii
康人 伏井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP29998196A priority Critical patent/JP3182354B2/en
Publication of JPH10145039A publication Critical patent/JPH10145039A/en
Application granted granted Critical
Publication of JP3182354B2 publication Critical patent/JP3182354B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3457Solder materials or compositions; Methods of application thereof

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve resistance for heat cycle by conducting analysis by specifying the electron irradiating condition using an electron micro-analyzer (EPMA) after polishing the cross section of a circuit board and then measuring the thickness of the layer indicating the particular value of the Ag strength and setting this thickness as the thickness of the Ag layer. SOLUTION: Thickness of Ag layer which is solid-dispersed to a copper circuit is set as the thickness of the layer in which Ag strength IA is in the range of 20<=IA<=40 40 by conducting the analysis, after polishing the cross section of the circuit substrate, under the condition that IPMA is used and electron irradiating condition per 1μm is 15.0kV, 1.06×10<-7> A, 30msec. The region of the Ag strength exceeding 40 includes a large amount of active metal element and the region including Ag strength under 20 does not allow solid- dispersion of Ag. Therefore, it is inadequate for this region to evaluate thickness of the Ag layer. Resistance for heat cycle of the circuit substrate can be improved depending on the value of IA. It is preferable that average thickness of Ag layer measured at the positions larger than the five positions of the circuit substrate is ranged from about. 5 to 40μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電子部品のパワー
モジュール等に使用される回路基板及びその耐ヒートサ
イクル性の評価方法と製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a circuit board used for a power module of an electronic component and the like, and to a method for evaluating heat cycle resistance and a manufacturing method thereof.

【0002】近年、ロボットやモーター等の産業機器の
高性能化に伴い、大電力・高能率インバーター等大電力
モジュールの変遷が進んでおり、半導体素子から発生す
る熱も増加の一途をたどっている。この熱を効率よく放
散するため、大電力モジュール基板では従来より様々な
方法が取られてきた。特に最近では、熱伝導性の良好な
セラミックス基板が利用できるようになったため、セラ
ミックス基板上に銅等の金属板を接合し、金属回路を形
成後、そのままあるいはメッキ等の処理を施してから半
導体素子を実装する構造が採用されている。また、この
場合において、金属回路の反対面には、放熱フィンを取
り付けるための金属放熱板を接合する構造もある。
[0002] In recent years, with the advancement of the performance of industrial equipment such as robots and motors, the transition of high-power modules such as high-power and high-efficiency inverters has been progressing, and the heat generated from semiconductor elements has been increasing steadily. . In order to efficiently dissipate this heat, various methods have conventionally been used for large power module substrates. Particularly recently, ceramic substrates with good thermal conductivity have become available, so a metal plate such as copper is bonded on a ceramic substrate, and after forming a metal circuit, the substrate is subjected to a treatment such as plating or plating. A structure for mounting an element is employed. In this case, there is also a structure in which a metal heat radiating plate for attaching a heat radiating fin is joined to the opposite surface of the metal circuit.

【0003】このような回路基板を作製するには、Ag
とCuを主成分とし、Zr、Ti、Hf等の活性金属成
分を副成分として含有するろう材をセラミックス基板に
回路パターン状に印刷した後、回路パターンと同形状の
金属板を載置し加熱接合する方法、ろう材を回路パター
ン状に印刷後ベタ金属板を加熱接合し、不要な金属をエ
ッチングして金属回路を形成する方法、ろう材を全面に
塗布した後ベタ金属板を加熱接合し、不要な金属とろう
材をエッチング等により除去して金属回路を形成する方
法、等により行われている(例えばWO91/1680
5号公報)。このような作製方法は、いずれも活性金属
を含むろう材を用いる技術であるので活性金属ろう付け
法とも呼ばれている。
In order to manufacture such a circuit board, Ag is used.
After a brazing material containing Cu and Cu as main components and an active metal component such as Zr, Ti, Hf or the like as an auxiliary component is printed on a ceramic substrate in a circuit pattern shape, a metal plate having the same shape as the circuit pattern is placed and heated. A method of joining, a method of printing a brazing material in a circuit pattern, heating and joining a solid metal plate, etching unnecessary metal to form a metal circuit, and applying a brazing material to the entire surface and then heating and joining the solid metal plate. A method of forming a metal circuit by removing unnecessary metal and brazing material by etching or the like (for example, WO91 / 1680).
No. 5). Since such a manufacturing method is a technique using a brazing material containing an active metal, it is also called an active metal brazing method.

【0004】活性金属ろう付け法には、(1)金属板と
セラミックス基板とを接合する温度がDBC法よりも低
いので、セラミックス基板と金属板との熱膨張差によっ
て生じる残留熱応力が小さい、(2)ろう材が延性金属
であるので、ヒートショックやヒートサイクルによる耐
ヒートサイクル性が大である、という利点がある。ここ
で、DBC法とはセラミックス基板と銅板とをろう材を
使用せずに共晶を利用して直接接合する方法である。
In the active metal brazing method, (1) since the temperature at which the metal plate and the ceramic substrate are joined is lower than that of the DBC method, the residual thermal stress caused by the difference in thermal expansion between the ceramic substrate and the metal plate is small. (2) Since the brazing material is a ductile metal, there is an advantage that heat cycle resistance due to heat shock or heat cycle is large. Here, the DBC method is a method of directly joining a ceramics substrate and a copper plate using a eutectic without using a brazing material.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、このよ
うな活性金属ろう付け法で作製された回路基板において
も、一段と耐ヒートサイクル性を向上させたものが要求
されている。
However, a circuit board manufactured by such an active metal brazing method is required to have a further improved heat cycle resistance.

【0006】本発明の目的は、耐ヒートサイクル性を従
来以上に向上させた回路基板を提供することである。
An object of the present invention is to provide a circuit board having improved heat cycle resistance more than before.

【0007】[0007]

【課題を解決するための手段】すなわち、本発明は、銅
回路とセラミックス基板とが、Ag成分とCu成分と活
性金属成分を含むろう材を用いて接合されてなる回路基
板の評価方法であって、以下の方法で測定される銅回路
中に固体拡散しているAg層の厚みの大きさによって回
路基板の耐ヒートサイクル性を評価することを特徴とす
る回路基板の評価方法である。
That is, the present invention relates to a method for evaluating a circuit board in which a copper circuit and a ceramic substrate are joined using a brazing material containing an Ag component, a Cu component and an active metal component. The heat cycle resistance of the circuit board is evaluated based on the thickness of the Ag layer solid-diffused in the copper circuit measured by the following method.

【0008】〔測定方法〕回路基板の断面を研磨後、電
子線マイクロアナライザー(EPMA)により、1μm
当たりの電子線照射条件を15.0kV、1.06×1
-7A、30msecとして分析を行い、Ag強度IA
が20≦IA ≦40を示す層の厚みを測定してAg層の
厚みとする。
[Measurement Method] After polishing a cross section of a circuit board, the cross section of the circuit board is 1 μm by an electron beam microanalyzer (EPMA).
The electron beam irradiation conditions per unit were 15.0 kV, 1.06 × 1
The analysis was performed at 0 -7 A, 30 msec, and the Ag intensity I A
There is the thickness of the Ag layer by measuring the thickness of the layer shows a 20 ≦ I A ≦ 40.

【0009】また、本発明は、上記評価方法で評価した
ときに、銅回路中に固体拡散しているAg層の厚みが5
〜40μmであることを特徴とする回路基板である。
Further, according to the present invention, when evaluated by the above-described evaluation method, the thickness of the Ag layer solid-diffused in the copper circuit is 5%.
It is a circuit board characterized by being about 40 μm.

【0010】更に、本発明は、金属成分のうち、Ag成
分とCu成分を主成分、活性金属成分を副成分としてそ
れぞれ含み、しかもAg成分:Cu成分の重量比が80
〜95:20〜5であるろう材を、銅板とセラミックス
基板との間に介在させてから真空度10-5〜1×10-6
Torrの高真空中で加熱開始し、温度700℃以上か
らの昇温速度を10℃/分にして800〜840℃まで
高め、その温度で保持した後冷却することを特徴とする
回路基板の製造方法である。
Further, the present invention provides, among the metal components, an Ag component and a Cu component as main components and an active metal component as an auxiliary component, respectively, and the weight ratio of the Ag component to the Cu component is 80.
95: 20-5, after the brazing material is interposed between the copper plate and the ceramic substrate, the degree of vacuum is 10 −5 to 1 × 10 −6.
Manufacturing a circuit board characterized by starting heating in a high vacuum of Torr, increasing the temperature from 700 ° C. or higher at a rate of 10 ° C./min to 800 to 840 ° C., holding at that temperature, and then cooling. Is the way.

【0011】[0011]

【発明の実施の形態】以下、更に詳しく本発明について
説明すると、銅板とセラミックス基板とが接合された回
路基板の耐ヒートサイクル性(信頼性)を向上させるに
は、セラミックス基板自体の強度を向上させることの他
に、銅板の耐疲労特性を低下させないこと、すなわち銅
板の機械的特性を低下させないようにしてセラミックス
基板と接合させることが重要となる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in more detail below. In order to improve the heat cycle resistance (reliability) of a circuit board in which a copper plate and a ceramic substrate are joined, the strength of the ceramic substrate itself must be improved. In addition to this, it is important not to reduce the fatigue resistance of the copper plate, that is, to bond the copper plate to the ceramic substrate without lowering the mechanical characteristics.

【0012】高純度の無酸素銅は、加熱処理すると柔ら
かくなり塑性変形しやすいので、熱膨張係数の異なるセ
ラミックス基板と接合させてもセラミックス基板に損傷
を与え難いが、これにわずかな不純物が入ると、硬化し
やすくなり、銅本来の特性である塑性変形しやすい性質
が失われ、残留応力となってセラミックス基板に損傷を
与えるようになる(丸田隆美:伸銅技術研究会誌 2(196
3),89.)。
Since high-purity oxygen-free copper is softened and easily plastically deformed by heat treatment, it does not easily damage the ceramic substrate even when joined to a ceramic substrate having a different coefficient of thermal expansion, but contains a small amount of impurities. In this way, it becomes harder and loses its inherent property of being easily plastically deformed, which is the original property of copper, and causes residual stress to damage the ceramic substrate (Takami Maruta: Journal of Copper and Copper Technology 2 (196
3), 89.).

【0013】したがって、回路基板の銅板としては、無
酸素銅が好ましいが、特に酸素以外の不純物も銅板中に
混入させないようにすることが重要なことである。活性
金属ろう付け法において、銅板中に固体拡散しやすい物
質はAgである。
Accordingly, oxygen-free copper is preferable as the copper plate of the circuit board, but it is particularly important to prevent impurities other than oxygen from being mixed into the copper plate. In the active metal brazing method, Ag is a substance that easily diffuses into the copper plate.

【0014】本発明において、セラミックス基板と銅板
とがろう材ペーストを介した状態で温度を高めていく
と、まずろう材が銅板と接触している部分から溶融し、
次いでAgリッチの組成から共晶組成に移行するが、更
に温度が高まるとAgの拡散が開始すると考えた。した
がって、この場合において、ワークが受け取るエネルギ
ーEは、銅板とAgのみの反応を考慮した場合、E=E
1 +E2 となる。ここで、E1 はAg(S) +Cu(S) →
AgCu(共晶)によって消費するエネルギーであり、
E2 は銅板中へAgが固体拡散する際の消費エネルギー
である。E1 はろう材中のAg量によって定まるもので
あり、Agリッチの組成ほど大きくなると考えられる。
したがって、ろう材中のAg量が極端に少ないか、又は
共晶組成に近いとE1 が小さくなり、Agの拡散が起こ
りやすくなる。
In the present invention, when the temperature is increased in a state where the ceramic substrate and the copper plate are interposed with the brazing material paste, first, the brazing material is melted from a portion in contact with the copper plate,
Subsequently, the composition shifts from the Ag-rich composition to the eutectic composition, and it is considered that Ag diffusion starts when the temperature is further increased. Therefore, in this case, the energy E received by the work is E = E when the reaction between the copper plate and Ag alone is considered.
1 + E2. Here, E1 is Ag (S) + Cu (S) →
Energy consumed by AgCu (eutectic),
E2 is the energy consumed when Ag diffuses into the copper plate. E1 is determined by the amount of Ag in the brazing filler metal, and is considered to increase as the Ag-rich composition increases.
Therefore, when the amount of Ag in the brazing material is extremely small or close to the eutectic composition, E1 becomes small, and Ag diffusion easily occurs.

【0015】Agの固体拡散はわずかなエネルギーによ
っても起こるため、可能な限りAgリッチの組成から共
晶組成に移行する際のエネルギー消費を大きくしてAg
の拡散に与えるエネルギーを少なくすることが重要とな
る。すなわち、E≒E1 (E2 ≒0)とすることであ
り、そのためには接合温度を可能な限り低くすること等
が考えられる。本発明で採用した手段は、ろう材の金属
成分と接合条件の適性化である。すなわち、ろう材の金
属成分の主成分であるAg成分とCu成分の重量比をA
g成分:Cu成分=80〜95:20〜5とすると共
に、接合を真空度10-5〜1×10-6Torrの高真空
中、温度800〜840℃で行い、しかも700℃から
の昇温速度を10℃/分以上と速くして行うことであ
る。
Since the solid diffusion of Ag occurs even by a small amount of energy, the energy consumption when transitioning from an Ag-rich composition to a eutectic composition is increased as much as possible to reduce the Ag consumption.
It is important to reduce the energy given to the diffusion of methane. That is, E ≒ E1 (E2 ≒ 0). To this end, it is conceivable to lower the bonding temperature as much as possible. The means adopted in the present invention is to optimize the metal component of the brazing material and the joining conditions. That is, the weight ratio of the Ag component and the Cu component, which are the main components of the metal component of the brazing filler metal, is set to A.
g component: Cu component = 80 to 95: 20 to 5 and bonding is performed in a high vacuum of a degree of vacuum of 10 −5 to 1 × 10 −6 Torr at a temperature of 800 to 840 ° C. and a rise from 700 ° C. This is to increase the temperature rate to 10 ° C./min or more.

【0016】本発明において、銅回路中に固体拡散して
いるAg層の厚みは、回路基板の断面を研磨後、電子線
マイクロアナライザー(EPMA)、例えば日本電子社
製「JXA−8600M」を用い、1μm当たりの電子
線照射条件を15.0kV、1.06×10-7A、30
msecとして分析を行い、Ag強度IA が20≦I A
≦40を示す層の厚みとして定義される。
In the present invention, solid-state diffusion in a copper circuit
The thickness of the Ag layer is determined by polishing the cross section of the
Microanalyzer (EPMA), eg JEOL
Per 1 μm using "JXA-8600M"
Line irradiation conditions were 15.0 kV, 1.06 × 10-7A, 30
The analysis was performed as msec and the Ag intensity IAIs 20 ≦ I A
It is defined as the thickness of the layer showing ≦ 40.

【0017】本発明の回路基板は、セラミックス基板、
接合層及び銅回路から構成されていると考えた場合、A
g強度IA が40をこえる領域は、活性金属成分や、I
n、Sn、Zn等の金属間化合物や合金等が多く含まれ
ている接合層であるので、銅回路中に固体拡散している
Ag層の厚みを評価する領域としては適切ではない。ま
た、Ag強度IA が20未満の領域である銅回路の表面
部ないしはセラミックス基板の領域ではAgが固体拡散
しておらず、これまたAg層の厚みを評価する領域とし
ては適切ではない。本発明においては、Ag強度IA
20≦IA ≦40を示す層の厚みを銅回路中に固体拡散
しているAg層の厚みと定義した場合、その値の大きさ
によって回路基板の耐ヒートサイクル性の善し悪しを評
価することができるものである。
The circuit board of the present invention comprises a ceramic substrate,
When it is considered to be composed of a bonding layer and a copper circuit, A
region g the intensity I A exceeds 40, and active metal component, I
Since the bonding layer contains a large amount of an intermetallic compound such as n, Sn, or Zn, an alloy, or the like, it is not appropriate as a region for evaluating the thickness of the Ag layer that is solid-diffused in the copper circuit. Further, Ag intensity I A is not in Ag solid diffusion in the region of the surface portion or the ceramic substrate of the copper circuit is a region of less than 20, not suitable this also as an area to evaluate the thickness of the Ag layer. In the present invention, if defined as the thickness of the Ag layer Ag intensity I A is solid diffusion layer thicknesses in the copper circuit showing a 20 ≦ I A ≦ 40, resistance of the circuit board by the magnitude of the value The heat cycle property can be evaluated as good or bad.

【0018】本発明の回路基板においては、銅回路中に
固体拡散しているAg層の厚みは5〜40μmである。
Ag層の厚みが5μm未満では、セラミックス基板と銅
板との接合が不十分となり、また40μmをこえると、
銅板の塑性変形特性が失われセラミックス基板に損傷を
与え、いずれの場合においても回路基板の耐ヒートサイ
クル性を一段と高めることができなくなる。本発明にお
いては、回路基板の任意の5箇所以上の箇所で測定され
たAg層の厚みの平均値が5〜40μmであることが好
ましい。
In the circuit board of the present invention, the thickness of the Ag layer solid-diffused in the copper circuit is 5 to 40 μm.
When the thickness of the Ag layer is less than 5 μm, the bonding between the ceramic substrate and the copper plate becomes insufficient, and when the thickness exceeds 40 μm,
The plastic deformation characteristics of the copper plate are lost and the ceramic substrate is damaged, and in any case, the heat cycle resistance of the circuit board cannot be further improved. In the present invention, it is preferable that the average value of the thickness of the Ag layer measured at any five or more locations on the circuit board is 5 to 40 μm.

【0019】次に、本発明の回路基板の製造方法につい
て説明する。
Next, a method of manufacturing a circuit board according to the present invention will be described.

【0020】本発明で使用されるセラミックス基板とし
ては、アルミナ、窒化珪素、窒化アルミニウム等があげ
られるが、熱伝導率の高い窒化アルミニウムが望まし
い。窒化アルミニウム基板を製造する際の焼結助剤とし
ては、希土類酸化物(例えばイットリア)、アルカリ土
類金属酸化物(例えばカルシア)等が好ましいが、特に
イットリアが望ましい。焼結助剤の割合は、窒化アルミ
ニウム粉末と焼結助剤の合計に対し2〜5重量%含有し
ていることが望ましい。また、セラミックス基板の厚み
は、厚すぎると熱抵抗が大きくなり、薄すぎると耐久性
がなくなるため、0.5〜0.8mm程度であることが
好ましい。
Examples of the ceramic substrate used in the present invention include alumina, silicon nitride, and aluminum nitride. Aluminum nitride having high thermal conductivity is preferable. As a sintering aid for producing an aluminum nitride substrate, rare earth oxides (for example, yttria), alkaline earth metal oxides (for example, calcia) and the like are preferable, and yttria is particularly preferable. The ratio of the sintering aid is preferably 2 to 5% by weight based on the total of the aluminum nitride powder and the sintering aid. Further, the thickness of the ceramic substrate is preferably about 0.5 to 0.8 mm, because if it is too thick, the thermal resistance will be large, and if it is too thin, the durability will be lost.

【0021】セラミックス基板の表面性状は重要であ
り、微少な欠陥や窪み等は、銅板との接合時の接触面積
に大きな影響を与えるため、平滑であることが望まし
い。したがって、ホーニング処理や機械加工等による研
磨を行うことが望ましい。
The surface properties of the ceramic substrate are important, and it is desirable that the surface of the ceramic substrate be smooth because minute defects and dents have a large effect on the contact area at the time of bonding with the copper plate. Therefore, it is desirable to perform polishing by honing, machining, or the like.

【0022】一方、銅回路の厚みとしては、近年、電流
密度が向上していく傾向から0.3mmよりも厚い方が
好ましく、また裏面に放熱銅板を設ける場合はその厚み
を0.2mm以下とすることが好ましい。
On the other hand, the thickness of the copper circuit is preferably larger than 0.3 mm in view of the tendency of current density to increase in recent years, and when a heat-dissipating copper plate is provided on the back surface, the thickness is preferably 0.2 mm or less. Is preferred.

【0023】セラミックス基板の一方の面に銅回路、他
方の面には放熱銅板を形成する方法としては、セラミッ
クス基板と銅板との接合体をエッチングする方法、銅板
から打ち抜かれた銅回路及び/又は放熱銅板のパターン
をセラミックス基板に接合する方法等によって行うこと
ができ、これらの際における銅板又は銅パターンとセラ
ミックス基板との接合方法としては、活性金属ろう付け
法が採用される。
As a method of forming a copper circuit on one surface of the ceramic substrate and a heat-dissipating copper plate on the other surface, a method of etching a joined body of the ceramic substrate and the copper plate, a copper circuit punched from the copper plate and / or The pattern of the heat-dissipating copper plate can be bonded to the ceramic substrate by a method or the like. In such a case, as a bonding method of the copper plate or the copper pattern and the ceramic substrate, an active metal brazing method is adopted.

【0024】活性金属ろう付け法におけるろう材の金属
成分は、Ag成分とCu成分を主成分とし、溶融時のセ
ラミックス基板との濡れ性を確保するために、活性金属
を副成分とする。この活性金属成分は、セラミックス基
板と反応して酸化物や窒化物を生成させ、それらの生成
物がろう材とセラミックス基板との結合を強固なものに
する。活性金属の具体例をあげれば、Ti、Zr、H
f、Nb、Ta、Vやこれらの化合物である。これらの
比率としては、Ag80〜95重量部とCu20〜5重
量部の合計量100重量部あたり活性金属1〜7重量部
である。
The metal component of the brazing material in the active metal brazing method contains Ag component and Cu component as main components, and an active metal as a subcomponent in order to ensure wettability with the ceramic substrate during melting. The active metal component reacts with the ceramic substrate to generate oxides and nitrides, and these products strengthen the bond between the brazing material and the ceramic substrate. Specific examples of the active metal include Ti, Zr, and H.
f, Nb, Ta, V, and these compounds. These ratios are 1 to 7 parts by weight of the active metal per 100 parts by weight of the total of 80 to 95 parts by weight of Ag and 20 to 5 parts by weight of Cu.

【0025】銅板とセラミックス基板の接合温度は、温
度が高すぎると、銅回路中へのAgの拡散が進み銅回路
の残留応力として残りやすくなり、また温度が低すぎる
と、銅板とセラミックス基板が充分に接合しなくなるた
め、800〜840℃とする。更には、接合温度までの
昇温速度を可能な限り速くすることが好ましく、特に7
00℃からの昇温速度を10℃/分以上とする。接合時
の雰囲気は、真空度1×10-5〜1×10-6Torrの
高真空中である。真空度1×10-5未満では接合が不十
分となり、また真空度1×10-6Torrをこえる高真
空中では却ってろう材の活性が高まり過ぎ、いずれの場
合も耐ヒートサイクル性は向上しない。
If the joining temperature between the copper plate and the ceramic substrate is too high, the diffusion of Ag into the copper circuit proceeds and the residual stress of the copper circuit tends to remain, and if the temperature is too low, the copper plate and the ceramic substrate become uncomfortable. The temperature is set to 800 to 840 ° C. because bonding is not sufficiently performed. Further, it is preferable to increase the heating rate up to the joining temperature as much as possible,
The rate of temperature rise from 00 ° C. is 10 ° C./min or more. The atmosphere at the time of joining is a high vacuum with a degree of vacuum of 1 × 10 −5 to 1 × 10 −6 Torr. If the degree of vacuum is less than 1 × 10 −5 , the bonding becomes insufficient, and if the degree of vacuum exceeds 1 × 10 −6 Torr, the activity of the brazing filler metal becomes too high, and the heat cycle resistance is not improved in any case. .

【0026】[0026]

【実施例】以下、本発明を実施例と比較例をあげて具体
的に説明する。
The present invention will be specifically described below with reference to examples and comparative examples.

【0027】実施例1〜5 比較例1〜6 窒化アルミニウム粉末96重量部、焼結助剤(イットリ
ア)4重量部の合計100重量部に対し、表面処理剤と
してオレイン酸を2重量部を添加し、振動ミルにて予備
混合を行った。更に、有機結合剤としてエチルセルロー
ス8重量部、可塑剤としてグリセリントリオレート3重
量部及び水12重量部と共にミキサーで混合を行い、そ
の混練物を成型速度1.0m/分、成型圧力55〜70
kg/cm2 で押出成型を行った。
Examples 1-5 Comparative Examples 1-6 2 parts by weight of oleic acid as a surface treatment agent was added to 96 parts by weight of aluminum nitride powder and 4 parts by weight of a sintering aid (yttria) in total of 100 parts by weight. Then, premixing was performed with a vibration mill. Further, 8 parts by weight of ethyl cellulose as an organic binder, 3 parts by weight of glycerin triolate as a plasticizer and 12 parts by weight of water are mixed by a mixer, and the kneaded product is molded at a molding speed of 1.0 m / min.
Extrusion was performed at kg / cm 2 .

【0028】この押出成型体を遠赤外線で120℃、5
分間乾燥を行った後、480℃で10時間空気中で脱脂
を行い温度1850℃で焼成を行った。得られた窒化ア
ルミニウム焼結体の表面をホーニング処理して十分に清
浄化し、60mm×36mm×0.65mmの大きさに
加工して窒化アルミニウム基板とした。
The extruded product was heated at 120 ° C., 5
After drying for 1 minute, the material was degreased in air at 480 ° C. for 10 hours and fired at 1850 ° C. The surface of the obtained aluminum nitride sintered body was sufficiently cleaned by a honing treatment and processed into a size of 60 mm × 36 mm × 0.65 mm to obtain an aluminum nitride substrate.

【0029】Ag粉末とCu粉末の割合を表1に示すよ
うに種々変化させたもの100重量部に、Zr粉末3重
量部、Ti粉末3重量部、テルピネオール15重量部及
び有機結合剤としてポリイソブチルメタアクリレートの
トルエン溶液を固形分で5重量部を加えてよく混練し、
ろう材ペーストを調整した。このろう材ペーストを窒化
アルミニウム基板の表面(回路側)にスクリーン印刷に
よってパターン率0.20のL字型パターンに塗布する
と共に、裏面(放熱側)には全面塗布した。その際の塗
布量(乾燥後)は9mg/cm2 とした。
The ratio of Ag powder to Cu powder was varied as shown in Table 1. 100 parts by weight, 3 parts by weight of Zr powder, 3 parts by weight of Ti powder, 15 parts by weight of terpineol, and polyisobutyl as an organic binder were used. Add 5 parts by weight of a methacrylate toluene solution as a solid content and knead well.
The brazing material paste was adjusted. This brazing material paste was applied on the front surface (circuit side) of the aluminum nitride substrate by screen printing to form an L-shaped pattern having a pattern ratio of 0.20, and on the entire back surface (radiation side). The coating amount (after drying) at that time was 9 mg / cm 2 .

【0030】次いで、回路側には60mm×36mm×
0.3mmの銅板を、また放熱側には60mm×36m
m×0.15mmの銅板をそれぞれ接触配置してから、
雰囲気の真空度及び温度700℃以上の昇温速度を表1
の条件にして同表に示す接合温度まで昇温し、その温度
で30分保持した後、2℃/分の降温速度で冷却して接
合体を製造した。
Next, on the circuit side, 60 mm × 36 mm ×
0.3mm copper plate and 60mm × 36m on the heat dissipation side
After placing the mx 0.15mm copper plates in contact with each other,
Table 1 shows the degree of vacuum in the atmosphere and the rate of temperature rise above 700 ° C.
Then, the temperature was raised to the bonding temperature shown in the same table, maintained at that temperature for 30 minutes, and then cooled at a cooling rate of 2 ° C./min to produce a bonded body.

【0031】得られた接合体にUV硬化タイプのエッチ
ングレジストをろう材ペーストパターンに合わせてスク
リーン印刷により塗布した後、塩化第2銅溶液を用いて
エッチングして銅板不要部分を溶解除去し、更にエッチ
ングレジストを5%苛性ソーダ溶液で剥離した。このエ
ッチング処理された接合体には、銅回路パターン間には
残留する不要ろう材や活性金属成分と窒化アルミニウム
基板との反応物があるので、それを除去するため、温度
60℃、10%フッ化アンモニウム溶液に10分間浸漬
した。
After applying a UV curing type etching resist to the obtained joined body by screen printing in accordance with the brazing material paste pattern, etching is performed using a cupric chloride solution to dissolve and remove unnecessary portions of the copper plate. The etching resist was stripped with a 5% sodium hydroxide solution. In the joined body subjected to the etching treatment, there is an unnecessary brazing material or a reactant between the active metal component and the aluminum nitride substrate remaining between the copper circuit patterns. It was immersed in an ammonium chloride solution for 10 minutes.

【0032】これら一連の処理を経て製作された回路基
板について、放熱側から押した場合の3点曲げ強度をス
パン30mm、クロスヘッドスピード0.5mm/分の
条件で測定した。また、耐ヒートサイクイル性を評価す
るため、大気中、−40℃×30分保持後、25℃×1
0分間放置、更に125℃×30分保持後、25℃×1
0分間放置を1サイクルとした耐久性試験を行い、銅回
路又は放熱銅板が剥離開始したサイクル数を測定した。
また、銅回路中にAgが固体拡散したAg層の厚みを上
記に従い任意の5箇所で測定しその値を平均した。それ
らの結果を表1に示す。
With respect to the circuit board manufactured through these series of processes, the three-point bending strength when pressed from the heat radiation side was measured under the conditions of a span of 30 mm and a crosshead speed of 0.5 mm / min. Further, in order to evaluate the heat cycling resistance, after holding at -40 ° C for 30 minutes in the air, 25 ° C x 1
Leave for 0 minutes, hold at 125 ° C x 30 minutes, then 25 ° C x 1
A durability test was performed in which one cycle was left for 0 minutes, and the number of cycles at which the copper circuit or the heat-dissipating copper plate started peeling was measured.
In addition, the thickness of the Ag layer in which Ag was solid-diffused in the copper circuit was measured at five arbitrary positions as described above, and the values were averaged. Table 1 shows the results.

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【発明の効果】本発明によれば、耐ヒートサイクル性を
一段と高めた回路基板を提供することができる。
According to the present invention, a circuit board with further improved heat cycle resistance can be provided.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 銅回路とセラミックス基板とが、Ag成
分とCu成分と活性金属成分を含むろう材を用いて接合
されてなる回路基板の評価方法であって、以下の方法で
測定される銅回路中に固体拡散しているAg層の厚みの
大きさによって回路基板の耐ヒートサイクル性を評価す
ることを特徴とする回路基板の評価方法。 〔測定方法〕回路基板の断面を研磨後、電子線マイクロ
アナライザー(EPMA)により、1μm当たりの電子
線照射条件を15.0kV、1.06×10-7A、30
msecとして分析を行い、Ag強度IA が20≦IA
≦40を示す層の厚みを測定してAg層の厚みとする。
1. A method for evaluating a circuit board in which a copper circuit and a ceramic substrate are joined using a brazing material containing an Ag component, a Cu component, and an active metal component, wherein the copper circuit is measured by the following method. A method for evaluating a circuit board, comprising evaluating the heat cycle resistance of the circuit board based on the thickness of the Ag layer that is solid-diffused in the circuit. [Measurement Method] After polishing the cross section of the circuit board, the electron beam irradiation conditions per 1 μm were set to 15.0 kV, 1.06 × 10 −7 A, 30 μm by an electron beam microanalyzer (EPMA).
analyzed as msec, Ag intensity I A is 20 ≦ I A
The thickness of the layer that satisfies ≦ 40 is measured and defined as the thickness of the Ag layer.
【請求項2】 請求項1記載の評価方法で評価したとき
に、銅回路中に固体拡散しているAg層の厚みが5〜4
0μmであることを特徴とする回路基板。
2. The method according to claim 1, wherein the Ag layer solid-diffused in the copper circuit has a thickness of 5 to 4%.
A circuit board having a thickness of 0 μm.
【請求項3】 金属成分のうち、Ag成分とCu成分を
主成分、活性金属成分を副成分としてそれぞれ含み、し
かもAg成分:Cu成分の重量比が80〜95:20〜
5であるろう材を、銅板とセラミックス基板との間に介
在させてから真空度1×10-5〜1×10-6Torrの
高真空中で加熱開始し、温度700℃以上からの昇温速
度を10℃/分にして800〜840℃まで高め、その
温度で保持した後冷却することを特徴とする回路基板の
製造方法。
3. The metal component contains an Ag component and a Cu component as main components and an active metal component as an auxiliary component, respectively, and has a weight ratio of Ag component: Cu component of 80-95: 20-.
After the brazing material No. 5 is interposed between the copper plate and the ceramic substrate, heating is started in a high vacuum at a degree of vacuum of 1 × 10 −5 to 1 × 10 −6 Torr, and the temperature is raised from a temperature of 700 ° C. or more. A method for manufacturing a circuit board, comprising increasing the speed to 800 to 840 ° C. at a rate of 10 ° C./min, holding at that temperature, and then cooling.
JP29998196A 1996-11-12 1996-11-12 Circuit board and its evaluation method Expired - Lifetime JP3182354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29998196A JP3182354B2 (en) 1996-11-12 1996-11-12 Circuit board and its evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29998196A JP3182354B2 (en) 1996-11-12 1996-11-12 Circuit board and its evaluation method

Publications (2)

Publication Number Publication Date
JPH10145039A true JPH10145039A (en) 1998-05-29
JP3182354B2 JP3182354B2 (en) 2001-07-03

Family

ID=17879318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29998196A Expired - Lifetime JP3182354B2 (en) 1996-11-12 1996-11-12 Circuit board and its evaluation method

Country Status (1)

Country Link
JP (1) JP3182354B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000031609A (en) * 1998-07-16 2000-01-28 Denki Kagaku Kogyo Kk Circuit board
US9504144B2 (en) 2012-02-01 2016-11-22 Mitsubishi Materials Corporation Power module substrate, power module substrate with heat sink, power module, method of manufacturing power module substrate, and copper member-bonding paste
JP2017041567A (en) * 2015-08-20 2017-02-23 デンカ株式会社 Method of manufacturing ceramic circuit board
JP2019104680A (en) * 2015-12-28 2019-06-27 日本碍子株式会社 Joined substrate and production method of joined substrate
WO2021149789A1 (en) * 2020-01-23 2021-07-29 デンカ株式会社 Ceramic-copper composite and method for producing ceramic-copper composite

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000031609A (en) * 1998-07-16 2000-01-28 Denki Kagaku Kogyo Kk Circuit board
US9504144B2 (en) 2012-02-01 2016-11-22 Mitsubishi Materials Corporation Power module substrate, power module substrate with heat sink, power module, method of manufacturing power module substrate, and copper member-bonding paste
US10375825B2 (en) 2012-02-01 2019-08-06 Mitsubishi Materials Corporation Power module substrate, power module substrate with heat sink, power module, method of manufacturing power module substrate, and copper member-bonding paste
JP2017041567A (en) * 2015-08-20 2017-02-23 デンカ株式会社 Method of manufacturing ceramic circuit board
JP2019104680A (en) * 2015-12-28 2019-06-27 日本碍子株式会社 Joined substrate and production method of joined substrate
WO2021149789A1 (en) * 2020-01-23 2021-07-29 デンカ株式会社 Ceramic-copper composite and method for producing ceramic-copper composite

Also Published As

Publication number Publication date
JP3182354B2 (en) 2001-07-03

Similar Documents

Publication Publication Date Title
JP2001168482A (en) Ceramics circuit substrate
JPH08139420A (en) Circuit board
JP4674983B2 (en) Manufacturing method of joined body
JPH11121889A (en) Circuit board
JPH09162325A (en) Nitride silicon circuit board and its manufacturing method
JP3182354B2 (en) Circuit board and its evaluation method
JP3933287B2 (en) Circuit board with heat sink
JP4018264B2 (en) Method for manufacturing aluminum-aluminum nitride insulating substrate
JP3526710B2 (en) Circuit board manufacturing method
JPH11154776A (en) Board
JP3585338B2 (en) Aluminum nitride substrate and its use
JP2003192462A (en) Silicon nitride circuit board and method of producing the same
JP3537320B2 (en) Circuit board
JP3560357B2 (en) Manufacturing method of aluminum nitride sintered body
JP3257869B2 (en) Circuit board
JP3454331B2 (en) Circuit board and method of manufacturing the same
JP3460155B2 (en) Aluminum nitride substrate and circuit board
JPH09246691A (en) Manufacture of ceramic circuit board having metallic circuit
JP3729637B2 (en) Electronic components
JP3460167B2 (en) Method for manufacturing aluminum nitride circuit board having metal circuit
JP2002137974A (en) Method of bonding ceramic body and copper plate
JP2000031609A (en) Circuit board
JP3342797B2 (en) Method for manufacturing ceramic circuit board having metal circuit
JP3529085B2 (en) Circuit board with heat sink
JP4111253B2 (en) Circuit board

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080420

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090420

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090420

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140420

Year of fee payment: 13

EXPY Cancellation because of completion of term