JPH101370A - Jig for heat treatment - Google Patents

Jig for heat treatment

Info

Publication number
JPH101370A
JPH101370A JP8155530A JP15553096A JPH101370A JP H101370 A JPH101370 A JP H101370A JP 8155530 A JP8155530 A JP 8155530A JP 15553096 A JP15553096 A JP 15553096A JP H101370 A JPH101370 A JP H101370A
Authority
JP
Japan
Prior art keywords
zirconia
heat treatment
jig
weight
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8155530A
Other languages
Japanese (ja)
Inventor
Yutaka Okada
裕 岡田
Shigeki Niwa
茂樹 丹羽
Taiji Kojima
泰治 小島
Toshiyuki Suzuki
利幸 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP8155530A priority Critical patent/JPH101370A/en
Publication of JPH101370A publication Critical patent/JPH101370A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Furnace Charging Or Discharging (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a low-cost jig for heat treatment small in residual expansion at a heat treating time and excellent in thermal impact resistance by constituting the jig of a specific zirconia-matter obtained by mixing specific zirconia with CaCO3 , forming and sintering the mixture. SOLUTION: This jig for heat treatment is constituted of the zirconia-matter dispersed with a high concentration area of Ca at the particle boundary, and is obtained by mixing 100 pts.wt. (hereafter pts.) the zirconia having 70-90wt.% stability ratio stabilized with solid solution of CaO with 0.5-6.0 pts. CaCO3 , forming and sintering the mixture. Also jig is obtained by mixing 100 pts. the above-zirconias with 0.5-6.0 pts. CaCO3 , 0.3-5.0 pts. Fe2 O3 or 0.5-6.0 pts. CaCO3 and 0.3-5.0 pts. BaTiO3 and forming and sintering the mixture. This jig is constituted of the zirconia-matter dispersed with a high concentration area of Ca and Fe at the particle boundary or with a high concentration area of Ca, Ba and Ti at the particle boundary. Thus, the mechanical strength is further enhanced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電子部品等の機能
性セラミックス、または各種粉末冶金物の粉末もしくは
成形体の熱処理、加熱焼成に好適な熱処理用治具に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat treatment jig suitable for heat treatment and heat baking of functional ceramics such as electronic parts and the like or powders or compacts of various powder metallurgy.

【0002】[0002]

【従来の技術】電子部品等の機能性セラミックスの焼
成、または各種粉末冶金物の原料粉末の熱処理もしくは
成形体の加熱焼成においては、ジルコニア(ZrO2
質の熱処理用治具が用いられている。特に、セラミック
コンデンサ、圧電体、センサ、フェライト磁性体の焼成
には、被焼成体と反応し難く、被焼成体の間で成分移動
が少なく、被焼成体への影響が少ないジルコニア質治
具、または基材表面にジルコニア層をコーティングした
治具が使用されている。
2. Description of the Related Art Zirconia (ZrO 2 ) is used in the firing of functional ceramics such as electronic parts, the heat treatment of raw material powders of various powder metallurgy, or the heating and firing of compacts.
Quality heat treatment jigs are used. In particular, when firing ceramic capacitors, piezoelectric bodies, sensors, and ferrite magnetic bodies, zirconia-based jigs that hardly react with the fired body, have little component movement between the fired bodies, and have little influence on the fired body, Alternatively, a jig in which a zirconia layer is coated on a substrate surface is used.

【0003】ところで、純粋なジルコニアは、1000
℃近辺で単斜晶と正方晶の結晶構造の変態を起こし、こ
れに伴って急激に体積変化する。このため、純粋なジル
コニアからなる熱処理用治具を用いてセラミックコンデ
ンサ、圧電体、センサ、フェライト磁性体の焼成を行う
と、室温から熱処理温度(1000〜1500℃)の間
での昇温、高温の際の急激な体積変化により熱処理用治
具に割れが発生して多数回の繰り返しの使用が困難にな
る。
[0003] By the way, pure zirconia is 1000
The transformation of the monoclinic and tetragonal crystal structures occurs around ℃, and the volume rapidly changes with this transformation. For this reason, when a ceramic capacitor, a piezoelectric material, a sensor, and a ferrite magnetic material are fired using a heat treatment jig made of pure zirconia, a temperature rise from room temperature to a heat treatment temperature (1000 to 1500 ° C.) and a high temperature In this case, a rapid change in volume causes cracks in the heat treatment jig, making it difficult to use the jig many times.

【0004】そこで、CaO、Y23 、MgO等を固
溶させることにより高温タイプの立方晶(一部は正方
晶)を1000℃以下の低温でも安定化させた安定化ジ
ルコニア、もしくはジルコニアの一部を安定化させた部
分安定化ジルコニアからなる熱処理用治具が用いられて
いる。
Therefore, high-temperature type cubic crystals (partially tetragonal crystals) are stabilized at a low temperature of 1000 ° C. or less by dissolving CaO, Y 2 O 3 , MgO, etc., into stabilized zirconia or zirconia. A heat treatment jig made of partially stabilized zirconia partially stabilized has been used.

【0005】しかしながら、安定化ジルコニアからなる
熱処理用治具を用いて被熱処理物、例えば被焼成体を焼
成すると、焼成時の昇温・降温の熱サイクルにおいて固
溶されたCaO等の安定化成分が粒界に抜け出して脱安
定化が進行し、単斜晶のZrO2 の割合が増加する。そ
の結果、前記治具の強度低下、熱処理前に比較して熱処
理後の体積が増加する、いわゆる残存膨張が起こり、こ
れに伴って変形、割れ等が生じる。特に、残留膨張が部
分的に起こると、割れが生じ易くなる。
However, when an object to be heat-treated, for example, an object to be fired is fired by using a heat-treating jig made of stabilized zirconia, a stabilizing component such as CaO or the like dissolved in a heat cycle of heating and cooling during firing is obtained. Escapes to the grain boundaries, destabilization proceeds, and the proportion of monoclinic ZrO 2 increases. As a result, a so-called residual expansion occurs, in which the strength of the jig is reduced and the volume after the heat treatment is increased as compared with before the heat treatment, and deformation, cracks, and the like are caused accordingly. In particular, when residual expansion occurs partially, cracks are likely to occur.

【0006】また、安定化成分としてY23 、CeO
を用いた場合にはこれらの安定化成分が高価であるた
め、治具の価格上昇を招く。一方、安定化成分としての
CaOは比較的安価であり、価格的に有利である。しか
しながら、CaOはジルコニアに対する添加量(固溶
量)によっては、強度の低下、熱膨張率の増加といった
耐熱衝撃性が低下する方向に特性が変化し、前述した脱
安定化といった問題以前に、熱衝撃により割れを生じ、
昇温速度、降温速度の緩やかな熱処理条件でのみしか使
用することができない。
Also, Y 2 O 3 and CeO are used as stabilizing components.
When these are used, since these stabilizing components are expensive, the price of the jig is increased. On the other hand, CaO as a stabilizing component is relatively inexpensive and is advantageous in cost. However, depending on the amount of CaO added to zirconia (the amount of solid solution), the properties of CaO change in a direction in which the thermal shock resistance decreases, such as a decrease in strength and an increase in thermal expansion coefficient. Cracks occur due to impact,
It can be used only under slow heat treatment conditions of a heating rate and a cooling rate.

【0007】このようなことから、特開平2−2526
56号公報には安定化ジルコニアに酢酸カルシウムまた
は酢酸マグネシウムの固溶安定化剤を添加し、焼成した
脱安定化の進行の抑制が図られた窯道具に用いられるジ
ルコニア耐火物が開示されている。しかしながら、酢酸
カルシウムまたは酢酸マグネシウムのような水に溶解す
る塩を固溶安定化剤を使用する場合には、スリップキャ
ストのように成形時にも水分を必要とする成形法を採用
する必要があるため、乾燥時にCaOが水分の蒸発の遅
い箇所に偏析する。その結果、得られたジルコニア耐火
物の脱安定化の進行の抑制を図るには前記固溶安定化剤
の添加量を多くする必要があるばかりか、偏析したCa
Oが構造上の欠陥になるという問題があった。
For these reasons, Japanese Patent Application Laid-Open No. 2-2526
No. 56 discloses a zirconia refractory used for kiln tools in which a solid solution stabilizer of calcium acetate or magnesium acetate is added to stabilized zirconia, and the progress of destabilization is suppressed by firing. . However, when using a solid solution stabilizer such as calcium acetate or magnesium acetate that dissolves in water, it is necessary to adopt a molding method that requires moisture even during molding, such as slip casting. At the time of drying, CaO segregates at a portion where moisture evaporates slowly. As a result, in order to suppress the progress of the destabilization of the obtained zirconia refractory, it is necessary to increase the amount of the solid solution stabilizer, as well as to increase the amount of segregated Ca.
There was a problem that O became a structural defect.

【0008】また、特開平2−263762号公報には
安定化ジルコニアに酢酸カルシウムまたは酢酸マグネシ
ウムの固溶安定化剤と酢酸ジルコニルを添加し、焼成し
た脱安定化の遅延および強度向上が図られた窯道具に用
いられるジルコニア耐火物が開示されている。しかしな
がら、このようなジルコニア耐火物は前述した特開平2
−252656号公報と同様な固溶安定化剤の添加量の
増大、偏析したCaOによる構造上の欠陥の発生という
問題を生じ、さらに酢酸ジルコニルが高価であるために
耐火物の価格上昇を招く。
Japanese Patent Application Laid-Open No. Hei 2-263762 discloses a method of adding a solid solution stabilizer of calcium acetate or magnesium acetate and zirconyl acetate to stabilized zirconia and calcining the zirconia to delay the destabilization and improve the strength. Zirconia refractories for use in kiln tools are disclosed. However, such a zirconia refractory is disclosed in
As in the case of JP-A-252656, there is a problem in that the amount of the solid solution stabilizer added is increased, and structural defects are caused by segregated CaO. In addition, since zirconyl acetate is expensive, the price of the refractory increases.

【0009】[0009]

【発明が解決しようとする課題】本発明は、熱処理時に
おける残存膨張が小さく、耐熱衝撃性に優れた安価なジ
ルコニア質からなる熱処理用治具を提供しようとするも
のである。また、本発明は熱処理時における残存膨張が
小さく、耐熱衝撃性に優れ、さらに機械的強度が向上さ
れた安価なジルコニア質からなる熱処理用治具を提供し
ようとするものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a heat treatment jig made of inexpensive zirconia material which has small residual expansion during heat treatment and has excellent thermal shock resistance. Another object of the present invention is to provide a heat treatment jig made of inexpensive zirconia material which has small residual expansion during heat treatment, has excellent thermal shock resistance, and has improved mechanical strength.

【0010】[0010]

【課題を解決するための手段】本発明に係わる熱処理用
治具は、CaOの固溶により安定化された安定化率が7
0〜90%のジルコニア100重量部にCaCO3
0.5〜6.0重量部混合し、成形、焼成することによ
り得られ、粒界にCaの高濃度域が分散されたジルコニ
ア質からなることを特徴とするものである。
The jig for heat treatment according to the present invention has a stabilization rate stabilized by solid solution of CaO of 7%.
It is obtained by mixing 0.5 to 6.0 parts by weight of CaCO 3 with 100 parts by weight of zirconia of 0 to 90%, molding and firing, and is made of zirconia having a high concentration region of Ca dispersed in grain boundaries. It is characterized by the following.

【0011】ここで、粒界とはジルコニア単結晶粒子の
間、またはジルコニア単結晶粒子がいくつか集合した集
合物同士の間を意味する。Caの高濃度とは、安定化さ
れたジルコニア中のCa濃度よりも低くないことを意味
する。
Here, the grain boundary means between zirconia single crystal particles or between aggregates of several zirconia single crystal particles. A high Ca concentration means that it is not lower than the Ca concentration in the stabilized zirconia.

【0012】さらに分散とは、点在、散在等の意味を含
む、つまりCaの高濃度域が粒界に均一な割合で形成さ
れていればよい。このような熱処理用治具は、粒界にC
aの高濃度域が分散されたジルコニアの安定化率が70
〜90%であるため、耐熱衝撃性が改善されて被熱処理
物を熱処理する際の熱サイクルにおいて割れが発生する
のを防止できる。
Further, the term “dispersion” includes the meanings of “scattered” and “scattered”, that is, it is only necessary that a high concentration region of Ca is formed at a uniform ratio at grain boundaries. Such a jig for heat treatment has a C
The zirconia in which the high concentration region of a is dispersed has a stabilization ratio of 70.
Since it is about 90%, the thermal shock resistance is improved, and it is possible to prevent cracks from being generated in a heat cycle when the heat treatment is performed on the heat treatment target.

【0013】また、前記安定化率を有するジルコニアに
Ca源としてCaCO3 の形態で所定量添加し、混合、
成形、焼成することにより粒界にCaが均一に分散され
たシルコニア質のものが得られる。その結果、脱安定化
の進行を抑制して強度維持および残存膨張に伴う変形、
割れ発生を防止することができる。このような効果は、
次のような挙動によるものと推定される。
Further, a predetermined amount of CaCO 3 is added as a Ca source to zirconia having the above stabilization ratio, and the mixture is mixed.
By shaping and firing, a zirconia material in which Ca is uniformly dispersed in the grain boundaries can be obtained. As a result, deformation due to maintaining strength and remaining expansion by suppressing the progress of destabilization,
Cracking can be prevented. These effects are
It is presumed to be due to the following behavior.

【0014】脱安定化は、本発明の治具を用いた被焼成
体等の熱処理時の熱サイクル時において固溶したCaO
がジルコニア粒界に拡散して抜けることにより起こる。
この粒界へのCaOの拡散は、粒界のCa濃度に依存す
るものと考えられている。CaCO3 の添加により前述
したように粒界にCaを分散させて、その粒界のCa濃
度を予め高めることによって、固溶したCaOが前記熱
サイクル時に粒界に拡散するのを抑制でき、結果として
ジルコニアの安定化状態を長期間に亘って維持でき、脱
安定化の進行を抑制できるものと考えられる。また、C
a源としてCaCO3 は水に溶解し難い微粉末の状態で
添加されるので、酢酸カルシウムのように粒界に偏析せ
ずに均一に分散させることができるため、固溶したCa
Oがジルコニア粒界に局所的に拡散して抜けるのを回避
でき、残留膨張の発生を抑制し、これに伴う変形、割れ
発生を防止することができる。
The destabilization is performed by dissolving CaO dissolved in a heat cycle during heat treatment of the object to be fired using the jig of the present invention.
Is diffused and escapes to the zirconia grain boundaries.
It is considered that the diffusion of CaO into the grain boundaries depends on the Ca concentration in the grain boundaries. As described above, by adding CaCO 3 to disperse Ca at the grain boundaries and increasing the Ca concentration at the grain boundaries in advance, it is possible to suppress the diffusion of solid solution CaO to the grain boundaries during the thermal cycle, and as a result, It is considered that the stabilized state of zirconia can be maintained for a long period of time, and the progress of destabilization can be suppressed. Also, C
Since CaCO 3 is added as a source in the form of fine powder that is difficult to dissolve in water, it can be uniformly dispersed without segregation at the grain boundaries unlike calcium acetate,
O can be prevented from locally diffusing into the zirconia grain boundary and coming off, suppressing the occurrence of residual expansion, and preventing the accompanying deformation and cracking.

【0015】したがって、本発明によれば熱処理時にお
ける残存膨張が小さく、耐熱衝撃性に優れた長期間の使
用に耐え、使用時のハンドリング性が良好で安価なジル
コニア質からなる熱処理用治具を提供することができ
る。
Therefore, according to the present invention, there is provided a heat treatment jig made of inexpensive zirconia material which has small residual expansion during heat treatment, has excellent thermal shock resistance, can withstand long-term use, has good handleability during use, and is inexpensive. Can be provided.

【0016】本発明に係わる別の熱処理用治具は、Ca
Oの固溶により安定化された安定化率が70〜90%の
ジルコニア100重量部にCaCO3 を0.5〜6.0
重量部およびFe23 を0.3〜5.0重量部混合
し、成形、焼成することにより得られ、粒界にCaおよ
びFeの高濃度域が均一に分散された部分安定化ジルコ
ニア質からなることを特徴とするものである。
Another jig for heat treatment according to the present invention is Ca
CaCO 3 is added in an amount of 0.5 to 6.0 to 100 parts by weight of zirconia having a stabilization rate of 70 to 90% stabilized by solid solution of O.
Parts by weight, and 0.3 to 5.0 parts by weight of Fe 2 O 3 are mixed, molded and calcined to obtain a partially stabilized zirconia material in which a high concentration region of Ca and Fe is uniformly dispersed in grain boundaries. It is characterized by consisting of.

【0017】このような本発明に係わる別の熱処理用治
具は、前述した熱処理用治具と同様、耐熱衝撃性が改善
されて被焼成体等を熱処理する際の熱サイクルにおいて
割れが発生するのを防止でき、かつ脱安定化の進行を抑
制して強度維持および残存膨張に伴う変形、割れ発生を
防止することができる。また、粒界にFeがCaと共存
して分散されて、強固な結合相が形成されるため、機械
的強度を向上することができる。その結果、熱処理時に
おける部分的な残存膨張が小さく、耐熱衝撃性に優れ、
さらに機械的強度が向上された長期間の使用に耐えうる
ハンドリング性が良好な安価なジルコニア質からなる熱
処理用治具を提供することができる。
In another heat treatment jig according to the present invention, similarly to the heat treatment jig described above, the thermal shock resistance is improved and cracks occur in a heat cycle when heat-treating the object to be fired. Can be prevented, and the progress of destabilization can be suppressed to maintain strength and prevent deformation and cracking due to residual expansion. Further, Fe is dispersed in the grain boundary together with Ca to form a strong binder phase, so that the mechanical strength can be improved. As a result, the partial residual expansion during heat treatment is small, and the thermal shock resistance is excellent,
Further, it is possible to provide a heat treatment jig made of inexpensive zirconia material having improved mechanical strength and good handling properties that can withstand long-term use.

【0018】さらに、前記治具は強度向上に寄与する粒
界への添加成分がFeであるため、熱処理時における被
処理物特性への悪影響、例えば反応性を考慮するとFe
を一成分としたフェライトの焼成に好適である。
Further, in the jig, since the additive component to the grain boundary contributing to the improvement of the strength is Fe, it is considered that the jig has an adverse effect on the characteristics of the object to be processed at the time of heat treatment, for example, considering the reactivity.
This is suitable for firing ferrite containing as one component.

【0019】本発明に係わるさらに別の熱処理用治具
は、CaOの固溶により安定化された安定化率が70〜
90%のジルコニア100重量部にCaCO3 を0.5
〜6.0重量部およびBaTiO3 を0.3〜5.0重
量部混合し、成形、焼成することにより得られ、粒界に
Ca、BaおよびTiの高濃度域が均一に分散された部
分安定化ジルコニア質からなることを特徴とするもので
ある。
Still another jig for heat treatment according to the present invention has a stabilization rate of 70 to 70 stabilized by solid solution of CaO.
CaCO 3 is added to 100 parts by weight of 90% zirconia with 0.5
6.0 parts by weight of a BaTiO 3 were mixed 0.3 to 5.0 parts by weight, molding, obtained by baking, Ca, high density area of Ba and Ti is uniformly dispersed in the grain boundary portion It is characterized by being composed of stabilized zirconia.

【0020】このような本発明に係わるさらに別の熱処
理用治具は、前述した熱処理用治具と同様、耐熱衝撃性
が改善されて被焼成体を熱処理する際の熱サイクルにお
いて割れが発生するのを防止でき、かつ脱安定化の進行
を抑制して強度維持および残存膨張に伴う変形、割れ発
生を防止することができる。また、粒界にBaおよびT
iがCaと共存して分散されて、強固な結合相が形成さ
れるため、機械的強度を向上することができる。その結
果、熱処理時における部分的な残存膨張が小さく、耐熱
衝撃性に優れ、さらに機械的強度が向上された長期間の
使用に耐えうるハンドリング性が良好な安価なジルコニ
ア質からなる熱処理用治具を提供することができる。
In another heat treatment jig according to the present invention, similarly to the heat treatment jig described above, the thermal shock resistance is improved, and cracks occur in a heat cycle when heat-treating the object to be fired. Can be prevented, and the progress of destabilization can be suppressed to maintain strength and prevent deformation and cracking due to residual expansion. In addition, Ba and T
Since i is coexisted and dispersed with Ca to form a strong binder phase, mechanical strength can be improved. As a result, a heat treatment jig made of inexpensive zirconia material that has small residual expansion during heat treatment, has excellent thermal shock resistance, has improved mechanical strength, and can handle long-term use and has good handling properties. Can be provided.

【0021】さらに、前記治具は強度向上に寄与する粒
界への添加成分がBaおよびTiであるため、熱処理時
における被処理物特性への悪影響、例えば反応性を考慮
するとBaおよびTiを一成分とする誘電体材料をベー
スとしたセラミックコンデンサの焼成に好適である。
Further, in the jig, Ba and Ti are added to the grain boundaries that contribute to the improvement of the strength. Therefore, when considering the adverse effect on the properties of the workpiece during the heat treatment, for example, the reactivity, Ba and Ti are reduced to one. It is suitable for firing a ceramic capacitor based on a dielectric material as a component.

【0022】[0022]

【発明の実施の態様】以下、本発明に係わる熱処理用治
具を詳細に説明する。本発明に係わる熱処理用治具は、
CaOの固溶により安定化された安定化率が70〜90
%のジルコニア100重量部にCaCO3 を0.5〜
6.0重量部混合し、成形、焼成することにより得ら
れ、粒界にCaの高濃度域が分散されたジルコニア質か
らなるものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a heat treatment jig according to the present invention will be described in detail. The jig for heat treatment according to the present invention,
The stabilization rate stabilized by the solid solution of CaO is 70 to 90.
% Of zirconia in 100 parts by weight of CaCO 3
It is obtained by mixing 6.0 parts by weight, molding and firing, and is made of zirconia having a high concentration region of Ca dispersed in the grain boundaries.

【0023】前記安定化率を有するジルコニアは、未安
定化ジルコニアのような1000℃近辺で単斜晶と正方
晶の結晶構造の変態を起こし、これに伴って急激に体積
変化を起こすのを回避できる。前記CaOの固溶による
安定化率を70%未満にすると、前記変態による体積変
化の影響が大きくなり、使用時に割れが発生したり、部
分的な残存膨張の発生が顕著になる。一方、前記CaO
の固溶による安定化率が90%を越えると、膨張率が大
きくなって、耐熱衝撃性が低下する。
The zirconia having the above-mentioned stabilization rate undergoes transformation of monoclinic and tetragonal crystal structures around 1000 ° C. like unstabilized zirconia, thereby avoiding abrupt volume change. it can. When the stabilization ratio due to the solid solution of CaO is less than 70%, the influence of the volume change due to the transformation becomes large, and cracks occur during use, and the occurrence of partial residual expansion becomes remarkable. On the other hand, the CaO
If the stabilization rate of the solid solution exceeds 90%, the expansion rate increases, and the thermal shock resistance decreases.

【0024】前記安定化率を有するジルコニアは、使用
される熱処理条件等によって粒径を調節することが好ま
しい。例えば、熱衝撃が過酷な用途では大きなジルコニ
ア粒子を含む粒度分布とすることが有効である。また、
成形性を考慮すると最も粗いジルコニア粒子が最終製品
の最も薄い部分の1/3以下であることが好ましく、し
たがって肉薄になるほど、細かい粒度構成にすることが
望ましい。
It is preferable that the particle size of the zirconia having the above-mentioned stabilization rate is adjusted depending on the heat treatment conditions used. For example, in applications where the thermal shock is severe, it is effective to obtain a particle size distribution including large zirconia particles. Also,
In consideration of formability, it is preferable that the coarsest zirconia particles be one third or less of the thinnest part of the final product.

【0025】前記CaCO3 は、所定の安定化率を有す
るジルコニアとの混合時に水を使用した場合でも、水に
比較的溶解し難いために乾燥工程でのCaの偏析が少な
く、焼成後において粒界にCaを均一に分散させること
が可能になる。前記CaCO3 の前記ジルコニア100
重量部に対する配合割合を0.5重量部未満にすると、
その添加効果、つまり脱安定化の進行の抑制効果を十分
に達成することが困難になる。一方、前記CaCO3
前記ジルコニア100重量部に対する配合割合が6.0
重量部を越えると、得られた熱処理用治具に被熱処理物
が付着したり、熱処理物の特性に悪影響を及ぼす恐れが
ある。前記CaCO3 の前記ジルコニア100重量部に
対するより好ましい配合割合は、1.0〜4.0重量部
である。
Even when water is used at the time of mixing with zirconia having a predetermined stabilization ratio, the CaCO 3 is relatively hardly soluble in water, so that Ca segregation in the drying step is small, and the particle size after firing is low. Ca can be uniformly dispersed in the field. The zirconia 100 of the CaCO 3
When the compounding ratio with respect to parts by weight is less than 0.5 parts by weight,
It becomes difficult to sufficiently achieve the effect of addition, that is, the effect of suppressing the progress of destabilization. On the other hand, the mixing ratio of the CaCO 3 to 100 parts by weight of the zirconia is 6.0.
When the amount is more than the weight part, there is a possibility that the heat treatment object adheres to the obtained heat treatment jig or the properties of the heat treatment material are adversely affected. A more preferable mixing ratio of the CaCO 3 to 100 parts by weight of the zirconia is 1.0 to 4.0 parts by weight.

【0026】前記CaCO3 の粒度は、細かく表面積の
大きな程、添加効果が大きく有利であり、例えば50μ
m以下にすることが好ましい。本発明に係わる熱処理用
治具は、例えば次のような方法により製造される。
As for the particle size of the CaCO 3 , the finer and the larger the surface area, the greater the effect of addition.
m or less. The heat treatment jig according to the present invention is manufactured by, for example, the following method.

【0027】まず、CaOの固溶により安定化された安
定化率が70〜90%のジルコニア粒子100重量部に
CaCO3 の粉末を0.5〜6.0重量部を添加し、こ
れらを混合する。前記CaCO3 の添加効果を十分に発
揮するためには、湿式ボールミルのような混合法により
前記CaCO3 粉末を溶媒中に十分に分散させて前記ジ
ルコニア粒子に混合することが好ましい。つづいて、こ
の混合物を金型成形法に適した粒度に造粒した後、成形
する。成形法は、石膏型等の鋳型に流し込んむ方法を採
用してもよい。この後、前記成形体を1300〜170
0℃の温度下、大気中で焼成することにより熱処理用治
具を製造する。前記焼成は、大気雰囲気の他、酸素、窒
素、炭化水素、アンモニア、水素のいずれか、またはこ
れらの混合ガスで行うことを許容する。
First, 0.5 to 6.0 parts by weight of CaCO 3 powder is added to 100 parts by weight of zirconia particles having a stabilization rate of 70 to 90% stabilized by solid solution of CaO, and these are mixed. I do. In order to sufficiently exert the effect of adding CaCO 3 , it is preferable that the CaCO 3 powder is sufficiently dispersed in a solvent by a mixing method such as a wet ball mill and mixed with the zirconia particles. Subsequently, the mixture is granulated to a particle size suitable for a molding method, and then molded. As a molding method, a method of pouring into a mold such as a gypsum mold may be adopted. Thereafter, the molded body is placed between 1300 and 170
The jig for heat treatment is manufactured by baking in the air at a temperature of 0 ° C. The firing is allowed to be performed in any of oxygen, nitrogen, hydrocarbon, ammonia, hydrogen, or a mixed gas thereof in addition to the air atmosphere.

【0028】本発明に係わる別の熱処理用治具は、Ca
Oの固溶により安定化された安定化率が70〜90%の
ジルコニア100重量部にCaCO3 を0.5〜6.0
重量部およびFe23 を0.3〜5.0重量部混合
し、成形、焼成することにより得られ、粒界にCaおよ
びFeの高濃度域が分散されたジルコニア質からなるも
のである。
Another jig for heat treatment according to the present invention is Ca
CaCO 3 is added in an amount of 0.5 to 6.0 to 100 parts by weight of zirconia having a stabilization rate of 70 to 90% stabilized by solid solution of O.
Part by weight and 0.3 to 5.0 parts by weight of Fe 2 O 3 are mixed, molded and fired, and made of zirconia having a high concentration region of Ca and Fe dispersed in grain boundaries. .

【0029】前記Fe23 は、熱処理用治具の機械的
強度を向上すると共に、残留膨張を低減する作用を有す
る。前記Fe23 の前記ジルコニア100重量部に対
する配合割合を0.3重量部未満にすると、その添加効
果、つまり機械的強度の向上等の効果を十分に達成する
ことが困難になる。一方、前記Fe23 の前記ジルコ
ニア100重量部に対する配合割合が5.0重量部を越
えると、熱処理用治具に被熱処理物が付着したり、熱処
理物の特性に悪影響を及ぼす。前記Fe23の前記ジ
ルコニア100重量部に対するより好ましい配合割合
は、0.5〜2.5重量部である。
The Fe 2 O 3 has the function of improving the mechanical strength of the heat treatment jig and reducing the residual expansion. If the mixing ratio of Fe 2 O 3 to 100 parts by weight of the zirconia is less than 0.3 parts by weight, it is difficult to sufficiently achieve the effect of adding Fe 2 O 3 , that is, the effect of improving mechanical strength. On the other hand, if the mixing ratio of Fe 2 O 3 to 100 parts by weight of the zirconia exceeds 5.0 parts by weight, the object to be heat-treated adheres to the heat treatment jig or adversely affects the properties of the heat-treated material. A more preferable mixing ratio of the Fe 2 O 3 to 100 parts by weight of the zirconia is 0.5 to 2.5 parts by weight.

【0030】前記Fe23 の粒度は、細かく表面積の
大きな程、添加効果が大きく有利であり、例えば50μ
m以下にすることが好ましい。本発明に係わるさらに別
の熱処理用治具は、CaOの固溶により安定化された安
定化率が70〜90%のジルコニア100重量部にCa
CO3 を0.5〜6.0重量部およびBaTiO3
0.3〜5.0重量部混合し、成形、焼成することによ
り得られ、粒界にCa、BaおよびTiの高濃度域が分
散されたジルコニア質からなるものである。
The finer the particle size of Fe 2 O 3 is, the larger the surface area is.
m or less. Yet another jig for heat treatment according to the present invention is a method in which 100 parts by weight of zirconia stabilized by solid solution of CaO and having a stabilization rate of 70 to 90% are added to Ca.
CO 3 is obtained by mixing 0.5 to 6.0 parts by weight of CO 3 and 0.3 to 5.0 parts by weight of BaTiO 3 , followed by molding and firing, and a high concentration region of Ca, Ba and Ti is present at the grain boundaries. It is composed of dispersed zirconia.

【0031】前記BaTiO3 は、熱処理用治具の機械
的強度を向上すると共に、残留膨張を低減する作用を有
する。前記BaTiO3 の前記ジルコニア100重量部
に対する配合割合を0.3重量部未満にすると、その添
加効果、つまり機械的強度の向上等の効果を十分に達成
することが困難になる。一方、前記BaTiO3 の前記
ジルコニア100重量部に対する配合割合が5.0重量
部を越えると、熱処理用治具に被熱処理物が付着した
り、熱処理物の特性に悪影響を及ぼす。前記BaTiO
3 の前記ジルコニア100重量部に対するより好ましい
配合割合は、0.5〜2.5重量部である。前記BaT
iO3 の粒度は、細かく表面積の大きな程、添加効果が
大きく有利であり、例えば50μm以下にすることが好
ましい。
The BaTiO 3 has the effect of improving the mechanical strength of the heat treatment jig and reducing the residual expansion. If the mixing ratio of the BaTiO 3 to 100 parts by weight of the zirconia is less than 0.3 parts by weight, it is difficult to sufficiently achieve the effect of the addition, that is, the effect of improving the mechanical strength. On the other hand, if the mixing ratio of the BaTiO 3 with respect to 100 parts by weight of the zirconia exceeds 5.0 parts by weight, the object to be heat-treated adheres to the jig for heat treatment or adversely affects the characteristics of the heat-treated material. The BaTiO
A more preferable mixing ratio of 3 to 100 parts by weight of the zirconia is 0.5 to 2.5 parts by weight. The BaT
As the particle size of iO 3 becomes finer and the surface area becomes larger, the effect of addition becomes larger and more advantageous. For example, the particle size is preferably 50 μm or less.

【0032】[0032]

【実施例】以下、本発明の好ましい実施例を詳細に説明
する。 (実施例1)粒径が30μmを越え、50μm以下のC
aOにより安定化された安定化率90%の部分安定化ジ
ルコニア粒子35重量部に平均粒径約5μmのCaCO
3 粉末0.5重量部と水10.5重量部とを添加し、湿
式ボールミル法により6時間混合した。つづいて、この
スラリーに350μmを越え、1000μm以下の安定
化率90%の部分安定化ジルコニア粒子65重量部を加
え、撹拌機により混合、混練、造粒して成形用原料を調
製した。なお、この原料中の部分安定化ジルコニア粒子
の粒度分布は下記表1のAに示す値を有する。ひきつづ
き、この原料をバンピングプレスを用いて300×30
0×5mmの寸法に板状に成形した。この成形体をを自
然乾燥し、さらに100℃で強制乾燥した後、電気炉を
用いて大気中、1500℃の温度にて3時間保持するこ
とにより焼成して板状の焼結体を製造した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail. (Example 1) C having a particle size of more than 30 μm and not more than 50 μm
35 parts by weight of partially stabilized zirconia particles stabilized by aO and having a stabilization rate of 90% are mixed with CaCO having an average particle diameter of about 5 μm.
3 0.5 parts by weight of powder and 10.5 parts by weight of water were added and mixed by a wet ball mill method for 6 hours. Subsequently, 65 parts by weight of partially stabilized zirconia particles having a stabilization rate of 90% exceeding 350 μm and not more than 1000 μm were added to the slurry, and mixed, kneaded, and granulated with a stirrer to prepare a raw material for molding. The particle size distribution of the partially stabilized zirconia particles in the raw material has a value shown in A of Table 1 below. Subsequently, this raw material was 300 × 30 using a bumping press.
It was formed into a plate shape with a size of 0 × 5 mm. The molded body was air-dried, forcibly dried at 100 ° C., and then fired by holding it at 1500 ° C. for 3 hours in the air using an electric furnace to produce a plate-shaped sintered body. .

【0033】[0033]

【表1】 [Table 1]

【0034】(実施例2〜5、比較例1〜4)下記表2
に示す安定化率、粒度分布の安定化ジルコニア粒子、同
表2に示す配合量のCaCO3 粉末(平均粒径5μm)
およびFe23 粉末(平均粒径5μm)を用いた以
外、実施例1と同様な方法により8種の板状の焼結体を
製造した。
(Examples 2 to 5, Comparative Examples 1 to 4)
The stabilized zirconia particles having a stabilization ratio and a particle size distribution shown in Table 2 and a CaCO 3 powder having a compounding amount shown in Table 2 (average particle size 5 μm)
Eight types of plate-shaped sintered bodies were manufactured in the same manner as in Example 1 except that powders of Fe 2 O 3 and an average particle size of 5 μm were used.

【0035】(比較例5)下記表2に示す安定化率、粒
度分布の安定化ジルコニア粒子、同表2に示す配合量の
酢酸カルシウム[(CH3 CO22 Ca・H2 O]粉
末(平均粒径5μm)を用いた以外、実施例1と同様な
方法により板状の焼結体を製造した。ただし、酢酸カル
シウムはCaOに換算して実施例1と同様になるように
添加量を設定した。
Comparative Example 5 Stabilized zirconia particles having a stabilization ratio and a particle size distribution shown in Table 2 below, and calcium acetate [(CH 3 CO 2 ) 2 Ca.H 2 O] powder having a compounding amount shown in Table 2 A plate-like sintered body was manufactured in the same manner as in Example 1 except that (average particle size: 5 μm) was used. However, the amount of calcium acetate added was set so as to be the same as in Example 1 in terms of CaO.

【0036】得られた実施例1〜5および比較例1〜5
の焼結体について、室温での曲げ強さ、1000℃の熱
膨張率、残存膨張率、耐熱衝撃性およびフェライトを焼
成した後のフェライトの状態を調べた。その結果を下記
表3に示す。
The obtained Examples 1 to 5 and Comparative Examples 1 to 5
Of the sintered body, the bending strength at room temperature, the coefficient of thermal expansion at 1000 ° C., the residual expansion coefficient, the thermal shock resistance, and the state of the ferrite after firing the ferrite were examined. The results are shown in Table 3 below.

【0037】前記残存膨張率は前記板状の焼結体から1
10×25×5mmの試験片を切り出し、大気中、13
50℃で30分間保持した後、室温まで降温した。この
操作を15回繰り返した後、長さ方向の寸法を測定し、
加熱前の寸法に対する膨張率から算出した。
The residual expansion coefficient is 1% from the plate-like sintered body.
A test piece of 10 × 25 × 5 mm was cut out, and 13
After maintaining at 50 ° C. for 30 minutes, the temperature was lowered to room temperature. After repeating this operation 15 times, the length dimension is measured,
It was calculated from the expansion coefficient relative to the dimension before heating.

【0038】前記耐熱衝撃性は、前記板状の焼結体から
110×110×5mmの試験片を切り出し、図1に示
すようにこの試験片1を保持板2に配置された4つの支
柱3で4点支持し、この試験片1上に被焼結体4を載置
し、下記に示す所定の温度に保持した炉内に入れ、10
分間保持した後、炉外に取り出して室温で空冷し、熱処
理後の試験片のクラック発生の有無を観察することによ
り評価した。ただし、この操作は500℃、550℃、
600℃、650℃、700℃、750℃および800
℃でそれぞれ3回繰り返すことにより行い、クラックが
発生した温度で表示した。また、前記被焼結体としてフ
ェライトを用い、焼成後のフェライトの状態を観察して
評価した。
As for the thermal shock resistance, a test piece of 110 × 110 × 5 mm was cut out from the plate-like sintered body, and as shown in FIG. The sintering body 4 is placed on the test piece 1 and placed in a furnace maintained at a predetermined temperature shown below.
After holding for a minute, the sample was taken out of the furnace, air-cooled at room temperature, and evaluated by observing the presence or absence of cracks in the test piece after the heat treatment. However, this operation is performed at 500 ° C., 550 ° C.,
600 ° C, 650 ° C, 700 ° C, 750 ° C and 800
Each test was repeated three times at ° C, and the temperature was indicated at the temperature at which cracks occurred. In addition, ferrite was used as the sintered body, and the state of the ferrite after firing was observed and evaluated.

【0039】[0039]

【表2】 [Table 2]

【0040】[0040]

【表3】 [Table 3]

【0041】前記表2、表3から明らかなように実施例
1〜5の焼結体は、良好な曲げ強さ、1000℃の熱膨
張率、残存膨張率、耐熱衝撃性を有し、かつフェライト
への特性劣化が皆無であることがわかる。
As is clear from Tables 2 and 3, the sintered bodies of Examples 1 to 5 have good bending strength, a coefficient of thermal expansion at 1000 ° C., a coefficient of residual expansion, and thermal shock resistance. It can be seen that there is no characteristic deterioration to ferrite.

【0042】これに対し、CaCO3 粉末の添加量が本
発明の範囲(0.5〜6.0重量部)より少ない原料を
用いた比較例1の焼結体は、残存膨張率が大きくなるこ
とがわかる。CaOによる安定化率が本発明の範囲(7
0〜90%)より小さい部分安定化ジルコニアを用いた
比較例2の焼結体は、曲げ強さが低下し、かつ残存膨張
率が大きく、さらに低温でクラック発生を生じることが
わかる。CaCO3 粉末の添加量が本発明の範囲(0.
5〜6.0重量部)を越える原料を用いた比較例3の焼
結体は、曲げ強さが低下することがわかる。Ca源とし
て酢酸カルシウムを用いた比較例5の焼結体は、残留膨
張率が大きくなることがわかる。一方、さらに添加剤し
てのFe23 の量が本発明の範囲(0.3〜5.0)
を越える原料を用いた比較例4の焼結体によりフェライ
トを焼成すると、変色して特性低下を招くことがわか
る。
On the other hand, the sintered body of Comparative Example 1 in which the amount of CaCO 3 powder added is less than the range of the present invention (0.5 to 6.0 parts by weight) has a large residual expansion coefficient. You can see that. The stabilization rate by CaO is within the range of the present invention (7).
It can be seen that the sintered body of Comparative Example 2 using the partially stabilized zirconia smaller than 0 to 90%) has a low flexural strength, a large residual expansion coefficient, and cracks at low temperatures. The addition amount of the CaCO 3 powder falls within the range of the present invention (0.
It can be seen that the sintered body of Comparative Example 3 using a raw material exceeding 5 to 6.0 parts by weight) has a reduced bending strength. It can be seen that the sintered body of Comparative Example 5 using calcium acetate as a Ca source has a large residual expansion coefficient. On the other hand, the amount of Fe 2 O 3 as an additive falls within the range of the present invention (0.3 to 5.0).
It can be seen that when the ferrite is fired by the sintered body of Comparative Example 4 using a raw material exceeding the above, discoloration is caused and characteristics are deteriorated.

【0043】(実施例6)前記表1のBに示す粒度分布
を有し、CaOにより安定化された安定化率80%の部
分安定化ジルコニア粒子100重量部に平均粒径5μm
のCaCO3 粉末1.5重量部と水30重量部とを添加
し、湿式ボールミル法により12時間混合した。つづい
て、このスラリーをスプレードライヤを用いて噴霧乾
燥、造粒し、油圧式の1軸プレスにより110×110
×5mmの寸法に板状に成形した。この成形体をを自然
乾燥し、さらに100℃で強制乾燥した後、電気炉を用
いて大気中、1400℃の温度にて3時間保持すること
により焼成して板状の焼結体を製造した。
EXAMPLE 6 100 parts by weight of partially stabilized zirconia particles having a particle size distribution shown in Table 1B and stabilized by CaO and having a stabilization rate of 80% were added to an average particle size of 5 μm.
Of CaCO 3 powder and 30 parts by weight of water were added and mixed by a wet ball mill method for 12 hours. Subsequently, the slurry was spray-dried and granulated using a spray dryer, and then 110 × 110 by a hydraulic uniaxial press.
It was formed into a plate having a size of × 5 mm. The molded body was air-dried and further forcibly dried at 100 ° C., and then fired by holding it at a temperature of 1400 ° C. for 3 hours in the air using an electric furnace to produce a plate-shaped sintered body. .

【0044】(実施例7〜9および比較例6)下記表4
に示す安定化率、粒度分布の安定化ジルコニア粒子、同
表4に示す配合量のCaCO3 粉末(平均粒径5μm)
およびBaTiO3 粉末(平均粒径5μm)を用いた以
外、実施例6と同様な方法により4種の板状の焼結体を
製造した。
(Examples 7 to 9 and Comparative Example 6) Table 4 below
The stabilized zirconia particles having a stabilization ratio and a particle size distribution shown in Table 4 and a CaCO 3 powder having an amount shown in Table 4 (average particle size 5 μm)
Four types of plate-like sintered bodies were manufactured in the same manner as in Example 6, except that BaTiO 3 powder (average particle size: 5 μm) and BaTiO 3 powder were used.

【0045】得られた実施例6〜9および比較例6の焼
結体について、室温での曲げ強さ、1000℃の熱膨張
率、残存膨張率、耐熱衝撃性およびBaTiO3 を主成
分とするセラミックコンデンサを焼成した後のコンデン
サの状態を調べた。その結果を下記表5に示す。
With respect to the obtained sintered bodies of Examples 6 to 9 and Comparative Example 6, the bending strength at room temperature, the coefficient of thermal expansion at 1000 ° C., the coefficient of residual expansion, the thermal shock resistance, and the composition mainly containing BaTiO 3 were used. The state of the capacitor after firing the ceramic capacitor was examined. The results are shown in Table 5 below.

【0046】前記残存膨張率は、前記板状の焼結体から
110×25×3mmの試験片を切り出し、大気中、1
350℃で30分間保持した後、室温まで降温した。こ
の操作を15回繰り返した後、長さ方向の寸法を測定
し、加熱前の寸法に対する膨張率から算出した。
The residual expansion coefficient is determined by cutting a 110 × 25 × 3 mm test piece from the plate-like sintered body,
After maintaining at 350 ° C. for 30 minutes, the temperature was lowered to room temperature. After repeating this operation 15 times, the dimension in the length direction was measured and calculated from the expansion rate with respect to the dimension before heating.

【0047】前記耐熱衝撃性は、前記板状の焼結体(1
10×110×5mm)を試験片とし、前述した図1に
示すようにこの試験片1を保持板2に配置された4つの
支柱3で4点支持し、この試験片1上に被焼結体4を載
置し、下記に示す所定の温度に保持した炉内に入れ、1
0分間保持した後、炉外に取り出して室温で空冷し、熱
処理後の試験片のクラック発生の有無を観察することに
より評価した。ただし、この操作は500℃、550
℃、600℃、650℃、700℃、750℃および8
00℃でそれぞれ3回繰り返すことにより行い、クラッ
クが発生した温度で表示した。また、前記被焼結体とし
てBaTiO3 を主成分とするセラミックコンデンサを
用い、焼成後のコンデンサの状態を観察して評価した。
The thermal shock resistance of the plate-shaped sintered body (1
10 × 110 × 5 mm) as a test piece, and this test piece 1 is supported at four points by four columns 3 arranged on a holding plate 2 as shown in FIG. The body 4 is placed and placed in a furnace maintained at a predetermined temperature shown below.
After holding for 0 minutes, the sample was taken out of the furnace, air-cooled at room temperature, and evaluated by observing the presence or absence of cracks in the test piece after the heat treatment. However, this operation was performed at 500 ° C. and 550 ° C.
℃, 600 ℃, 650 ℃, 700 ℃, 750 ℃ and 8
Each test was repeated three times at 00 ° C., and indicated by the temperature at which cracks occurred. Further, a ceramic capacitor containing BaTiO 3 as a main component was used as the sintered body, and the state of the fired capacitor was observed and evaluated.

【0048】[0048]

【表4】 [Table 4]

【0049】[0049]

【表5】 [Table 5]

【0050】前記表4、表5から明らかなように実施例
6〜9の焼結体は、良好な曲げ強さ、1000℃の熱膨
張率、残存膨張率、耐熱衝撃性を有し、かつセラミック
コンデンサの付着が皆無であることがわかる。
As apparent from Tables 4 and 5, the sintered bodies of Examples 6 to 9 have good bending strength, a coefficient of thermal expansion at 1000 ° C., a coefficient of residual expansion, and thermal shock resistance. It can be seen that there is no adhesion of the ceramic capacitor.

【0051】これに対し、添加剤してのBaTiO3
量が本発明の範囲(0.3〜5.0)を越える原料を用
いた比較例6の焼結体によりBaTiO3 を主成分とす
るセラミックコンデンサを焼成すると、コンデンサが焼
結体に付着することがわかる。
On the other hand, the sintered body of Comparative Example 6 using a raw material in which the amount of BaTiO 3 as an additive exceeds the range of the present invention (0.3 to 5.0) contains BaTiO 3 as a main component. It can be seen that when the ceramic capacitor is fired, the capacitor adheres to the sintered body.

【0052】[0052]

【発明の効果】以上説明したように、本発明によれば熱
処理時における残存膨張が小さく、耐熱衝撃性に優れた
長期間の使用に耐え、使用時のハンドリング性が良好で
安価なジルコニア質からなり、電子部品等の機能性セラ
ミックス、または各種粉末冶金物の粉末もしくは成形体
の熱処理、加熱焼成に有用な熱処理用治具を提供するこ
とができる。
As described above, according to the present invention, a zirconia material which has a small residual expansion during heat treatment, has excellent thermal shock resistance, can withstand long-term use, has good handling properties during use, and is inexpensive. Thus, it is possible to provide a heat treatment jig useful for heat treatment and heat baking of functional ceramics such as electronic components, or powders or compacts of various powder metallurgy.

【0053】また、本発明は熱処理時における残存膨張
が小さく、耐熱衝撃性に優れ、さらに機械的強度が向上
された安価なジルコニア質からなり、電子部品等の機能
性セラミックス、または各種粉末冶金物の粉末もしくは
成形体の熱処理、加熱焼成に有用な熱処理用治具を提供
することができる。
Further, the present invention is made of inexpensive zirconia material having a small residual expansion during heat treatment, excellent thermal shock resistance, and improved mechanical strength, and is a functional ceramic for electronic parts and the like, or various powder metallurgy. And a heat treatment jig useful for heat treatment and heat baking of the powder or the molded article.

【図面の簡単な説明】[Brief description of the drawings]

【図1】耐熱衝撃性の評価を説明するための概略図。FIG. 1 is a schematic diagram for explaining evaluation of thermal shock resistance.

【符号の説明】[Explanation of symbols]

1…試験片、 2…保持台、 4…被焼成体。 1 ... test piece, 2 ... holding table, 4 ... object to be fired.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 利幸 愛知県刈谷市小垣江町南藤1番地 東芝セ ラミックス株式会社刈谷製造所内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Toshiyuki Suzuki 1 Minami Fuji, Ogakie-cho, Kariya-shi, Aichi Prefecture Toshiba Ceramics Co., Ltd. Kariya Works

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 CaOの固溶により安定化された安定化
率が70〜90%のジルコニア100重量部にCaCO
3 を0.5〜6.0重量部混合し、成形、焼成すること
により得られ、粒界にCaの高濃度域が分散されたジル
コニア質からなることを特徴とする熱処理用治具。
1. 100 parts by weight of zirconia having a stabilization rate of 70 to 90% stabilized by solid solution of CaO
A heat treatment jig obtained by mixing 0.5 to 6.0 parts by weight of 3 , mixing and firing, and made of zirconia having a high concentration range of Ca dispersed in grain boundaries.
【請求項2】 CaOの固溶により安定化された安定化
率が70〜90%のジルコニア100重量部にCaCO
3 を0.5〜6.0重量部およびFe23を0.3〜
5.0重量部混合し、成形、焼成することにより得ら
れ、粒界にCaおよびFeの高濃度域が分散されたジル
コニア質からなることを特徴とする熱処理用治具。
2. 100 parts by weight of zirconia having a stabilization rate of 70 to 90% stabilized by solid solution of CaO
3 to 0.5 to 6.0 parts by weight and Fe 2 O 3 to 0.3 to
A heat treatment jig obtained by mixing 5.0 parts by weight, molding and firing, and made of zirconia having a high concentration region of Ca and Fe dispersed in grain boundaries.
【請求項3】 CaOの固溶により安定化された安定化
率が70〜90%のジルコニア100重量部にCaCO
3 を0.5〜6.0重量部およびBaTiO3 を0.3
〜5.0重量部混合し、成形、焼成することにより得ら
れ、粒界にCa、BaおよびTiの高濃度域が分散され
たジルコニア質からなることを特徴とする熱処理用治
具。
3. 100 parts by weight of zirconia having a stabilization rate of 70 to 90% stabilized by solid solution of CaO
3 to 0.5 to 6.0 parts by weight and BaTiO 3 to 0.3
A heat treatment jig obtained by mixing, shaping, and sintering a mixture of zirconia having a high concentration range of Ca, Ba, and Ti dispersed in grain boundaries.
JP8155530A 1996-06-17 1996-06-17 Jig for heat treatment Pending JPH101370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8155530A JPH101370A (en) 1996-06-17 1996-06-17 Jig for heat treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8155530A JPH101370A (en) 1996-06-17 1996-06-17 Jig for heat treatment

Publications (1)

Publication Number Publication Date
JPH101370A true JPH101370A (en) 1998-01-06

Family

ID=15608092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8155530A Pending JPH101370A (en) 1996-06-17 1996-06-17 Jig for heat treatment

Country Status (1)

Country Link
JP (1) JPH101370A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005187219A (en) * 2003-12-24 2005-07-14 Toray Ind Inc Zirconium oxide mixed powder and its production method
CN106915959A (en) * 2015-12-24 2017-07-04 三星电机株式会社 Dielectric ceramic compositions, dielectric material and the multilayer ceramic capacitor comprising it

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005187219A (en) * 2003-12-24 2005-07-14 Toray Ind Inc Zirconium oxide mixed powder and its production method
JP4534481B2 (en) * 2003-12-24 2010-09-01 東レ株式会社 Zirconium oxide mixed powder and production method thereof
CN106915959A (en) * 2015-12-24 2017-07-04 三星电机株式会社 Dielectric ceramic compositions, dielectric material and the multilayer ceramic capacitor comprising it

Similar Documents

Publication Publication Date Title
JP3489030B1 (en) Method for producing aluminum titanate-based sintered body
JP2010508231A (en) Compound for manufacturing heat-resistant materials
JPS61101462A (en) Zirconia ceramic
JP2607039B2 (en) Vapor deposition material for heat-resistant coating and method for producing the same
JPH101370A (en) Jig for heat treatment
JP5036110B2 (en) Lightweight ceramic sintered body
JP4560199B2 (en) Ceramic heat treatment material with excellent thermal shock resistance
JPH0725662A (en) Aluminum titanate ceramic powder and production of sintered product therefrom
JP4043425B2 (en) Zirconia heat treatment material
JP4993812B2 (en) Heat treatment member made of zirconia sintered body
JP4546609B2 (en) Ceramic heat treatment material with excellent thermal shock resistance
JP5871126B2 (en) Alumina zirconia refractory raw material manufacturing method, alumina zirconia refractory raw material and plate refractory
JP2002316869A (en) Roller for roller hearth kiln consisting of heat resistant mullite sintered compact
JP3737917B2 (en) Thermal shock-resistant alumina sintered body and heat treatment member comprising the same
JP3368960B2 (en) SiC refractory
WO2019049815A1 (en) Monolithic refractory
JPS647030B2 (en)
JPH05262557A (en) Production of ceramic sintered production
JP3274330B2 (en) Method for controlling firing shrinkage of ceramic molded body
JPH08198664A (en) Alumina-base sintered body and its production
Wilfinger et al. Processing of Transformation‐Toughened Alumina
JP2582443B2 (en) Cordierite refractories
JPH03170366A (en) Production of cast refractory
JP2022156925A (en) Mullite sintered body with excellent thermal resistance and durability and production method thereof
JP3155054B2 (en) Zirconia refractory setter

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050517

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051115