JPH10144292A - Non-aqueous electrolyte battery - Google Patents

Non-aqueous electrolyte battery

Info

Publication number
JPH10144292A
JPH10144292A JP8299938A JP29993896A JPH10144292A JP H10144292 A JPH10144292 A JP H10144292A JP 8299938 A JP8299938 A JP 8299938A JP 29993896 A JP29993896 A JP 29993896A JP H10144292 A JPH10144292 A JP H10144292A
Authority
JP
Japan
Prior art keywords
positive electrode
aqueous electrolyte
electrode material
electrolyte battery
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8299938A
Other languages
Japanese (ja)
Inventor
Hiroyuki Fujimoto
洋行 藤本
Takuya Sunakawa
拓也 砂川
Hiroshi Watanabe
浩志 渡辺
Toshiyuki Noma
俊之 能間
Koji Nishio
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP8299938A priority Critical patent/JPH10144292A/en
Publication of JPH10144292A publication Critical patent/JPH10144292A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To restrict the deterioration of the positive electrode material at the time of charge and discharge, and improve the charging and discharging cycle characteristic of a non-aqueous electrolyte battery by bonding the positive electrode material of the non-aqueous electrolyte battery provided with a positive electrode made of the crystal positive electrode material, which can store and discharge lithium, with the non-crystal compound having lithium ion conductivity. SOLUTION: V2 O5 having lithium ion conductivity is mixed in the positive electrode material LiNi0.9 Co0.7 O2 having a mean grain diameter at about 5 micron at 0.5-15wt.% in relation to the positive electrode material, and they are heated, and thereafter, they are quickly cooled so as to obtain the compound. A predetermined quantity of the conductive agent and the binder are mixed in this compound so as to adjust the slurry. This slurry is applied on both surfaces of a positive electrode collector, which is formed of an Al foil, by doctor blade method, and heating is performed in the vacuum condition so as to obtain a positive electrode. In the case where MoS2 , MnO2 , Li-alumina, LiTi2 (PO4 )3 is used as a non-crystal compound having lithium ion conductivity, similar result can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、リチウムの吸
蔵,放出が可能な結晶性の正極材料を用いた正極と、負
極と、非水電解質とを備えた非水電解質電池に係り、特
に、正極を改良してサイクル特性を向上させるようにし
た非水電解質電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte battery including a positive electrode using a crystalline positive electrode material capable of inserting and extracting lithium, a negative electrode, and a non-aqueous electrolyte. The present invention relates to a non-aqueous electrolyte battery having improved cycle characteristics.

【0002】[0002]

【従来の技術】近年、高出力,高エネルギー密度の新型
電池の1つとして、電解質に非水電解液を用い、リチウ
ムの酸化,還元を利用した高起電力の非水電解質電池が
利用されるようになった。
2. Description of the Related Art In recent years, a non-aqueous electrolyte battery having a high electromotive force using a non-aqueous electrolyte as an electrolyte and utilizing oxidation and reduction of lithium has been used as one of new batteries having a high output and a high energy density. It became so.

【0003】そして、このような非水電解質電池におい
ては、その正極材料として、一般にリチウムの吸蔵,放
出が可能なLiNiO2 ,LiCoO2 等の遷移金属酸
化物や金属カルコゲン化合物等の結晶性の金属化合物が
使用されていた。
In such a nonaqueous electrolyte battery, as a cathode material, a transition metal oxide such as LiNiO 2 or LiCoO 2 capable of occluding and releasing lithium and a crystalline metal such as a metal chalcogen compound are generally used. The compound was used.

【0004】ここで、上記のような正極材料は一般に電
子伝導性が低いため、このような正極材料を使用して正
極を作製するにあたり、従来においては、この正極材料
に黒鉛等の導電剤を添加して、正極における電子伝導性
を向上させることが行なわれていた。
Here, since the above-described positive electrode material generally has low electron conductivity, when a positive electrode is manufactured using such a positive electrode material, a conductive agent such as graphite is conventionally added to the positive electrode material. The addition has been performed to improve the electron conductivity of the positive electrode.

【0005】しかし、このように正極材料に黒鉛等の導
電剤を添加させた正極を非水電解質電池に用いた場合に
おいても、この非水電解質電池において充放電を行なっ
た際に、上記の正極材料間におけるリチウムイオンの移
動が十分に行なわれず、充放電時における反応が不均一
になって次第に正極材料が劣化し、サイクル特性が悪く
なるという問題があった。
[0005] However, even when such a positive electrode in which a conductive agent such as graphite is added to the positive electrode material is used for a non-aqueous electrolyte battery, the above-mentioned positive electrode is charged and discharged in this non-aqueous electrolyte battery. There was a problem that lithium ions did not sufficiently move between the materials, the reaction during charging and discharging became uneven, the cathode material gradually deteriorated, and the cycle characteristics deteriorated.

【0006】[0006]

【発明が解決しようとする課題】この発明は、リチウム
の吸蔵,放出が可能な結晶性の正極材料を用いた正極
と、負極と、非水電解質とを備えた非水電解質電池にお
ける上記のような問題を解決することを課題とするもの
であり、正極材料間におけるリチウムイオンの移動性を
向上させて、充放電時における正極材料の劣化を抑制
し、非水電解質電池における充放電サイクル特性等を向
上させることを課題とするものである。
SUMMARY OF THE INVENTION The present invention relates to a nonaqueous electrolyte battery including a positive electrode using a crystalline positive electrode material capable of inserting and extracting lithium, a negative electrode, and a nonaqueous electrolyte. The problem is to improve the mobility of lithium ions between the positive electrode materials, suppress the deterioration of the positive electrode materials during charging and discharging, and improve the charge / discharge cycle characteristics of non-aqueous electrolyte batteries. It is an object to improve the

【0007】[0007]

【課題を解決するための手段】この発明における非水電
解質電池においては、上記のような課題を解決するた
め、リチウムの吸蔵,放出が可能な結晶性の正極材料を
用いた正極と、負極と、非水電解質とを備えた非水電解
質電池において、上記の結晶性の正極材料を、リチウム
イオン伝導性を有する非晶質化合物によって接合させる
ようにしたのである。
In order to solve the above-mentioned problems, a non-aqueous electrolyte battery according to the present invention has a positive electrode using a crystalline positive electrode material capable of inserting and extracting lithium, and a negative electrode. In a non-aqueous electrolyte battery provided with a non-aqueous electrolyte, the above-mentioned crystalline positive electrode material is joined by an amorphous compound having lithium ion conductivity.

【0008】そして、この発明における非水電解質電池
のように、結晶性の正極材料をリチウムイオン伝導性を
有する非晶質化合物によって接合させると、充放電時に
おいてリチウムイオンが上記のリチウムイオン伝導性を
有する非晶質化合物を通して速やかに結晶性の正極材料
間を移動し、充放電時における反応が正極材料において
均一に行なわれるようになり、正極材料の劣化が抑制さ
れて、非水電解質電池における充放電サイクル特性等が
向上する。
When the crystalline cathode material is joined by an amorphous compound having lithium ion conductivity as in the non-aqueous electrolyte battery according to the present invention, lithium ions are converted into the lithium ion conductivity during charge and discharge. Quickly move between the crystalline positive electrode materials through the amorphous compound having, the reaction at the time of charge and discharge becomes uniform in the positive electrode material, the deterioration of the positive electrode material is suppressed, and in the non-aqueous electrolyte battery, The charge / discharge cycle characteristics and the like are improved.

【0009】ここで、結晶性の正極材料をリチウムイオ
ン伝導性を有する非晶質化合物によって接合させるにあ
たっては、このリチウムイオン伝導性を有する非晶質化
合物を通してリチウムイオンが結晶性の正極材料間で速
やかに移動されるように、結晶性の正極材料をリチウム
イオン伝導性を有する非晶質化合物と焼結させて接合さ
せることが好ましい。
Here, when bonding the crystalline cathode material with an amorphous compound having lithium ion conductivity, lithium ions pass between the crystalline cathode materials through the amorphous compound having lithium ion conductivity. It is preferable that the crystalline cathode material is sintered and bonded to an amorphous compound having lithium ion conductivity so as to be quickly moved.

【0010】また、このように結晶性の正極材料をリチ
ウムイオン伝導性を有する非晶質化合物によって接合さ
せる場合、この非晶質化合物の量が少ないと、結晶性の
正極材料の接合が十分に行なわれず、正極材料間におけ
るリチウムイオンの移動が十分に行なわれなくなる一
方、この非晶質化合物の量が多くなると、正極材料間の
接触が悪くなって、正極材料間におけるリチウムイオン
の移動性が低下したり、正極中における正極材料の割合
が低下して充放電特性が悪くなるため、この非晶質化合
物の割合が1〜10重量%の範囲になるようにすること
が好ましい。
When the crystalline cathode material is joined by an amorphous compound having lithium ion conductivity, if the amount of the amorphous compound is small, the joining of the crystalline cathode material is insufficient. This is not performed, and lithium ions cannot be sufficiently transferred between the cathode materials. On the other hand, when the amount of the amorphous compound is large, contact between the cathode materials is deteriorated, and the mobility of lithium ions between the cathode materials is reduced. Since the charge and discharge characteristics are deteriorated due to the decrease or the ratio of the positive electrode material in the positive electrode, it is preferable that the ratio of the amorphous compound be in the range of 1 to 10% by weight.

【0011】ここで、この発明における非水電解質電池
において、その正極に使用する結晶性の正極材料として
は、従来より一般に使用されている結晶性の正極材料を
用いることができ、例えば、Ni,Co,Mn,Feの
少なくとも一種を含む遷移金属酸化物や、TiS2 ,M
oS2 等の金属カルコゲン化合物等を使用することがで
きるが、特に、リチウムイオンを吸蔵,放出する能力に
優れたLiNix Co1-x O2 (xは0≦x≦1)で表
されるリチウム含有遷移金属酸化物を用いることが好ま
しい。
Here, in the non-aqueous electrolyte battery of the present invention, as the crystalline positive electrode material used for the positive electrode, a crystalline positive electrode material generally used conventionally can be used. A transition metal oxide containing at least one of Co, Mn and Fe, TiS 2 , M
A metal chalcogen compound such as oS 2 can be used. In particular, a lithium-containing compound represented by LiNix Co1-x O 2 (x is 0 ≦ x ≦ 1) having excellent ability to insert and extract lithium ions is used. It is preferable to use a transition metal oxide.

【0012】一方、上記の結晶性の正極材料を接合させ
るリチウムイオン伝導性を有する非晶質化合物として
は、例えば、V25 ,MoS2 ,MnO2 ,Li−ア
ルミナ,LiTi2 (PO43 等をアモルファス状態
にしたものを使用することができる。
On the other hand, as the amorphous compound having lithium ion conductivity for bonding the above-mentioned crystalline positive electrode material, for example, V 2 O 5 , MoS 2 , MnO 2 , Li-alumina, LiTi 2 (PO 4 ) A material in which 3 etc. are in an amorphous state can be used.

【0013】また、この発明における非水電解質電池に
おいて、負極に使用する負極材料としては、金属リチウ
ムの他に、リチウムイオンの吸蔵,放出が可能な材料を
用いることができ、例えば、黒鉛,コークス,有機物焼
成体等の炭素材料や、Li−Al,Li−In,Li−
Sn,Li−Pb,Li−Bi,Li−Ga,Li−S
r,Li−Si,Li−Zn,Li−Cd,Li−C
a,Li−Ba等のリチウム合金を使用することができ
る。
In the nonaqueous electrolyte battery according to the present invention, as the negative electrode material used for the negative electrode, a material capable of inserting and extracting lithium ions can be used in addition to metallic lithium. , Organic materials such as fired bodies, Li-Al, Li-In, Li-
Sn, Li-Pb, Li-Bi, Li-Ga, Li-S
r, Li-Si, Li-Zn, Li-Cd, Li-C
a, a lithium alloy such as Li-Ba can be used.

【0014】また、この発明における非水電解質電池に
おいては、その非水電解質として、従来より使用されて
いる公知の非水電解液等を用いることができ、この非水
電解液における溶媒としては、例えば、エチレンカーボ
ネート、プロピレンカーボネート、ブチレンカーボネー
ト、ビニレンカーボネート、シクロペンタノン、スルホ
ラン、ジメチルスルホラン、3−メチル−1,3−オキ
サゾリジン−2−オン、γ−ブチロラクトン、ジメチル
カーボネート、ジエチルカーボネート、エチルメチルカ
ーボネート、メチルプロピルカーボネート、ブチルメチ
ルカーボネート、エチルプロピルカーボネート、ブチル
エチルカーボネート、ジプロピルカーボネート、1,2
−ジメトキシエタン、テトラヒドロフラン、2−メチル
テトラヒドロフラン、1,3−ジオキソラン、酢酸メチ
ル、酢酸エチル等の有機溶媒を1種又は2種以上組み合
わせて使用することができる。
In the non-aqueous electrolyte battery according to the present invention, a conventionally known non-aqueous electrolyte or the like can be used as the non-aqueous electrolyte. For example, ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, cyclopentanone, sulfolane, dimethyl sulfolane, 3-methyl-1,3-oxazolidin-2-one, γ-butyrolactone, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate , Methyl propyl carbonate, butyl methyl carbonate, ethyl propyl carbonate, butyl ethyl carbonate, dipropyl carbonate, 1,2
Organic solvents such as dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolan, methyl acetate, ethyl acetate and the like can be used alone or in combination of two or more.

【0015】また、この非水電解液において上記のよう
な溶媒に溶解させる溶質としては、例えば、トリフルオ
ロメタンスルホン酸リチウムLiCF3 SO3 ,ヘキサ
フルオロリン酸リチウムLiPF6 ,過塩素酸リチウム
LiClO4 ,テトラフルオロホウ酸リチウムLiBF
4 ,トリフルオロメタンスルホン酸イミドリチウムLi
N(CF3 SO22 等のリチウム化合物を用いること
ができる。
The solute dissolved in the above-mentioned solvent in the non-aqueous electrolyte includes, for example, lithium trifluoromethanesulfonate LiCF 3 SO 3 , lithium hexafluorophosphate LiPF 6 , lithium perchlorate LiClO 4 , Lithium tetrafluoroborate LiBF
4 , Lithium trifluoromethanesulfonate Li
A lithium compound such as N (CF 3 SO 2 ) 2 can be used.

【0016】[0016]

【実施例】以下、この発明における非水電解質電池につ
いて、実施例を挙げて具体的に説明すると共に、この実
施例に係る非水電解質電池が充放電サイクル特性の点で
優れていることを比較例を挙げて明らかにする。なお、
この発明における非水電解質電池は下記の実施例に示し
たものに限定されるものではなく、その要旨を変更しな
い範囲において適宜変更して実施できるものである。
EXAMPLES Hereinafter, the nonaqueous electrolyte battery of the present invention will be specifically described with reference to examples, and it will be compared that the nonaqueous electrolyte battery according to this example is excellent in charge / discharge cycle characteristics. Clarify with an example. In addition,
The non-aqueous electrolyte battery according to the present invention is not limited to those shown in the following examples, but can be implemented by appropriately changing the scope of the invention without changing its gist.

【0017】(実施例1〜5)この実施例1〜5におい
ては、下記のようにして作製した正極と負極と非水電解
液とを用い、図1に示すようなAAサイズの円筒形の非
水電解質二次電池を作製した。
(Examples 1 to 5) In Examples 1 to 5, a positive electrode, a negative electrode and a non-aqueous electrolyte prepared as described below were used, and an AA-size cylindrical shape as shown in FIG. A non-aqueous electrolyte secondary battery was manufactured.

【0018】[正極の作製]正極を作製するにあたって
は、LiOHとNi(OH)2 とCo(OH)2 とを用
い、LiとNiとCoとがモル比でLi:Ni:Co=
1:0.9:0.1の割合になるようにこれらを乳鉢中
で混合した後、これを酸素雰囲気下において850℃で
20時間熱処理し、その後、これを石川式らいかい乳鉢
で粉砕らいかいし、平均粒径が約5μmになった正極材
料LiNi0.9 Co0.12 を得た。
[Preparation of Positive Electrode] To prepare a positive electrode, LiOH, Ni (OH) 2 and Co (OH) 2 were used, and Li: Ni: Co = Li: Ni: Co =
After mixing them in a mortar so as to have a ratio of 1: 0.9: 0.1, the mixture is heat-treated at 850 ° C. for 20 hours in an oxygen atmosphere, and then crushed in an Ishikawa-type rai mortar. A cathode material LiNi 0.9 Co 0.1 O 2 having an average particle size of about 5 μm was obtained.

【0019】そして、これらの実施例1〜5において
は、上記の正極材料LiNi0.9 Co 0.12 に、リチ
ウムイオン伝導性を有するV25 を、下記の表1に示
すように実施例1では0.5重量%、実施例2では1重
量%、実施例3では5重量%、実施例4では10重量
%、実施例5では15重量%の割合で混合させた。
In these Examples 1 to 5,
Is the above-mentioned cathode material LiNi0.9 Co 0.1 OTwo And Richi
V with high ionic conductivityTwo OFive Is shown in Table 1 below.
Thus, in Example 1, 0.5% by weight, and in Example 2,
%, 5% by weight in Example 3, 10% by weight in Example 4
%, And in Example 5, 15% by weight.

【0020】次いで、これらの混合物をそれぞれ600
℃の空気中で加熱した後、急冷させて得られた化合物
に、それぞれ導電剤である人工黒鉛粉末と、結着剤であ
るポリフッ化ビニリデンを溶解させた5重量%N−メチ
ルピロリドン溶液とを加え、上記の化合物と導電剤であ
る人工黒鉛粉末と結着剤であるポリフッ化ビニリデンと
がそれぞれ90:5:5の重量比になるようにし、これ
らを混練して各スラリーを調整した。
Next, these mixtures were each added to 600
After heating in air at 0 ° C., the compound obtained by quenching was mixed with an artificial graphite powder as a conductive agent and a 5% by weight N-methylpyrrolidone solution in which polyvinylidene fluoride as a binder was dissolved. In addition, the above compound, artificial graphite powder as a conductive agent, and polyvinylidene fluoride as a binder were adjusted to have a weight ratio of 90: 5: 5, respectively, and these were kneaded to prepare respective slurries.

【0021】そして、このように調整した各スラリーを
それぞれアルミニウム箔で構成された正極集電体の両面
にドクターブレード法により塗布し、これを150℃で
2時間真空下で熱処理して各正極を作製した。
Then, each of the slurries thus prepared is applied to both surfaces of a positive electrode current collector composed of aluminum foil by a doctor blade method, and this is heat-treated under vacuum at 150 ° C. for 2 hours to form each positive electrode. Produced.

【0022】ここで、上記の各正極に用いた各化合物に
おける粒子群の断面及び電極の断面を走査型電子顕微鏡
で観察したところ、正極材料LiNi0.9 Co0.12
の粒子が異種化合物を介して焼結されていることが確認
された。また、これを電子線回折によって調べたとこ
ろ、焼結されている異種化合物の部分は非晶質であるこ
とが確認されると共に、化学分析及び電子線プローブ微
量分析法(EPMA)による分析の結果、この異種化合
物の組成がV25 であることが確認された。さらに、
上記の化合物の粉末をX線回折法(XRD)によって調
べたところ、その回折パターンからV25 に帰属され
るピークは観察されなかった。
Here, when the cross section of the particle group and the cross section of the electrode in each compound used in each of the above positive electrodes were observed with a scanning electron microscope, the positive electrode material LiNi 0.9 Co 0.1 O 2
It was confirmed that the particles of were sintered through the heterogeneous compound. Further, when this was examined by electron beam diffraction, it was confirmed that the portion of the different compound being sintered was amorphous, and the results of chemical analysis and analysis by electron probe microanalysis (EPMA) were performed. It was confirmed that the composition of this heterogeneous compound was V 2 O 5 . further,
When the powder of the above compound was examined by X-ray diffraction (XRD), no peak attributed to V 2 O 5 was observed from the diffraction pattern.

【0023】この結果、上記の各正極においては、正極
材料LiNi0.9 Co0.12 の粒子が非晶質のV2
5 を介して焼結されていることが判明した。
As a result, in each of the positive electrodes described above, the particles of the positive electrode material LiNi 0.9 Co 0.1 O 2 are made of amorphous V 2 O
It turned out that through 5 has been sintered.

【0024】[負極の作製]負極を作製するにあたって
は、天然黒鉛粉末95重量部に対して、結着剤であるポ
リフッ化ビニリデンを5重量部添加させるように、この
ポリフッ化ビニリデンを溶解させた5重量%N−メチル
ピロリドン溶液を加え、これを混練してスラリーを調整
し、このスラリーを銅箔で構成された負極集電体の両面
に塗布し、これを150℃で2時間真空下で熱処理して
負極を作製した。
[Preparation of Negative Electrode] In preparing the negative electrode, polyvinylidene fluoride was dissolved so that 5 parts by weight of polyvinylidene fluoride as a binder was added to 95 parts by weight of natural graphite powder. A 5% by weight N-methylpyrrolidone solution was added, and the mixture was kneaded to prepare a slurry. The slurry was applied to both surfaces of a negative electrode current collector composed of copper foil, and this was applied under vacuum at 150 ° C. for 2 hours. Heat treatment was performed to produce a negative electrode.

【0025】[電解液の作製]非水電解液を作製するに
あたっては、その溶媒にエチレンカーボネートとジメチ
ルカーボネートとを体積比1:1で混合させた混合溶媒
を用い、この混合溶媒に6フッ化リン酸リチウムLiP
6 を1モル/リットル溶解させた。
[Preparation of Electrolyte Solution] In preparing a non-aqueous electrolyte solution, a mixed solvent of ethylene carbonate and dimethyl carbonate mixed at a volume ratio of 1: 1 was used as the solvent. Lithium phosphate LiP
The F 6 was dissolved 1 mol / liter.

【0026】[電池の作製]実施例1〜5の各非水電解
質二次電池を作製するにあたっては、図1に示すよう
に、上記のようにして作製した各正極1と負極2との間
にそれぞれセパレータ3としてリチウムイオン透過性の
ポリプロピレン製の微多孔膜を介在させ、これらをスパ
イラル状に巻いて電池缶4内に収容させた後、この電池
缶4内に上記の非水電解液を注液して封口し、正極1を
正極リード5を介して正極蓋6に接続させると共に、負
極2を負極リード7を介して電池缶4に接続させ、電池
缶4と正極蓋6とを絶縁パッキン8により電気的に分離
させた。
[Preparation of Batteries] In preparing the non-aqueous electrolyte secondary batteries of Examples 1 to 5, as shown in FIG. After a lithium ion permeable polypropylene microporous membrane is interposed as a separator 3, and these are spirally wound and accommodated in a battery can 4, the above-mentioned non-aqueous electrolyte is poured into the battery can 4. The positive electrode 1 is connected to the positive electrode cover 6 via the positive electrode lead 5 and the negative electrode 2 is connected to the battery can 4 via the negative electrode lead 7 to insulate the battery can 4 from the positive electrode cover 6. It was electrically separated by the packing 8.

【0027】(比較例1)この比較例1においては、上
記の実施例1〜5における正極の作製において、上記の
正極材料LiNi0.9 Co0.12 にV25 を加えな
いようにし、それ以外については、上記の実施例1〜5
の場合と同様にして非水電解質二次電池を作製した。
(Comparative Example 1) In Comparative Example 1, in the preparation of the positive electrodes in Examples 1 to 5 described above, V 2 O 5 was not added to the above-mentioned positive electrode material LiNi 0.9 Co 0.1 O 2. Except for the above, Examples 1 to 5
A non-aqueous electrolyte secondary battery was produced in the same manner as in the above case.

【0028】(比較例2)この比較例2においては、上
記の実施例1〜5における正極の作製において、上記の
正極材料LiNi0.9 Co0.12 に、実施例3と同様
にV25 を5重量%加えて混合させ、この混合物を6
00℃の空気中で加熱した後、これを急冷させずに放冷
させるようにし、それ以外については、上記の実施例1
〜5の場合と同様にして非水電解質二次電池を作製し
た。
(Comparative Example 2) In Comparative Example 2, in the production of the positive electrodes in Examples 1 to 5, V 2 O 5 was added to the above-mentioned positive electrode material LiNi 0.9 Co 0.1 O 2 in the same manner as in Example 3. Was added and mixed, and the mixture was mixed with 6% by weight.
After heating in the air at 00 ° C., this was allowed to cool without quenching.
In the same manner as in Nos. To 5, a non-aqueous electrolyte secondary battery was produced.

【0029】ここで、この比較例2のように、正極材料
LiNi0.9 Co0.12 にV2 5 を加えて混合させ
た混合物を加熱させた後、これを放冷させて得られた化
合物について、X線回折法(XRD)による回折を行な
ったところ、この回折パターンからV25 に帰属され
るピークが発見され、正極材料LiNi0.9 Co0.12
の粒子の焼結に介在している化合物は結晶性のV25
であることがわかった。
Here, as in Comparative Example 2, the positive electrode material
LiNi0.9 Co0.1 OTwo To VTwo O Five Add and mix
The heated mixture was heated and then allowed to cool
The compound is subjected to diffraction by X-ray diffraction (XRD).
From this diffraction pattern, VTwo OFive Attributed to
Peak was found, and the cathode material LiNi0.9 Co0.1OTwo
 The compound intervening in the sintering of the particles ofTwo OFive
 It turned out to be.

【0030】次に、上記のようにして作製した実施例1
〜5及び比較例1,2の各非水電解質二次電池について
充放電サイクル特性を調べるため、これらの各非水電解
質二次電池を充電電流400mAで充電終止電圧4.2
Vまで充電させた後、放電電流400mAで放電終止電
圧2.7Vまで放電させ、これを1サイクルとして、各
非水電解質二次電池に対して充放電を繰り返して行な
い、初期放電容量と200サイクル目の放電容量とを測
定すると共に、200サイクル目の容量残存率を下記の
式から求め、その結果を下記の表1に示した。 容量残存率=(200サイクル目の放電容量÷初期放電
容量)×100
Next, the first embodiment manufactured as described above was used.
In order to examine the charge / discharge cycle characteristics of the non-aqueous electrolyte secondary batteries of Comparative Examples 1 to 5 and Comparative Examples 1 and 2, each of these non-aqueous electrolyte secondary batteries was charged at a charging current of 400 mA and the charge termination voltage was 4.2
After the battery was charged to 400 V, the battery was discharged to a discharge end voltage of 2.7 V at a discharge current of 400 mA. This cycle was defined as one cycle, and each nonaqueous electrolyte secondary battery was repeatedly charged and discharged. In addition to measuring the discharge capacity of the eye, the residual capacity at the 200th cycle was determined by the following equation. The results are shown in Table 1 below. Capacity remaining rate = (discharge capacity at 200th cycle / initial discharge capacity) × 100

【0031】[0031]

【表1】 [Table 1]

【0032】この結果から明らかなように、正極材料L
iNi0.9 Co0.12 の粒子が非晶質のV25 を介
して焼結された正極を用いた実施例1〜5の各非水電解
質二次電池は、正極材料LiNi0.9 Co0.12 にV
25 を加えなかった比較例1の非水電解質二次電池
や、正極材料LiNi0.9 Co0.12 の粒子が結晶性
のV25 を介して焼結された正極を用いた比較例2の
非水電解質二次電池に比べて、200サイクル目におけ
る容量残存率がいずれも高くなっており、非水電解質二
次電池における充放電サイクル特性が向上していた。
As is clear from the results, the positive electrode material L
Each of the non-aqueous electrolyte secondary batteries of Examples 1 to 5 using the positive electrode in which the particles of iNi 0.9 Co 0.1 O 2 were sintered via amorphous V 2 O 5 was made of the positive electrode material LiNi 0.9 Co 0.1 O 2 to V
Comparative Example using the non-aqueous electrolyte secondary battery of Comparative Example 1 in which 2 O 5 was not added and a positive electrode in which particles of the positive electrode material LiNi 0.9 Co 0.1 O 2 were sintered via crystalline V 2 O 5 As compared with the non-aqueous electrolyte secondary battery of No. 2, the capacity remaining ratio at the 200th cycle was all higher, and the charge / discharge cycle characteristics of the non-aqueous electrolyte secondary battery were improved.

【0033】また、実施例1〜5の各非水電解質二次電
池を比較した場合、特に、上記の非晶質のV25 の量
が1〜10重量%の範囲になった実施例2〜4の非水電
解質二次電池における200サイクル目の容量残存率が
高くなっており、非晶質V25 の量を1〜10重量%
の範囲した場合に、非水電解質二次電池における充放電
サイクル特性がさらに向上した。
When the nonaqueous electrolyte secondary batteries of Examples 1 to 5 were compared, particularly, the examples in which the amount of the amorphous V 2 O 5 was in the range of 1 to 10% by weight were obtained. In the non-aqueous electrolyte secondary batteries of Nos. 2 to 4, the capacity remaining ratio at the 200th cycle was high, and the amount of amorphous V 2 O 5 was 1 to 10% by weight.
When the ratio was within the range, the charge / discharge cycle characteristics of the nonaqueous electrolyte secondary battery were further improved.

【0034】(実施例6〜8)これらの実施例6〜8に
おいては、上記の実施例1〜5における正極の作製にお
いて、使用する正極材料の種類だけを変更させ、正極材
料として、下記の表2に示すように、実施例6ではLi
Mn24 を、実施例7ではLiFeO2 を、実施例8
ではLiMnO2 を用い、これらの正極材料に、上記の
実施例3の場合と同様にそれぞれV25 を5重量%加
えるようにし、それ以外については、上記の実施例1〜
5の場合と同様にして非水電解質二次電池を作製した。
(Examples 6 to 8) In these Examples 6 to 8, only the type of the positive electrode material used was changed in the preparation of the positive electrodes in the above Examples 1 to 5, and the following positive electrode materials were used. As shown in Table 2, in Example 6, Li
Mn 2 O 4 , LiFeO 2 in Example 7, and Example 8
In this example, LiMnO 2 was used, and 5% by weight of V 2 O 5 was added to each of these positive electrode materials in the same manner as in Example 3 above.
In the same manner as in the case of No. 5, a non-aqueous electrolyte secondary battery was produced.

【0035】そして、これらの実施例6〜8の各非水電
解質二次電池についても、上記の実施例1〜5及び比較
例1,2の場合と同様にして200サイクル目の容量残
存率を求め、その結果を下記の表2に示した。
For each of the non-aqueous electrolyte secondary batteries of Examples 6 to 8, the capacity remaining ratio at the 200th cycle was also reduced in the same manner as in Examples 1 to 5 and Comparative Examples 1 and 2. And the results are shown in Table 2 below.

【0036】[0036]

【表2】 [Table 2]

【0037】この結果、正極材料にLiMn24 、L
iFeO2 、LiMnO2 を用い、これらの正極材料の
粒子を非晶質のV25 を介して焼結させた正極を用い
た実施例6〜8の各非水電解質二次電池も、200サイ
クル目における容量残存率が高くなっており、非水電解
質二次電池における充放電サイクル特性が向上していた
が、正極材料にLiNi0.9 Co0.12 を用いた上記
の実施例3の非水電解質二次電池の方が200サイクル
目の容量残存率が高くなっており、正極材料としては、
前記のLiNix Co1-x O2 (0≦x≦1)で表され
るリチウム含有遷移金属酸化物を用いた場合に特に効果
が大きいことがわかった。
As a result, LiMn 2 O 4 , L
Each of the nonaqueous electrolyte secondary batteries of Examples 6 to 8 using iFeO 2 and LiMnO 2 and using a positive electrode obtained by sintering particles of these positive electrode materials via amorphous V 2 O 5 also has a capacity of 200. Although the capacity remaining rate at the cycle was high, and the charge / discharge cycle characteristics of the nonaqueous electrolyte secondary battery were improved, the nonaqueous electrolyte of Example 3 above using LiNi 0.9 Co 0.1 O 2 as the positive electrode material was used. The electrolyte secondary battery has a higher capacity residual ratio at the 200th cycle, and as a positive electrode material,
It has been found particularly large effect in the case of using the above LiNix Co1-x O 2 (0 ≦ x ≦ 1) lithium-containing transition metal oxide represented by.

【0038】(実施例9〜12)これらの実施例9〜1
2においては、上記の実施例1〜5における正極の作製
において、正極材料LiNi0.9 Co0.12 に加える
リチウムイオン伝導性を有する化合物の種類だけを変更
させ、このリチウムイオン伝導性を有する化合物とし
て、下記の表3に示すように、実施例9ではMoS2
を、実施例10ではMnO2 を、実施例11ではLi−
アルミナを、実施例11ではLiTi2 (PO 43
用い、これらのリチウムイオン伝導性を有する化合物
を、上記の実施例3と同様に、正極材料LiNi0.9
0.12 にそれぞれ5重量%加えるようにし、それ以
外については、上記の実施例1〜5の場合と同様にして
非水電解質二次電池を作製した。
(Examples 9 to 12) These Examples 9-1
In 2, the production of the positive electrode in the above Examples 1 to 5
In the positive electrode material LiNi0.9 Co0.1 OTwo Add to
Change only the type of compound having lithium ion conductivity
To form a compound having lithium ion conductivity.
Thus, as shown in Table 3 below, in Example 9, the MoSTwo 
In Example 10, MnOTwo In Example 11, Li-
Alumina was used, and in Example 11, LiTi was used.Two (PO Four )Three To
Used, these compounds having lithium ion conductivity
Is converted to the cathode material LiNi in the same manner as in Example 3 described above.0.9 C
o0.1 OTwo 5% by weight each,
About the outside, it is the same as in the case of Examples 1 to 5 described above.
A non-aqueous electrolyte secondary battery was manufactured.

【0039】そして、これらの実施例9〜12の各非水
電解質二次電池についても、上記の実施例1〜5及び比
較例1,2の場合と同様にして200サイクル目の容量
残存率を求め、その結果を下記の表3に示した。
For each of the non-aqueous electrolyte secondary batteries of Examples 9 to 12, the capacity remaining ratio at the 200th cycle was also reduced in the same manner as in Examples 1 to 5 and Comparative Examples 1 and 2. And the results are shown in Table 3 below.

【0040】[0040]

【表3】 [Table 3]

【0041】この結果、リチウムイオン伝導性を有する
化合物としてMoS2 、MnO2 、Li−アルミナ、L
iTi2 (PO43 を用い、正極材料LiNi0.9
0. 12 の粒子がこれらの非晶質化合物を介して焼結
された正極を使用した実施例9〜12の各非水電解質二
次電池も、200サイクル目における容量残存率が、リ
チウムイオン伝導性を有する化合物としてV25 を使
用した実施例3の場合と同程度に高くなっており、非水
電解質二次電池における充放電サイクル特性が向上して
いた。
As a result, MoS 2 , MnO 2 , Li-alumina, L
Using iTi 2 (PO 4 ) 3 , the cathode material LiNi 0.9 C
o 0. Also non-aqueous electrolyte secondary batteries of Examples 9-12 using the sintered positive electrode via 1 O 2 particles these amorphous compounds, residual capacity ratio at the 200th cycle is, It was as high as in Example 3 using V 2 O 5 as the compound having lithium ion conductivity, and the charge / discharge cycle characteristics of the nonaqueous electrolyte secondary battery were improved.

【0042】[0042]

【発明の効果】以上詳述したように、この発明における
非水電解質電池においては、その正極において、結晶性
の正極材料をリチウムイオン伝導性を有する非晶質化合
物によって接合させるようにしたため、充放電時におい
てリチウムイオンが上記のリチウムイオン伝導性を有す
る非晶質化合物を通して速やかに結晶性の正極材料間を
移動するようになって、充放電時における反応が正極材
料において均一に行なわれるようになり、充放電時にお
ける正極材料の劣化が抑制されるようになった。
As described above in detail, in the nonaqueous electrolyte battery according to the present invention, the positive electrode of the nonaqueous electrolyte is formed by bonding a crystalline positive electrode material with an amorphous compound having lithium ion conductivity. At the time of discharging, lithium ions move quickly between the crystalline cathode materials through the above-mentioned amorphous compound having lithium ion conductivity, so that the reaction at the time of charging and discharging is performed uniformly in the cathode material. Thus, the deterioration of the positive electrode material during charge and discharge has been suppressed.

【0043】この結果、この発明における非水電解質電
池においては、充放電サイクル特性が向上され、長期に
わたり安定して繰り返し使用できる非水電解質電池が得
られた。
As a result, in the non-aqueous electrolyte battery according to the present invention, a non-aqueous electrolyte battery having improved charge / discharge cycle characteristics and being usable stably and repeatedly over a long period of time was obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例及び比較例における非水電解
質二次電池の内部構造を示した断面説明図である。
FIG. 1 is an explanatory sectional view showing an internal structure of a non-aqueous electrolyte secondary battery according to an example of the present invention and a comparative example.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 1 Positive electrode 2 Negative electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 能間 俊之 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Toshiyuki Noma 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Koji Nishio 2-chome Keihanhondori, Moriguchi-shi, Osaka No. 5-5 in Sanyo Electric Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 リチウムの吸蔵,放出が可能な結晶性の
正極材料を用いた正極と、負極と、非水電解質とを備え
た非水電解質電池において、上記の結晶性の正極材料が
リチウムイオン伝導性を有する非晶質化合物により接合
されてなることを特徴とする非水電解質電池。
1. A non-aqueous electrolyte battery comprising a positive electrode using a crystalline positive electrode material capable of inserting and extracting lithium, a negative electrode, and a non-aqueous electrolyte, wherein the crystalline positive electrode material is lithium ion A non-aqueous electrolyte battery which is joined by an amorphous compound having conductivity.
【請求項2】 請求項1に記載した非水電解質電池にお
いて、上記の結晶性の正極材料がリチウムイオン伝導性
を有する非晶質化合物と焼結されて接合されてなること
を特徴とする非水電解質電池。
2. The non-aqueous electrolyte battery according to claim 1, wherein said crystalline positive electrode material is sintered and joined to an amorphous compound having lithium ion conductivity. Water electrolyte battery.
【請求項3】 請求項1又は2に記載した非水電解質電
池において、上記の結晶性の正極材料を接合させるリチ
ウムイオン伝導性を有する非晶質化合物が1〜10重量
%含有されていることを特徴とする非水電解質電池。
3. The non-aqueous electrolyte battery according to claim 1, wherein the non-aqueous electrolyte battery contains 1 to 10% by weight of an amorphous compound having lithium ion conductivity for bonding the crystalline positive electrode material. Non-aqueous electrolyte battery characterized by the above.
JP8299938A 1996-11-12 1996-11-12 Non-aqueous electrolyte battery Pending JPH10144292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8299938A JPH10144292A (en) 1996-11-12 1996-11-12 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8299938A JPH10144292A (en) 1996-11-12 1996-11-12 Non-aqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JPH10144292A true JPH10144292A (en) 1998-05-29

Family

ID=17878760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8299938A Pending JPH10144292A (en) 1996-11-12 1996-11-12 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JPH10144292A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6720110B2 (en) 1996-09-23 2004-04-13 Valence Technology, Inc. Lithium-containing phosphates, method of preparation, and uses thereof
JPWO2013129150A1 (en) * 2012-03-01 2015-07-30 日立金属株式会社 Electrode active material, electrode and secondary battery using this electrode active material
JP2015204179A (en) * 2014-04-14 2015-11-16 株式会社日立製作所 Method for manufacturing electrode for all-solid battery, and method for manufacturing all-solid battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6720110B2 (en) 1996-09-23 2004-04-13 Valence Technology, Inc. Lithium-containing phosphates, method of preparation, and uses thereof
JPWO2013129150A1 (en) * 2012-03-01 2015-07-30 日立金属株式会社 Electrode active material, electrode and secondary battery using this electrode active material
JP2015204179A (en) * 2014-04-14 2015-11-16 株式会社日立製作所 Method for manufacturing electrode for all-solid battery, and method for manufacturing all-solid battery

Similar Documents

Publication Publication Date Title
JP3625680B2 (en) Lithium secondary battery
JP4878683B2 (en) Lithium secondary battery
EP1391959B1 (en) Non-aqueous electrolyte secondary battery
JP3685500B2 (en) Nonaqueous electrolyte secondary battery
JP2002251996A (en) Lithium secondary battery
JP2000353526A (en) Positive electrode active material composition for lithium secondary battery and manufacture of positive electrode using it
JPH08213052A (en) Nonaqueous electrolyte secondary battery
JP2000012030A (en) Nonaqueous electrolyte secondary battery
JP2000077072A (en) Nonaqueous electrolyte secondary battery
JP3768046B2 (en) Lithium secondary battery
JPH09147863A (en) Nonaqueous electrolyte battery
JP2000348722A (en) Nonaqueous electrolyte battery
JP2002270181A (en) Non-aqueous electrolyte battery
JP2002170566A (en) Lithium secondary cell
JP3268924B2 (en) Non-aqueous electrolyte battery
JP2002025626A (en) Aging method for lithium secondary battery
JPH10144291A (en) Non-aqueous electrolyte battery and manufacture of its positive electrode
JPH09237624A (en) Lithium battery
JPH10144292A (en) Non-aqueous electrolyte battery
JPH09147864A (en) Nonaqueous electrolyte battery and its manufacture
JP3615416B2 (en) Lithium secondary battery
JP4320528B2 (en) Nonaqueous electrolyte secondary battery
JP3691714B2 (en) Lithium secondary battery
JP2000277112A (en) Lithium secondary battery
JP2002289175A (en) Lithium secondary battery