JP2017041567A - Method of manufacturing ceramic circuit board - Google Patents

Method of manufacturing ceramic circuit board Download PDF

Info

Publication number
JP2017041567A
JP2017041567A JP2015163101A JP2015163101A JP2017041567A JP 2017041567 A JP2017041567 A JP 2017041567A JP 2015163101 A JP2015163101 A JP 2015163101A JP 2015163101 A JP2015163101 A JP 2015163101A JP 2017041567 A JP2017041567 A JP 2017041567A
Authority
JP
Japan
Prior art keywords
circuit board
ceramic circuit
copper
brazing material
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015163101A
Other languages
Japanese (ja)
Inventor
良太 青野
Ryota Aono
良太 青野
築地原 雅夫
Masao Tsukijihara
雅夫 築地原
宮川 健志
Kenji Miyagawa
健志 宮川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Co Ltd filed Critical Denka Co Ltd
Priority to JP2015163101A priority Critical patent/JP2017041567A/en
Publication of JP2017041567A publication Critical patent/JP2017041567A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a ceramic circuit board having excellent crack resistance against ultrasonic bonding.SOLUTION: Provided is a method of manufacturing a ceramic circuit board in which both main surfaces of a ceramic substrate and a metal plate are joined via a silver-copper brazing material layer, in which the composition of the silver-copper brazing material is 75 to 98 parts by mass of the silver powder and 2 to 25 parts by mass of the copper powder, the ceramic circuit contains at least one active metal selected from titanium, zirconium, hafnium, niobium, tantalum, and vanadium, and tin, and is bonded at a degree of vacuum of 1×10Pa or less, a bonding temperature of 780°C to 850°C, and a holding time of 10 to 60 minutes, and the difference in thickness of the brazing material layer after bonding is smaller than 50 μm. The ceramic substrate is made of aluminum nitride.SELECTED DRAWING: None

Description

本発明は、超音波接合に対して優れた耐クラック性を有するセラミックス回路基板の製造方法に関する。   The present invention relates to a method for manufacturing a ceramic circuit board having excellent crack resistance against ultrasonic bonding.

電鉄、車両、産業機械向けといった高電圧、大電流動作を必要とするパワーモジュールには、セラミックス回路基板上に半導体素子が接合されたものが搭載されている。セラミックス回路基板から外部に出力を取り出すには、銅電極を設け、これをセラミックス回路基板の外側にはみ出した形態で設置するのが一般的である。 Power modules that require high voltage and large current operation, such as those for electric railways, vehicles, and industrial machines, are mounted with a semiconductor element bonded on a ceramic circuit board. In order to extract the output from the ceramic circuit board to the outside, it is common to provide a copper electrode and install it in a form protruding from the outside of the ceramic circuit board.

従来、セラミックス回路基板と銅電極の接合は半田が使用されてきたが、パワーモジュールとして使用する際に発生する熱や振動により半田クラックが発生し、信頼性が低下する問題があった。このため、金属回路板と銅電極を直接接合する超音波接合が用いられるようになってきた。超音波接合は、銅電極をセラミックス基板に対し垂直方向に荷重を掛けながら、水平方向に超音波振動を付与することにより回路基板の銅板と銅電極を一体化する手法である。   Conventionally, solder has been used to join a ceramic circuit board and a copper electrode, but there has been a problem that solder cracks are generated due to heat and vibration generated when used as a power module, and reliability is lowered. For this reason, ultrasonic bonding that directly bonds a metal circuit board and a copper electrode has been used. Ultrasonic bonding is a technique in which the copper plate and the copper electrode of the circuit board are integrated by applying ultrasonic vibration in the horizontal direction while applying a load in the vertical direction to the ceramic substrate.

セラミックス回路基板に使用されるセラミックス基板は、半導体素子の高出力化、高集積化に伴う発熱量の増加に対し、高い熱伝導率を有する窒化アルミニウム焼結体や窒化ケイ素焼結体が使用されている。特に、窒化アルミニウム基板は、窒化ケイ素基板と比較して熱伝導率が高いため、高放熱性電子部品を搭載するためのセラミックス回路基板として好適である。 Ceramic substrates used for ceramic circuit boards use aluminum nitride sintered bodies and silicon nitride sintered bodies with high thermal conductivity in response to the increase in heat generation due to higher output and higher integration of semiconductor elements. ing. In particular, since the aluminum nitride substrate has a higher thermal conductivity than the silicon nitride substrate, it is suitable as a ceramic circuit substrate for mounting a high heat dissipation electronic component.

しかし、窒化アルミニウム基板は高い熱伝導率を有する反面、機械的強度や靭性等が低いことから、超音波接合時の振動により接合部直下の窒化アルミニウム板表面にクラックが発生し、モジュールの信頼性を損なってしまうという問題があった。このようなことからセラミックス基板へのクラック発生を防止するため、以下のような提案がなされている。 However, while the aluminum nitride substrate has high thermal conductivity, its mechanical strength and toughness are low, so the cracks occur on the surface of the aluminum nitride plate directly under the joint due to vibration during ultrasonic bonding, resulting in module reliability. There was a problem of damaging. In order to prevent the occurrence of cracks in the ceramic substrate, the following proposals have been made.

特許文献1には、銅電極を超音波接合する位置および銅電極と金属回路板の接合強度の適正化により、セラミックス基板へのクラックの発生を防止することができるとしている。   Patent Document 1 states that the occurrence of cracks in the ceramic substrate can be prevented by optimizing the position at which the copper electrode is ultrasonically bonded and the bonding strength between the copper electrode and the metal circuit board.

特開2002−164461号公報JP 2002-164461 A

しかしながら、特許文献1はセラミックス回路基板そのものを改良したものでは無く、クラック発生を防止する根本的な解決策には至っていない。   However, Patent Document 1 does not improve the ceramic circuit board itself, and has not yet reached a fundamental solution for preventing the occurrence of cracks.

本発明は、上記課題に鑑み、超音波接合に対して優れた耐クラック性を有するセラミックス回路基板を得ることを目的とする。   An object of this invention is to obtain the ceramic circuit board which has the outstanding crack resistance with respect to ultrasonic bonding in view of the said subject.

本発明者は、上記の目的を達成するために鋭意検討した結果、セラミックス回路基板の接合後のろう材層の厚み差を抑制することで超音波接合時の耐クラック性を向上できるとの知見を得たものである。 As a result of intensive studies to achieve the above object, the present inventor has found that crack resistance at the time of ultrasonic bonding can be improved by suppressing the difference in thickness of the brazing material layer after bonding of the ceramic circuit board. Is obtained.

即ち、本発明は、セラミックス基板の両主面と金属板が、銀−銅系ろう材層を介して接合されたセラミックス回路基板であって、銀−銅系ろう材の構成が銀粉末75〜98質量部、銅粉末2〜25質量部で合計100質量部とし、チタン、ジルコニウム、ハフニウム、ニオブ、タンタル、バナジウムから選択される少なくとも一種の活性金属と錫を含み、真空度1×10−3Pa以下、接合温度780℃〜850℃、保持時間10〜60分で接合し、接合後のろう材層の厚み差が50μmより小さいことを特徴とするセラミックス回路基板の製造方法である。 That is, the present invention is a ceramic circuit board in which both main surfaces of a ceramic substrate and a metal plate are bonded via a silver-copper brazing material layer, and the silver-copper brazing material has a silver powder 75- 98 parts by mass, 2 to 25 parts by mass of copper powder, and a total of 100 parts by mass, including at least one active metal selected from titanium, zirconium, hafnium, niobium, tantalum and vanadium and tin, and a degree of vacuum of 1 × 10 −3 The ceramic circuit board manufacturing method is characterized in that bonding is performed at Pa or less, a bonding temperature of 780 ° C. to 850 ° C., and a holding time of 10 to 60 minutes, and the difference in thickness of the brazing filler metal layer after bonding is smaller than 50 μm.

本発明によれば、超音波接合によりクラックが発生しない窒化アルミニウム回路基板を製造することが可能である。   According to the present invention, it is possible to manufacture an aluminum nitride circuit board in which cracks are not generated by ultrasonic bonding.

本発明のセラミックス回路基板に使用されるセラミックス基板としては、特に限定されるものではなく、窒化ケイ素、窒化アルミニウムなどの窒化物系セラミックス、酸化アルミニウム、酸化ジルコニウムなどの酸化物系セラミックス、炭化ケイ素等の炭化物系セラミックス、ほう化ランタン等のほう化物系セラミックス等で使用できる。但し、金属板を活性金属法でセラミックス基板に接合するため、窒化アルミニウム、窒化ケイ素等の非酸化物系セラミックスが好適であり、更に、優れた熱伝導性の観点より窒化アルミニウム基板が好ましい。   The ceramic substrate used for the ceramic circuit board of the present invention is not particularly limited, and nitride ceramics such as silicon nitride and aluminum nitride, oxide ceramics such as aluminum oxide and zirconium oxide, silicon carbide, etc. It can be used for carbide ceramics, boride ceramics such as lanthanum boride. However, since the metal plate is bonded to the ceramic substrate by the active metal method, non-oxide ceramics such as aluminum nitride and silicon nitride are preferable, and an aluminum nitride substrate is more preferable from the viewpoint of excellent thermal conductivity.

本発明のセラミックス基板の厚みは特に限定されないが、1.5mmを越えると熱抵抗が大きくなり、0.2mm未満では耐久性がなくなるため、0.2〜1.5mmが好ましい。 The thickness of the ceramic substrate of the present invention is not particularly limited, but if it exceeds 1.5 mm, the thermal resistance increases, and if it is less than 0.2 mm, the durability is lost, so 0.2 to 1.5 mm is preferable.

本発明の金属板に使用する金属は、銅、アルミニウム、鉄、ニッケル、クロム、銀、モリブテン、コバルトの単体またはその合金など、活性金属法を適用できる金属であれば特に限定は無いが、特に導電性、放熱性の観点から銅が好ましい。   The metal used for the metal plate of the present invention is not particularly limited as long as it is a metal to which the active metal method can be applied, such as copper, aluminum, iron, nickel, chromium, silver, molybdenum, cobalt, or an alloy thereof, but in particular, Copper is preferable from the viewpoints of conductivity and heat dissipation.

本発明の銅板の純度は、90%以上であることが好ましく、純度が90%より低い場合、セラミックス基板と銅板を接合する際、銅板とろう材の反応が不十分となったり、銅板が硬くなり回路基板の信頼性が低下する場合がある。   The purity of the copper plate of the present invention is preferably 90% or more. When the purity is lower than 90%, when the ceramic substrate and the copper plate are joined, the reaction between the copper plate and the brazing material becomes insufficient, or the copper plate is hard. Therefore, the reliability of the circuit board may be reduced.

本発明の銅板の厚みは特に限定されないが、0.1〜1.5mmのものが一般的であり、特に、放熱性の観点から0.2mm以上が好ましく、耐熱サイクル特性の観点から0.5mm以下が好ましい。 The thickness of the copper plate of the present invention is not particularly limited, but is generally 0.1 to 1.5 mm, particularly preferably 0.2 mm or more from the viewpoint of heat dissipation, and 0.5 mm from the viewpoint of heat cycle characteristics. The following is preferred.

本発明のろう材は、ろう材中にチタン、ジルコニウム、ハフニウム、ニオブ、タンタル、バナジウムから選択される少なくとも一種の活性金属と錫を含有する銀−銅系ろう材で構成される。銀−銅系ろう材の組成比は、共晶組成を生成し易い組成比に設定することが好ましく、特に、回路銅板および放熱銅板からの銅の溶け込みを考慮した組成(銀粉末と銅粉末の合計100質量部において、銀粉末が75〜98質量部、銅粉末が2〜25質量部)が好適である。銀粉末の量が75〜98質量部以外の場合、ろう材の融解温度が上昇するため、接合時の熱膨張率差に由来する熱ストレスが増加し、耐熱サイクル性が低下し易い。   The brazing material of the present invention is composed of a silver-copper brazing material containing at least one active metal selected from titanium, zirconium, hafnium, niobium, tantalum, and vanadium and tin in the brazing material. The composition ratio of the silver-copper brazing material is preferably set to a composition ratio at which eutectic composition is likely to be generated, and in particular, a composition considering the penetration of copper from the circuit copper plate and the heat dissipation copper plate (of silver powder and copper powder). In total 100 parts by mass, 75 to 98 parts by mass of silver powder and 2 to 25 parts by mass of copper powder) are preferable. When the amount of the silver powder is other than 75 to 98 parts by mass, the melting temperature of the brazing material is increased, so that the thermal stress derived from the difference in thermal expansion coefficient at the time of bonding is increased, and the heat cycle resistance is easily lowered.

本発明のろう材層には接合時のろう材の溶融温度を調整するために錫を0.1〜20質量部添加することが好ましい。0.1質量部未満ではその効果が無く、20質量部を越えると溶融温度が低くなりすぎ、接合時にろう材が流れ出すなどの不具合が生じてしまう。 In order to adjust the melting temperature of the brazing material at the time of joining, 0.1 to 20 parts by mass of tin is preferably added to the brazing material layer of the present invention. If the amount is less than 0.1 parts by mass, the effect is not obtained. If the amount exceeds 20 parts by mass, the melting temperature becomes too low, and problems such as the brazing material flowing out during joining occur.

本発明のろう材の厚みは、乾燥基準で5〜40μm が好ましい。ろう材厚みが5μm未満では未反応の部分が生じる場合があり、一方、40μmを超えると、接合層を除去する時間が長くなり生産性が低下する場合がある。塗布方法は特に限定されず、基板表面に均一に塗布できるスクリーン印刷法、ロールコーター法等の公知の塗布方法を採用することができる。 The thickness of the brazing material of the present invention is 5 to 40 μm on a dry basis. Is preferred. If the thickness of the brazing material is less than 5 μm, an unreacted portion may occur. On the other hand, if the thickness exceeds 40 μm, the time for removing the bonding layer may become long and productivity may be reduced. The coating method is not particularly limited, and a known coating method such as a screen printing method or a roll coater method that can be uniformly coated on the substrate surface can be employed.

本発明に関わるセラミックス回路基板の接合温度は、真空度1×10−3Pa以下の真空炉で780℃〜850℃の温度であることが好ましく、より好ましくは800℃未満である。また、その保持時間は10〜60分であることが望ましい。接合温度がこれより低くかったり、保持時間を短くした場合、Ti化合物の生成が十分にできないために部分的に接合できない場合があるためであり、逆に高温であったり保持時間が長すぎる場合には、接合後のろう材層の厚み差が大きくなり過ぎ超音波接合によるクラックが発生し易い。 The bonding temperature of the ceramic circuit board according to the present invention is preferably 780 ° C. to 850 ° C., more preferably less than 800 ° C. in a vacuum furnace having a degree of vacuum of 1 × 10 −3 Pa or less. Further, the holding time is desirably 10 to 60 minutes. If the bonding temperature is lower than this, or if the holding time is shortened, the Ti compound may not be generated sufficiently, so that it may not be possible to partially bond. Conversely, if the bonding temperature is high or the holding time is too long Therefore, the difference in thickness of the brazing filler metal layer after joining becomes too large, and cracks due to ultrasonic joining tend to occur.

本発明のセラミックス回路基板のろう材層の厚み差は、50μmより小さいことが好ましく、より好ましくは35μm未満である。ろう材層の厚み差が大きい場合、超音波接合時に発生する応力が局所的に集中し易くなり、クラックが発生し易い。   The thickness difference of the brazing material layer of the ceramic circuit board of the present invention is preferably less than 50 μm, more preferably less than 35 μm. When the thickness difference of the brazing material layer is large, the stress generated at the time of ultrasonic bonding tends to concentrate locally, and cracks are likely to occur.

接合したセラミックス回路基板に回路パターンを形成するため、金属板にエッチングレジストを塗布してエッチングする。エッチングレジストに関して特に制限はなく、例えば、一般に使用されている紫外線硬化型や熱硬化型のものが使用できる。エッチングレジストの塗布方法に関しては特に制限はなく、例えばスクリーン印刷法等の公知の塗布方法が採用できる。   In order to form a circuit pattern on the bonded ceramic circuit board, an etching resist is applied to the metal plate and etched. There is no restriction | limiting in particular regarding an etching resist, For example, the ultraviolet curing type and thermosetting type generally used can be used. There is no restriction | limiting in particular about the coating method of an etching resist, For example, well-known coating methods, such as a screen printing method, are employable.

回路パターンを形成するために銅板のエッチング処理を行う。エッチング液に関しても特に制限はなく、一般に使用されている塩化第二鉄溶液や塩化第二銅溶液、硫酸、過酸化水素水等が使用できるが、好ましいものとして、塩化第二鉄溶液や塩化第二銅溶液が挙げられる。エッチングによって不要な金属部分を除去した窒化物セラミックス回路基板には、塗布したろう材、その合金層、窒化物層等が残っており、ハロゲン化アンモニウム水溶液、硫酸、硝酸等の無機酸、過酸化水素水を含む溶液を用いて、それらを除去するのが一般的である。回路形成後エッチングレジストの剥離を行うが、剥離方法は特に限定されずアルカリ水溶液に浸漬させる方法などが一般的である。 In order to form the circuit pattern, the copper plate is etched. There is no particular restriction on the etching solution, and generally used ferric chloride solution, cupric chloride solution, sulfuric acid, hydrogen peroxide solution, etc. can be used. A dicopper solution is mentioned. The nitride ceramic circuit board from which unnecessary metal parts have been removed by etching has the applied brazing material, its alloy layer, nitride layer, etc. remaining, inorganic acid such as aqueous solution of ammonium halide, sulfuric acid, nitric acid, peroxide It is common to remove them using a solution containing hydrogen water. The etching resist is stripped after the circuit is formed, but the stripping method is not particularly limited, and a method of immersing in an alkaline aqueous solution is common.

[実施例1]
厚み0.635mmの窒化アルミニウム基板に、銀粉末(福田金属箔粉工業(株)製:AgC−BO)90質量部および銅粉末(福田金属箔粉工業(株)製:SRC−Cu−20)10質量部の合計100質量部に対して、チタン((株)大阪チタニウムテクノロジーズ製:TSH−350)を3.5質量部、錫(三津和薬品化学:すず粉末(−325mesh))を3質量部含む活性金属ろう材を乾燥後の厚さが15μmとなるように塗布した。その後、表面に回路形成用銅板(厚さ0.3mm)を裏面に放熱板形成用銅板(厚さ0.3mm)を重ね、真空雰囲気下(6.5×10−4Pa)、840℃で20分保持させることで銅板と窒化アルミニウム基板の接合体を製造した。
[Example 1]
On an aluminum nitride substrate having a thickness of 0.635 mm, 90 parts by mass of silver powder (manufactured by Fukuda Metal Foil Powder Industry Co., Ltd .: AgC-BO) and copper powder (manufactured by Fukuda Metal Foil Powder Industry Co., Ltd .: SRC-Cu-20) 3.5 parts by mass of titanium (manufactured by Osaka Titanium Technologies: TSH-350) and 3 parts by mass of tin (Mitsuwa Chemicals: tin powder (-325 mesh)) per 100 parts by mass of 10 parts by mass Part of the active metal brazing material was applied so that the thickness after drying was 15 μm. Then, a copper plate for circuit formation (thickness 0.3 mm) is stacked on the front surface, and a copper plate for heat radiation plate formation (thickness 0.3 mm) is stacked on the back surface, and in a vacuum atmosphere (6.5 × 10 −4 Pa) at 840 ° C. The bonded body of the copper plate and the aluminum nitride substrate was manufactured by holding for 20 minutes.

接合した回路基板を塩化銅を含むエッチング液でエッチングして回路を形成した。さらに、ろう材層をフッ化アンモニウム/過酸化水素エッチング液でエッチングし、窒化アルミニウム回路基板を作製した。   The joined circuit board was etched with an etchant containing copper chloride to form a circuit. Further, the brazing material layer was etched with an ammonium fluoride / hydrogen peroxide etchant to produce an aluminum nitride circuit board.

得られた窒化アルミニウム回路基板のろう材層の厚み差の測定、超音波接合評価および熱サイクル試験は、以下の通り実施した。
<ろう材層の厚み差測定>
セラミックス回路基板の中央部を15mm幅で切断し、樹脂包埋および断面調整を行った後、SEMを用いてろう材層を観察した。ろう材層の厚み差は、接合断面を4mm間隔で3箇所を選び、各個所について接合面に水平方向に300μmの範囲を観察した場合の最大厚みと最小厚みの差を平均したものとする。結果を表1に示す。
<超音波接合評価>
1.5mm厚の銅電極材を「アドウェルズ社製UP−Lite3000」にて、荷重1200N、周波数20kHz、振幅50μm、接合時間0.4秒で接合した。接合後、銅電極および回路基板の銅板をエッチングにて除去し、セラミックス基板の表面の観察を光学顕微鏡で実施した。超音波接合は32箇所で実施し、クラックの発生率を以下の3つにランク分けした。
◎:発生率0%、○:0%<発生率≦20%、×:発生率>20%
Measurement of the difference in thickness of the brazing filler metal layer of the obtained aluminum nitride circuit board, ultrasonic bonding evaluation, and thermal cycle test were performed as follows.
<Measurement of thickness difference of brazing material layer>
The central part of the ceramic circuit board was cut at a width of 15 mm, and after resin embedding and cross-section adjustment, the brazing material layer was observed using SEM. The difference in thickness of the brazing material layer is obtained by averaging the difference between the maximum thickness and the minimum thickness when three cross-sections are selected at intervals of 4 mm and a range of 300 μm is observed in the horizontal direction on the joint surface. The results are shown in Table 1.
<Ultrasonic bonding evaluation>
A copper electrode material having a thickness of 1.5 mm was joined with “UP-Lite 3000 manufactured by Adwells Corporation” at a load of 1200 N, a frequency of 20 kHz, an amplitude of 50 μm, and a joining time of 0.4 seconds. After joining, the copper electrode and the copper plate of the circuit board were removed by etching, and the surface of the ceramic substrate was observed with an optical microscope. Ultrasonic bonding was performed at 32 locations, and the incidence of cracks was ranked into the following three.
A: Occurrence rate 0%, O: 0% <Occurrence rate ≤ 20%, x: Occurrence rate> 20%

[実施例2〜10、比較例1〜4]
表1に示す条件を変えたこと以外は、実施例1と同様に行った。
[Examples 2 to 10, Comparative Examples 1 to 4]
The same operation as in Example 1 was performed except that the conditions shown in Table 1 were changed.

Figure 2017041567
Figure 2017041567

上記に示すとおり、本発明によれば、セラミックス回路基板に銅電極を超音波接合にて接合する際、セラミックス基板にクラックの発生率が20%以下に抑えて接合でき、モジュールの信頼性を向上することができるセラミックス回路基板が提供される。

As described above, according to the present invention, when a copper electrode is bonded to a ceramic circuit board by ultrasonic bonding, the crack generation rate can be suppressed to 20% or less to improve the reliability of the module. A ceramic circuit board that can be provided is provided.

Claims (3)

セラミックス基板の両主面と金属板が、銀−銅系ろう材層を介して接合されたセラミックス回路基板であって、銀−銅系ろう材の構成が銀粉末75〜98質量部、銅粉末2〜25質量部で合計100質量部とし、チタン、ジルコニウム、ハフニウム、ニオブ、タンタル、バナジウムから選択される少なくとも一種の活性金属と錫を含み、真空度1×10−3Pa以下、接合温度780℃〜850℃、保持時間10〜60分で接合し、接合後のろう材層の厚み差が50μmより小さいことを特徴とするセラミックス回路基板の製造方法。 A ceramic circuit board in which both main surfaces of a ceramic substrate and a metal plate are bonded via a silver-copper brazing filler metal layer, wherein the silver-copper brazing filler comprises 75 to 98 parts by mass of silver powder, copper powder 2 to 25 parts by mass with a total of 100 parts by mass, including at least one active metal selected from titanium, zirconium, hafnium, niobium, tantalum, and vanadium and tin, with a degree of vacuum of 1 × 10 −3 Pa or less and a junction temperature of 780 A method for producing a ceramic circuit board, characterized in that bonding is performed at a temperature of 850 ° C. to 850 ° C. for a holding time of 10 to 60 minutes, and the difference in thickness of the brazing filler metal layer after bonding is less than 50 μm. 接合後のろう材層の厚み差が15μm未満であることを特徴とする請求項1記載のセラミックス回路基板の製造方法。   2. The method of manufacturing a ceramic circuit board according to claim 1, wherein a difference in thickness of the brazing material layer after joining is less than 15 [mu] m. セラミックス基板が窒化アルミニウムからなることを特徴とする請求項1または2記載のセラミックス回路基板の製造方法。

3. The method of manufacturing a ceramic circuit board according to claim 1, wherein the ceramic substrate is made of aluminum nitride.

JP2015163101A 2015-08-20 2015-08-20 Method of manufacturing ceramic circuit board Pending JP2017041567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015163101A JP2017041567A (en) 2015-08-20 2015-08-20 Method of manufacturing ceramic circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015163101A JP2017041567A (en) 2015-08-20 2015-08-20 Method of manufacturing ceramic circuit board

Publications (1)

Publication Number Publication Date
JP2017041567A true JP2017041567A (en) 2017-02-23

Family

ID=58203207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015163101A Pending JP2017041567A (en) 2015-08-20 2015-08-20 Method of manufacturing ceramic circuit board

Country Status (1)

Country Link
JP (1) JP2017041567A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10145039A (en) * 1996-11-12 1998-05-29 Denki Kagaku Kogyo Kk Printed circuit board and evaluation and manufacture thereof
JP2003055058A (en) * 2001-08-23 2003-02-26 Denki Kagaku Kogyo Kk Method of joining ceramic body to copper plate
JP2014090144A (en) * 2012-10-31 2014-05-15 Denki Kagaku Kogyo Kk Ceramic circuit board, and method of manufacturing the same
WO2015019602A1 (en) * 2013-08-08 2015-02-12 株式会社 東芝 Circuit substrate and semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10145039A (en) * 1996-11-12 1998-05-29 Denki Kagaku Kogyo Kk Printed circuit board and evaluation and manufacture thereof
JP2003055058A (en) * 2001-08-23 2003-02-26 Denki Kagaku Kogyo Kk Method of joining ceramic body to copper plate
JP2014090144A (en) * 2012-10-31 2014-05-15 Denki Kagaku Kogyo Kk Ceramic circuit board, and method of manufacturing the same
WO2015019602A1 (en) * 2013-08-08 2015-02-12 株式会社 東芝 Circuit substrate and semiconductor device

Similar Documents

Publication Publication Date Title
JP7080881B2 (en) Ceramic circuit board and modules using it
JP6742073B2 (en) Ceramics circuit board
JP6670240B2 (en) Ceramic circuit board and method of manufacturing the same
JP6487901B2 (en) Ceramic circuit board
JP6687109B2 (en) Substrate for power module
JP5741971B2 (en) Method for manufacturing metal-ceramic bonding circuit board
JP2014118310A (en) Ceramic circuit board
JP3449458B2 (en) Circuit board
JP4703377B2 (en) Stepped circuit board, manufacturing method thereof, and power control component using the same.
JP2014091673A (en) Nitride based ceramic circuit board
JP6904094B2 (en) Manufacturing method of insulated circuit board
JPWO2016013651A1 (en) Brazing material and ceramic substrate using the same
JP2017065935A (en) Ceramic circuit board
JP5047315B2 (en) Ceramic circuit board
JP2017041567A (en) Method of manufacturing ceramic circuit board
JP6307386B2 (en) Ceramic circuit board
JP6621353B2 (en) Heat resistant ceramic circuit board
JP2011211217A (en) Manufacturing method for metal-ceramic junction circuit board
JP4468338B2 (en) Manufacturing method of ceramic circuit board
JP2007173577A (en) Ceramic circuit board
WO2021200801A1 (en) Ceramic circuit board, electronic device, metal member, and production method for ceramic circuit board
JP3734359B2 (en) Circuit board
JP2020161524A (en) Manufacturing method of insulated circuit board and its insulated circuit board
CN109219878A (en) Manufacturing method, insulate electrical substrate and the thermo-electric conversion module of insulate electrical substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190614

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190702