JP2005187219A - Zirconium oxide mixed powder and its production method - Google Patents

Zirconium oxide mixed powder and its production method Download PDF

Info

Publication number
JP2005187219A
JP2005187219A JP2003426948A JP2003426948A JP2005187219A JP 2005187219 A JP2005187219 A JP 2005187219A JP 2003426948 A JP2003426948 A JP 2003426948A JP 2003426948 A JP2003426948 A JP 2003426948A JP 2005187219 A JP2005187219 A JP 2005187219A
Authority
JP
Japan
Prior art keywords
powder
oxide
mol
zirconium oxide
calcium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003426948A
Other languages
Japanese (ja)
Other versions
JP4534481B2 (en
Inventor
Takuya Matsubara
拓也 松原
Yasuhiro Nakano
康博 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2003426948A priority Critical patent/JP4534481B2/en
Publication of JP2005187219A publication Critical patent/JP2005187219A/en
Application granted granted Critical
Publication of JP4534481B2 publication Critical patent/JP4534481B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a zirconium oxide raw material powder for producing a sintered compact excellent in thermal shock resistance and in capability of stabilizing electromotive force value while preventing cracking of the sintered compact even when the sintering temperature varies; especially a raw material powder suitable for an MSZ (MgO-solid solubilized Zirconia) sintered compact used for a solid electrolyte element. <P>SOLUTION: The zirconium oxide mixed powder contains 6-12 mol% magnesium oxide and 0.1-2 mol% calcium oxide. In the mixed powder, a part of the magnesium oxide and a part of the calcium oxide form a solid solution, and the monoclinic crystal ratio is 70-99%. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、酸化マグネシウムと酸化カルシウムが固溶した部分安定化酸化ジルコニウム焼結体を得るための原料粉末に関するもので、特に溶融金属用酸素センサーとして優れた起電力特性および耐熱衝撃性を有する固体電解質焼結体を得るための原料粉末に関する発明である。   The present invention relates to a raw material powder for obtaining a partially stabilized zirconium oxide sintered body in which magnesium oxide and calcium oxide are dissolved, and particularly a solid having excellent electromotive force characteristics and thermal shock resistance as an oxygen sensor for molten metal It is an invention relating to a raw material powder for obtaining an electrolyte sintered body.

酸素センサーとして用いられる酸化ジルコニウム焼結体として、酸化イットリウムが5〜10モル%固溶した焼結体(以下YSZという)、酸化マグネシウムが7〜10モル%固溶した焼結体(以下MSZという)、酸化カルシウムが10〜15モル%固溶した焼結体(以下CSZという)が知られている。   As a zirconium oxide sintered body used as an oxygen sensor, a sintered body in which 5 to 10 mol% of yttrium oxide is dissolved (hereinafter referred to as YSZ), and a sintered body in which 7 to 10 mol% of magnesium oxide is dissolved (hereinafter referred to as MSZ). ), And a sintered body (hereinafter referred to as CSZ) in which 10 to 15 mol% of calcium oxide is dissolved.

YSZは低温での起電力特性が良好であるが、耐熱衝撃性が低いことから、比較的低温で使用される自動車用酸素センサーとして用いられている。MSZは耐食性、耐熱衝撃性に優れており、溶融金属用の酸素センサーに使用される。またCSZは温度安定化性に優れており、一般ガス測定用に使用される。   YSZ has good electromotive force characteristics at low temperatures, but has low thermal shock resistance, and is therefore used as an oxygen sensor for automobiles used at relatively low temperatures. MSZ is excellent in corrosion resistance and thermal shock resistance, and is used as an oxygen sensor for molten metal. Moreover, CSZ is excellent in temperature stability and is used for general gas measurement.

特に溶融金属の酸素濃度測定に用いられるMSZは、1400℃以上の溶融金属中に浸すときの急激な温度上昇による熱衝撃に耐えるために、特許1693548号に述べられているように焼結体の構造として7〜10モル%の酸化マグネシウムが固溶した酸化ジルコニウムと酸化珪素を0.1〜0.5重量%含む焼結体において単斜晶の総量を高温の焼結条件により60モル%から80モル%に制御し、単斜晶から立方晶への変態における体積収縮を利用していることが知られている。またその焼結体を得るための原料粉末について平均粒径1μm以下の原料をボールミルで湿式混合し800℃〜1200℃で仮焼して得られた粉末を使用されてきた(例えば特許文献1参照)
特公平3−64468号公報
In particular, MSZ used for measuring the oxygen concentration of molten metal is resistant to thermal shock caused by a rapid temperature rise when immersed in molten metal at 1400 ° C. or higher. In the sintered body containing zirconium oxide and silicon oxide in a solid solution of 7 to 10 mol% of magnesium oxide as a structure and 0.1 to 0.5 wt%, the total amount of monoclinic crystals is changed from 60 mol% depending on the high temperature sintering conditions. It is known that the amount is controlled to 80 mol% and volume shrinkage in the transformation from monoclinic to cubic is utilized. As a raw material powder for obtaining the sintered body, a powder obtained by wet mixing a raw material having an average particle diameter of 1 μm or less with a ball mill and calcining at 800 ° C. to 1200 ° C. has been used (for example, see Patent Document 1). )
Japanese Patent Publication No. 3-64468

一般に大量生産を行うための大型炉では、1000℃以上の高温条件で、炉内の焼結温度のバラツキを10℃以内に小さくすること大変難しいことから、前記従来の方法で得られた粉末からでは、その温度のバラツキにより酸化ジルコニウム焼結体の単斜晶や立方晶の割合を一定範囲に制御することが難しく、製品の耐熱衝撃性や起電力安定性といった品質に大きなバラツキが発生する。また極端な温度の変化が見られた状態で焼結を行った場合、焼結体が割れてしまい、製品にならないこともある。   In general, in a large-scale furnace for mass production, it is very difficult to reduce the dispersion of the sintering temperature in the furnace within 10 ° C. under a high temperature condition of 1000 ° C. or more. Therefore, from the powder obtained by the conventional method, However, it is difficult to control the ratio of monoclinic crystals and cubic crystals of the zirconium oxide sintered body to a certain range due to the variation in temperature, resulting in large variations in quality such as thermal shock resistance and electromotive force stability of the product. In addition, when sintering is performed in a state where an extreme change in temperature is observed, the sintered body may be broken and may not be a product.

そこで本発明は、焼結温度のバラツキがあった場合でも焼結体の割れを防止し、さらに耐熱衝撃性、起電力値が安定する性能の優れた焼結体を製造するための酸化ジルコニウム原料粉末を得ることにある。また、特に固体電解質素子に使用されるMSZ焼結体の原料粉末について好適なものを提供することにある。   Therefore, the present invention provides a zirconium oxide raw material for producing a sintered body that prevents cracking of the sintered body even when the sintering temperature varies, and has excellent thermal shock resistance and stable electromotive force performance. It is to obtain a powder. It is another object of the present invention to provide a suitable material powder for an MSZ sintered body used for a solid electrolyte element.

本発明は、上記課題に鑑み、次のような手段を採用するものである。すなわち、酸化マグネシウムを6〜12モル%、酸化カルシウムを0.1〜2モル%含む酸化ジルコニウム混合粉末であって、該酸化マグネシウムの一部および該酸化カルシウムの一部が固溶し、かつ単斜晶率が70〜99%である酸化ジルコニウム混合粉末である。   In view of the above problems, the present invention employs the following means. That is, a zirconium oxide mixed powder containing 6 to 12 mol% of magnesium oxide and 0.1 to 2 mol% of calcium oxide, wherein a part of the magnesium oxide and a part of the calcium oxide are in solid solution, and It is a zirconium oxide mixed powder having an oblique crystal ratio of 70 to 99%.

また、0.04〜2モル%の酸化カルシウムが固溶した酸化ジルコニウム粉末、酸化マグネシウム粉末および酸化カルシウム粉末を混合し、大気中で900〜1100℃で熱処理する酸化ジルコニウム混合粉末の製造方法である。   Moreover, it is a manufacturing method of the zirconium oxide mixed powder which mixes the zirconium oxide powder, the magnesium oxide powder, and the calcium oxide powder in which 0.04 to 2 mol% of calcium oxide is solid solution and heat-treats at 900 to 1100 ° C. in the atmosphere. .

本発明の酸化ジルコニウム混合粉末を原料粉末として用いることによって、焼結温度のバラツキがあった場合でも焼結体の製造過程における焼結体の割れの発生などが従来より改善され、耐熱衝撃性、起電力値が安定する性能の優れた焼結体を製造することが可能になる。また、本発明の酸化ジルコニウム混合粉末を用いることにより、焼結体の大量生産が可能となりコストを抑えることにも役立つものである。また、本発明の酸化ジルコニウム混合粉末の製造方法は、上記効果を奏する酸化ジルコニウム粉末を産業生産可能な方法で提供することができる。   By using the zirconium oxide mixed powder of the present invention as a raw material powder, even when the sintering temperature varies, the occurrence of cracking of the sintered body in the manufacturing process of the sintered body is improved compared to the prior art, It becomes possible to manufacture a sintered body having excellent performance in which the electromotive force value is stable. In addition, by using the zirconium oxide mixed powder of the present invention, mass production of a sintered body is possible, which helps to reduce costs. Moreover, the manufacturing method of the zirconium oxide mixed powder of this invention can provide the zirconium oxide powder which has the said effect by the method which can be industrially produced.

以下本発明の実施形態について述べる。   Embodiments of the present invention will be described below.

本発明の酸化ジルコニウム混合粉末において、最も重要な要素としては、酸化ジルコニウムに対して、酸化マグネシウム及び酸化カルシウムの一部が固溶していることである。ここで、本粉末において酸化カルシウムと酸化マグネシウムが固溶しているか否かの判断はFESTEM(高分解能透過型電子顕微鏡)を用いたEDX(エネルギー分散型X線)元素点分析法があげられる。この方法は、FESTEMにより観察される1次粒子について、それを特性X線による点分析をすることにより、各元素を検出する方法である。この方法を用いて酸化ジルコニウム混合粉末中の一次粒子の組成を測定することにより、酸化ジルコニウムの1次粒子中にカルシウム元素とマグネシウム元素が存在していることが確認され、固溶が確認される。かかる元素が予め固溶していることによって、本発明の原料粉末を用いると焼結温度がある程度ばらついた場合であっても、得られる焼結体の固溶状態のばらつきを抑えることができるという効果を奏するものである。なお酸化カルシウムが固溶されていない酸化ジルコニウムの1次粒子の混合量は少ないほど好ましく、酸化カルシウムが固溶されていない酸化ジルコニウムの1次粒子がある場合は焼結時の酸化マグネシウムの固溶性が低下する傾向にあり、焼結時の温度ばらつきの影響を受けやすく、得られる焼結体の各結晶中の固溶状態、ひいては焼結体の性能をばらつかせる原因となる場合がある。   In the zirconium oxide mixed powder of the present invention, the most important factor is that magnesium oxide and a part of calcium oxide are dissolved in the zirconium oxide. Here, the determination of whether calcium oxide and magnesium oxide are dissolved in the present powder includes an EDX (energy dispersive X-ray) element point analysis method using FESTEM (high resolution transmission electron microscope). This method is a method in which each element is detected by performing point analysis on the primary particles observed by FESTEM using characteristic X-rays. By measuring the composition of the primary particles in the zirconium oxide mixed powder using this method, it is confirmed that calcium element and magnesium element are present in the primary particles of zirconium oxide, and solid solution is confirmed. . Since such elements are dissolved in advance, it is possible to suppress variations in the solid solution state of the obtained sintered body even when the sintering temperature varies to some extent when the raw material powder of the present invention is used. There is an effect. The smaller the mixing amount of the primary particles of zirconium oxide in which calcium oxide is not dissolved, the better. In the case where there are primary particles of zirconium oxide in which calcium oxide is not dissolved, there is solid solubility of magnesium oxide during sintering. Tends to be reduced, and is easily affected by temperature variations during sintering, which may cause a solid solution state in each crystal of the obtained sintered body and, consequently, the performance of the sintered body to vary.

また本発明の酸化ジルコニウム混合粉末は、その単斜晶率が70〜99モル%の範囲、より好ましくは75〜90%にある。かかる単斜晶率は粉末X線回折法により求められたピークについて、正方晶および立方晶の混合回折強度と単斜晶回折強度について次式のように求めたものとする。ただし回折強度はローレンツ因子による補正後の値を使用する。   The zirconium oxide mixed powder of the present invention has a monoclinic crystal ratio in the range of 70 to 99 mol%, more preferably in the range of 75 to 90%. The monoclinic crystal ratio is obtained by the following formula for the mixed diffraction intensity and the monoclinic diffraction intensity of tetragonal and cubic crystals for the peak obtained by the powder X-ray diffraction method. However, the value after correction by the Lorentz factor is used for the diffraction intensity.

Figure 2005187219
Figure 2005187219

単斜晶率が70%未満であると、焼結温度が不安定になることにより焼結体の単斜晶率が60%以下になる焼結体が発生し、耐熱衝撃性が悪化してしまう。一方99%を超えると焼結時に固溶が起こりにくく、焼結温度が不安定になることにより焼結体の単斜晶率が80%を超えるものが発生し起電力の安定性が悪化する。 If the monoclinic crystal ratio is less than 70%, the sintering temperature becomes unstable, resulting in a sintered body having a monoclinic crystal ratio of 60% or less, and the thermal shock resistance deteriorates. End up. On the other hand, if it exceeds 99%, solid solution hardly occurs at the time of sintering, and since the sintering temperature becomes unstable, the monoclinic crystal ratio of the sintered body exceeds 80% and the stability of the electromotive force is deteriorated. .

また本発明の酸化ジルコニウム混合粉末は、酸化マグネシウムを6〜12モル%、酸化カルシウムを0.1〜2モル%含有する。酸化マグネシウムの含有率が6モル%未満であると焼結後の安定化が十分に起こらず、酸素イオン伝導性が阻害されることから起電力測定における応答速度が遅く、起電力の値も不安定になりがちである。また12モル%を超えると焼結後に酸化マグネシウム層が単独で析出してしまい、耐熱衝撃性が劣る傾向にある。より好ましくは7〜9モル%である。また、酸化カルシウムの含有率が0.1モル未満であると、得られる焼結体において酸化カルシウムの酸化ジルコニウムへの固溶量が少なくなり、焼結温度のバラツキによる耐熱衝撃性や起電力安定性が劣化する傾向にあり、2モル%を超えると、焼結後に酸化カルシウムが結晶粒界に多量に存在してしまうことにより耐熱衝撃性が低下する。より好ましくは0.5〜1.5モル%である。なお、酸化ジルコニウム混合粉末に含まれる酸化マグネシウムは、その全てが酸化ジルコニウムに固溶していてもよく、一部が固溶していてもよい。また、酸化ジルコニウム粉末に含まれる酸化カルシウムは、その全てが酸化ジルコニウムに固溶していてもよく、一部が固溶していてもよい。   The zirconium oxide mixed powder of the present invention contains 6 to 12 mol% magnesium oxide and 0.1 to 2 mol% calcium oxide. If the content of magnesium oxide is less than 6 mol%, stabilization after sintering does not occur sufficiently, and oxygen ion conductivity is hindered, so the response speed in electromotive force measurement is slow, and the electromotive force value is not good. Tend to be stable. On the other hand, if it exceeds 12 mol%, the magnesium oxide layer is deposited alone after sintering, and the thermal shock resistance tends to be inferior. More preferably, it is 7-9 mol%. In addition, when the content of calcium oxide is less than 0.1 mol, the amount of solid solution of calcium oxide in zirconium oxide in the obtained sintered body decreases, and thermal shock resistance and electromotive force stability due to variations in sintering temperature. When the content exceeds 2 mol%, the thermal shock resistance is reduced due to the presence of a large amount of calcium oxide at the grain boundary after sintering. More preferably, it is 0.5-1.5 mol%. In addition, all of the magnesium oxide contained in the zirconium oxide mixed powder may be dissolved in zirconium oxide, or a part thereof may be dissolved. Further, all of the calcium oxide contained in the zirconium oxide powder may be dissolved in zirconium oxide, or a part thereof may be dissolved.

なお、酸化ジルコニウム粉末中に含まれている酸化マグネシウムや酸化カルシウムの含有率はICP発光分析法によって求めることができる。   The content of magnesium oxide or calcium oxide contained in the zirconium oxide powder can be obtained by ICP emission analysis.

また、本発明の酸化ジルコニウム混合粉末は、水分散によりスラリー状にした際の粒子の平均二次凝集径が0.3〜2μmであることが好ましい。より好ましくは0.3〜1μmであり、さらに好ましくは0.5〜0.8μmである。かかるスラリー状にした際の粒子の平均二次凝集径は粉末の焼結し易さを反映するものであり、酸化ジルコニウム混合粉末出力100W以上の超音波分散器で5分間以上かけて十分分散させスラリー状にした状態で求めるものである。ここで平均二次凝集径はレーザー回折法で測定される体積換算の粒度分布におけるメジアン径をいう。スラリー中の粒子の平均二次凝集径が0.3μm未満であると乾燥後の粉末の凝集力が強いため、成形時に密度ムラを起こし熱膨張の歪みにより焼結時の割れを生じやすい傾向にあり、2μmを超えると焼結体の密度が低下しがちであるため酸素イオン伝導性が悪化し、起電力特性に影響がでる場合がある。   Moreover, it is preferable that the average secondary aggregation diameter of the particle | grains when the zirconium oxide mixed powder of this invention is made into a slurry form by water dispersion is 0.3-2 micrometers. More preferably, it is 0.3-1 micrometer, More preferably, it is 0.5-0.8 micrometer. The average secondary agglomerated diameter of the particles in the form of the slurry reflects the ease of sintering of the powder, and is sufficiently dispersed over 5 minutes or more with an ultrasonic disperser with a zirconium oxide mixed powder output of 100 W or more. It is obtained in a slurry state. Here, the average secondary agglomerated diameter refers to a median diameter in a volume conversion particle size distribution measured by a laser diffraction method. If the average secondary agglomerated diameter of the particles in the slurry is less than 0.3 μm, the agglomeration force of the powder after drying is strong, and therefore, density unevenness is likely to occur during molding, and cracking during sintering tends to occur due to thermal expansion distortion In addition, if it exceeds 2 μm, the density of the sintered body tends to decrease, so that the oxygen ion conductivity is deteriorated, and the electromotive force characteristics may be affected.

本発明の酸化ジルコニウム混合粉末は、BET比表面積が5〜16m2/gであることが好ましい。より好ましくは7〜15m2/gであり、さらに好ましくは8〜12m2/gである。BET比表面積が5m2/g未満となると、得られる焼結体の密度が低下するためイオン導電性が低下し起電力特性が劣る傾向にあり、16m2/gを超えると、粉末の凝集力が強くなるために得られる焼結体に密度ムラが生じ、焼結時の熱膨張の歪みによって焼結体が割れやすい傾向にある。本明細書においてBET比表面積とは吸着分子として窒素を用いて測定するものをいう。 The zirconium oxide mixed powder of the present invention preferably has a BET specific surface area of 5 to 16 m 2 / g. More preferably, it is 7-15 m < 2 > / g, More preferably, it is 8-12 m < 2 > / g. When the BET specific surface area is less than 5 m 2 / g, tend to electromotive force characteristic reduces the ionic conductivity for density decreases of the resulting sintered body is poor, exceeds 16m 2 / g, the cohesive force of the powder Therefore, density unevenness occurs in the obtained sintered body, and the sintered body tends to break due to distortion of thermal expansion during sintering. In the present specification, the BET specific surface area is measured using nitrogen as an adsorbed molecule.

本発明の酸化ジルコニウム混合粉末は、前記原料の他に、0.1〜0.5重量%程度の珪酸アルミニウムや珪酸マグネシウム等の珪酸化合物を含ませることもできる。かかる珪酸アルミニウムや珪酸マグネシウム等の珪酸化合物を添加することで、結晶粒界にガラス層を析出させ、さらに高温における耐熱衝撃性を向上させることができる。ここで酸化珪素に換算した量が0.1重量%未満であると、焼結時のガラス層の成長が不十分となり耐衝撃性向上効果が十分でないことがある。一方、0.5重量%より多くなるとガラス層が厚くなりすぎて、粒界における酸素イオン導電性が悪化し、溶鋼用酸素センサーとして使用した際に起電力がばらつく原因となる。   The zirconium oxide mixed powder of the present invention may contain a silicate compound such as aluminum silicate and magnesium silicate in an amount of about 0.1 to 0.5% by weight in addition to the raw materials. By adding a silicate compound such as aluminum silicate or magnesium silicate, a glass layer can be deposited at the crystal grain boundaries, and the thermal shock resistance at high temperatures can be improved. Here, if the amount converted to silicon oxide is less than 0.1% by weight, the growth of the glass layer at the time of sintering becomes insufficient and the impact resistance improving effect may not be sufficient. On the other hand, if it exceeds 0.5% by weight, the glass layer becomes too thick, the oxygen ion conductivity at the grain boundary deteriorates, and the electromotive force varies when used as an oxygen sensor for molten steel.

また酸化ジルコニウム100モル%に対し酸化アルミニウムを0.5〜2モル%添加することで、焼結体の強度をより増加させ、さらに高温域における熱衝撃による破損を防止することができる。ここで酸化アルミニウムが0.5モル%未満であると焼結体強度の向上効果が十分でなく、2モル%より多くなると焼結体中に発生するアルミナ結晶が大きくなりすぎるため、周囲との熱膨張率の差が大きくなることによりそこが破壊起点となり耐熱衝撃性が悪化してしまうことがある。   Further, by adding 0.5 to 2 mol% of aluminum oxide with respect to 100 mol% of zirconium oxide, the strength of the sintered body can be further increased, and damage due to thermal shock in a high temperature region can be prevented. Here, if the aluminum oxide is less than 0.5 mol%, the effect of improving the strength of the sintered body is not sufficient, and if it exceeds 2 mol%, the alumina crystal generated in the sintered body becomes too large. When the difference in coefficient of thermal expansion increases, this may become a starting point for fracture, and the thermal shock resistance may deteriorate.

次に本発明の酸化ジルコニウム混合粉末の製造方法について述べる。前述の組成比率および単斜晶率であればその製造方法は特に限定されるものではなく、一般にファインセラミックス粉末の製造方法として用いられる酸性水溶液を中和剤を用いて水和物ゲルを沈降させる中和共沈法や水酸基イオンを活性化させて水和物ゾルを得てそれを熱分解する加水分解法も適用することはできる。しかし、中和共沈法や加水分解法ではジルコニウム塩、マグネシウム塩とカルシウム塩から水和物への中和点や反応速度が大きく異なり、水和物の組成が不均一となることにより、狙った組成の粉末を得るのは困難な場合が多い。   Next, a method for producing the zirconium oxide mixed powder of the present invention will be described. The production method is not particularly limited as long as the composition ratio and the monoclinic crystal ratio are as described above, and a hydrate gel is precipitated using a neutralizing agent in an acidic aqueous solution generally used as a production method of fine ceramic powder. A neutralization coprecipitation method or a hydrolysis method in which hydroxyl ions are activated to obtain a hydrate sol and thermally decompose it can also be applied. However, the neutralization coprecipitation method and the hydrolysis method are different in the neutralization point and reaction rate from zirconium salt, magnesium salt and calcium salt to hydrate, and the hydrate composition is not uniform. It is often difficult to obtain powders of different composition.

そこで、本発明の粉末を得るためには酸化物同士を混合させる方法が好ましい。特に酸化カルシウムおよび酸化マグネシウムの酸化ジルコニウムに対する固溶のバランスをとるためには、予め酸化カルシウムのみを固溶する酸化ジルコニウム粉末を使用することが好ましい。   Therefore, in order to obtain the powder of the present invention, a method of mixing oxides is preferable. In particular, in order to balance the solid solution of calcium oxide and magnesium oxide with respect to zirconium oxide, it is preferable to use a zirconium oxide powder in which only calcium oxide is dissolved in advance.

具体的には、本発明の酸化ジルコニウム混合粉末を得るための原料として酸化カルシウムを0.04〜2モル%固溶した酸化ジルコニウム粉末を用いることが好ましい。より好ましくは0.05〜0.5モル%の酸化カルシウムが固溶している酸化ジルコニウム粉末を用いる。酸化カルシウムの固溶量が0.04モル%未満であると、得られる酸化ジルコニウム混合粉末の1次粒子に固溶している酸化カルシウムの量が不十分になる傾向にある。一方、酸化カルシウムが2モル%を超えて固溶している粉末を用いると、上述のように焼結体の耐熱衝撃性が悪化してしまう。原料として用いる酸化ジルコニウム粉末は、例えば中和共沈法などによって合成段階で、必要量の酸化カルシウムを固溶させたものを用いることができる。   Specifically, it is preferable to use a zirconium oxide powder in which 0.04 to 2 mol% of calcium oxide is dissolved as a raw material for obtaining the zirconium oxide mixed powder of the present invention. More preferably, a zirconium oxide powder in which 0.05 to 0.5 mol% of calcium oxide is dissolved is used. When the solid solution amount of calcium oxide is less than 0.04 mol%, the amount of calcium oxide solid solution in the primary particles of the obtained zirconium oxide mixed powder tends to be insufficient. On the other hand, when a powder in which calcium oxide exceeds 2 mol% is used as a solid solution, the thermal shock resistance of the sintered body deteriorates as described above. As the zirconium oxide powder used as a raw material, for example, a solution in which a required amount of calcium oxide is dissolved in a synthesis stage by a neutralization coprecipitation method or the like can be used.

また、本発明の製造方法に用いる酸化ジルコニウム粉末はBET比表面積が5m2/g以上のものが好ましい。より好ましくはBET比表面積が5〜30m2/gが好ましく、さらには8〜15m2/gが好ましい。酸化ジルコニウムのBET比表面積が5m2/g未満であると、酸化ジルコニウム一次粒子が大きいために酸化マグネシウムとの混合後の均一性が悪化し、焼結時の固溶のムラにより焼結体が割れてしまう恐れがある。 The zirconium oxide powder used in the production method of the present invention preferably has a BET specific surface area of 5 m 2 / g or more. More preferably, the BET specific surface area is preferably 5 to 30 m 2 / g, and more preferably 8 to 15 m 2 / g. If the BET specific surface area of zirconium oxide is less than 5 m 2 / g, the primary particles of zirconium oxide are large, so the uniformity after mixing with magnesium oxide deteriorates. There is a risk of breaking.

次に、上記酸化カルシウムが固溶した酸化ジルコニウム粉末に酸化マグネシウムを好ましくは6〜12モル%、酸化カルシウムを好ましくは0.1〜2モル%となるようにそれぞれの酸化物原料粉末を秤量し、混合する。酸化マグネシウムの混合量はより好ましくは7〜10モル%であり、酸化カルシウムの混合量はより好ましくは0.5〜1.5モル%である。なお、ここでいう酸化カルシウムの混合量とは、酸化ジルコニウムに固溶した酸化カルシウムも含めた量である。また、添加する酸化マグネシウム粉末はBET比表面積が14m2/g以上であることが好ましく、20m2/g以上であることがより好ましい。酸化マグネシウム粉末のBET比表面積が14m2/g未満であると、酸化ジルコニウムとの均一性が悪くなり、固溶ムラが発生し易く、酸化ジルコニウム混合粉末に含まれる各1次粒子に対して酸化マグネシウムの固溶状態が不均一となる場合がある。 Next, each oxide raw material powder is weighed so that magnesium oxide is preferably 6 to 12 mol% and calcium oxide is preferably 0.1 to 2 mol% in the zirconium oxide powder in which calcium oxide is dissolved. , Mix. The mixing amount of magnesium oxide is more preferably 7 to 10 mol%, and the mixing amount of calcium oxide is more preferably 0.5 to 1.5 mol%. The amount of calcium oxide mixed here is an amount including calcium oxide solid-dissolved in zirconium oxide. The magnesium oxide powder to be added preferably has a BET specific surface area of 14 m 2 / g or more, and more preferably 20 m 2 / g or more. When the BET specific surface area of the magnesium oxide powder is less than 14 m 2 / g, the uniformity with the zirconium oxide is deteriorated, so that solid solution unevenness is likely to occur, and each primary particle contained in the zirconium oxide mixed powder is oxidized. The solid solution state of magnesium may be non-uniform.

本発明の製造方法で用いる酸化マグネシウムは単結晶粉末であることが好ましい。単結晶を用いることで、純度が高く、酸化マグネシウムの分散性に優れた酸化ジルコニウム混合粉末を得ることができる。   The magnesium oxide used in the production method of the present invention is preferably a single crystal powder. By using a single crystal, a zirconium oxide mixed powder having high purity and excellent dispersibility of magnesium oxide can be obtained.

本発明の製造方法に用いる酸化カルシウムは、メッシュ通し後の粒度100μm以下のものが好ましい。より好ましくは50μm以下、更に好ましくは10μm以下である。かかる粒度が100μmを超えると酸化ジルコニウムとの混合が不均一となり、焼結体に異物として存在する場合がある。かかる粒度は小さければ小さいほど好ましいが、1μm程度であれば、本発明の目的としては十分な場合が多い。   The calcium oxide used in the production method of the present invention preferably has a particle size of 100 μm or less after passing through a mesh. More preferably, it is 50 micrometers or less, More preferably, it is 10 micrometers or less. When the particle size exceeds 100 μm, mixing with zirconium oxide becomes non-uniform and may exist as foreign matter in the sintered body. The smaller the particle size, the better. However, if it is about 1 μm, it is often sufficient for the purpose of the present invention.

また、酸化カルシウムは純度が99%以上のものが好ましく、より好ましくは99.99%以上のものが好ましい。かかる純度が99%未満であるとその不純物により焼結体に悪影響がでる場合がある。   Calcium oxide preferably has a purity of 99% or higher, more preferably 99.99% or higher. If the purity is less than 99%, the impurities may adversely affect the sintered body.

上記酸化ジルコニウム粉末、酸化マグネシウム粉末、酸化カルシウム粉末を混合した後、大気中で900℃から1100℃で熱処理を行う。混合には乾式混合、湿式メディア混合など一般的な方法でよいが、2次凝集粒子レベルまでの混合となるように十分混合することが好ましい。また、大気中で、900〜1100℃での熱処理により酸化マグネシウムを酸化ジルコニウムに一部固溶させ、かつ単斜晶率70%〜99%となるように制御することができる。ここで最高温度が1100℃を超えると、得られる酸化ジルコニウム混合粉末のBET比表面積が5m2/g未満になることや単斜晶率が70%未満になり、上述の物性を持つ粉末が得られない。また900℃より低いと酸化マグネシウムが固溶していない一次粒子が発生してしまい、焼結体物性に悪影響を与える。また結晶構造を制御する方法としては、好ましくは最高温度から500℃までの冷却速度を1〜3時間にする方法がある。かかる急冷により正方晶に変化したジルコニア結晶の単斜晶への再変態を少なくする効果があり、いくらかの正方晶を残存させることが可能である。 After the zirconium oxide powder, magnesium oxide powder, and calcium oxide powder are mixed, heat treatment is performed at 900 ° C. to 1100 ° C. in the atmosphere. The mixing may be performed by a general method such as dry mixing or wet media mixing, but it is preferable that the mixing is sufficiently performed so as to achieve mixing up to the level of secondary aggregated particles. In addition, it can be controlled so that magnesium oxide is partly dissolved in zirconium oxide by heat treatment at 900 to 1100 ° C. in the atmosphere and the monoclinic crystal ratio is 70% to 99%. When the maximum temperature exceeds 1100 ° C., the resulting zirconium oxide mixed powder has a BET specific surface area of less than 5 m 2 / g and a monoclinic crystal ratio of less than 70%. I can't. On the other hand, when the temperature is lower than 900 ° C., primary particles in which magnesium oxide is not dissolved are generated, which adversely affects the properties of the sintered body. As a method for controlling the crystal structure, there is preferably a method in which the cooling rate from the maximum temperature to 500 ° C. is set to 1 to 3 hours. This has the effect of reducing the retransformation of the zirconia crystals that have been changed to tetragonal crystals by such rapid cooling into monoclinic crystals, and it is possible to leave some tetragonal crystals.

以上のように得られた熱処理粉末を適宜、粉砕乾燥して酸化ジルコニウム混合粉末を得る。粉砕としては湿式粉砕が好ましく用いられ、粉砕によって二次凝集粒径を好ましくは0.3〜2μmに、より好ましくは0.3〜1μmに、さらに好ましくは0.3〜0.8μmとなるように調整する。なお珪酸化合物や酸化アルミニウムは所定量秤量し、この粉砕時に添加混合することが好ましい。使用する珪酸化合物は純度99.9%以上でBET比表面積が10m2/g以上のもので、より好ましくはBETが50m2/g以上のエアロジルがよい。また使用する酸化アルミニウムは純度99.9%以上でBET比表面積が10m2/g以上のものがよい。さらに成形性を向上させるために、乾燥前のスラリーにPVAやアクリル化合物等の有機物バインダーを適量添加してもよい。 The heat-treated powder obtained as described above is appropriately pulverized and dried to obtain a zirconium oxide mixed powder. As the pulverization, wet pulverization is preferably used, and the secondary agglomerated particle size is preferably 0.3 to 2 μm, more preferably 0.3 to 1 μm, and further preferably 0.3 to 0.8 μm by pulverization. Adjust to. In addition, it is preferable that a predetermined amount of silicic acid compound and aluminum oxide is weighed and added and mixed during the pulverization. The silicic acid compound used has a purity of 99.9% or more and a BET specific surface area of 10 m 2 / g or more, more preferably Aerosil having a BET of 50 m 2 / g or more. The aluminum oxide to be used preferably has a purity of 99.9% or more and a BET specific surface area of 10 m2 / g or more. In order to further improve the moldability, an appropriate amount of an organic binder such as PVA or an acrylic compound may be added to the slurry before drying.

本発明の酸化ジルコニウム混合粉末は、特性ばらつきの少ない焼結体の製造を可能とするため各種焼結体の原料として好ましく用いられる。すなわち、本発明の酸化ジルコニウム混合粉末を1700℃以上、より好ましくは1720〜1770℃で焼結することにより得られた焼結体は優れた耐熱衝撃性を起電力安定性を有することで、酸素センサー用固体電解質素子や溶鋼取り出し口のノズルなどに好適に用いられる。   The zirconium oxide mixed powder of the present invention is preferably used as a raw material for various sintered bodies in order to enable the production of sintered bodies with little variation in characteristics. That is, the sintered body obtained by sintering the zirconium oxide mixed powder of the present invention at 1700 ° C. or higher, more preferably 1720 to 1770 ° C. has excellent thermal shock resistance and electromotive force stability. It is suitably used for a solid electrolyte element for sensors, a nozzle of a molten steel outlet, and the like.

本焼結体を溶鋼用の酸素センサーとして用いる場合は円筒を一端封じした、タンマン管形状が好ましい。これは内部に酸素濃度を一定にする基準物質を入れるためである。このように成形・加工した成形体を、1700℃以上の温度で焼結し、優れた耐熱衝撃性と起電力安定性を持つ、酸素センサー用固体電解質素子が得られる。   When this sintered body is used as an oxygen sensor for molten steel, a Tammann tube shape in which a cylinder is sealed once is preferable. This is because a reference material that keeps the oxygen concentration constant is placed inside. The molded body thus formed and processed is sintered at a temperature of 1700 ° C. or higher, and a solid electrolyte element for an oxygen sensor having excellent thermal shock resistance and electromotive force stability is obtained.

以下、実施例により本発明を具体的に説明する。実施例の物性測定、評価は以下のように行った。
(1)AEM分析法
測定する粉末を0.1重量%の希薄水溶液とし、試料台の上で乾燥させ、FESTEMにより10万倍で1次粒子を観察した。この1次粒子10個をランダムに選びEDX元素点分析し、全ての1次粒子中にMgおよびCaの両方が存在するものを○、MgおよびCaのどちらかもしくは両方とも検出されなかった1次粒子が1つでもあった場合は×とした。
(2)焼結体の割れの有無
焼結体をカラーチェック液(日本油脂製浸透液FAW−3)に数分浸し、水洗後焼結体のクラックの有無を目視で判定した。
(3)焼結体の単斜晶率
燒結体表面を#100のホーニングにより数mm研磨し、さらに研磨剤を使用したラップ鏡面処理を行った。その表面をX線回折測定装置にてCuKα線を用いてX線回折測定し、次式で単斜晶率を求めた。ただし回折強度はローレンツ因子による補正後の値を使用した。
Hereinafter, the present invention will be described specifically by way of examples. The physical property measurement and evaluation of the examples were performed as follows.
(1) AEM analysis method The powder to be measured was a 0.1 wt% dilute aqueous solution, dried on a sample stage, and primary particles were observed at a magnification of 100,000 by FESTEM. Ten primary particles were randomly selected and subjected to EDX element point analysis, and all primary particles containing both Mg and Ca were detected as ◯, and either or both of Mg and Ca were not detected. When there was even one particle, it was set as x.
(2) Presence / absence of cracks in sintered body The sintered body was immersed in a color check solution (penetration liquid FAW-3 manufactured by NOF Corporation) for several minutes, and the presence or absence of cracks in the sintered body was visually determined after washing with water.
(3) Monoclinic rate of sintered body The surface of the sintered body was polished by several mm by # 100 honing, and further subjected to lapping mirror surface treatment using an abrasive. The surface was subjected to X-ray diffraction measurement using CuKα rays with an X-ray diffraction measurement device, and the monoclinic crystal ratio was determined by the following formula. However, the value after correction by the Lorentz factor was used for the diffraction intensity.

Figure 2005187219
Figure 2005187219

このように焼結体10個について測定し、その平均値を求めた。なお、X線回折装置としては理学電気(株)製CN4037A1、RAD−Cシステムを用いた。 Thus, it measured about 10 sintered compacts and calculated | required the average value. As the X-ray diffractometer, CN4037A1, RAD-C system manufactured by Rigaku Denki Co., Ltd. was used.

(4)耐熱衝撃性
焼結体から構成される固体電解質素子を溶鋼に素早く浸漬し、15秒間保持して素早く引き上げ、室温で放置して冷却した。溶鋼の温度は珪素酸化物および酸化アルミニウムが含有しないサンプルの場合は1500℃とし、珪素酸化物と酸化アルミニウムが含まれるサンプルの場合は1700℃とした。冷却後の素子についてそのままの状態で鉄の浸食状況を確認し、次に上述のカラーチェック液に漬け、水洗した。カラーチェック液はクラックがあればその部分に浸透するため、目視により検査を行った。微小クラックが3ヶ所以上あるものを×、2ヶ所までのものを△、全くないものを○として評価した。また鉄の浸食が発生するほど大きなクラックが1本でもあるものは×とした。これを1種類につき10本評価して1本でも×があれば総合評価を×とし、×がなくても1本でも△があるものは総合評価△、全て○の場合を総合評価○とした。
(5)起電力安定性
図1に示す通り焼結体から構成される固体電解質素子1、2の内部に基準極として酸素濃度の標準物質である金属クロム粉末と酸化クロム粉末を混合したもの7を充填し、モリブデン金属棒8を差し込み、内部に空気が入らないように解放口をアルミナセメントで完全に封じた。また測定極としては溶鋼中にFe棒5を侵入した。それぞれの極を電位測定計3およびレコーダーチャート4につないだものを2本(1、2)準備し、酸素濃度数〜数十ppmに調整した1500℃の溶鋼6中に同時に浸漬し、起電力値を測定した。これを1種類につき10回、計20本について評価した。起電力値は固体電解質素子の温度が上昇するにつき変動し、温度が安定すると安定域になる。起電力の安定性は安定域に入った段階で2本の起電力差が10回とも10mV以下である場合は○、1回でも10mVを超えた場合であれば×とした。
(4) Thermal shock resistance A solid electrolyte element composed of a sintered body was quickly immersed in molten steel, held for 15 seconds, quickly pulled up, and allowed to cool at room temperature. The temperature of the molten steel was 1500 ° C. in the case of a sample not containing silicon oxide and aluminum oxide, and 1700 ° C. in the case of a sample containing silicon oxide and aluminum oxide. About the element after cooling, the erosion state of iron was confirmed as it was, and then it was immersed in the above-mentioned color check solution and washed with water. Since the color check solution penetrates into the cracked portion, it was visually inspected. Evaluations were made with a sample having three or more microcracks, a sample having up to two sites, and a sample having none at all. In addition, the case where even one crack was so large that iron erosion occurred was marked as x. If 10 are evaluated for each type and there is x even if there is one, the overall evaluation is x. If there is no x, even if there is △, there is a comprehensive evaluation △. .
(5) Stabilization of electromotive force As shown in FIG. 1, a mixture of chromium oxide powder and metal chromium powder, which is a standard substance of oxygen concentration, is used as a reference electrode inside solid electrolyte elements 1 and 2 composed of sintered bodies. The molybdenum metal rod 8 was inserted, and the release port was completely sealed with alumina cement so that air could not enter inside. Further, as a measuring electrode, an Fe bar 5 was penetrated into the molten steel. Two pieces (1, 2) of each electrode connected to the potentiometer 3 and the recorder chart 4 are prepared, and simultaneously immersed in a molten steel 6 at 1500 ° C. adjusted to an oxygen concentration of several to several tens of ppm. The value was measured. This was evaluated 10 times for each type, 20 in total. The electromotive force value changes as the temperature of the solid electrolyte element rises, and becomes stable when the temperature is stabilized. When the difference between the two electromotive forces is 10 mV or less at the time of entering the stable region, the stability of the electromotive force is evaluated as ◯.

次に実際の試作方法とその結果により本発明を具体的に説明する。ただし本発明はこれらの実施例に何ら限定されるものではない。   Next, the present invention will be specifically described based on an actual prototype method and the result. However, the present invention is not limited to these examples.

(実施例1)
酸化カルシウムが0.05モル%固溶したBET比表面積が10m2/gの酸化ジルコニウム粉末に、BET比表面積15m2/gの酸化マグネシウム粉末と酸化カルシウム粉末(純度99.99%)をそれぞれ酸化マグネシウム8.0モル%、酸化カルシウム1.0モル%となるように湿式メディア攪拌型混合機(アトライター)に入れ、水を濃度30重量%となるように入れ、充分混合してスラリーとし、このスラリーをディスク式噴霧乾燥機にて乾燥粉末を得た。この乾燥粉末を1000℃にて焼成して仮焼粉末を得た。なお、1000℃から500℃への冷却は2時間で行った。得られた仮焼粉末に酸化珪素粉末を0.3重量%、酸化アルミニウム粉末を1モル%となるように加えて湿式粉砕を行い乾燥して粉末を得た。得られた粉末の物性を表1に示す。本粉末をFESTEMを用いたEDX元素点分析を行ったところ、CaおよびMgの両方が確認された。本粉末をタンマン管形状に成形して小型電気炉(カンタルスーパー炉)にて1740℃、1750℃、1760℃でそれぞれ焼結することで、肉厚0.8mmのタンマン管焼結体を得た。この焼結体特性を測定したところ、表2に示す通り、優れた起電力安定性と耐熱衝撃性を示した。
(Example 1)
Zirconium oxide powder having a BET specific surface area of 10 m 2 / g in which 0.05 mol% of calcium oxide is dissolved is oxidized with magnesium oxide powder and calcium oxide powder (purity 99.99%) having a BET specific surface area of 15 m 2 / g. Put in a wet media agitation mixer (attritor) so as to be 8.0 mol% magnesium and 1.0 mol% calcium oxide, put water to a concentration of 30 wt%, and mix well to form a slurry. From this slurry, a dry powder was obtained with a disk-type spray dryer. The dried powder was fired at 1000 ° C. to obtain a calcined powder. In addition, cooling from 1000 degreeC to 500 degreeC was performed in 2 hours. To the obtained calcined powder, 0.3% by weight of silicon oxide powder and 1% by mole of aluminum oxide powder were added, wet pulverized and dried to obtain a powder. Table 1 shows the physical properties of the obtained powder. When this powder was subjected to EDX element point analysis using FESTEM, both Ca and Mg were confirmed. This powder was formed into a Tamman tube shape and sintered at 1740 ° C., 1750 ° C., and 1760 ° C. in a small electric furnace (Kantal super furnace) to obtain a Tamman tube sintered body having a thickness of 0.8 mm. . When this sintered compact property was measured, as shown in Table 2, it showed excellent electromotive force stability and thermal shock resistance.

(実施例2)
酸化カルシウムが1.5モル%固溶したBET比表面積が7m2/gの酸化ジルコニウム粉末に、BET比表面積20m2/gの酸化マグネシウム粉末と酸化カルシウム粉末(純度99.99%)をそれぞれ酸化マグネシウム7.2モル%となるように実施例1と同様に充分混合して乾燥粉末を得た。この乾燥粉末を1100℃にて焼成して仮焼粉末を得た。なお、1100℃から500℃への冷却は2時間で行った。この仮焼粉末に酸化珪素粉末を0.2重量%、酸化アルミニウム粉末を1モル%となるように加えて湿式粉砕を行い乾燥して粉末を得た。得られた粉末の物性を表1に示す。本粉末をFESTEMを用いたEDX元素点分析を行ったところ、CaおよびMgの両方が確認された。本粉末をタンマン管形状に成形して実施例1と同様のタンマン管焼結体を得た。この焼結体特性を測定したところ、表2に示す通り、優れた起電力安定性と耐熱衝撃性を示した。
(Example 2)
Zirconium oxide powder having a BET specific surface area of 7 m 2 / g in which 1.5 mol% of calcium oxide is solid-solved is oxidized with magnesium oxide powder and calcium oxide powder (purity 99.99%) having a BET specific surface area of 20 m 2 / g. A dry powder was obtained by thoroughly mixing in the same manner as in Example 1 so that the content of magnesium was 7.2 mol%. This dry powder was fired at 1100 ° C. to obtain a calcined powder. The cooling from 1100 ° C. to 500 ° C. was performed in 2 hours. To this calcined powder, 0.2% by weight of silicon oxide powder and 1% by mole of aluminum oxide powder were added, wet pulverized and dried to obtain a powder. Table 1 shows the physical properties of the obtained powder. When this powder was subjected to EDX element point analysis using FESTEM, both Ca and Mg were confirmed. This powder was formed into a Tamman tube shape to obtain a Tamman tube sintered body similar to Example 1. When this sintered compact property was measured, as shown in Table 2, it showed excellent electromotive force stability and thermal shock resistance.

(実施例3)
酸化カルシウムが0.1モル%固溶したBET比表面積が15m2/gの酸化ジルコニウム粉末に、BET比表面積5m2/gの酸化マグネシウム粉末と酸化カルシウム粉末(純度99.99%)をそれぞれ酸化マグネシウム9.5モル%、酸化カルシウム0.3モル%となるように実施例1と同様に充分混合して乾燥粉末を得た。この乾燥粉末を950℃にて焼成して仮焼粉末を得た。なお、950℃から500℃への冷却は2時間で行った。この仮焼粉末を湿式粉砕を行い乾燥して粉末を得た。得られた粉末の物性を表1に示す。本粉末をFESTEMを用いたEDX元素点分析を行ったところ、CaおよびMgの両方が確認された。本粉末をタンマン管形状に成形して実施例1と同様のタンマン管焼結体を得た。この焼結体特性を測定したところ、表2に示す通り、優れた起電力安定性と耐熱衝撃性を示した。
(Example 3)
Oxidized magnesium oxide powder and calcium oxide powder (purity 99.99%) with a BET specific surface area of 5 m 2 / g and zirconium oxide powder with a BET specific surface area of 15 m 2 / g in which 0.1 mol% of calcium oxide was dissolved. A dry powder was obtained by thoroughly mixing in the same manner as in Example 1 so that the magnesium content was 9.5 mol% and the calcium oxide content was 0.3 mol%. This dry powder was fired at 950 ° C. to obtain a calcined powder. The cooling from 950 ° C. to 500 ° C. was performed in 2 hours. The calcined powder was wet pulverized and dried to obtain a powder. Table 1 shows the physical properties of the obtained powder. When this powder was subjected to EDX element point analysis using FESTEM, both Ca and Mg were confirmed. This powder was formed into a Tamman tube shape to obtain a Tamman tube sintered body similar to Example 1. When this sintered compact property was measured, as shown in Table 2, it showed excellent electromotive force stability and thermal shock resistance.

(実施例4)
酸化カルシウムが0.5モル%固溶したBET比表面積が10m2/gの酸化ジルコニウム粉末に、BET比表面積15m2/gの酸化マグネシウム粉末と酸化カルシウム粉末(純度99.99%)をそれぞれ酸化マグネシウム9.5モル%、酸化カルシウム1.0モル%となるように実施例1と同様に充分混合して乾燥粉末を得た。この乾燥粉末を1050℃にて焼成して仮焼粉末を得た。なお、1050℃から500℃への冷却は3時間で行った。この仮焼粉末を湿式粉砕を行い乾燥して粉末を得た。得られた粉末の物性を表1に示す。本粉末をFESTEMを用いたEDX元素点分析を行ったところ、CaおよびMgの両方が確認された。本粉末をタンマン管形状に成形して実施例1と同様のタンマン管焼結体を得た。この焼結体特性を測定したところ、表2に示す通り、優れた起電力安定性と耐熱衝撃性を示した。
Example 4
Zirconium oxide powder having a BET specific surface area of 10 m 2 / g in which 0.5 mol% of calcium oxide is solid-solved is oxidized with magnesium oxide powder and calcium oxide powder (purity 99.99%) having a BET specific surface area of 15 m 2 / g, respectively. A dry powder was obtained by sufficiently mixing in the same manner as in Example 1 so that the magnesium content was 9.5 mol% and the calcium oxide content was 1.0 mol%. The dried powder was fired at 1050 ° C. to obtain a calcined powder. The cooling from 1050 ° C. to 500 ° C. was performed in 3 hours. The calcined powder was wet pulverized and dried to obtain a powder. Table 1 shows the physical properties of the obtained powder. When this powder was subjected to EDX element point analysis using FESTEM, both Ca and Mg were confirmed. This powder was formed into a Tamman tube shape to obtain a Tamman tube sintered body similar to Example 1. When this sintered compact property was measured, as shown in Table 2, it showed excellent electromotive force stability and thermal shock resistance.

(比較例1)
純度99.99%のBET比表面積が9m2/gの酸化ジルコニウム粉末に、BET比表面積15m2/gの酸化マグネシウム粉末と酸化カルシウム粉末(純度99.99%)をそれぞれ酸化マグネシウム9.0モル%、酸化カルシウム1.0モル%となるように湿式メディア攪拌型混合機(アトライター)に入れ、水を濃度30重量%となるように入れ、酸化珪素粉末を0.2重量%、酸化アルミニウム粉末を1モル%となるように加えて湿式混合を行い噴霧乾燥して粉末を得た。得られた粉末の物性を表1に示す。本粉末をFESTEMを用いたEDX元素点分析を行ったところ、CaおよびMgは検出されなかった。本粉末をタンマン管形状に成形して小型電気炉(カンタルスーパー炉)にて1740℃、1750℃、1760℃でそれぞれ焼結することで、肉厚0.8mmのタンマン管焼結体を得た。この焼結体特性を測定したところ、表3に示す通り、耐熱衝撃性は優れていたが、焼結温度の違いにより起電力安定性がばらつく結果となった。
(Comparative Example 1)
A zirconium oxide powder having a purity of 99.99% and a BET specific surface area of 9 m 2 / g was mixed with magnesium oxide powder and a calcium oxide powder (purity 99.99%) having a BET specific surface area of 15 m 2 / g of 9.0 mol of magnesium oxide. %, Put in a wet media agitator (attritor) so that the concentration of calcium oxide is 1.0 mol%, add water to a concentration of 30% by weight, 0.2% by weight of silicon oxide powder, aluminum oxide The powder was added to 1 mol%, wet-mixed and spray-dried to obtain a powder. Table 1 shows the physical properties of the obtained powder. When this powder was subjected to EDX element point analysis using FESTEM, Ca and Mg were not detected. This powder was formed into a Tamman tube shape and sintered at 1740 ° C., 1750 ° C., and 1760 ° C. in a small electric furnace (Kantal super furnace) to obtain a Tamman tube sintered body having a thickness of 0.8 mm. . When this sintered body characteristic was measured, as shown in Table 3, the thermal shock resistance was excellent, but the electromotive force stability varied depending on the sintering temperature.

(比較例2)
純度99.99%のBET比表面積が20m2/gの酸化ジルコニウム粉末に、BET比表面積20m2/gの酸化マグネシウム粉末を酸化マグネシウム8.2モル%、となるように湿式メディア攪拌型混合機(アトライター)に入れ、水を濃度30重量%となるように入れ、充分混合してスラリーとし、このスラリーをディスク式噴霧乾燥機にて乾燥粉末を得た。この乾燥粉末を750℃にて焼成して仮焼粉末を得た。なお、750℃から500℃への冷却は2時間で行った。この仮焼粉末に酸化珪素粉末を0.3重量%、酸化アルミニウム粉末を1モル%となるように加えて湿式粉砕を行い乾燥して粉末を得た。得られた粉末の物性を表1に示す。本粉末をFESTEMを用いたEDX元素点分析を行ったところ、Caが確認されない1次粒子が存在した。本粉末をタンマン管形状に成形して小型電気炉(カンタルスーパー炉)にて1740℃、1750℃、1760℃でそれぞれ焼結することで、肉厚0.8mmのタンマン管焼結体を得た。この焼結体の特性を測定したところ、表3に示す通り、焼結温度によって耐熱衝撃性はばらつき、起電力安定性も劣るものであった。
(Comparative Example 2)
Zirconium oxide powder having a BET specific surface area of 99.99% purity is 20 m 2 / g, a magnesium oxide powder having a BET specific surface area of 20 m 2 / g magnesium oxide 8.2 mol%, and so as to wet media-agitation type mixer (Attritor), water was added to a concentration of 30% by weight, and mixed well to form a slurry. The slurry was dried with a disk-type spray dryer. The dried powder was fired at 750 ° C. to obtain a calcined powder. The cooling from 750 ° C. to 500 ° C. was performed in 2 hours. To this calcined powder, 0.3% by weight of silicon oxide powder and 1% by mole of aluminum oxide powder were added, wet pulverized and dried to obtain a powder. Table 1 shows the physical properties of the obtained powder. When this powder was subjected to EDX element point analysis using FESTEM, primary particles in which Ca was not confirmed were present. This powder was formed into a Tamman tube shape and sintered at 1740 ° C., 1750 ° C., and 1760 ° C. in a small electric furnace (Kantal super furnace) to obtain a Tamman tube sintered body having a thickness of 0.8 mm. . When the characteristics of the sintered body were measured, as shown in Table 3, the thermal shock resistance varied depending on the sintering temperature, and the electromotive force stability was poor.

(比較例3)
酸化カルシウムが1.0モル%固溶したBET比表面積が4m2/gの酸化ジルコニウム粉末に、BET比表面積15m2/gの酸化マグネシウム粉末と酸化カルシウム粉末(純度99.99%)をそれぞれ酸化マグネシウム8.5モル%となるように湿式メディア攪拌型混合機(アトライター)に入れ、水を濃度30重量%となるように入れ、充分混合してスラリーとし、このスラリーをディスク式噴霧乾燥機にて乾燥粉末を得た。この乾燥粉末を1300℃にて焼成して仮焼粉末を得た。なお、1300℃から500℃への冷却は4時間で行った。この仮焼粉末に酸化珪素粉末を0.4重量%、酸化アルミニウム粉末を1モル%となるように加えて湿式粉砕を行い乾燥して粉末を得た。得られた粉末の物性を表1に示す。本粉末をFESTEMを用いたEDX元素点分析を行ったところ、CaおよびMgの両方が確認された。本粉末をタンマン管形状に成形して小型電気炉(カンタルスーパー炉)にて1740℃、1750℃、1760℃でそれぞれ焼結することで、肉厚0.8mmのタンマン管焼結体を得た。この焼結体の特性を測定したところ、表3に示す通り、焼結温度の違いにより起電力安定性や耐熱衝撃性がばらつく結果となった。
(Comparative Example 3)
Zirconium oxide powder having a BET specific surface area of 4 m 2 / g in which 1.0 mol% of calcium oxide is solid-dissolved is oxidized to magnesium oxide powder and calcium oxide powder (purity 99.99%) having a BET specific surface area of 15 m 2 / g, respectively. Put in a wet media agitation mixer (attritor) so that the magnesium content is 8.5 mol%, add water to a concentration of 30% by weight, mix thoroughly to form a slurry, and use this slurry as a disk spray dryer. A dry powder was obtained. The dried powder was fired at 1300 ° C. to obtain a calcined powder. In addition, cooling from 1300 degreeC to 500 degreeC was performed in 4 hours. To this calcined powder, 0.4% by weight of silicon oxide powder and 1% by mole of aluminum oxide powder were added, wet pulverized and dried to obtain a powder. Table 1 shows the physical properties of the obtained powder. When this powder was subjected to EDX element point analysis using FESTEM, both Ca and Mg were confirmed. This powder was formed into a Tamman tube shape and sintered at 1740 ° C., 1750 ° C., and 1760 ° C. in a small electric furnace (Kantal super furnace) to obtain a Tamman tube sintered body having a thickness of 0.8 mm. . When the characteristics of the sintered body were measured, as shown in Table 3, the electromotive force stability and the thermal shock resistance varied depending on the difference in sintering temperature.

(比較例4)
酸化カルシウムが0.05モル%固溶したBET比表面積が10m2/gの酸化ジルコニウム粉末に、BET比表面積15m2/gの酸化マグネシウム粉末と酸化カルシウム粉末(純度99.99%)をそれぞれ酸化マグネシウム4.0モル%、酸化カルシウム1.5モル%となるように湿式メディア攪拌型混合機(アトライター)に入れ、水を濃度30重量%となるように入れ、充分混合してスラリーとし、このスラリーをディスク式噴霧乾燥機にて乾燥粉末を得た。この乾燥粉末を1000℃にて焼成して仮焼粉末を得た。なお、1000℃から500℃への冷却は2時間で行った。この仮焼粉末に酸化珪素粉末を1重量%、酸化アルミニウム粉末を3モル%となるように加えて湿式粉砕を行い乾燥して粉末を得た。得られた粉末の物性を表1に示す。本粉末をFESTEMを用いたEDX元素点分析を行ったところ、CaおよびMgの両方が確認された。本粉末をタンマン管形状に成形して小型電気炉(カンタルスーパー炉)にて1740℃、1750℃、1760℃でそれぞれ焼結することで、肉厚0.8mmのタンマン管焼結体を得た。この焼結体の特性を測定したところ、表3に示す通り、起電力安定性も耐熱衝撃性も劣るものであった。
(Comparative Example 4)
Zirconium oxide powder having a BET specific surface area of 10 m 2 / g in which 0.05 mol% of calcium oxide is dissolved is oxidized with magnesium oxide powder and calcium oxide powder (purity 99.99%) having a BET specific surface area of 15 m 2 / g. Put in a wet media agitation mixer (attritor) so that the concentration of magnesium is 4.0 mol% and calcium oxide is 1.5 mol%, add water to a concentration of 30 wt%, and mix well to form a slurry. From this slurry, a dry powder was obtained with a disk-type spray dryer. The dried powder was fired at 1000 ° C. to obtain a calcined powder. In addition, cooling from 1000 degreeC to 500 degreeC was performed in 2 hours. To this calcined powder, 1% by weight of silicon oxide powder and 3% by mole of aluminum oxide powder were added, wet pulverized and dried to obtain a powder. Table 1 shows the physical properties of the obtained powder. When this powder was subjected to EDX element point analysis using FESTEM, both Ca and Mg were confirmed. This powder was formed into a Tamman tube shape and sintered at 1740 ° C., 1750 ° C., and 1760 ° C. in a small electric furnace (Kantal super furnace) to obtain a Tamman tube sintered body having a thickness of 0.8 mm. . When the characteristics of the sintered body were measured, as shown in Table 3, the electromotive force stability and the thermal shock resistance were inferior.

(比較例5)
酸化カルシウムが0.05モル%固溶したBET比表面積が10m2/gの酸化ジルコニウム粉末に、BET比表面積5m2/gの酸化マグネシウム粉末と酸化カルシウム粉末(純度99.99%)をそれぞれ酸化マグネシウム13.1モル%、酸化カルシウム1.0モル%となるように湿式メディア攪拌型混合機(アトライター)に入れ、水を濃度30重量%となるように入れ、充分混合してスラリーとし、このスラリーをディスク式噴霧乾燥機にて乾燥粉末を得た。この乾燥粉末を1100℃にて焼成して仮焼粉末を得た。なお、1100℃から500℃への冷却は3時間で行った。この仮焼粉末に酸化珪素粉末を0.3重量%となるように加えて湿式粉砕を行い乾燥して粉末を得た。得られた粉末の物性を表1に示す。本粉末をFESTEMを用いたEDX元素点分析を行ったところ、Mgが確認されない1次粒子が一部存在した。本粉末をタンマン管形状に成形して小型電気炉(カンタルスーパー炉)にて1740℃、1750℃、1760℃でそれぞれ焼結することで、肉厚0.8mmのタンマン管焼結体を得た。この焼結体の特性を測定したところ、表3に示す通り、焼結温度によって耐熱衝撃性はばらつき、また耐熱衝撃性も劣るものであった。
(Comparative Example 5)
Zirconium oxide powder having a BET specific surface area of 10 m 2 / g in which 0.05 mol% of calcium oxide is dissolved is oxidized with magnesium oxide powder and calcium oxide powder (purity 99.99%) having a BET specific surface area of 5 m 2 / g. Put in a wet media stirrer mixer (attritor) so that it will be 13.1 mol% magnesium and 1.0 mol% calcium oxide, put water to a concentration of 30 wt%, mix well to make a slurry, From this slurry, a dry powder was obtained with a disk-type spray dryer. This dry powder was fired at 1100 ° C. to obtain a calcined powder. The cooling from 1100 ° C. to 500 ° C. was performed in 3 hours. To this calcined powder, silicon oxide powder was added to 0.3% by weight, wet pulverized and dried to obtain a powder. Table 1 shows the physical properties of the obtained powder. When this powder was subjected to EDX element point analysis using FESTEM, some primary particles in which Mg was not confirmed were present. This powder was formed into a Tamman tube shape and sintered at 1740 ° C., 1750 ° C., and 1760 ° C. in a small electric furnace (Kantal super furnace) to obtain a Tamman tube sintered body having a thickness of 0.8 mm. . When the characteristics of the sintered body were measured, as shown in Table 3, the thermal shock resistance varied depending on the sintering temperature, and the thermal shock resistance was inferior.

(比較例6)
純度99.99%のBET比表面積が15m2/gの酸化ジルコニウム粉末に、BET比表面積10m2/gの酸化マグネシウム粉末と酸化カルシウム粉末(純度99.99%)をそれぞれ酸化マグネシウム8.0モル%、酸化カルシウム3.0モル%となるように湿式メディア攪拌型混合機(アトライター)に入れ、水を濃度30重量%となるように入れ、充分混合してスラリーとし、このスラリーをディスク式噴霧乾燥機にて乾燥粉末を得た。この乾燥粉末を1000℃にて焼成して仮焼粉末を得た。なお、1000℃から500℃への冷却は2時間で行った。この仮焼粉末を湿式粉砕を行い乾燥して粉末を得た。得られた粉末の物性を表1に示す。本粉末をFESTEMを用いたEDX元素点分析を行ったところ、Caが確認されない1次粒子が存在した。本粉末をタンマン管形状に成形して小型電気炉(カンタルスーパー炉)にて1740℃、1750℃、1760℃でそれぞれ焼結することで、肉厚0.8mmのタンマン管焼結体を得た。この焼結体特性を測定したところ、表3に示す通り、焼結温度によって耐熱衝撃性はばらつき、また耐熱衝撃性も劣るものであった。
(Comparative Example 6)
A zirconium oxide powder having a purity of 99.99% and a BET specific surface area of 15 m 2 / g is mixed with magnesium oxide powder and a calcium oxide powder (purity 99.99%) having a BET specific surface area of 10 m 2 / g of 8.0 mol of magnesium oxide. %, Calcium oxide 3.0 mol% in a wet media stirring type mixer (attritor), water is added to a concentration of 30% by weight, mixed well to make a slurry, this slurry is a disk type Dry powder was obtained with a spray dryer. The dried powder was fired at 1000 ° C. to obtain a calcined powder. In addition, cooling from 1000 degreeC to 500 degreeC was performed in 2 hours. The calcined powder was wet pulverized and dried to obtain a powder. Table 1 shows the physical properties of the obtained powder. When this powder was subjected to EDX element point analysis using FESTEM, primary particles in which Ca was not confirmed were present. This powder was formed into a Tamman tube shape and sintered at 1740 ° C., 1750 ° C., and 1760 ° C. in a small electric furnace (Kantal super furnace) to obtain a Tamman tube sintered body having a thickness of 0.8 mm. . When the characteristics of the sintered body were measured, as shown in Table 3, the thermal shock resistance varied depending on the sintering temperature, and the thermal shock resistance was inferior.

(比較例7)
共沈法にて酸化マグネシウムが固溶したBET比表面積10m2/gの酸化ジルコニウム粉末を準備した。本粉末に酸化カルシウム粉末(純度99.99%)を酸化ジルコニウムに対して1.0モル%となるように添加し、湿式混合してスラリーとし、このスラリーをディスク式噴霧乾燥機にて乾燥粉末を得た。この乾燥粉末を900℃にて焼成して仮焼粉末を得た。なお、900℃から500℃への冷却は2時間で行った。この仮焼粉末を湿式粉砕を行い乾燥して粉末を得た。得られた粉末の物性を表1に示す。本粉末をFESTEMを用いたEDX元素点分析を行ったところ、Caが確認されない1次粒子が存在した。本粉末をタンマン管形状に成形して小型電気炉(カンタルスーパー炉)にて1740℃、1750℃、1760℃でそれぞれ焼結することで、肉厚0.8mmのタンマン管焼結体を得た。この焼結体特性を測定したところ、表3に示す通り、起電力安定性も耐熱衝撃性も劣るものであった。
(Comparative Example 7)
A zirconium oxide powder having a BET specific surface area of 10 m 2 / g in which magnesium oxide was dissolved by a coprecipitation method was prepared. Calcium oxide powder (purity 99.99%) was added to this powder so that it might become 1.0 mol% with respect to a zirconium oxide, and it wet-mixed to make a slurry, and this slurry was dried powder with a disk type spray dryer. Got. The dried powder was fired at 900 ° C. to obtain a calcined powder. The cooling from 900 ° C. to 500 ° C. was performed in 2 hours. The calcined powder was wet pulverized and dried to obtain a powder. Table 1 shows the physical properties of the obtained powder. When this powder was subjected to EDX element point analysis using FESTEM, primary particles in which Ca was not confirmed were present. This powder was formed into a Tamman tube shape and sintered at 1740 ° C., 1750 ° C., and 1760 ° C. in a small electric furnace (Kantal super furnace) to obtain a Tamman tube sintered body having a thickness of 0.8 mm. . When this sintered compact characteristic was measured, as shown in Table 3, the electromotive force stability and the thermal shock resistance were inferior.

Figure 2005187219
Figure 2005187219

Figure 2005187219
Figure 2005187219

Figure 2005187219
Figure 2005187219

起電力安定性測定のための電気回路概略図である。It is an electric circuit schematic diagram for electromotive force stability measurement.

符号の説明Explanation of symbols

1:固体電解質1
2:固体電解質2
3:電位測定計
4:レコーダーチャート
5:測定極(Fe棒)
6:溶鋼
7:標準物質
8:モリブデン金属棒
1: Solid electrolyte 1
2: Solid electrolyte 2
3: Potential meter 4: Recorder chart 5: Measuring electrode (Fe bar)
6: Molten steel 7: Reference material 8: Molybdenum metal rod

Claims (6)

酸化マグネシウムを6〜12モル%、酸化カルシウムを0.1〜2モル%含み、該酸化マグネシウムの一部および該酸化カルシウムの一部が固溶し、かつ単斜晶率が70〜99%である酸化ジルコニウム混合粉末。   6-12 mol% magnesium oxide, 0.1-2 mol% calcium oxide, a part of the magnesium oxide and a part of the calcium oxide are in solid solution, and the monoclinic crystal ratio is 70-99%. A certain zirconium oxide mixed powder. 水分散によりスラリー状にした際の粒子の平均二次凝集径が0.3〜2μmである請求項1に記載の酸化ジルコニウム混合粉末。   2. The zirconium oxide mixed powder according to claim 1, wherein the particles have an average secondary aggregation diameter of 0.3 to 2 μm when formed into a slurry by water dispersion. BET比表面積が5〜16m2/gである請求項1または2記載の酸化ジルコニウム混合粉末。 The zirconium oxide mixed powder according to claim 1 or 2, wherein the BET specific surface area is 5 to 16 m 2 / g. 0.04〜2モル%の酸化カルシウムが固溶した酸化ジルコニウム粉末、酸化マグネシウム粉末および酸化カルシウム粉末を混合し、大気中で900〜1100℃で熱処理する酸化ジルコニウム混合粉末の製造方法。   A method for producing a zirconium oxide mixed powder in which a zirconium oxide powder, a magnesium oxide powder and a calcium oxide powder in which 0.04 to 2 mol% of calcium oxide is dissolved are mixed and heat-treated at 900 to 1100 ° C. in the atmosphere. 前記0.04〜2モル%の酸化カルシウムが固溶した酸化ジルコニウム粉末、酸化マグネシウム粉末、酸化カルシウム粉末を、酸化カルシウム0.1〜2モル%、酸化マグネシウム6〜12モル%となるように混合する請求項4記載の酸化ジルコニウム混合粉末の製造方法。   Zirconium oxide powder, magnesium oxide powder and calcium oxide powder in which 0.04 to 2 mol% of calcium oxide is solid-dissolved are mixed so that calcium oxide is 0.1 to 2 mol% and magnesium oxide is 6 to 12 mol%. The method for producing a zirconium oxide mixed powder according to claim 4. 0.04〜2モル%の酸化カルシウムが固溶した酸化ジルコニウム粉末のBET比表面積が5m2/g以上であって、酸化マグネシウム粉末のBET比表面積が14m2/g以上である請求項5記載の酸化ジルコニウム混合粉末の製造方法。 The BET specific surface area of the zirconium oxide powder in which 0.04 to 2 mol% of calcium oxide is solid-dissolved is 5 m 2 / g or more, and the BET specific surface area of the magnesium oxide powder is 14 m 2 / g or more. Method for producing a zirconium oxide mixed powder.
JP2003426948A 2003-12-24 2003-12-24 Zirconium oxide mixed powder and production method thereof Expired - Fee Related JP4534481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003426948A JP4534481B2 (en) 2003-12-24 2003-12-24 Zirconium oxide mixed powder and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003426948A JP4534481B2 (en) 2003-12-24 2003-12-24 Zirconium oxide mixed powder and production method thereof

Publications (2)

Publication Number Publication Date
JP2005187219A true JP2005187219A (en) 2005-07-14
JP4534481B2 JP4534481B2 (en) 2010-09-01

Family

ID=34786351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003426948A Expired - Fee Related JP4534481B2 (en) 2003-12-24 2003-12-24 Zirconium oxide mixed powder and production method thereof

Country Status (1)

Country Link
JP (1) JP4534481B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5845168A (en) * 1981-09-14 1983-03-16 東レ株式会社 Zirconia sintered body
JPH101370A (en) * 1996-06-17 1998-01-06 Toshiba Ceramics Co Ltd Jig for heat treatment
JP2003034575A (en) * 2001-05-14 2003-02-07 Toray Ind Inc Solid electrolyte element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5845168A (en) * 1981-09-14 1983-03-16 東レ株式会社 Zirconia sintered body
JPH101370A (en) * 1996-06-17 1998-01-06 Toshiba Ceramics Co Ltd Jig for heat treatment
JP2003034575A (en) * 2001-05-14 2003-02-07 Toray Ind Inc Solid electrolyte element

Also Published As

Publication number Publication date
JP4534481B2 (en) 2010-09-01

Similar Documents

Publication Publication Date Title
RU2442752C2 (en) Zirconium oxide and way of its production
JP5166518B2 (en) Yttria refractory composition
JP4254222B2 (en) Zirconia powder
JPS61101462A (en) Zirconia ceramic
JP4721947B2 (en) Corrosion-resistant magnesia sintered body, heat treatment member comprising the same, and method for producing the sintered body
JP4534481B2 (en) Zirconium oxide mixed powder and production method thereof
JPH07126061A (en) Magnesia-based sintered material and production thereof
JP4043425B2 (en) Zirconia heat treatment material
JP2002137962A (en) Component for heat treatment consisting of mullite-based sintered compact
JP4546609B2 (en) Ceramic heat treatment material with excellent thermal shock resistance
JP2002128563A (en) Ceramic member for thermal treatment which has good thermal shock resistance
JP4443806B2 (en) Zirconia sintered body excellent in durability and pulverizer / disperser member using the same
JP5351405B2 (en) Alumina ceramics with excellent wear resistance
JP2002316869A (en) Roller for roller hearth kiln consisting of heat resistant mullite sintered compact
JP3737917B2 (en) Thermal shock-resistant alumina sintered body and heat treatment member comprising the same
JP5098909B2 (en) Solid electrolyte element
JP4048017B2 (en) Crushing / dispersing media made of zirconia sintered body with excellent durability and wear resistance
JP2003034575A (en) Solid electrolyte element
JP7408721B2 (en) Negative thermal expansion materials and composite materials
JPS647030B2 (en)
WO2023163057A1 (en) Negative thermal expansion material and composite material
JP2003321274A (en) Solid electrolyte element
JP2006143551A (en) Zirconia powder
JP4761693B2 (en) Heat-resistant conductive ceramics
JP4560328B2 (en) Lanthanum chromite heating element having heating part and terminal part and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4534481

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140625

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees