JP4320528B2 - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP4320528B2
JP4320528B2 JP2002176350A JP2002176350A JP4320528B2 JP 4320528 B2 JP4320528 B2 JP 4320528B2 JP 2002176350 A JP2002176350 A JP 2002176350A JP 2002176350 A JP2002176350 A JP 2002176350A JP 4320528 B2 JP4320528 B2 JP 4320528B2
Authority
JP
Japan
Prior art keywords
negative electrode
active material
electrode active
battery
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002176350A
Other languages
Japanese (ja)
Other versions
JP2004022367A (en
JP2004022367A5 (en
Inventor
寿之 青木
徹 田渕
稔 手嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2002176350A priority Critical patent/JP4320528B2/en
Priority to KR1020047016728A priority patent/KR101107041B1/en
Priority to US10/513,664 priority patent/US8092940B2/en
Priority to PCT/JP2003/005654 priority patent/WO2003096449A1/en
Priority to CNB03810136XA priority patent/CN100414743C/en
Publication of JP2004022367A publication Critical patent/JP2004022367A/en
Publication of JP2004022367A5 publication Critical patent/JP2004022367A5/ja
Application granted granted Critical
Publication of JP4320528B2 publication Critical patent/JP4320528B2/en
Priority to US13/187,550 priority patent/US20120021286A1/en
Priority to US14/096,268 priority patent/US20140093780A1/en
Priority to US14/878,624 priority patent/US10038186B2/en
Priority to US16/014,636 priority patent/US20180301700A1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ケイ素粒子と炭素粒子との混合物からなる造粒体粒子の表面に炭素被膜を設けたものを負極活物質とする非水電解質二次電池に関するものである。
【0002】
【従来の技術】
近年、盛んに研究されている非水電解質二次電池は、小型で軽量の電池が要求される分野を中心に実用化された。これまで、非水電解質二次電池の有効性は古くから予測されていたものの、実用化に至るまでに解決すべき多くの問題があった。特に、非水電解質二次電池の正極活物質にコバルト酸リチウム(LiCoO)が有効であることが発見されてからは、負極活物質材料の開発が大きな課題となった。
【0003】
負極活物質に金属リチウムを用いた場合、充放電を繰り返すうちに局所的にリチウムが樹枝状に成長し、容量が低下するとともに、セパレータを突き破って内部短絡を起こすという問題があった。そこで金属リチウムに代わりリチウム合金の利用が考えられたが、サイクル特性やエネルギー密度に難点があった。
【0004】
現在では、負極活物質として炭素材料を用い、炭素中にリチウムイオンが挿入脱離する反応を用いる非水電解質二次電池が実用化されている。しかし、さらなる電池の高エネルギー密度化のためには、炭素材料ではその要求を満たすことがより困難になってきている。
【0005】
そこで、非水電解質二次電池をより高エネルギー密度化するために、特開平10−3920号、特開平2000−215887号などには、金属粒子を炭素材料で被覆した負極活物質を用いた非水電解質二次電池が開示されている。金属粒子の材料としては、重量当たりおよび体積当たりの理論容量が大きいケイ素が用いられている。
【0006】
【発明が解決しようとする課題】
しかし、ケイ素粒子単体を負極活物質に用いた場合、電池の高容量化・高エネルギー密度化は可能となるが、充放電サイクル特性の劣化などの問題があった。また、ケイ素粒子を炭素材料で被覆することにより、被覆しないものと比べて充放電サイクル特性の若干の向上は見られたが、これらの負極活物質粒子の充放電に伴う膨張や崩壊が大きく、それに伴い、負極活物質粒子内のケイ素粒子とケイ素粒子間やケイ素粒子と被覆炭素間の導電性、極板内の活物質粒子間の接触導電性が損なわれ、十分な充放電サイクル特性を確保することができなかった。
【0007】
そこで、本発明の目的は、ケイ素粒子と炭素粒子との混合物からなる造粒体粒子の表面に炭素被膜を設けたものを備えた負極活物質を改良することにより、充放電サイクル特性に優れ、しかも高エネルギー密度の非水電解質二次電池を提供することにある。
【0008】
【課題を解決するための手段】
請求項1の発明は、ケイ素粒子と炭素粒子との混合物からなる造粒体粒子の表面に炭素被膜を設けたものを負極活物質とする非水電解質二次電池において、前記負極活物質を昇温速度10±2℃/分で熱重量測定した場合、30〜1000℃の範囲で二段階の重量減少を示すことを特徴とする。
【0009】
請求項1の発明によれば、充放電サイクル特性に優れ、しかも高エネルギー密度の非水電解質二次電池を得ることができる。
【0010】
請求項2の発明は、上記非水電解質二次電池において、負極活物質の熱重量測定における、第一段目の重量減少開始温度が600℃以下で、第二段目の重量減少の開始温度が600℃を越えることを特徴とする。
【0011】
請求項2の発明によれば、より充放電サイクル特性に優れた非水電解質二次電池を得ることができる。
【0012】
請求項3の発明は、上記非水電解質二次電池において、負極活物質の熱重量測定における、第一段目の重量減少が昇温開始前の重量の3〜30重量%、第二段目の重量減少が昇温開始前の重量の5〜65重量%であることを特徴とする。
【0013】
請求項3の発明によれば、さらに充放電サイクル特性に優れた非水電解質二次電池を得ることができる。
【0014】
請求項4の発明は、非水電解質二次電池の負極活物質として、炭素と、請求項1、2または3記載のケイ素粒子と炭素粒子との混合物からなる造粒体粒子の表面に炭素被膜を設けたものとの混合物からなることを特徴とする。
【0015】
請求項4の発明によれば、充放電サイクル特性に優れた非水電解質二次電池を得ることができる。
【0016】
【発明の実施の形態】
以下、本発明の実施形態について詳細に説明する。本発明は、ケイ素粒子と炭素粒子との混合物からなる造粒体粒子の表面に炭素被膜を設けたものを負極活物質とする非水電解質二次電池において、前記負極活物質を昇温速度10±2℃/分で熱重量測定(以下「TG測定」と略す)した場合、30〜1000℃の範囲で二段階の重量減少を示すことを特徴とする。
【0017】
TG測定において、炭素は、物性の違いによって重量減少の開始する温度が異なり、この重量減少の開始する温度によって炭素材料の性質を特徴づけることができる。また、ケイ素は、TGにおいては30〜1000℃の温度範囲において重量減少をほぼ起こさない。種々の炭素の検討をおこなった結果、ケイ素粒子と炭素粒子との混合物からなる造粒体粒子の表面に炭素被膜を設けたものからなる負極活物質の炭素に、TG測定において30〜1000℃の範囲で二段階の重量減少を示す炭素を用いることにより、負極の充放電サイクル特性を向上させることを見出した。
【0018】
このような負極活物質を用いることによって、負極の充放電サイクル特性が向上する理由は明確には解明できていないが、充放電に伴い、ケイ素粒子の膨張・収縮や崩壊が起こった場合、負極活物質内に、TG測定において30〜1000℃の範囲で二段階の重量減少を示す炭素を複合させることにより、これらの炭素がケイ素粒子の膨張・収縮を緩和し、負極活物質粒子内における、ケイ素粒子とケイ素粒子間やケイ素粒子と炭素粒子間の接触を維持し、負極板内での接触導電性が保持されるものと推定される。
【0019】
本発明の負極活物質は、ベンゼン、トルエン、キシレンのような有機化合物を、ケイ素材料と炭素材料との造粒体粒子の表面に化学的に蒸着させる(CVD)方法、ケイ素材料とピッチと炭素材料の混合物を焼成する方法、ケイ素材料粒子と炭素材料との間に機械的エネルギーを作用させて、ケイ素材料と炭素材料との混合物からなる造粒体の表面に炭素被膜を設けたものを造るメカノケミカル反応を用いた方法などで製造できる。
【0020】
本発明で使用する負極活物質は、ケイ素と炭素とが原子レベルで均一に混合した均一相をもつものではなく、ケイ素粒子と炭素粒子との混合物からなる造粒体粒子の表面に炭素被膜を設けたものである。
【0021】
本発明の負極活物質を構成するケイ素粒子の平均粒径としては0.1〜20μmが好ましく、炭素粒子の平均粒径としては1〜50μmが好ましい。ケイ素粒子および炭素粒子の平均粒径がこの範囲よりも小さいものは、製造が困難で、取り扱いにくくなる。また、平均粒径がこの範囲よりも大きいものは、ケイ素粒子と炭素粒子との混合物からなる造粒体粒子を製造するのが困難となる。
【0022】
また、本発明に使用する負極活物質の構造に関しては、TG測定において30〜1000℃の範囲で二段階の重量減少を示す炭素を用いた、ケイ素粒子と炭素粒子との混合物からなる造粒体粒子の表面に炭素被膜を設けたものという主旨を逸脱しない限りは何ら限定されるものではない。
【0023】
負極活物質内に複合されるケイ素材料としては、金属ケイ素、アモルファス状ケイ素、ケイ素酸化物、或いはこれらの材料の混合体などが挙げられるが、ケイ素材料という主旨を逸脱しない限りは何ら限定されるものではない。また、炭素材料としては、天然黒鉛、人造黒鉛、アセチレンブラック、気相成長炭素繊維が好ましい。
【0024】
また、本発明は、上記非水電解質二次電池において、負極活物質のTG測定における、第一段目の重量減少開始温度が600℃以下で、第二段目の重量減少の開始温度が600℃を越えることを特徴とする。
【0025】
本発明のように、負極活物質を昇温速度10±2℃/分でTG測定した場合、第一段目および第二段目の重量減少の開始温度が上記範囲とすることによって、負極の充放電サイクル特性が向上する理由は、明確には解明できていないが、これらの炭素がケイ素粒子の膨張・収縮を緩和し、負極活物質粒子内の粒子間の接触を維持し、負極板内での接触導電性が保持されるものと推定される。
【0026】
図1は、本発明の負極活物質のTG測定結果を示す図である。本発明において、負極活物質のTG測定における第一段目の重量減少の開始温度とは、100℃〜350℃におけるTG曲線の一次微分(DTG)曲線をベースにした直線近似の線(図1のc)からDTG曲線が離れ始めるところ(図1のa)の温度を意味する。また、第二段目の重量減少の開始温度とは、第一段目の重量減少の終点温度を越えたのち、再び曲線の傾きが変り、新たな重量減少を示し始める変曲点(図1のb)の温度を意味する。
【0027】
なお、負極の優れた充放電サイクル特性を得るためには、負極活物質のTG測定における第一段目の重量減少の開始温度は350℃以上が好ましく、また、第二段目の重量減少の開始温度は800℃以下が好ましい。
【0028】
また、本発明は、負極活物質の熱重量測定における、第一段目の重量減少が昇温開始前の重量の3〜30重量%、第二段目の重量減少が昇温開始前の重量の5〜65重量%であることを特徴とする。
【0029】
本発明のように、負極活物質を昇温速度10±2℃/分でTG測定した場合、第一段目および第二段目の重量減少を上記範囲とすることによって、負極の充放電サイクル特性が向上する理由は、明確には解明できていないが、これらの炭素がケイ素粒子の膨張・収縮を緩和し、負極活物質粒子内の粒子間の接触を維持し、負極板内での接触導電性が保持されるものと推定される。
【0030】
なお、第一段目の重量減少とは、第一段目の重量減少の開始温度から第一段目の重量減少の終点温度まで昇温した間の重量減少量を意味する。また、第二段目の重量減少とは、第二段目の重量減少の開始温度から第二段目の重量減少の終点温度まで昇温した間の重量減少量を意味する。また、本発明における重量減少とは、昇温前の負極活物質の重量に対する重量減少量を示す。
【0031】
本発明の負極活物質であるケイ素粒子と炭素粒子との混合物からなる造粒体粒子の表面に炭素被膜を設けたものの、TG測定における重量減少開始温度および重量減少量の制御は、つぎのような方法を用いておこなうことができる。
【0032】
ケイ素粉末に炭素粉末を加え、ボールミルで混合粉砕し、ケイ素と炭素の造粒体を得る。この造粒体粒子をステンレス製容器に入れ、撹拌しながら、ステンレス製容器内を完全に窒素雰囲気下にした後に、内部温度を1000℃近くまで昇温し、その後、前記ステンレス製容器内にベンゼン蒸気を導入し、CVD処理をおこなう。その後、窒素雰囲気下で室温まで冷却し、負極活物質を得る。ケイ素材料として、ケイ素粉末のほかにケイ素酸化物やそれらの混合物を用いることもできる。
【0033】
ケイ素材料の平均粒径、炭素粉末の平均粒径、比表面積、および平均層間距離d002、ケイ素粉末と炭素粉末の混合割合、ボールミルでの混合粉砕時間、CVD処理の容器内導入有機成分蒸気の種類、温度、および時間を変えて、TG測定における重量減少開始温度および重量減少量の異なる、種々の負極活物質を作製することができる。
【0034】
さらに本発明は、非水電解質二次電池の負極活物質として、炭素と、上記のケイ素粒子と炭素粒子との混合物からなる造粒体粒子の表面に炭素被膜を設けたものとの混合物を用いることを特徴とする。
【0035】
このような負極活物質を用いることによって、負極の充放電サイクル特性が向上する理由は、明確には解明できていないが、活物質粒子間の接触導電性が、ケイ素粒子と炭素粒子との混合物からなる造粒体粒子の表面に炭素被膜を設けたもの単独の場合よりも、炭素を加えることにより、さらに向上したことによるものと推定される。
【0036】
本発明の非水電解質二次電池の電解液に使用する有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、トリフルオロプロピレンカーボネート、γ−ブチロラクトン、スルホラン、1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、3−メチル−1,3−ジオキソラン、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、ジプロピルカーボネート、メチルプロピルカーボネート等の非水溶媒を、単独でまたはこれらの混合溶媒を使用することができる。さらに、固体電解質との組み合わせでも使用することができる。固体電解質としては、無機固体電解質、ポリマー固体電解質を用いることができる。
【0037】
なお、本発明においては、有機溶媒に溶解する軽金属の塩としてはリチウム塩を使用することが好ましい。リチウム塩としては、LiPF、LiClO、LiBF、LiAsF、LiCFCO、LiPF(CF、LiPF(C、LiCFSO、LiN(SOCF、LiN(SOCFCF、LiN(COCFおよびLiN(COCFCFなどの塩もしくはこれらの混合物でもよい。これらのリチウム塩の濃度は、1.0〜2.0Mとするのが好ましい。
【0038】
さらに、負極活物質の結着剤として、SBR、カルボキシ変性SBR、PVdF、カルボキシ変性PVdF等あるいはこれらの混合物を用い、さらに、他の結着剤を適宜混合することができる。他の結着剤としては、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン、テトラフルオロエチレンーヘキサフルオロエチレン共重合体、テトラフルオロエチレンーヘキサフルオロプロピレン共重合体フッ化ビニリデンークロロトリフルオロエチレン共重合体を用いることができる。
【0039】
また、本発明の非水電解質二次電池のセパレータとしては、織布、不織布、合成樹脂微多孔膜等を用いることができ、特に、合成樹脂微多孔膜が好適に用いることができる。中でもポリエチレン及びポリプロピレン製微多孔膜、またはこれらを複合した微多孔膜等のポリオレフィン系微多孔膜が、厚さ、膜強度、膜抵抗等の面で好適に用いられる。
【0040】
さらに高分子固体電解質等の固体電解質を用いることで、セパレータを兼ねさせることも出来る。この場合、高分子固体電解質として有孔性高分子固体電解質膜を使用する等して高分子固体電解質にさらに電解液を含有させても良い。この場合、ゲル状の高分子固体電解質を用いる場合には、ゲルを構成する電解液と、細孔中等に含有されている電解液とは異なっていてもよい。また、合成樹脂微多孔膜と高分子固体電解質等を組み合わせて使用してもよい。
【0041】
正極活物質としては、二酸化マンガン、五酸化バナジウムのような遷移金属化合物や、硫化鉄、硫化チタンのような遷移金属カルコゲン化合物、さらにはこれらの遷移金属とリチウムの複合酸化物LiMO、Li、LiNiMn2−x(ただし、Mは、Co、NiまたはMnを表し、0.5≦x≦1、0≦y≦2であるで表される複合酸化物)、あるいはリチウムとニッケルの複合酸化物、すなわちLiNiM1M2で表される正極活物質(ただし、M1、M2はAl、Mn、Fe、Ni、Co、Cr、Ti、Znから選ばれる少なくとも一種の元素、または、P、Bなどの非金属元素でも良い。さらにp+q+r=1である)などを用いることができる。特に、高電圧、高エネルギー密度が得られ、サイクル特性にも優れることから、リチウム・コバルトの複合酸化物や、リチウム・コバルト・ニッケル複合酸化物が好ましい。
【0042】
また、電池の形状は特に限定されるものではなく、本発明は、角形、楕円形、コイン形、ボタン形、シート形電池等の様々な形状の非水電解質二次電池に適用可能である。
【0043】
【実施例】
以下に好適な実施例を用いて本発明を説明するが、本発明の主旨を超えない限り、以下の実施例に限定されるものではないことはいうまでもない。
【0044】
[実施例1]
正極活物質にコバルト酸リチウムを使用した、角型非水電解質二次電池を作製した。図2は角型非水電解質二次電池の断面構造を示した図である。図2において、1は角型非水電解質二次電池、2は巻回型電極群、3は正極、4は負極、5はセパレータ、6は電池ケース、7は電池蓋、8は安全弁、9は負極端子、10は正極リード線、11は負極リード線である。
【0045】
巻回型電極群2は電池ケース6に収納されており、電池蓋7と電池ケース6はレーザー溶接で密閉されている。電池蓋7には安全弁8が設けられている。負極端子9は、負極リード11を介して負極4と接続され、正極3は電池ケース6の内壁と接触により接続され、さらに、正極リード10を介して、電池蓋7と接続されている。
【0046】
正極板は以下のように作製した。活物質としてLiCoO90重量%と、導電剤としてのアセチレンブラック5重量%と、結着剤としてのポリフッ化ビニリデン5重量%とを混合して正極合剤とし、N−メチル−2−ピロリドンに分散させることにより正極ペーストを製造した。この正極ペーストを厚さ20μmのアルミニウム集電体に均一に塗布して、乾燥させた後、ロールプレスで圧縮成型することにより正極板を作製した。正極板の寸法は厚さ160μm、幅18mm、長さ600mmとした。
【0047】
負極活物質は次のようにして作製した。ケイ素材料として、ケイ素粉末(純度99%、平均粒径5μm)500gに炭素粉末(平均粒径9μm、比表面積4m/g、平均層間距離d002=0.3360nm)を400g加え、ボールミルで60分間混合粉砕し、ケイ素と炭素の造粒体を得た。この造粒体粒子500gをステンレス製容器に入れ、撹拌しながら、ステンレス製容器内を完全に窒素雰囲気下にした後に、内部温度を1000℃に昇温した。その後、前記ステンレス製容器内にベンゼン蒸気を導入し、CVD処理を120分間おこなった後、窒素雰囲気下で室温まで冷却し、負極活物質を得た。
【0048】
得られた負極活物質は、TG測定で、昇温速度10±2℃/分にて昇温した際に、第一段目の重量減少の開始温度(以下「T1」とする)が570℃で、重量減少量(以下「W1」とする)が15重量%、かつ第二段目の重量減少の開始温度(以下「T2」とする)が700℃で、重量減少量(以下「W2」とする)が30重量%である二段階の重量減少を示した。
【0049】
負極板は、上記の負極活物質90重量%と、結着剤としてのカルボキシ変性ポリフッ化ビニリデン10重量%とを混合して負極合剤とし、N−メチル−2−ピロリドンに分散させることにより負極ペーストとし、この負極ペーストを厚さ15μmの銅箔に均一に塗布して100℃で5時間乾燥させた後、ロールプレスで圧縮成型することにより負極を作製した。負極板の寸法は厚さ180μm、幅19mm、長さ630mmとした。
【0050】
セパレータとしては、厚さ20μmの微多孔性ポリエチレンフィルムを用いた。電解液には、エチレンカーボネートとジエチルカーボネートを体積比で1:1で混合したものにLiPFを1.0M溶解したものを用いた。
【0051】
そして、正極板と負極板とをセパレータを介して重ね合わせて、ポリエチレン製の巻芯を中心にして、その周囲に長円渦巻状に巻いて、巻回型発電要素とし、この巻回型発電要素を鉄製角型電池ケースに収納し、電解液を注液後、注液口を封口することにより、電池を得た。電池の寸法は、長さ47mm、幅23mm、厚さ8mmであり、定格容量は600mAhとした。これを電池Aとした。
【0052】
この非水電解質二次電池を、25℃において、600mAの定電流で4.2Vまで、さらに4.2V定電圧で、合計3時間の充電をおこなって満充電状態とした。続いて600mAの定電流で2.45Vまで放電させた。これを1サイクルとし、初期放電容量とした。その後、上記と同様の条件において、充放電を合計100サイクルおこない、1サイクル目の放電容量(初期放電容量)、1サイクル目の充電時における電池の厚さ、および充放電サイクルにともなう放電容量の推移を測定した。なお、ここで、1サイクル目の放電容量に対する100サイクル目の放電容量の比(%)を「容量保持率」とする。
【0053】
[比較例1]
昇温速度10±2℃/分でTG測定した場合、重量減少を示さない負極活物質を用いた以外は、実施例1と同様にして、電池Mを作製した。
【0054】
[比較例2および3]
昇温速度10±2℃/分でTG測定した場合、重量減少を示す回数が1回の負極活物質を用いた以外は、実施例1と同様にして、電池を作製した。負極活物質の重量減少開始温度が550℃の場合を電池N、重量減少開始温度が650℃の場合を電池Oとした。
【0055】
[実施例2および3]
昇温速度10±2℃/分でTG測定した場合、T1が異なる負極活物質を用いた以外は実施例1と同様にして、電池を作製した。T1が370℃の場合を電池B、590℃の場合を電池Cとした。
【0056】
[実施例4および5]
昇温速度10±2℃/分でTG測定した場合、T2が異なる負極活物質を用いた以外は実施例1と同様にして、電池を作製した。T2が620℃の場合を電池D、780℃の場合を電池Eとした。
【0057】
[実施例6および7、比較例4および5]
昇温速度10±2℃/分でTG測定した場合、T1およびT2が異なる負極活物質を用いた以外は実施例1と同様にして、電池を作製した。T1が340℃、T2が700℃の場合を電池F、T1が570℃、T2が810℃の場合を電池G、T1が620℃、T2が700℃の場合を電池P、T1が570℃、T2が580℃の場合を電池Qとした。
【0058】
[実施例8〜11]
昇温速度10±2℃/分でTG測定した場合、W1およびW2が異なる負極活物質を用いた以外は実施例1と同様にして、電池を作製した。W1が5%、W2が30%の場合を電池H、W1が25%、W2が30%の場合を電池I、W1が15%、W2が10%の場合を電池J、W1が15%、W2が60%の場合を電池Kとした。
【0059】
[比較例6〜9]
昇温速度10±2℃/分でTG測定した場合、W1およびW2が異なる負極活物質を用いた以外は実施例1と同様にして、電池を作製した。W1が1%、W2が30%の場合を電池R、W1が40%、W2が30%の場合を電池S、W1が15%、W2が3%の場合を電池T、W1が15%、W2が70%の場合を電池Uとした。
【0060】
[実施例12]
負極活物質として、実施例1で使用した負極活物質80wt%と、炭素材料としての天然黒鉛20wt%の混合物を用いた以外は、実施例1と同様にして、電池Lを作製した。
【0061】
これらの実施例2〜11、および比較例1〜9に対しても、実施例1と全く同様の測定をおこなった。作製した電池の負極活物質の内容を表1に示し、測定結果を表2にまとめた。
【0062】
【表1】
【0063】
【表2】
【0064】
表1および表2から、つぎのようなことが明らかとなった。まず、実施例1の電池Aと比較例1、2、3の電池M、N、Oの測定結果を比較した場合、昇温速度10±2℃/分でのTG測定において、二段階の重量減少を示す負極活物質を用いた電池Aの場合、充電時の電池の厚さが小さく、容量保持率は90%で、充放電サイクル特性が良好となることがわかった。
【0065】
一方、TG測定において重量減少を示さない負極活物質を用いた電池Mの場合、充電に伴う負極活物質粒子の膨張が大きく、粒子が崩壊するものと推察され、その結果、充電時の電池の厚みが大きくなり、活物質粒子内の導電性や極板内の活物質粒子同士の接触導電性が損なわれ、充放電サイクル特性が低下すると考えられる。
【0066】
また、TG測定において、一段階の重量減少を示す負極活物質を用いた電池Nおよび電池Oの場合も、容量保持率は50%以下となり、充放電サイクル特性が低下した。電池Nおよび電池Oの場合は、TGにおいて重量減少を示さない負極活物質を用いた電池Mと比較して、充電時の電池の厚み増加が若干抑制されるが、充電に伴う負極活物質粒子の膨張抑制が不十分であり、充電に伴い粒子が崩壊するものと推察され、活物質粒子内のケイ素粒子とケイ素粒子間の導電性、極板内の活物質粒子同士の接触導電性が損なわれるものと考えられる。
【0067】
つぎに、実施例1〜7の電池A〜Gと比較例4および5の電池Pおよびを比較した場合、TG測定におけるT1が600℃より高い電池PおよびT2が600℃より低い電池Qでは、電池A〜Gに比べて、充電時の電池の厚さはやや大きく、また、容量保持率は50%以下となり、充放電サイクル特性は劣っていた。
【0068】
電池A〜Gの中では、T1が600℃以下で、T2が600℃以上の負極活物質を用いた電池A〜Dでは、容量保持率は86%以上となり、きわめて優れた充放電サイクル特性を示したが、T1が600℃を越えた電池PおよびT2が600℃以下の電池Qでは、容量保持率は63%以下となり、充放電サイクル特性がやや低下していることがわかった。
【0069】
さらに、実施例1の電池A、実施例8〜11の電池H〜Kと比較例6〜9の電池R〜Uを比較した場合、TG測定におけるW1が昇温開始前の重量の3〜30重量%、W2が昇温開始前の重量の5〜65重量%である負極活物質を用いた電池Aおよび電池H〜Kでは、充電後の電池の膨れも小さく、容量保持率は86%以上となり、きわめて優れた充放電サイクル特性を示したが、W1が3〜30%の範囲を外れた電池RおよびS、また、W2が5〜65%の範囲を外れた電池TおよびUでは、容量保持率は60%以下となり、充放電サイクル特性が低下していることがわかった。
【0070】
また、実施例1の電池Aと実施例11の電池Lの比較から、負極活物質に、炭素と、ケイ素粒子と炭素粒子との混合物からなる造粒体粒子の表面に炭素被膜を設けたものとの混合物を用いた電池Lでは、初期放電容量は電池Aに比べてやや低下するが、容量保持率は96%となり、さらなる充放電サイクル特性の向上が確認できた。
【0071】
【発明の効果】
非水電解質二次電池の負極活物質として、昇温速度10±2℃/分で熱重量測定した場合、30〜1000℃の範囲で二段階の重量減少を示す、ケイ素粒子と炭素粒子との混合物からなる造粒体粒子の表面に炭素被膜を設けたものを使用することにより、負極活物質中におけるケイ素粒子の膨張・収縮を緩和し、負極活物質粒子内における、ケイ素粒子とケイ素粒子間やケイ素粒子と炭素粒子間の接触を維持し、負極板内での接触導電性が保持され、その結果、充放電サイクル特性に優れ、しかも高エネルギー密度の非水電解質二次電池を得ることができる。よって、本発明の工業的価値はきわめて高い。
【図面の簡単な説明】
【図1】ケイ素粒子と炭素粒子との混合物からなる造粒体粒子の表面に炭素被膜を設けたものの、TG測定結果の一例を示す図。
【図2】角型非水電解質二次電池の断面構造を示す図。
【符号の説明】
1 非水電解質二次電池
2 電極群
3 正極板
4 負極板
5 セパレータ
6 電池ケース
7 電池蓋
8 安全弁
9 負極端子
10 正極リード線
11 負極リード線
[0001]
BACKGROUND OF THE INVENTION
The present invention A granule particle composed of a mixture of silicon particles and carbon particles with a carbon coating on the surface The present invention relates to a non-aqueous electrolyte secondary battery using as a negative electrode active material.
[0002]
[Prior art]
In recent years, non-aqueous electrolyte secondary batteries that have been actively studied have been put to practical use mainly in fields where small and lightweight batteries are required. So far, the effectiveness of non-aqueous electrolyte secondary batteries has been predicted for a long time, but there have been many problems to be solved before practical use. In particular, lithium cobaltate (LiCoO) is used as a positive electrode active material of a non-aqueous electrolyte secondary battery. 2 ) Has been found to be effective, the development of negative electrode active material has become a major issue.
[0003]
When metallic lithium is used as the negative electrode active material, lithium locally grows in a dendritic manner while charging and discharging are repeated, resulting in a problem that the capacity is reduced and an internal short circuit is caused by breaking through the separator. Therefore, the use of lithium alloys instead of metallic lithium was considered, but there were difficulties in cycle characteristics and energy density.
[0004]
Currently, non-aqueous electrolyte secondary batteries using a carbon material as a negative electrode active material and using a reaction in which lithium ions are inserted into and desorbed from carbon have been put into practical use. However, in order to further increase the energy density of the battery, it has become more difficult to satisfy the demand with carbon materials.
[0005]
Therefore, in order to increase the energy density of the non-aqueous electrolyte secondary battery, JP-A-10-3920, JP-A-2000-215887, etc. describe a non-active material using a negative electrode active material in which metal particles are coated with a carbon material. A water electrolyte secondary battery is disclosed. As a material for the metal particles, silicon having a large theoretical capacity per weight and per volume is used.
[0006]
[Problems to be solved by the invention]
However, when silicon particles alone are used as the negative electrode active material, it is possible to increase the capacity and energy density of the battery, but there are problems such as deterioration of charge / discharge cycle characteristics. In addition, by coating the silicon particles with a carbon material, a slight improvement in charge and discharge cycle characteristics was seen compared to those without coating, but the expansion and collapse associated with charge and discharge of these negative electrode active material particles was large, As a result, the conductivity between the silicon particles and the silicon particles in the negative electrode active material particles, the conductivity between the silicon particles and the coated carbon, and the contact conductivity between the active material particles in the electrode plate are impaired, ensuring sufficient charge / discharge cycle characteristics. I couldn't.
[0007]
Therefore, the object of the present invention is to Provided with a carbon coating on the surface of granulated particles consisting of a mixture of silicon and carbon particles An object of the present invention is to provide a non-aqueous electrolyte secondary battery having excellent charge / discharge cycle characteristics and high energy density by improving the negative electrode active material.
[0008]
[Means for Solving the Problems]
The invention of claim 1 A granule particle composed of a mixture of silicon particles and carbon particles with a carbon coating on the surface In a non-aqueous electrolyte secondary battery using a negative electrode active material, when the negative electrode active material is thermogravimetrically measured at a rate of temperature increase of 10 ± 2 ° C./min, it shows a two-stage weight loss in the range of 30 to 1000 ° C. It is characterized by.
[0009]
According to the first aspect of the present invention, a non-aqueous electrolyte secondary battery having excellent charge / discharge cycle characteristics and high energy density can be obtained.
[0010]
According to a second aspect of the present invention, in the nonaqueous electrolyte secondary battery, in the thermogravimetric measurement of the negative electrode active material, the first stage weight reduction start temperature is 600 ° C. or less, and the second stage weight reduction start temperature. Is over 600 ° C.
[0011]
According to invention of Claim 2, the nonaqueous electrolyte secondary battery which was more excellent in charging / discharging cycling characteristics can be obtained.
[0012]
According to a third aspect of the present invention, in the nonaqueous electrolyte secondary battery, in the thermogravimetric measurement of the negative electrode active material, the first stage weight loss is 3 to 30% by weight of the weight before the start of temperature rise, the second stage The weight loss is 5 to 65% by weight of the weight before the start of temperature rise.
[0013]
According to the invention of claim 3, it is possible to obtain a non-aqueous electrolyte secondary battery further excellent in charge / discharge cycle characteristics.
[0014]
According to a fourth aspect of the present invention, carbon is used as the negative electrode active material of the non-aqueous electrolyte secondary battery. A carbon coating is provided on the surface of granulated particles made of a mixture of silicon particles and carbon particles And a mixture thereof.
[0015]
According to the invention of claim 4, a nonaqueous electrolyte secondary battery excellent in charge / discharge cycle characteristics can be obtained.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail. The present invention A granule particle composed of a mixture of silicon particles and carbon particles with a carbon coating on the surface In a non-aqueous electrolyte secondary battery using a negative electrode active material, when the negative electrode active material is thermogravimetrically measured (hereinafter abbreviated as “TG measurement”) at a rate of temperature increase of 10 ± 2 ° C./min, a range of 30 to 1000 ° C. It shows a two-stage weight loss.
[0017]
In the TG measurement, the temperature at which carbon starts to decrease in weight varies depending on the difference in physical properties, and the characteristics of the carbon material can be characterized by the temperature at which the weight decrease starts. In addition, silicon hardly causes weight loss in the temperature range of 30 to 1000 ° C. in TG. As a result of examining various carbon, A granule particle composed of a mixture of silicon particles and carbon particles with a carbon coating on the surface It has been found that the charge / discharge cycle characteristics of the negative electrode can be improved by using carbon that exhibits a two-stage weight loss in the range of 30 to 1000 ° C. in the TG measurement as the carbon of the negative electrode active material.
[0018]
The reason why the charge / discharge cycle characteristics of the negative electrode are improved by using such a negative electrode active material has not been clearly clarified. However, when silicon particles expand, contract, or collapse due to charge / discharge, the negative electrode In the active material, by combining carbon showing a two-stage weight loss in the range of 30 to 1000 ° C. in the TG measurement, these carbons alleviate the expansion and contraction of the silicon particles, and in the negative electrode active material particles, It is presumed that contact conductivity between the silicon particles and the silicon particles or between the silicon particles and the carbon particles is maintained and the contact conductivity in the negative electrode plate is maintained.
[0019]
The negative electrode active material of the present invention is a method in which an organic compound such as benzene, toluene, xylene is chemically deposited on the surface of granulated particles of silicon material and carbon material (CVD), silicon material, pitch and carbon. A method of firing a mixture of materials, with mechanical energy acting between the silicon material particles and the carbon material, A granule made of a mixture of silicon and carbon materials with a carbon coating on the surface It can be manufactured by a method using a mechanochemical reaction to produce
[0020]
The present invention The negative electrode active material used in The carbon coating is not provided on the surface of the granulated particles made of a mixture of silicon particles and carbon particles, but having a homogeneous phase in which silicon and carbon are uniformly mixed at the atomic level.
[0021]
The average particle diameter of the silicon particles constituting the negative electrode active material of the present invention is preferably from 0.1 to 20 μm, and the average particle diameter of the carbon particles is preferably from 1 to 50 μm. When the average particle diameter of silicon particles and carbon particles is smaller than this range, it is difficult to produce and difficult to handle. Moreover, when the average particle size is larger than this range, it becomes difficult to produce granulated particles made of a mixture of silicon particles and carbon particles.
[0022]
Moreover, regarding the structure of the negative electrode active material used in the present invention, carbon showing a two-stage weight loss in the range of 30 to 1000 ° C. in the TG measurement was used. A granule particle composed of a mixture of silicon particles and carbon particles with a carbon coating on the surface Unless it deviates from the main point, it is not limited at all.
[0023]
Examples of the silicon material composited in the negative electrode active material include metallic silicon, amorphous silicon, silicon oxide, and a mixture of these materials, but are not limited as long as they do not depart from the gist of the silicon material. It is not a thing. Moreover, as a carbon material, natural graphite, artificial graphite, acetylene black, and vapor growth carbon fiber are preferable.
[0024]
Further, according to the present invention, in the non-aqueous electrolyte secondary battery, in the TG measurement of the negative electrode active material, the first stage weight reduction start temperature is 600 ° C. or less, and the second stage weight reduction start temperature is 600 ° C. It is characterized by exceeding ℃.
[0025]
When the negative electrode active material is subjected to TG measurement at a rate of temperature increase of 10 ± 2 ° C./min as in the present invention, the initial temperature of weight reduction at the first stage and the second stage is within the above range. The reason why the charge / discharge cycle characteristics are improved is not clearly clarified, but these carbons alleviate the expansion and contraction of the silicon particles and maintain the contact between the particles in the negative electrode active material particles. It is presumed that the contact conductivity at is maintained.
[0026]
FIG. 1 is a diagram showing a TG measurement result of the negative electrode active material of the present invention. In the present invention, the starting temperature of the first stage weight reduction in the TG measurement of the negative electrode active material is a linear approximation line based on the first derivative (DTG) curve of the TG curve at 100 ° C. to 350 ° C. (FIG. 1). Means the temperature at which the DTG curve starts to depart from c) in FIG. The start temperature of the second stage weight reduction is the inflection point (FIG. 1) after the end temperature of the first stage weight reduction exceeds the end point temperature and the slope of the curve changes again to start showing a new weight reduction. Means the temperature of b).
[0027]
In order to obtain excellent charge / discharge cycle characteristics of the negative electrode, the starting temperature of the first stage weight reduction in the TG measurement of the negative electrode active material is preferably 350 ° C. or higher, and the second stage weight reduction The starting temperature is preferably 800 ° C. or lower.
[0028]
Further, in the thermogravimetric measurement of the negative electrode active material, the present invention is such that the first stage weight reduction is 3 to 30% by weight of the weight before the start of temperature rise, and the second stage weight reduction is the weight before the start of temperature rise. 5 to 65% by weight.
[0029]
When the negative electrode active material is subjected to TG measurement at a rate of temperature increase of 10 ± 2 ° C./min as in the present invention, the negative electrode charge / discharge cycle is controlled by setting the weight reduction in the first and second stages within the above range. The reason why the characteristics improve is not clearly understood, but these carbons alleviate the expansion and contraction of the silicon particles, maintain the contact between the particles in the negative electrode active material particles, and contact in the negative electrode plate It is presumed that conductivity is maintained.
[0030]
The weight reduction in the first stage means the amount of weight reduction during the temperature rise from the start temperature of the first stage weight reduction to the end temperature of the first stage weight reduction. The weight reduction in the second stage means the amount of weight reduction during the temperature rise from the start temperature of the second stage weight reduction to the end temperature of the second stage weight reduction. Moreover, the weight reduction | decrease in this invention shows the weight reduction | decrease amount with respect to the weight of the negative electrode active material before temperature rising.
[0031]
The negative electrode active material of the present invention A granule particle composed of a mixture of silicon particles and carbon particles with a carbon coating on the surface The control of the weight reduction start temperature and the weight reduction amount in the TG measurement can be performed using the following method.
[0032]
Carbon powder is added to silicon powder and mixed and ground by a ball mill to obtain a granulated body of silicon and carbon. The granulated particles are placed in a stainless steel container, and while stirring, the interior of the stainless steel container is completely put into a nitrogen atmosphere, and then the internal temperature is raised to nearly 1000 ° C., and then the benzene is placed in the stainless steel container. Steam is introduced and CVD processing is performed. Then, it cools to room temperature under nitrogen atmosphere, and a negative electrode active material is obtained. As a silicon material, silicon oxide or a mixture thereof can be used in addition to silicon powder.
[0033]
Average particle size of silicon material, average particle size of carbon powder, specific surface area, and average interlayer distance d002, mixing ratio of silicon powder and carbon powder, mixing and grinding time in ball mill, kind of organic component vapor introduced into container for CVD treatment By changing the temperature and time, various negative electrode active materials having different weight loss start temperatures and weight loss amounts in TG measurement can be produced.
[0034]
Furthermore, the present invention provides carbon as a negative electrode active material for a nonaqueous electrolyte secondary battery, A granule particle made of a mixture of silicon particles and carbon particles with a carbon coating on the surface And a mixture thereof.
[0035]
The reason why the charge / discharge cycle characteristics of the negative electrode are improved by using such a negative electrode active material has not been clearly clarified, but the contact conductivity between the active material particles is A granule particle composed of a mixture of silicon particles and carbon particles with a carbon coating on the surface It is presumed that this was due to further improvement by adding carbon rather than a single case.
[0036]
Examples of the organic solvent used in the electrolyte solution of the nonaqueous electrolyte secondary battery of the present invention include ethylene carbonate, propylene carbonate, butylene carbonate, trifluoropropylene carbonate, γ-butyrolactone, sulfolane, 1,2-dimethoxyethane, 1,2 -Diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 3-methyl-1,3-dioxolane, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, dipropyl carbonate, A nonaqueous solvent such as methylpropyl carbonate can be used alone or a mixed solvent thereof. Furthermore, it can be used in combination with a solid electrolyte. As the solid electrolyte, an inorganic solid electrolyte or a polymer solid electrolyte can be used.
[0037]
In the present invention, it is preferable to use a lithium salt as the salt of the light metal dissolved in the organic solvent. As the lithium salt, LiPF 6 LiClO 4 , LiBF 4 , LiAsF 6 , LiCF 3 CO 2 , LiPF 3 (CF 3 ) 3 , LiPF 3 (C 2 F 5 ) 3 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 CF 2 CF 3 ) 2 , LiN (COCF 3 ) 2 And LiN (COCF 2 CF 3 ) 2 Or a mixture thereof. The concentration of these lithium salts is preferably 1.0 to 2.0M.
[0038]
Furthermore, as a binder for the negative electrode active material, SBR, carboxy-modified SBR, PVdF, carboxy-modified PVdF, or the like or a mixture thereof can be used, and other binders can be appropriately mixed. Other binders include polyethylene, polypropylene, polytetrafluoroethylene, tetrafluoroethylene-hexafluoroethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, vinylidene fluoride-chlorotrifluoroethylene copolymer. Can be used.
[0039]
Moreover, as a separator of the nonaqueous electrolyte secondary battery of the present invention, a woven fabric, a non-woven fabric, a synthetic resin microporous membrane or the like can be used, and in particular, a synthetic resin microporous membrane can be preferably used. Among these, polyolefin microporous membranes such as polyethylene and polypropylene microporous membranes, or microporous membranes composed of these are preferably used in terms of thickness, membrane strength, membrane resistance, and the like.
[0040]
Further, by using a solid electrolyte such as a polymer solid electrolyte, it can also serve as a separator. In this case, a porous polymer solid electrolyte membrane may be used as the polymer solid electrolyte, and the electrolyte may be further contained in the polymer solid electrolyte. In this case, when a gel-like solid polymer electrolyte is used, the electrolyte constituting the gel may be different from the electrolyte contained in the pores. Further, a synthetic resin microporous membrane and a polymer solid electrolyte may be used in combination.
[0041]
Examples of positive electrode active materials include transition metal compounds such as manganese dioxide and vanadium pentoxide, transition metal chalcogen compounds such as iron sulfide and titanium sulfide, and composite oxides Li of these transition metals and lithium. x MO 2 , Li y M 2 O 4 , LiNi x Mn 2-x O 4 (Wherein M represents Co, Ni, or Mn, and is a composite oxide represented by 0.5 ≦ x ≦ 1, 0 ≦ y ≦ 2), or a composite oxide of lithium and nickel, that is, LiNi p M1 q M2 r O 2 (Wherein M1 and M2 may be at least one element selected from Al, Mn, Fe, Ni, Co, Cr, Ti, and Zn, or a non-metallic element such as P and B). Furthermore, p + q + r = 1) can be used. In particular, a lithium-cobalt composite oxide or a lithium-cobalt-nickel composite oxide is preferable because a high voltage, a high energy density can be obtained, and cycle characteristics are excellent.
[0042]
Further, the shape of the battery is not particularly limited, and the present invention can be applied to non-aqueous electrolyte secondary batteries having various shapes such as a square, an ellipse, a coin, a button, and a sheet.
[0043]
【Example】
The present invention will be described below with reference to preferred examples, but it is needless to say that the present invention is not limited to the following examples as long as the gist of the present invention is not exceeded.
[0044]
[Example 1]
A square non-aqueous electrolyte secondary battery using lithium cobaltate as the positive electrode active material was produced. FIG. 2 is a diagram showing a cross-sectional structure of a prismatic nonaqueous electrolyte secondary battery. In FIG. 2, 1 is a rectangular nonaqueous electrolyte secondary battery, 2 is a wound electrode group, 3 is a positive electrode, 4 is a negative electrode, 5 is a separator, 6 is a battery case, 7 is a battery lid, 8 is a safety valve, 9 Is a negative terminal, 10 is a positive lead, and 11 is a negative lead.
[0045]
The wound electrode group 2 is housed in a battery case 6, and the battery lid 7 and the battery case 6 are sealed by laser welding. The battery lid 7 is provided with a safety valve 8. The negative electrode terminal 9 is connected to the negative electrode 4 via the negative electrode lead 11, the positive electrode 3 is connected to the inner wall of the battery case 6 by contact, and is further connected to the battery lid 7 via the positive electrode lead 10.
[0046]
The positive electrode plate was produced as follows. LiCoO as active material 2 90% by weight, 5% by weight of acetylene black as a conductive agent, and 5% by weight of polyvinylidene fluoride as a binder are mixed to form a positive electrode mixture, which is dispersed in N-methyl-2-pyrrolidone. A paste was produced. The positive electrode paste was uniformly applied to an aluminum current collector with a thickness of 20 μm, dried, and then compression molded with a roll press to produce a positive electrode plate. The positive electrode plate had a thickness of 160 μm, a width of 18 mm, and a length of 600 mm.
[0047]
The negative electrode active material was produced as follows. As silicon materials, silicon powder (purity 99%, average particle size 5 μm) 500 g carbon powder (average particle size 9 μm, specific surface area 4 m) 2 / G, average interlayer distance d002 = 0.3360 nm) was added and mixed and pulverized with a ball mill for 60 minutes to obtain a granulated body of silicon and carbon. 500 g of the granulated particles were placed in a stainless steel container, and the interior of the stainless steel container was completely put into a nitrogen atmosphere while stirring, and then the internal temperature was raised to 1000 ° C. Thereafter, benzene vapor was introduced into the stainless steel container, and the CVD process was performed for 120 minutes, followed by cooling to room temperature in a nitrogen atmosphere to obtain a negative electrode active material.
[0048]
When the obtained negative electrode active material was heated at a rate of temperature increase of 10 ± 2 ° C./min by TG measurement, the first stage weight loss starting temperature (hereinafter referred to as “T1”) was 570 ° C. The weight reduction amount (hereinafter referred to as “W1”) is 15% by weight, the second stage weight reduction start temperature (hereinafter referred to as “T2”) is 700 ° C., and the weight reduction amount (hereinafter referred to as “W2”). ) Showed a two-stage weight loss of 30% by weight.
[0049]
The negative electrode plate was prepared by mixing 90% by weight of the negative electrode active material and 10% by weight of carboxy-modified polyvinylidene fluoride as a binder to form a negative electrode mixture, which was dispersed in N-methyl-2-pyrrolidone. This negative electrode paste was uniformly applied to a 15 μm thick copper foil, dried at 100 ° C. for 5 hours, and then subjected to compression molding with a roll press to prepare a negative electrode. The negative electrode plate had a thickness of 180 μm, a width of 19 mm, and a length of 630 mm.
[0050]
As the separator, a microporous polyethylene film having a thickness of 20 μm was used. The electrolyte used was LiPF mixed with ethylene carbonate and diethyl carbonate mixed at a volume ratio of 1: 1. 6 In which 1.0 M was dissolved was used.
[0051]
Then, the positive electrode plate and the negative electrode plate are overlapped via a separator and wound around the polyethylene core in an oval spiral shape to form a wound power generation element. The element was housed in an iron square battery case, and after pouring the electrolytic solution, the pouring port was sealed to obtain a battery. The dimensions of the battery were 47 mm in length, 23 mm in width, 8 mm in thickness, and the rated capacity was 600 mAh. This was designated as Battery A.
[0052]
This non-aqueous electrolyte secondary battery was charged at a constant current of 600 mA up to 4.2 V at 25 ° C. and further charged at a constant voltage of 4.2 V for a total of 3 hours to obtain a fully charged state. Subsequently, the battery was discharged to 2.45 V with a constant current of 600 mA. This was defined as one cycle, which was the initial discharge capacity. Thereafter, under the same conditions as described above, charging / discharging is performed for a total of 100 cycles, the discharge capacity of the first cycle (initial discharge capacity), the thickness of the battery at the time of charging in the first cycle, and the discharge capacity associated with the charge / discharge cycle Transition was measured. Here, the ratio (%) of the discharge capacity at the 100th cycle to the discharge capacity at the 1st cycle is defined as “capacity retention”.
[0053]
[Comparative Example 1]
When TG measurement was performed at a temperature increase rate of 10 ± 2 ° C./min, a battery M was fabricated in the same manner as in Example 1 except that a negative electrode active material that did not show weight reduction was used.
[0054]
[Comparative Examples 2 and 3]
When TG measurement was performed at a rate of temperature increase of 10 ± 2 ° C./min, a battery was fabricated in the same manner as in Example 1 except that the negative electrode active material was used only once for the weight reduction. Battery N was designated as the negative electrode active material weight reduction start temperature of 550 ° C., and battery O was designated as the weight reduction start temperature of 650 ° C.
[0055]
[Examples 2 and 3]
When TG measurement was performed at a rate of temperature increase of 10 ± 2 ° C./min, a battery was fabricated in the same manner as in Example 1 except that a negative electrode active material having a different T1 was used. When B1 was 370 ° C, battery B was designated as battery B, and when C1 was 390 ° C.
[0056]
[Examples 4 and 5]
When TG measurement was performed at a temperature increase rate of 10 ± 2 ° C./min, a battery was fabricated in the same manner as in Example 1 except that negative electrode active materials having different T2 were used. The case where T2 was 620 ° C. was designated as battery D, and the case where T2 was 780 ° C. was designated as battery E.
[0057]
[Examples 6 and 7, Comparative Examples 4 and 5]
When TG measurement was performed at a temperature increase rate of 10 ± 2 ° C./min, a battery was fabricated in the same manner as in Example 1 except that negative electrode active materials having different T1 and T2 were used. Battery F when T1 is 340 ° C. and T2 is 700 ° C., Battery G when T1 is 570 ° C. and T2 is 810 ° C., Battery P when T1 is 620 ° C. and T2 is 700 ° C., and T1 is 570 ° C. The battery Q was determined when T2 was 580 ° C.
[0058]
[Examples 8 to 11]
When TG measurement was performed at a temperature increase rate of 10 ± 2 ° C./min, a battery was fabricated in the same manner as in Example 1 except that negative electrode active materials having different W1 and W2 were used. When W1 is 5% and W2 is 30%, battery H, when W1 is 25%, when W2 is 30%, battery I, when W1 is 15%, and when W2 is 10%, battery J, W1 is 15%, The battery K was defined as the case where W2 was 60%.
[0059]
[Comparative Examples 6-9]
When TG measurement was performed at a temperature increase rate of 10 ± 2 ° C./min, a battery was fabricated in the same manner as in Example 1 except that negative electrode active materials having different W1 and W2 were used. Battery R when W1 is 1% and W2 is 30%, Battery S when W1 is 40% and W2 is 30%, Battery T when W1 is 15% and W2 is 3%, Battery T and W1 is 15%, The battery U was determined when W2 was 70%.
[0060]
[Example 12]
A battery L was produced in the same manner as in Example 1 except that a mixture of 80 wt% of the negative electrode active material used in Example 1 and 20 wt% of natural graphite as a carbon material was used as the negative electrode active material.
[0061]
The same measurements as in Example 1 were performed for Examples 2 to 11 and Comparative Examples 1 to 9. The contents of the negative electrode active material of the produced battery are shown in Table 1, and the measurement results are summarized in Table 2.
[0062]
[Table 1]
[0063]
[Table 2]
[0064]
From Tables 1 and 2, the following became clear. First, when comparing the measurement results of the battery A of Example 1 and the batteries M, N, and O of Comparative Examples 1, 2, and 3, in the TG measurement at a rate of temperature increase of 10 ± 2 ° C./min, the weight in two stages In the case of the battery A using the negative electrode active material exhibiting a decrease, it was found that the thickness of the battery during charging was small, the capacity retention was 90%, and the charge / discharge cycle characteristics were good.
[0065]
On the other hand, in the case of the battery M using the negative electrode active material that does not show weight reduction in the TG measurement, it is inferred that the negative electrode active material particles are greatly expanded due to charging, and the particles are collapsed. It is considered that the thickness is increased, the conductivity in the active material particles and the contact conductivity between the active material particles in the electrode plate are impaired, and the charge / discharge cycle characteristics are deteriorated.
[0066]
Further, in the TG measurement, in the case of the battery N and the battery O using the negative electrode active material showing a one-stage weight reduction, the capacity retention was 50% or less, and the charge / discharge cycle characteristics were deteriorated. In the case of the battery N and the battery O, an increase in the thickness of the battery at the time of charging is slightly suppressed as compared with the battery M using the negative electrode active material that does not show a weight decrease in TG, but the negative electrode active material particles accompanying the charging It is surmised that the expansion of the particles is insufficient, and that the particles are expected to collapse upon charging, and the conductivity between the silicon particles in the active material particles and the contact conductivity between the active material particles in the electrode plate are impaired. It is thought that.
[0067]
Next, when the batteries A to G of Examples 1 to 7 and the batteries P of Comparative Examples 4 and 5 are compared, in the battery P having a T1 higher than 600 ° C. and the battery Q having a T2 lower than 600 ° C. in the TG measurement, Compared with batteries A to G, the thickness of the battery during charging was slightly larger, the capacity retention rate was 50% or less, and the charge / discharge cycle characteristics were inferior.
[0068]
Among batteries A to G, batteries A to D using a negative electrode active material having T1 of 600 ° C. or lower and T2 of 600 ° C. or higher have a capacity retention rate of 86% or higher, and extremely excellent charge / discharge cycle characteristics. As shown, the battery P with T1 exceeding 600 ° C. and the battery Q with T2 600 ° C. or less showed a capacity retention of 63% or less, and the charge / discharge cycle characteristics were slightly deteriorated.
[0069]
Furthermore, when comparing the battery A of Example 1, the batteries H to K of Examples 8 to 11 and the batteries R to U of Comparative Examples 6 to 9, W1 in the TG measurement is 3 to 30 of the weight before the start of temperature increase. In the battery A and the batteries H to K using the negative electrode active material in which the weight% and W2 are 5 to 65% by weight of the weight before the start of temperature increase, the swelling of the battery after charging is small and the capacity retention is 86% or more. In the batteries R and S where W1 is out of the range of 3 to 30%, and in the batteries T and U where W2 is out of the range of 5 to 65%, the capacity is shown. The retention rate was 60% or less, and it was found that the charge / discharge cycle characteristics were deteriorated.
[0070]
Further, from the comparison between the battery A of Example 1 and the battery L of Example 11, the negative electrode active material was carbon, A granule particle composed of a mixture of silicon particles and carbon particles with a carbon coating on the surface In the battery L using the mixture, the initial discharge capacity is slightly lower than that of the battery A, but the capacity retention is 96%, and further improvement of the charge / discharge cycle characteristics was confirmed.
[0071]
【The invention's effect】
As a negative electrode active material for a non-aqueous electrolyte secondary battery, when thermogravimetrically measured at a rate of temperature increase of 10 ± 2 ° C./min, it shows a two-stage weight loss in the range of 30 to 1000 ° C., A granule particle composed of a mixture of silicon particles and carbon particles with a carbon coating on the surface To reduce the expansion and contraction of the silicon particles in the negative electrode active material, and maintain the contact between the silicon particles and the silicon particles or between the silicon particles and the carbon particles in the negative electrode active material particles. As a result, a non-aqueous electrolyte secondary battery having excellent charge / discharge cycle characteristics and high energy density can be obtained. Therefore, the industrial value of the present invention is extremely high.
[Brief description of the drawings]
[Figure 1] A granule particle composed of a mixture of silicon particles and carbon particles with a carbon coating on the surface The figure which shows an example of TG measurement result.
FIG. 2 is a view showing a cross-sectional structure of a prismatic nonaqueous electrolyte secondary battery.
[Explanation of symbols]
1 Nonaqueous electrolyte secondary battery
2 Electrode group
3 Positive plate
4 Negative electrode plate
5 Separator
6 Battery case
7 Battery cover
8 Safety valve
9 Negative terminal
10 Positive lead wire
11 Negative lead wire

Claims (4)

ケイ素粒子と炭素粒子との混合物からなる造粒体粒子の表面に炭素被膜を設けたものを負極活物質とする非水電解質二次電池において、前記負極活物質を昇温速度10±2℃/分で熱重量測定した場合、30〜1000℃の範囲で二段階の重量減少を示すことを特徴とする非水電解質二次電池。 In a non-aqueous electrolyte secondary battery having a negative electrode active material in which a carbon film is provided on the surface of granulated particles made of a mixture of silicon particles and carbon particles, the negative electrode active material is heated at a rate of temperature increase of 10 ± 2 ° C. / A non-aqueous electrolyte secondary battery characterized by showing a two-stage weight loss in the range of 30 to 1000 ° C when thermogravimetrically measured in minutes. 負極活物質の熱重量測定における、第一段目の重量減少開始温度が600℃以下で、第二段目の重量減少の開始温度が600℃を越えることを特徴とする請求項1記載の非水電解質二次電池。2. The non-stage according to claim 1, wherein in the thermogravimetric measurement of the negative electrode active material, the first stage weight reduction start temperature is 600 ° C. or less, and the second stage weight reduction start temperature exceeds 600 ° C. 3. Water electrolyte secondary battery. 負極活物質の熱重量測定における、第一段目の重量減少が昇温開始前の重量の3〜30重量%、第二段目の重量減少が昇温開始前の重量の5〜65重量%であることを特徴とする請求項1または2記載の非水電解質二次電池。In thermogravimetric measurement of the negative electrode active material, the first stage weight loss is 3 to 30% by weight of the weight before the start of temperature increase, and the second stage weight decrease is 5 to 65% by weight of the weight before the start of temperature increase. The nonaqueous electrolyte secondary battery according to claim 1, wherein the nonaqueous electrolyte secondary battery is a non-aqueous electrolyte secondary battery. 負極活物質が、炭素と、請求項1、2または3記載のケイ素粒子と炭素粒子との混合物からなる造粒体粒子の表面に炭素被膜を設けたものとの混合物からなることを特徴とする非水電解質二次電池。Negative electrode active material, and characterized in that a mixture of carbon, and that the surface of the granule particles consisting of a mixture of claim 1, 2 or 3 Symbol mounting of silicon particles and carbon particles provided carbon coating Non-aqueous electrolyte secondary battery.
JP2002176350A 2002-05-08 2002-06-17 Nonaqueous electrolyte secondary battery Expired - Lifetime JP4320528B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2002176350A JP4320528B2 (en) 2002-06-17 2002-06-17 Nonaqueous electrolyte secondary battery
KR1020047016728A KR101107041B1 (en) 2002-05-08 2003-05-06 Nonaqueous electrolyte secondary cell
US10/513,664 US8092940B2 (en) 2002-05-08 2003-05-06 Non-aqueous electrolyte secondary battery
PCT/JP2003/005654 WO2003096449A1 (en) 2002-05-08 2003-05-06 Nonaqueous electrolyte secondary cell
CNB03810136XA CN100414743C (en) 2002-05-08 2003-05-06 Nonaqueous electrolyte secondary cell
US13/187,550 US20120021286A1 (en) 2002-05-08 2011-07-21 Non-aqueous electrolyte secondary battery
US14/096,268 US20140093780A1 (en) 2002-05-08 2013-12-04 Non-aqueous electrolyte secondary battery
US14/878,624 US10038186B2 (en) 2002-05-08 2015-10-08 Non-aqueous electrolyte secondary battery
US16/014,636 US20180301700A1 (en) 2002-05-08 2018-06-21 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002176350A JP4320528B2 (en) 2002-06-17 2002-06-17 Nonaqueous electrolyte secondary battery

Publications (3)

Publication Number Publication Date
JP2004022367A JP2004022367A (en) 2004-01-22
JP2004022367A5 JP2004022367A5 (en) 2005-10-13
JP4320528B2 true JP4320528B2 (en) 2009-08-26

Family

ID=31174713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002176350A Expired - Lifetime JP4320528B2 (en) 2002-05-08 2002-06-17 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4320528B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5392960B2 (en) * 2004-07-09 2014-01-22 三星エスディアイ株式会社 Lithium secondary battery
US20060008706A1 (en) 2004-07-09 2006-01-12 Takitaro Yamaguchi Rechargeable lithium battery
JP6267423B2 (en) * 2012-12-19 2018-01-24 三星エスディアイ株式会社SAMSUNG SDI Co., LTD. Negative electrode active material layer for lithium ion secondary battery, lithium ion secondary battery, negative electrode mixture for lithium ion secondary battery, and method for producing negative electrode active material layer for lithium ion secondary battery
US10700341B2 (en) 2012-12-19 2020-06-30 Samsung Sdi Co., Ltd. Negative electrode for rechargeable lithium battery, method of preparing the same and rechargeable lithium battery including the same

Also Published As

Publication number Publication date
JP2004022367A (en) 2004-01-22

Similar Documents

Publication Publication Date Title
JP4183472B2 (en) Nonaqueous electrolyte secondary battery
US8808920B2 (en) Positive electrode active material, positive electrode, nonaqueous electrolyte cell, and method of preparing positive electrode active material
JP4878687B2 (en) Lithium secondary battery
US7198871B2 (en) Non-aqueous electrolyte secondary battery
JP4878683B2 (en) Lithium secondary battery
JP4985524B2 (en) Lithium secondary battery
US7674554B2 (en) Anode active material, method of preparing the same, and anode and lithium battery containing the anode active material
JP2004146292A (en) Non-aqueous electrolyte secondary battery
JP2004362895A (en) Negative electrode material, and battery using it
JP2004014405A (en) Non-aqueous electrolyte secondary battery
JP2971403B2 (en) Non-aqueous solvent secondary battery
JP2004146363A (en) Nonaqueous electrolyte secondary battery
US6482546B1 (en) Rechargeable lithium battery
JP2002175801A (en) Cathode for lithium secondary battery, its manufacturing method and the lithium secondary battery
JP2004335439A (en) Nonaqueous electrolyte secondary battery
JP4320528B2 (en) Nonaqueous electrolyte secondary battery
JP4320526B2 (en) Nonaqueous electrolyte secondary battery
JP4795509B2 (en) Non-aqueous electrolyte battery
JP2013080726A (en) Positive electrode, nonaqueous electrolyte battery, and battery pack
JP4158212B2 (en) Method for producing lithium secondary battery and method for producing positive electrode active material for lithium secondary battery
JP2001052691A (en) Nonaqueous electrolyte secondary battery
JP3984184B2 (en) Nonaqueous electrolyte secondary battery
JP2001351626A (en) Manufacturing method of non-aqueous electrolyte secondary battery and its positive electrode active material
JP3577799B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2000277113A (en) Lithium secondary battery

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050608

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050608

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090520

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4320528

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

EXPY Cancellation because of completion of term