JPH10135019A - Anisotropic magnetic powder - Google Patents

Anisotropic magnetic powder

Info

Publication number
JPH10135019A
JPH10135019A JP9166192A JP16619297A JPH10135019A JP H10135019 A JPH10135019 A JP H10135019A JP 9166192 A JP9166192 A JP 9166192A JP 16619297 A JP16619297 A JP 16619297A JP H10135019 A JPH10135019 A JP H10135019A
Authority
JP
Japan
Prior art keywords
hydrogen
magnet powder
temperature
reaction
anisotropic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9166192A
Other languages
Japanese (ja)
Other versions
JP3463911B2 (en
Inventor
Yoshinobu Motokura
義信 本蔵
Chisato Mishima
千里 三嶋
Hiroshige Mitarai
浩成 御手洗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Original Assignee
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp filed Critical Aichi Steel Corp
Priority to JP16619297A priority Critical patent/JP3463911B2/en
Publication of JPH10135019A publication Critical patent/JPH10135019A/en
Application granted granted Critical
Publication of JP3463911B2 publication Critical patent/JP3463911B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rare-earth magnetic powder which is subjected to a high temperature hydrogen heat treatment and exhibits a high anisotropy. SOLUTION: A rare-earth magnetic power is made of RFeB base alloy, comprised of rare-earth elements(R) containing yttrium(Y) which are subjected to a high-temperature hydrogen heat treatment and whose anisotropy (Br/Bs when Bs is 1.6T (16kG)) is 0.70 or more, boron(B) and inevitable impurities, and iron(Fe) and RFeB base alloy containing one of gallium(Ga) and niobium(Nb). A magnetic powder exhibiting a high anisotropy is obtained by reaction of the RFeB base alloy and hydrogen at a relative reaction speed of 0.25-0.50, when the reaction speed at 83 deg.C and under pressure of hydrogen of 0.1MPa (1atm) is set to 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、希土類元素−鉄−
ホウ素系合金よりなり高い異方性をもつ異方性磁石粉末
に関する。
TECHNICAL FIELD The present invention relates to a rare earth element-iron-
The present invention relates to an anisotropic magnet powder made of a boron-based alloy and having high anisotropy.

【0002】[0002]

【従来の技術】従来、イットリウム(Y)を含む希土類
元素(以下、Rと称す)と、鉄(Fe)と、ホウ素
(B)とを主成分とするRFeB系合金よりなる希土類
磁石は残留磁束密度、保磁力などの磁気特性に優れるた
め工業的に広く利用されている。この希土類磁石は、例
えば、特開昭60−257107号公報、特開昭62−
23903号公報、特公平7−68561号公報等に報
告されている。
2. Description of the Related Art Conventionally, a rare-earth magnet made of an RFeB-based alloy containing a rare-earth element containing yttrium (Y) (hereinafter referred to as R), iron (Fe) and boron (B) as main components has a residual magnetic flux. Because of its excellent magnetic properties such as density and coercive force, it is widely used industrially. This rare earth magnet is disclosed in, for example, JP-A-60-257107 and JP-A-62-257107.
No. 23903 and Japanese Patent Publication No. 7-68561.

【0003】特開昭62−23903号公報には、RF
eB系合金に水素の吸蔵および脱着による組織の順変態
および逆変態を行う高温水素熱処理の脱水素処理を改善
することにより保磁力(iHc)が5kOe(398k
A/m)と高い永久磁石を製造する方法が開示されてい
る。ここで高温水素熱処理は組織の変態を伴う熱処理を
意味し、組織の変態を伴わない水素の吸蔵、脱水素のみ
が生ずる低温水素熱処理と区別する。
Japanese Patent Application Laid-Open No. 62-23903 discloses RF
The coercive force (iHc) is 5 kOe (398 k) by improving the dehydrogenation treatment of the high-temperature hydrogen heat treatment for performing the forward transformation and the reverse transformation of the structure of the eB-based alloy by absorbing and desorbing hydrogen.
(A / m). Here, the high-temperature hydrogen heat treatment means a heat treatment accompanied by a transformation of the structure, and is distinguished from a low-temperature hydrogen heat treatment in which only the occlusion and dehydrogenation of the hydrogen without the transformation of the structure occur.

【0004】そして、特公平7−68561号公報に
は、この高温水素熱処理を改良し、RFeB系合金を1
0Torr(1.3kPa)以上の水素ガスもしくは1
0Torr(13kPa)以上の分圧の水素ガスと不活
性ガスからなる混合ガスの雰囲気の下で500℃〜10
00℃の温度で熱処理して原料中に水素を吸収させて順
変態を起こさせ、再び脱水素を行うといった一連の高温
水素熱処理を行うことにより、iHcが10kOe(7
95kA/m)と高い磁気特性を持つ希土類永久ボンド
磁石を得る方法が開示されている。
Japanese Patent Publication No. Hei 7-68561 discloses that this high-temperature hydrogen heat treatment is improved and the RFeB alloy is
Hydrogen gas of 0 Torr (1.3 kPa) or more or 1
500 ° C. to 10 under an atmosphere of a mixed gas of hydrogen gas and an inert gas at a partial pressure of 0 Torr (13 kPa) or more.
By performing a series of high-temperature hydrogen heat treatments such as heat treatment at a temperature of 00 ° C. to absorb hydrogen in the raw material to cause forward transformation and dehydrogenation again, iHc becomes 10 kOe (7
A method for obtaining a rare-earth permanent bonded magnet having high magnetic properties of 95 kA / m) is disclosed.

【0005】さらに、特公平7−68561号公報は、
Nd12.0Pr1.4 Fe80.85.8 の原子数組成の希土類
合金を1atmH2 ガス中で830℃まで昇温し、その
後830℃で5時間保持しこの間にH2 ガス圧力を10
〜760Torr(1.3kPa〜0.1MPa)の範
囲の所定圧力に保持し、その後830℃の温度で1.0
×10-5Torr(1.31×10-3Pa)の真空度に
減圧して40分保持し、その後急冷することにより、異
方性ボンド磁石を得ている。その実施例中で最も顕著な
異方性をもつボンド磁石として、圧縮成形時に磁場を作
用させてBrを6.1kG(0.61T)から7.2k
G(0.72T)へと約18.2%向上したものを挙げ
ている。
[0005] Furthermore, Japanese Patent Publication No. Hei 7-68561 discloses that
Nd 12.0 Pr 1.4 Fe 80.8 temperature was increased rare earth alloy of the atomic composition of B 5.8 to 830 ° C. in 1AtmH 2 gas, then 830 ° C. was maintained for 5 hours 10 H 2 gas pressure during this time
To 760 Torr (1.3 kPa to 0.1 MPa), and then maintained at 830 ° C. for 1.0
The anisotropic bonded magnet was obtained by depressurizing to a degree of vacuum of × 10 −5 Torr (1.31 × 10 −3 Pa), holding for 40 minutes, and then rapidly cooling. As the bonded magnet having the most remarkable anisotropy in the embodiment, a magnetic field is applied during compression molding to bring Br from 6.1 kG (0.61 T) to 7.2 k.
G (0.72T) which is improved by about 18.2%.

【0006】また、特公平4−20242号公報には、
一度メルトスピンニングにより希土類磁石とした後、こ
の希土類磁石を熱間圧延処理して結晶方向を揃えた組織
とし、高い異方性をもつ希土類磁石とする方法が開示さ
れている。
[0006] Japanese Patent Publication No. Hei 4-20242 discloses that
A method is disclosed in which a rare-earth magnet is once formed by melt spinning, and then the rare-earth magnet is hot-rolled to form a structure in which the crystal directions are aligned, thereby forming a rare-earth magnet having high anisotropy.

【0007】[0007]

【発明が解決しようとする課題】本発明は、高温水素熱
処理された希土類磁石粉末であって、かつ高い異方性、
即ち、Br/Bsが0.70以上の高い異方性をもつ希
土類磁石粉末を提供することを課題とする。希土類磁石
を熱間圧延処理して結晶方向を揃えた組織とし、高い異
方性をもつ希土類磁石粉末とする方法は、操作が複雑な
ために製造コストが高くなる。また、得られる希土類磁
石粉末の結晶粒は偏平となる特色をもつ。
SUMMARY OF THE INVENTION The present invention is directed to a rare earth magnet powder that has been subjected to a high-temperature hydrogen heat treatment and has a high anisotropy,
That is, it is an object to provide a rare-earth magnet powder having a high anisotropy of Br / Bs of 0.70 or more. The method of producing a rare-earth magnet powder having a structure in which the crystal directions are aligned by hot-rolling the rare-earth magnet and having a high anisotropy has a high manufacturing cost due to the complicated operation. Further, the crystal grains of the obtained rare earth magnet powder have a flat characteristic.

【0008】他方、希土類磁石の水素吸蔵合金としての
特色でもある水素の吸蔵による組織の順変態、脱水素に
よる組織の逆変態を行う高温水素熱処理により結晶粒を
微細化し、結晶粒を小さくすることにより残留磁束密
度、保磁力などの磁気特性を高める高温水素熱処理によ
る希土類磁石粉末を得る方法がある。この高温水素熱処
理による希土類磁石粉末は、操作が比較的単純で製造コ
ストが安いという利点があるが、磁気特性に優れた希土
類磁石粉末が得られないという問題がある。特に異方性
を付与することが極めて困難である。
On the other hand, the crystal grains are refined and reduced by high-temperature hydrogen heat treatment for performing a normal transformation of the structure by absorbing hydrogen and a reverse transformation of the structure by dehydrogenation, which is a feature of the rare earth magnet as a hydrogen storage alloy. There is a method of obtaining a rare-earth magnet powder by a high-temperature hydrogen heat treatment that enhances magnetic properties such as residual magnetic flux density and coercive force. The rare-earth magnet powder obtained by the high-temperature hydrogen heat treatment has an advantage that the operation is relatively simple and the production cost is low, but there is a problem that a rare-earth magnet powder having excellent magnetic properties cannot be obtained. In particular, it is extremely difficult to provide anisotropy.

【0009】希土類磁石の高温水素熱処理の過程で、前
記した特公平7−68561号公報に開示されているよ
うに、Nd12.0Pr1.4 Fe80.85.8 組成の希土類合
金を高温水素熱処理した場合、圧縮成形時に磁場を作用
させることによりBrが6.1kG(0.61T)から
7.2kG(0.72T)へと約18.2%向上する異
方性が報告されている。この特公平7−68561号公
報の発明者の一人は、J.Alloys and Co
mpounds 231(1995)51で、NdFe
Bの三元系希土類合金を水素処理しても等方性磁石粉末
が得られるだけであるが、このFeをCoで置換し、Z
r、Ga、Nb、Hf等の元素を添加したNdFeCo
Bに水素処理を行うと異方性が発現すると説明してい
る。
In the process of high-temperature hydrogen heat treatment of a rare-earth magnet, as disclosed in the above-mentioned Japanese Patent Publication No. 7-68561, when a rare-earth alloy having a composition of Nd 12.0 Pr 1.4 Fe 80.8 B 5.8 is subjected to high-temperature hydrogen heat treatment, Anisotropy has been reported in which Br is increased by about 18.2% from 6.1 kG (0.61 T) to 7.2 kG (0.72 T) by applying a magnetic field during molding. One of the inventors of Japanese Patent Publication No. 7-68161 is disclosed in J. Pat. Alloys and Co
mounds 231 (1995) 51.
Hydrogen treatment of the ternary rare earth alloy of B only gives an isotropic magnet powder, but this Fe is replaced by Co and Z
NdFeCo to which elements such as r, Ga, Nb, and Hf are added
It is described that when hydrogen treatment is performed on B, anisotropy is developed.

【0010】本発明者は希土類磁石の水素処理を詳細に
検討し、実験を重ねた結果、従来高温水素熱処理により
等方性磁石粉末しか得られないと考えられていたNdF
eBの三元系磁石粉末が、高温水素熱処理により極めて
高い異方性をもつ磁石粉末となることを発見した。他の
磁気特性で説明すると、従来高温水素熱処理によるNd
FeBの三元系磁石粉末のBrが0.8T(8.0k
G)程度と考えられていたものが、NdFeBの三元系
磁石粉末の組成を変えることなくそのBrを1.2〜
1.5T(12〜15kG)と高めることができること
を発見し、確認したものである。
The present inventor has studied the hydrogen treatment of rare earth magnets in detail, and as a result of repeated experiments, it has been thought that NdF, which was conventionally obtained only by isotropic magnet powder by high-temperature hydrogen heat treatment.
It has been discovered that the ternary magnet powder of eB becomes a magnet powder having extremely high anisotropy by high-temperature hydrogen heat treatment. Explaining other magnetic characteristics, Nd by conventional high-temperature hydrogen heat treatment
Br of ternary magnet powder of FeB is 0.8T (8.0k).
G) was considered to be of the order, but Br was changed from 1.2 to 1.2 without changing the composition of the ternary magnet powder of NdFeB.
It has been discovered and confirmed that it can be increased to 1.5 T (12 to 15 kG).

【0011】本発明者等は、発見された高温水素熱処理
によるNdFeBの三元系合金の高い異方性は、NdF
eBの希土類合金を水素吸蔵させて水素と反応させ、こ
の希土類合金の組織を順変態するときに、Nd2 Fe14
1 の結晶方位が順変態により生ずると考えられる多数
の微細なFe2 Bに転写されて保存され、これが脱水素
による合金組織の逆変態で転写保存されたFe2 Bの結
晶方位が再生される微細なNd2 Fe141 の結晶に転
写され、極めて高い異方性をもつ磁石粉末となるものと
考えている。なお、本発明ではその組成中にコバルト
(Co)を必要としない。
The present inventors have found that the high anisotropy of the ternary alloy of NdFeB by the high-temperature hydrogen heat treatment is based on NdFB.
When the rare earth alloy of eB is made to absorb hydrogen and react with hydrogen, and the structure of the rare earth alloy is forward transformed, Nd 2 Fe 14
Crystal orientation of B 1 is stored is transferred to a number of fine Fe 2 B, which is believed to result from the forward transformation, which is the crystal orientation of transcription conserved Fe 2 B is reproduced in the reverse transformation of the alloy structure by dehydrogenation It is believed that the magnetic powder is transferred to fine Nd 2 Fe 14 B 1 crystals and becomes magnet powder having extremely high anisotropy. In the present invention, cobalt (Co) is not required in the composition.

【0012】本発明はかかる見解の元で完成されたもの
である。
The present invention has been completed based on such a view.

【0013】[0013]

【課題を解決するための手段】本発明の異方性磁石粉末
は、高温水素熱処理され、異方性(Br/Bs、ただし
Bsは1.6T(16kG)とした)が0.70以上で
あるイットリウム(Y)を含む希土類元素(以下、Rと
称す)とホウ素(B)と不可避の不純物とを含み残りが
鉄(Fe)とから構成されたRFeB系合金からなるこ
とを特徴とする。また、本発明のもう一つの異方性磁石
粉末は、高温水素熱処理され、異方性(Br/Bs、た
だしBsは1.6T(16kG)とした)が0.70以
上である、イットリウム(Y)を含む希土類元素(以
下、Rと称す)と、ホウ素(B)と、ガリウムおよびニ
オブの少なくとも1種と、不可避の不純物とを含み、残
りが鉄(Fe)とから構成されたRFeB系合金からな
ることを特徴とする。
The anisotropic magnet powder of the present invention is subjected to a high-temperature hydrogen heat treatment, and has an anisotropy (Br / Bs, where Bs is 1.6 T (16 kG)) of 0.70 or more. It is characterized by comprising an RFeB-based alloy including a rare earth element (hereinafter, referred to as R) containing yttrium (Y), boron (B), and unavoidable impurities, and the balance being iron (Fe). Further, another anisotropic magnet powder of the present invention is subjected to high-temperature hydrogen heat treatment, and yttrium (Br / Bs, where Bs is 1.6 T (16 kG)) having an anisotropy of 0.70 or more is used. RFeB system comprising a rare earth element (hereinafter referred to as R) containing Y), boron (B), at least one of gallium and niobium, and unavoidable impurities, and the balance being iron (Fe) It is characterized by being made of an alloy.

【0014】本発明の異方性磁石粉末を構成するRFe
B系合金は、R2 Fe141 の正方晶結晶構造を持つ再
結晶粒からなるために高い異方性をもつものと考えられ
る。また、本発明の異方性磁石粉末は高温水素熱処理さ
れて得られるもので、その結晶粒が球形に近い、すなわ
ち、結晶粒のアスペクト比が小さいという特色がある。
具体的には、結晶粒の大きさは、粒径が0.1〜1.0
μm程度で、ほぼ全ての結晶粒のアスペクト比は2.0
以下である。
RFe constituting the anisotropic magnet powder of the present invention
The B-based alloy is considered to have high anisotropy because it is composed of recrystallized grains having a tetragonal crystal structure of R 2 Fe 14 B 1 . The anisotropic magnet powder of the present invention is obtained by high-temperature hydrogen heat treatment, and has a feature that its crystal grains are close to spherical, that is, the aspect ratio of the crystal grains is small.
Specifically, the size of the crystal grain is 0.1 to 1.0
μm, the aspect ratio of almost all crystal grains is 2.0
It is as follows.

【0015】ここで結晶粒とは合金粉末を意味するもの
ではなく、1個の合金粉末を構成する多数の結晶粒の個
々の結晶粒を意味する。また、アスペクト比とは、結晶
粒の最小粒径に対する最長粒径の比(最長粒径/最小粒
径)で定義される値である。さらに、熱間圧延による希
土類磁石はその結晶粒が偏平であり、結晶粒の形状が高
温水素熱処理した希土類磁石粉末のものと全く異なる。
Here, the crystal grains do not mean alloy powders, but individual grains of a large number of crystal grains constituting one alloy powder. The aspect ratio is a value defined by a ratio of the longest grain size to the minimum grain size of the crystal grains (longest grain size / minimum grain size). Further, the crystal grains of the hot-rolled rare-earth magnet are flat, and the shape of the crystal grains is completely different from that of the rare-earth magnet powder subjected to the high-temperature hydrogen heat treatment.

【0016】なお、磁石粉末のBrには、通常のBHト
レーサが使用できないため、本発明ではBrの測定方法
として次の方法を採用した。まず磁石粉末を74から1
05μmの粒径のものに分級して用いた。そして反磁場
が0.2になるように成形し、磁場中で配向後4578
kA/m(45KOe)で着磁し、VSMで測定してB
rを求めた。
Since a normal BH tracer cannot be used for Br of the magnet powder, the following method was adopted as a method for measuring Br in the present invention. First, 74-1
The particles having a particle size of 05 μm were classified and used. Then, molding is performed so that the demagnetizing field becomes 0.2, and 4578 after orientation in the magnetic field.
Magnetize at kA / m (45 KOe), measure with VSM and B
r was determined.

【0017】[0017]

【発明の実施の形態】本発明の異方性磁石粉末を構成す
るRFeB系合金は、12〜15at%のRと、5.5
〜8at%のBと、不可避な不純物とを含み、残りがF
eからなる。Rが15at%を越えるとBrが低くな
り、逆に12at%に達しないと初晶のα−Feが残
る。また、Bが8at%を越えるとBrが低くなり、逆
に5.5at%に達しないとNd2 Fe17相等が析出す
る。Rとしては、Y、La、Ce、Pr、Nd、Sm、
Gd、Td、Dy、Ho、Er、Tm、Luから選ばれ
る1種または2種以上が利用できる。中でもコスト及び
磁気特性の理由からNdを用いることが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The RFeB-based alloy constituting the anisotropic magnet powder of the present invention has R of 12 to 15 at% and 5.5
88 at% of B and unavoidable impurities, the balance being F
e. If R exceeds 15 at%, Br decreases, and if it does not reach 12 at%, primary crystal α-Fe remains. On the other hand, when B exceeds 8 at%, Br decreases, and when it does not reach 5.5 at%, an Nd 2 Fe 17 phase or the like precipitates. R is Y, La, Ce, Pr, Nd, Sm,
One or more selected from Gd, Td, Dy, Ho, Er, Tm and Lu can be used. Among them, it is preferable to use Nd for reasons of cost and magnetic characteristics.

【0018】RFeBにGaを0.01〜1.0at%
配合することによって得られる磁石粉末の保磁力を向上
させる。このGaは結晶粒界のスムージング化を容易に
しiHcを上げるものと考えられる。また、Nbを0.
01〜0.6at%配合することによりより異方性を高
める事ができる。このNbはFe2 Bの転写を確実にし
てBrを向上させるものと考えられる。
RFeB: 0.01 to 1.0 at% of Ga
The coercive force of the magnet powder obtained by blending is improved. It is considered that this Ga facilitates smoothing of the crystal grain boundaries and increases iHc. Further, Nb is set to 0.
The anisotropy can be further increased by blending the content of 01 to 0.6 at%. It is considered that this Nb improves the Br by ensuring the transfer of Fe 2 B.

【0019】本発明の異方性磁石粉末は、その異方性
(Br/Bs、ここでBsは1.6T(16kG))が
0.70以上である。その他の磁気特性として、Brは
1.2〜1.5T(12〜15kG)、iHeは636
〜1272kA/m(8.0〜16kOe)、(BH)
maxは238〜358kJ/m3(30〜45MGO
e)の特性を持つ。本発明の異方性磁石粉末は、RFe
B系合金に水素を吸蔵させて水素と合金との反応を0.
25〜0.50の相対反応速度範囲内で進行させ、組織
の順変態を起こさせ、その後脱水素反応を進めて組織の
逆変態を起こさせることにより製造できる。この製造に
用いる原料の調製の方法は特に限定されないが、高純度
の希土類、鉄、ホウ素を、用い、これらを所定量混合し
て溶解炉等で溶解し、これを鋳造して合金のインゴット
を作製し、これを原料とすることができる。さらに、こ
のインゴットを粉砕して粉末状とし、これを原料とする
こともできる。
The anisotropic magnet powder of the present invention has an anisotropy (Br / Bs, where Bs is 1.6 T (16 kG)) of 0.70 or more. As other magnetic characteristics, Br is 1.2 to 1.5 T (12 to 15 kG), and iHe is 636.
121272 kA / m (8.0 to 16 kOe), (BH)
max is 238 to 358 kJ / m 3 (30 to 45 MGO
e) having the characteristic of The anisotropic magnet powder of the present invention comprises RFe
Hydrogen is absorbed into the B-based alloy to reduce the reaction between the hydrogen and the alloy.
It can be produced by proceeding within a relative reaction rate range of 25 to 0.50 to cause a forward transformation of the structure and then proceeding with a dehydrogenation reaction to cause a reverse transformation of the structure. The method of preparing the raw materials used in this production is not particularly limited, but high-purity rare earth, iron, and boron are used, and a predetermined amount thereof is mixed and melted in a melting furnace or the like, which is cast to form an alloy ingot. It can be manufactured and used as a raw material. Further, the ingot may be pulverized by pulverization and used as a raw material.

【0020】このとき、原料の調製の方法によっては原
料中の組成分布の偏りが生じることもある。このような
組成分布の偏りが生じると、好ましくない。そこで、こ
れらの原料を均質化処理しておくことが望ましい。この
均質化処理により組成分布の偏りが生じるのを減少させ
ることができる。本発明のRFeB系合金に水素を吸蔵
させ、合金と水素の反応速度Vは V=V0 ・√(PH2 /P)・exp(−Ea/RT) (ここで、VO :頻度因子、PH2 :水素ガス圧力(P
a)、PO :解離圧(Pa)、Ea:活性化エネルギー
(kJ/mol)、R:ガス定数(J/molK)、
T:温度(K)である。)で表される。この反応速度と
組織の変態速度とは比例していると考えられるので、組
織の変態速度をこの反応速度で評価することとした。
At this time, depending on the method of preparing the raw material, there may be a deviation in the composition distribution in the raw material. Such a deviation in the composition distribution is not preferable. Therefore, it is desirable to homogenize these raw materials. This homogenization can reduce the occurrence of bias in the composition distribution. Hydrogen is absorbed in the RFeB-based alloy of the present invention, and the reaction rate V between the alloy and hydrogen is V = V 0 · √ (PH 2 / P) · exp (−Ea / RT) (where V O is a frequency factor, PH 2 : hydrogen gas pressure (P
a), P O : dissociation pressure (Pa), Ea: activation energy (kJ / mol), R: gas constant (J / molK),
T: temperature (K). ). Since this reaction rate is considered to be proportional to the transformation rate of the structure, the transformation rate of the structure was evaluated based on this reaction rate.

【0021】即ち、組織の順変態反応の反応速度は、反
応温度が830℃、水素ガス圧力が0.1MPaの時の
反応速度Vb をVb =1とする基準反応速度とし、この
基準反応速度に基づく相対反応速度Vr で定義した。V
r は次の式で示すことができる。 Vr =(1/0.5
76)・√PH2 ・exp(−Ea/RT) また、組織の逆変態は830℃、水素ガス圧力が0.0
01MPa(0.01atm)を基準反応速度とした。
逆変態反応の相対反応速度も同様に求めることができ
る。
That is, the reaction rate of the forward transformation reaction of the structure is the reference reaction rate at which the reaction rate Vb when the reaction temperature is 830 ° C. and the hydrogen gas pressure is 0.1 MPa is Vb = 1. It was defined as the relative reaction rate Vr based on the rate. V
r can be represented by the following equation. V r = (1 / 0.5
76) · √PH 2 · exp (-Ea / RT) The reverse transformation of the structure is 830 ° C and the hydrogen gas pressure is 0.0
01 MPa (0.01 atm) was set as the reference reaction rate.
The relative reaction rate of the reverse transformation reaction can be similarly determined.

【0022】なお、活性化エネルギーEaは図1に示す
ように組成に依存し195〜200kJ/molとな
る。なお、この活性化エネルギーEaはNdとH2 とが
反応してNdH2 となる生成熱を参考にして求めたもの
である。具体的に順変態反応の相対反応速度を反応温度
と水素ガス圧力で規定すると、相対反応速度の温度依存
性を示す図2、相対反応速度の圧力依存性を示す図3で
示される。
The activation energy Ea is 195 to 200 kJ / mol depending on the composition as shown in FIG. The activation energy Ea is determined by referring to the heat of formation of Nd and H 2 to form NdH 2 . Specifically, when the relative reaction rate of the forward transformation reaction is defined by the reaction temperature and the hydrogen gas pressure, it is shown in FIG. 2 showing the temperature dependence of the relative reaction rate and FIG. 3 showing the pressure dependence of the relative reaction rate.

【0023】順変態反応の相対反応速度を0.25〜
0.50の反応速度範囲内とするためには、反応温度は
780〜840℃の範囲が、水素圧力は0.01〜0.
06MPa(0.1〜0.6atm)の範囲が良い。な
お、ここで言う反応温度はRFeB系合金が水素を吸蔵
して順変態を起こす温度であり、反応炉の管理温度では
ないことに注意する必要がある。
The relative reaction rate of the forward transformation reaction is 0.25 to
In order to keep the reaction rate within the range of 0.50, the reaction temperature is in the range of 780 to 840 ° C, and the hydrogen pressure is in the range of 0.01 to 0.
The range of 06 MPa (0.1 to 0.6 atm) is good. It should be noted that the reaction temperature mentioned here is a temperature at which the RFeB-based alloy absorbs hydrogen and causes a forward transformation, and is not a control temperature of the reaction furnace.

【0024】RFeB系合金が水素を吸蔵して順変態を
起こす反応は発熱反応であり、順変態の開始により反応
温度が加速度的に高くなる。従って、実際の反応温度は
反応炉の管理温度と大きく異なる。また、水素吸蔵によ
り水素ガス圧が大きく変動することも考えられる。例え
ば、不活性ガスと水素ガスとの混合ガスを採用した場
合、水素が吸蔵され、順変態を起こすRFeB系合金の
周囲の水素ガス濃度が大きく低下することもあり得る。
異方性の高い磁石粉末とするためには、厳密な反応温度
管理および水素ガス圧力の管理を必要とする。
The reaction in which the RFeB-based alloy absorbs hydrogen to cause a forward transformation is an exothermic reaction, and the start of the forward transformation causes the reaction temperature to rapidly increase. Therefore, the actual reaction temperature is significantly different from the control temperature of the reactor. It is also conceivable that the hydrogen gas pressure fluctuates greatly due to hydrogen occlusion. For example, when a mixed gas of an inert gas and a hydrogen gas is employed, hydrogen is occluded, and the hydrogen gas concentration around the RFeB-based alloy that causes a forward transformation may be greatly reduced.
In order to obtain highly anisotropic magnet powder, strict control of the reaction temperature and control of the hydrogen gas pressure are required.

【0025】順変態の相対反応速度が0.25〜0.5
0の反応速度範囲外となる場合には、異方性が小さくな
る。なお、RFeB系合金よりなる磁石粉末は本来異方
性をもつものであり、完全な等方性とすることもまた極
めて困難である。ここでは異方性の定義として、異方性
Br/Bs(Bs=1.6T(Bs=16kG))とし
たとき、この値が0.5以下のものを完全等方性、0.
5を越え0.70未満のものを等方性、0.70以上の
ものを異方性と定義する。
The relative reaction rate of the forward transformation is 0.25 to 0.5
When the reaction rate is outside the range of 0, the anisotropy becomes small. It should be noted that magnet powder made of an RFeB-based alloy is inherently anisotropic, and it is also extremely difficult to make it completely isotropic. Here, when the anisotropy is defined as anisotropic Br / Bs (Bs = 1.6T (Bs = 16 kG)), those having a value of 0.5 or less are fully isotropic,
Those exceeding 5 and less than 0.70 are defined as isotropic, and those exceeding 0.70 are defined as anisotropic.

【0026】順変態の相対反応速度が0.25〜0.5
0の反応速度範囲内でBr/Bs(Bs=1.6T(B
s=16kG))が0.70以上の異方性磁石粉末が得
られる。順変態の反応により、前に説明したように、N
dFeBの希土類合金を水素吸蔵させて順変態するとき
に、Nd2 Fe141 の結晶方位が順変態により生ずる
と考えられる多数の微細なFe2 Bにより正確に転写さ
れるためであろうと考えている。順変態の相対反応速度
が0.25〜0.50の反応速度範囲外では、Fe2
への転写が充分でなく、異方性が低くなる。発明者は現
状ではFe2 Bへの転写が充分でない場合には、後の工
程で異方性を高めることは不可能であると考えている。
The relative reaction rate of the forward transformation is 0.25 to 0.5
Br / Bs (Bs = 1.6T (B
s = 16 kG)) to obtain an anisotropic magnet powder of 0.70 or more. Due to the forward transformation reaction, as explained above, N
It is considered that when a rare earth alloy of dFeB is subjected to hydrogen transformation and normal transformation, the crystal orientation of Nd 2 Fe 14 B 1 is accurately transferred by a large number of fine Fe 2 B, which is considered to be caused by the normal transformation. ing. When the relative reaction rate of the forward transformation is out of the reaction rate range of 0.25 to 0.50, Fe 2 B
Transfer is not sufficient and the anisotropy is low. The present inventor believes that if the transfer to Fe 2 B is not sufficient at present, it is impossible to increase the anisotropy in a later step.

【0027】反応に伴って加速度的に早くなる順変態の
相対反応速度を0.25〜0.50の相対反応速度範囲
内に管理することは通常の炉では不可能である。そのた
め新しい熱処理炉として、本発明者等は特願平8−20
6231号明細書に記載した反応時の発熱を相殺する吸
熱手段をもった炉を開発して使用した。この吸熱手段
は、水素吸蔵合金を管内に配置し、この管を炉内に入
れ、反応による発熱と逆に管内の水素ガス圧力を減圧
し、脱水素反応を進めて吸熱させ、反応による発熱を吸
収して相殺するものである。これにより炉の管理温度と
反応温度とをほぼ等しくできる。
It is impossible with a normal furnace to control the relative reaction rate of the forward transformation, which accelerates with the reaction, within the range of 0.25 to 0.50. For this reason, as a new heat treatment furnace, the present inventors have filed Japanese Patent Application No. 8-20.
A furnace having an endothermic means for canceling the heat generated during the reaction described in the specification of No. 6231 was developed and used. This heat absorbing means arranges a hydrogen storage alloy in a tube, puts the tube into a furnace, reduces the hydrogen gas pressure in the tube in reverse to the heat generated by the reaction, advances the dehydrogenation reaction, absorbs heat, and generates heat by the reaction. Absorb and offset. Thereby, the control temperature of the furnace and the reaction temperature can be made substantially equal.

【0028】この順変態の反応は理想的には30分程度
で終わるが、工業的には反応時間は処理量に依存する。
順変態の終了後、順変態を起こした温度で少なくとも1
時間加熱処理を継続することにより得られる磁石粉末の
保磁力が向上する。これは順変態により生じた内部歪み
が緩和除去されることと関連していると考えている。内
部歪みが残存していると逆変態後に組織が不均一化して
保磁力が低下するものと考えている。
This forward transformation reaction ideally ends in about 30 minutes, but industrially, the reaction time depends on the throughput.
After completion of the forward transformation, at least 1
The coercive force of the magnetic powder obtained by continuing the heat treatment for a long time is improved. This is thought to be related to the relaxation of the internal strain caused by the forward transformation. It is considered that if the internal strain remains, the structure becomes uneven after the reverse transformation, and the coercive force decreases.

【0029】この後、吸蔵した水素を脱水素して逆変態
を起こさせる。この逆変態はFe2Bの結晶方位を生成
するNd2 Fe141 の結晶方位に転写するものであ
る。この逆変態時にFe2 Bの方位を転写するために
は、0.1〜0.4の相対反応速度範囲内で起こさせる
のが好ましい。具体的にはこの逆変態は、前記順変態の
水素ガス圧力の1/10〜1/100の水素ガス圧力に
維持して行うことにより達成される。なお、逆変態は順
変態とは反対の吸熱反応であり、逆変態の開始により反
応温度が加速度的に低下する。従って、実際の反応温度
を780〜840℃の範囲に保つためには、順変態と同
様の能力を持った炉が必要である。
Thereafter, the absorbed hydrogen is dehydrogenated to cause reverse transformation. This reverse transformation is to transfer the crystal orientation of Fe 2 B to the crystal orientation of Nd 2 Fe 14 B 1 which produces the crystal orientation. In order to transfer the orientation of Fe 2 B at the time of this reverse transformation, it is preferable to cause the orientation to occur within a relative reaction rate range of 0.1 to 0.4. Specifically, this reverse transformation is achieved by maintaining the hydrogen gas pressure at 1/10 to 1/100 of the hydrogen gas pressure of the forward transformation. Note that the reverse transformation is an endothermic reaction opposite to the normal transformation, and the reaction temperature decreases at an accelerated rate due to the start of the reverse transformation. Therefore, in order to keep the actual reaction temperature in the range of 780 to 840 ° C., a furnace having the same capability as in the forward transformation is required.

【0030】この逆変態は理論的には10分以内で終わ
る。工業的には処理量に依存する。この逆変態終了後に
は逆変態の温度で少なくとも25分以上保持し、生成し
たNd2 Fe141 結晶を持つ希土類磁石粉末に含まれ
る水素を除去するのが好ましい。これにより保磁力が向
上する。解離した水素が合金内に残存していると保磁力
を著しく損なうためである。この後冷却し、本発明の異
方性磁石が得られる。冷却は少なくとも5℃/min.
の冷却速度で行うことが望ましい。
This reverse transformation theoretically ends within 10 minutes. Industrially, it depends on the throughput. After the completion of the reverse transformation, it is preferable to maintain the temperature of the reverse transformation for at least 25 minutes to remove hydrogen contained in the rare-earth magnet powder having the generated Nd 2 Fe 14 B 1 crystal. This improves the coercive force. If the dissociated hydrogen remains in the alloy, the coercive force will be significantly impaired. After cooling, the anisotropic magnet of the present invention is obtained. Cooling is at least 5 ° C / min.
It is desirable to carry out at a cooling rate of

【0031】インゴット状の原料を用いたとき、得られ
るインゴット状の希土類永久磁石は乳鉢等で容易に粉砕
することができる。また、粉末状の原料を用いた場合、
凝集等により固化することもあるが、乳鉢等で容易に粉
砕することができる。希土類永久ボンド磁石は、得られ
た希土類永久磁石粉末と、この磁石粉末のバインダーと
なる樹脂と、を用いて製造される。このとき樹脂として
はエポキシ樹脂等の熱硬化性樹脂を用いることができ、
所定の着磁用の磁場のもとで、この樹脂と磁石粉末とを
混合して得られた混合物を加圧成形等により成形した
後、熱処理して樹脂を熱硬化し、異方性の希土類永久ボ
ンド磁石を形成することができる。
When an ingot-like raw material is used, the obtained ingot-like rare-earth permanent magnet can be easily ground in a mortar or the like. Also, when using powdery raw materials,
Although it may be solidified due to aggregation or the like, it can be easily pulverized in a mortar or the like. The rare-earth permanent bonded magnet is manufactured using the obtained rare-earth permanent magnet powder and a resin serving as a binder for the magnet powder. At this time, a thermosetting resin such as an epoxy resin can be used as the resin,
Under a predetermined magnetic field for magnetization, a mixture obtained by mixing the resin and the magnet powder is molded by pressure molding or the like, and then heat-treated to thermally cure the resin, thereby forming an anisotropic rare earth element. A permanent bonded magnet can be formed.

【0032】[0032]

【発明の作用】本発明の異方性磁石粉末は、Br/Bs
(ここでBsは1.6T(16kG))が0.70以上
と極めて大きい異方性をもつ。また、残留磁束密度およ
び保磁力はそれぞれ1.2T(12kG)、636kA
/m(8kOe)以上で磁気特性に優れる。また、これ
らの磁石粉末を用いた異方性ボンド磁石は135kJ/
3(17MGOe)以上の高い(BH)maxをも
つ。
The anisotropic magnet powder of the present invention has a Br / Bs
(Here, Bs is 1.6 T (16 kG)), which is 0.70 or more and has an extremely large anisotropy. The residual magnetic flux density and the coercive force were 1.2 T (12 kG) and 636 kA, respectively.
/ M (8 kOe) or more. The anisotropic bonded magnet using these magnet powders is 135 kJ /
It has a high (BH) max of m 3 (17MGOe) or more.

【0033】また、本発明の異方性磁石粉末の製造方法
は高温水素熱処理の順変態反応の相対反応速度を所定速
度としたものである。これにより簡単に異方性の大きい
希土類磁石粉末を容易に得ることができる。
In the method for producing anisotropic magnet powder according to the present invention, the relative reaction rate of the normal transformation reaction in the high-temperature hydrogen heat treatment is set to a predetermined rate. Thereby, a rare-earth magnet powder having large anisotropy can be easily obtained.

【0034】[0034]

【実施例】以下、実施例により具体的に説明する。 (実施例1)Nd:12.5at%、B:6.2at
%、残部Feよりなる合金をボタンアーク溶解で溶製
し、1140℃で均質化終了を行い、その後表1に示す
条件で水素処理を行った。
The present invention will be specifically described below with reference to examples. (Example 1) Nd: 12.5 at%, B: 6.2 at%
%, The alloy consisting of the balance Fe was melted by button arc melting, homogenization was completed at 1140 ° C., and then hydrogen treatment was performed under the conditions shown in Table 1.

【0035】具体的には、試料として約15gと極めて
少なくし石英管中に入れ、この石英管内の水素ガス圧を
管理できるように導管でガス圧制御装置に結んだ。加熱
炉としては赤外線加熱炉を使用した。温度測定には熱電
対を使用し、試料の温度と雰囲気の温度を測定し、これ
らの温度に基づいて炉を制御した。石英管の中に表1に
示す水素ガス圧を導入し、その状態で加熱し約60分間
で反応温度までした。そして反応の開始を試料の温度が
雰囲気の温度を越えると直ちに加熱を中止し、放熱によ
る冷却で雰囲気温度を下げ、反応による発熱を吸収し、
目的の反応温度+5℃以内に試料温度が保たれるように
した。試料量が15gと少なく、かつ、赤外線炉を使用
しているため石英管内の雰囲気温度は比較的容易に制御
できた。
More specifically, the sample was placed in a quartz tube as small as about 15 g, which was extremely small, and connected to a gas pressure controller via a conduit so that the hydrogen gas pressure in the quartz tube could be controlled. An infrared heating furnace was used as the heating furnace. The temperature was measured using a thermocouple, the temperature of the sample and the temperature of the atmosphere were measured, and the furnace was controlled based on these temperatures. The hydrogen gas pressure shown in Table 1 was introduced into the quartz tube, and heated in that state to reach the reaction temperature in about 60 minutes. Then, when the temperature of the sample exceeds the temperature of the atmosphere, the heating is stopped immediately, the temperature of the atmosphere is lowered by cooling by heat radiation, and the heat generated by the reaction is absorbed.
The sample temperature was kept within the target reaction temperature + 5 ° C. Since the sample amount was as small as 15 g and the infrared furnace was used, the ambient temperature in the quartz tube could be controlled relatively easily.

【0036】この後820℃、水素ガス圧0.02MP
a(0.2atm)で3時間加熱処理を行った。その後
逆変態相対速度0.26となるように石英管内の水素ガ
ス圧を放出して脱水素を図り、逆変態反応を進めた。こ
の脱水素による逆変態反応では、水素ガス圧を微妙に制
御し、温度が吸熱反応により下がり始めると、水素ガス
圧の減圧を止め、温度が所定温度に戻ると再び減圧を再
開するといった制御方法により行い、目的とする温度−
5℃の範囲で制御し、水素ガス吸蔵時の水素ガス圧の1
/100以下の0.0001MPa(0.001at
m)とした。
Thereafter, at 820 ° C. and a hydrogen gas pressure of 0.02 MPa
Heat treatment was performed at a (0.2 atm) for 3 hours. Thereafter, the hydrogen gas pressure in the quartz tube was released to achieve a reverse transformation relative velocity of 0.26, thereby achieving dehydrogenation, and the reverse transformation reaction was advanced. In the reverse transformation reaction by this dehydrogenation, the control method is such that the hydrogen gas pressure is delicately controlled, and when the temperature starts to decrease due to the endothermic reaction, the reduction of the hydrogen gas pressure is stopped, and when the temperature returns to the predetermined temperature, the pressure is restarted again. And the target temperature-
The temperature is controlled within the range of 5 ° C, and the hydrogen gas pressure when storing hydrogen gas is 1
0.0001 MPa (0.001 at or less)
m).

【0037】この脱水素による逆変態反応の開始から3
0分間後まで、所定温度の熱処理を続けた。このあと冷
却し、水素処理を終えた。これにより希土類磁石粉末を
製造した。得られた希土類磁石粉末の残留磁束密度を測
定し、異方化率を求めた。残留磁束密度、異方化率とと
もに順変態相対反応速度、処理温度および水素吸蔵時の
水素ガス圧を合わせて表1に示す。なお、アスペクト比
は、各結晶粒の最大直径および最小直径を電子顕微鏡で
測定し、25サンプルの平均値として求めた。 反応速度が0.25〜0.5の範囲では、いずれもNd
2 Fe14Bの方位がFe2 Bに転写され高い異方性が得
られるが、この範囲外の相対反応速度が早い場合、転写
がうまくいかず等方性の粉末しかえられない。一方、反
応速度が遅い場合は反応が不均一になり高いBsが得ら
れるもののNdFeBが残留してしまい高い保磁力(i
Hc)が得られない。 実施例2.主として実施例1のNo.1の水素吸蔵条件
で水素吸蔵させて合金組織の順変態を行ったものを表2
に示す保持温度、保持水素ガス圧力および保持時間で順
変態後の加熱処理を行った(なお、No.54について
は実施例1のNo.52の水素吸蔵条件で水素吸蔵させ
て合金組織の順変態を行った。)。その後逆変態相対速
度0.26となるように保持温度で水素ガス圧力を下
げ、実施例1と同様に脱水素による逆変態反応を起こさ
せ、その後実施例1と同様に逆変態反応後の熱処理を8
20℃、真空下で30分間保持し、その後冷却した。こ
れにより表2に示す希土類磁石粉末を製造した。
From the start of the reverse transformation reaction by this dehydrogenation, 3
The heat treatment at a predetermined temperature was continued until 0 minutes later. Thereafter, the system was cooled and the hydrogen treatment was completed. This produced a rare earth magnet powder. The residual magnetic flux density of the obtained rare earth magnet powder was measured, and the anisotropic ratio was determined. Table 1 shows the relative transformation rate of the forward transformation, the processing temperature, and the hydrogen gas pressure during hydrogen storage together with the residual magnetic flux density and the anisotropic ratio. The aspect ratio was determined as an average value of 25 samples by measuring the maximum diameter and the minimum diameter of each crystal grain using an electron microscope. When the reaction rate is in the range of 0.25 to 0.5, Nd
Although the orientation of 2Fe 14 B is transferred to Fe 2 B and high anisotropy is obtained, if the relative reaction rate is out of this range, the transfer is not successful and only an isotropic powder is obtained. On the other hand, when the reaction rate is low, the reaction becomes non-uniform and a high Bs is obtained, but NdFeB remains and a high coercive force (i
Hc) cannot be obtained. Embodiment 2. FIG. No. 1 of Example 1 was mainly used. Table 2 shows the results of forward transformation of the alloy structure by hydrogen storage under the hydrogen storage conditions of 1.
The heat treatment after the forward transformation was performed at the holding temperature, the holding hydrogen gas pressure and the holding time shown in (No. 54, hydrogen storage under No. 52 hydrogen storage conditions of Example 1 and order of alloy structure Perverted.). Thereafter, the hydrogen gas pressure was reduced at the holding temperature so that the reverse transformation relative velocity became 0.26, a reverse transformation reaction by dehydrogenation was caused as in Example 1, and then a heat treatment after the reverse transformation reaction was performed as in Example 1. 8
It was kept at 20 ° C. under vacuum for 30 minutes and then cooled. Thus, the rare earth magnet powder shown in Table 2 was produced.

【0038】得られた希土類磁石粉末の残留磁束密度、
固有保磁力および(BH)maxを測定し、異方化率を
求めた。保磁力、異方化率とともに順変態相対反応速
度、保持時間、保持温度、保持圧力、残留磁束密度、異
方化率、固有保磁力および磁石粉末の(BH)maxを
合わせて表2に示す。 実施例1と同様にして順反応を終えたのち続けて保持温
度で及び圧力で熱処理し順変態に伴う歪みを緩和した
後、続けて脱水素(水素圧力0.0001MPa(0.
001atm))した結果は、実施例1同様高い異方性
が維持された。そして、60分以上保持することで、実
施例1と比較して保磁力が高くなる。一方短時間の保持
では異方性は失われないが、保磁力は低い。また、反応
速度が早いと、異方性は失われ、続けて保持、脱水素を
行っても異方性は回復しない。 実施例3.主として実施例2のNo.7の水素吸蔵条件
で水素吸蔵させて合金組織の順変態を行いその後180
分保持したものを、表3に示す試料温度、逆変態相対速
度、逆変態水素ガス圧力0.0001MPa(0.00
1atm)で逆変態を行い、その後、820℃、真空下
で30分加熱処理を行い、その後急冷した(なお、N
o.56については実施例1のNo.52の水素吸蔵条
件で水素吸蔵させて合金組織の順変態を行った。)。こ
れにより表3に示す希土類磁石粉末を製造した。
The residual magnetic flux density of the obtained rare earth magnet powder,
The intrinsic coercive force and (BH) max were measured to determine the anisotropic ratio. Table 2 shows the co-transformation relative reaction rate, holding time, holding temperature, holding pressure, residual magnetic flux density, anisotropic rate, specific coercive force, and (BH) max of the magnet powder together with the coercive force and anisotropic ratio. . After completion of the forward reaction in the same manner as in Example 1, heat treatment was continued at the holding temperature and pressure to alleviate the strain associated with the forward transformation, and then dehydrogenation (hydrogen pressure 0.0001 MPa (0.
001 atm)), the result was that high anisotropy was maintained as in Example 1. Then, by holding for 60 minutes or more, the coercive force becomes higher as compared with the first embodiment. On the other hand, the anisotropy is not lost by holding for a short time, but the coercive force is low. When the reaction rate is high, the anisotropy is lost, and the anisotropy does not recover even if the retention and dehydrogenation are performed continuously. Embodiment 3 FIG. No. 2 of Example 2 was mainly used. Under the hydrogen storage condition of 7, the alloy structure was forward transformed by hydrogen storage, and then 180
The sample temperature, the reverse transformation relative velocity, and the reverse transformation hydrogen gas pressure of 0.0001 MPa (0.00
1 atm), and then heat-treated at 820 ° C. under vacuum for 30 minutes, and then quenched (N 2
o. As for No. 56 of Example 1, Hydrogen was absorbed under the hydrogen storage conditions of 52 to perform a normal transformation of the alloy structure. ). In this way, rare earth magnet powders shown in Table 3 were produced.

【0039】得られた希土類磁石粉末の残留磁束密度、
固有保磁力および(BH)maxを測定し、異方化率を
求めた。保磁力、異方化率とともに順変態相対反応速
度、保持時間、逆変態相対速度、試料温度、残留磁束密
度、異方化率、固有保磁力および磁石粉末の(BH)m
axを合わせて表3に示す。 逆変態反応速度が0.1〜0.4の範囲では、転写され
た方位が、乱れることなくNd2 Fe14Bに転写され異
方性が得られるが、No.55に見られるように、逆変
態反応速度がそれより早い場合には異方性が低くなり高
い特性が得られない。
The residual magnetic flux density of the obtained rare earth magnet powder,
The intrinsic coercive force and (BH) max were measured to determine the anisotropic ratio. Forward transformation relative reaction rate, retention time, reverse transformation relative velocity, sample temperature, residual magnetic flux density, anisotropy rate, intrinsic coercivity, and (BH) m of the magnet powder together with coercivity and anisotropic ratio
Table 3 also shows ax. When the reverse transformation reaction rate is in the range of 0.1 to 0.4, the transferred orientation is transferred to Nd 2 Fe 14 B without disturbing and anisotropy is obtained. As can be seen from FIG. 55, when the reverse transformation reaction rate is higher than that, the anisotropy decreases and high characteristics cannot be obtained.

【0040】一方、No.56に見られるように、変態
の反応速度が早い場合には、その後の処理が良くても異
方性は得られない。 実施例4.主に実施例3のNo.11と同様に順変態、
熱処理および逆変態を行ったものを表4に示す保持温度
および保持時間で加熱処理を行った。(なお、No.5
6については実施例3のNo.54の順変態、熱処理お
よび逆変態を行った。)これにより表4に示す希土類磁
石粉末を製造した。
On the other hand, no. As shown in 56, when the reaction rate of the transformation is high, anisotropy cannot be obtained even if the subsequent treatment is good. Embodiment 4. FIG. No. 3 of Example 3 Normal transformation like 11
After heat treatment and reverse transformation, heat treatment was performed at the holding temperature and holding time shown in Table 4. (Note that No. 5
No. 6 of Example 3 is No. 6. 54 were subjected to forward transformation, heat treatment and reverse transformation. Thus, the rare earth magnet powder shown in Table 4 was produced.

【0041】また、得られた粉末磁石粉末を用い、熱硬
化性樹脂としてフェノール樹脂を粉末磁石100gに対
して3g使用し、型内で圧縮成形してボンド磁石を得
た。また、成形時に2.0T(20kOe)の磁場を作
用させたものと、無磁場のものとの2種類のものを得
た。得られた希土類磁石粉末の残留磁束密度、固有保磁
力および(BH)maxを測定し、異方化率を求めた。
また、この磁石に含まれる残留水素を求めた。残留水素
の値は全体を100重量%としたときの重量%で示し
た。さらにボンド磁石の最大エネルギー積(BH)ma
xを測定した。
Using the obtained powdered magnet powder, 3 g of a phenol resin was used as a thermosetting resin per 100 g of the powdered magnet, and compression-molded in a mold to obtain a bonded magnet. In addition, two types, one in which a magnetic field of 2.0 T (20 kOe) was applied at the time of molding and one without a magnetic field, were obtained. The residual magnetic flux density, intrinsic coercive force and (BH) max of the obtained rare earth magnet powder were measured to determine the anisotropic ratio.
Further, residual hydrogen contained in this magnet was determined. The value of the residual hydrogen was shown in terms of% by weight when the whole was taken as 100% by weight. Furthermore, the maximum energy product (BH) ma of the bonded magnet
x was measured.

【0042】保磁力、異方化率とともに順変態相対反応
速度、保持時間、逆変態相対速度、逆変態後の保持温度
および保持時間の処理条件を表4に、測定された磁気特
性を表5に示す。 脱水素時間が25分以上保持することで、十分に水素が
抜け異方性が失われることなく、高い保磁力が得られる
ことがわかる。一方保持時間が早い場合は少し水素が残
り、高い保磁力は得られない。
Table 4 shows the processing conditions of the forward transformation relative reaction rate, the holding time, the reverse transformation relative rate, the holding temperature and the holding time after the reverse transformation, together with the coercive force and the anisotropic rate, and Table 5 shows the measured magnetic properties. Shown in It can be seen that by holding the dehydrogenation time for 25 minutes or longer, a sufficient coercive force can be obtained without sufficient loss of hydrogen and loss of anisotropy. On the other hand, when the holding time is short, a little hydrogen remains, and a high coercive force cannot be obtained.

【0043】また、異方化の反応速度が早い場合には、
高い保磁力は得られるものの、異方性は完全に消去さ
れ、等方性の粉末しか得られない。 実施例5.Nd:12.5at%、B:6.2at%、
残部Feよりなる合金に表6に示す微量のGa,Nbを
添加し、実施例1で説明したのと同様にボタンアーク溶
解で溶製し、1140℃で均質化終了を行い、その後表
6に示す条件で高温水素熱処理を行った。その後実施例
4と同様に磁気特性を測定した。測定結果を表7に示
す。 Ga添加は逆磁区の発生を抑えるための粒界のクリーニ
ング効果をもち高い保磁力が得られる。また、Nb添加
は、転写の効果を上げる働きをもつ。その結果Ga,N
bの量元素の微量添加で従来得られていない、350k
J/m3(44.0MGOe)の高い特性が得られる。
When the reaction rate of the anisotropic reaction is high,
Although a high coercive force is obtained, the anisotropy is completely eliminated and only an isotropic powder is obtained. Embodiment 5 FIG. Nd: 12.5 at%, B: 6.2 at%,
The trace amounts of Ga and Nb shown in Table 6 were added to the alloy consisting of the balance Fe, melted by button arc melting in the same manner as described in Example 1, and homogenized at 1140 ° C. High-temperature hydrogen heat treatment was performed under the conditions shown. Thereafter, the magnetic properties were measured in the same manner as in Example 4. Table 7 shows the measurement results. The addition of Ga has a cleaning effect on grain boundaries for suppressing the generation of reverse magnetic domains, and provides a high coercive force. Further, the addition of Nb has a function of improving the transfer effect. As a result, Ga, N
350k, which has not been obtained by adding a trace amount of element b
High characteristics of J / m 3 (44.0 MGOe) can be obtained.

【発明の効果】本発明の異方性磁石粉末は異方性(Br
/Bs=1.6T(16KG))が0.65以上である
希土類磁石である。この異方性磁石粉末を用いることに
より高い(BH)maxをもつ異方性ボンド磁石とする
ことができる。また、本発明の異方性磁石粉末は、水素
吸蔵の順変態速度を所定範囲内とすることにより製造で
きる。
The anisotropic magnet powder of the present invention is anisotropic (Br)
/Bs=1.6T (16KG)) is 0.65 or more. By using this anisotropic magnet powder, an anisotropic bonded magnet having a high (BH) max can be obtained. Further, the anisotropic magnet powder of the present invention can be produced by setting the forward transformation rate of hydrogen storage within a predetermined range.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 希土類合金の順変態反応の合金組成と反応速
度との関係を示す線図である。
FIG. 1 is a diagram showing a relationship between an alloy composition and a reaction rate of a forward transformation reaction of a rare earth alloy.

【図2】 希土類合金の順変態反応の反応温度と反応速
度との関係を示す線図である。
FIG. 2 is a diagram showing a relationship between a reaction temperature and a reaction rate of a forward transformation reaction of a rare earth alloy.

【図3】 希土類合金の順変態反応の水素ガス圧力と反
応速度との関係を示す線図である。
FIG. 3 is a diagram showing a relationship between a hydrogen gas pressure and a reaction rate in a forward transformation reaction of a rare earth alloy.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01F 1/053 H01F 1/04 H ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI H01F 1/053 H01F 1/04 H

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 高温水素熱処理され、異方性(Br/B
s、ただしBsは1.6T(16kG)とした)が0.
70以上であるイットリウム(Y)を含む希土類元素
(以下、Rと称す)とホウ素(B)と不可避の不純物元
素とを含み残りが鉄(Fe)とから構成されたRFeB
系合金からなることを特徴とする異方性磁石粉末。
1. An anisotropic (Br / B) heat-treated with hydrogen at a high temperature.
s, where Bs is 1.6T (16 kG)).
RFeB composed of a rare earth element (hereinafter, referred to as R) containing yttrium (Y) of 70 or more, boron (B), and unavoidable impurity elements, and the balance of iron (Fe)
Anisotropic magnet powder comprising a base alloy.
【請求項2】 前記RFeB系合金は、12〜15at
%のRと、5.5〜8at%のBと、不可避な不純物と
を含み、残りがFeからなる請求項1記載の異方性磁石
粉末。
2. The method according to claim 1, wherein the RFeB alloy is 12 to 15 at.
2. The anisotropic magnet powder according to claim 1, wherein the powder contains R of 5.5% to 8 at%, and unavoidable impurities, and the balance is Fe.
【請求項3】 前記RFeB系合金の結晶粒のアスペク
ト比が2.0以下である請求項1記載の異方性磁石粉
末。
3. The anisotropic magnet powder according to claim 1, wherein the aspect ratio of the crystal grains of the RFeB-based alloy is 2.0 or less.
【請求項4】 残留磁束密度(Br)が1.2T〜1.
5T(12〜15kG)、固有保磁力(iHc)が63
6〜1272kA/m(8.0〜16kOe)、(B
H)maxが238〜358kJ/m3(30〜45M
GOe)である請求項1記載の異方性磁石粉末。
4. A residual magnetic flux density (Br) of 1.2T to 1.T.
5T (12-15 kG), specific coercive force (iHc) is 63
6 to 1272 kA / m (8.0 to 16 kOe), (B
H) max is 238 to 358 kJ / m 3 (30 to 45 M
The anisotropic magnet powder according to claim 1, which is GOe).
【請求項5】 高温水素熱処理され、異方性(Br/B
s、ただしBsは1.6T(16kG)とした)が0.
70以上であるイットリウム(Y)を含む希土類元素
(以下、Rと称す)と、ホウ素(B)と、ガリウム(G
a)およびニオブ(Nb)の少なくとも1種と、不可避
の不純物元素とを含み、残りが鉄(Fe)とから構成さ
れたRFeB系合金からなることを特徴とする異方性磁
石粉末。
5. A high-temperature hydrogen heat treatment and anisotropic (Br / B
s, where Bs is 1.6T (16 kG)).
A rare earth element containing yttrium (Y) of 70 or more (hereinafter referred to as R), boron (B), and gallium (G
An anisotropic magnet powder comprising an RFeB-based alloy containing at least one of a) and niobium (Nb) and an unavoidable impurity element, and the balance being iron (Fe).
【請求項6】 前記Rの組成は12〜15at%、前記
Bの組成は5.5〜8at%、前記Gaの組成は0.0
1〜1.0at%、前記Nbの組成は0.01〜0.6
at%である請求項5記載の異方性磁石粉末。
6. The composition of R is 12 to 15 at%, the composition of B is 5.5 to 8 at%, and the composition of Ga is 0.06 at%.
1 to 1.0 at%, and the composition of Nb is 0.01 to 0.6 at%.
The anisotropic magnet powder according to claim 5, which is at%.
【請求項7】 前記RFeB系合金の結晶粒のアスペク
ト比が2.0以下である請求項5記載の異方性磁石粉
末。
7. The anisotropic magnet powder according to claim 5, wherein the aspect ratio of crystal grains of the RFeB-based alloy is 2.0 or less.
【請求項8】 残留磁束密度(Br)が1.2T〜1.
5T(12〜15kG)、固有保磁力(iHc)が63
6〜1272kA/m(8.0〜16kOe)、(B
H)maxが238〜358kJ/m3(30〜45M
GOe)である請求項5記載の異方性磁石粉末。
8. A residual magnetic flux density (Br) of 1.2T-1.
5T (12-15 kG), specific coercive force (iHc) is 63
6 to 1272 kA / m (8.0 to 16 kOe), (B
H) max is 238 to 358 kJ / m 3 (30 to 45 M
The anisotropic magnet powder according to claim 5, which is GOe).
JP16619297A 1997-06-23 1997-06-23 Anisotropic magnet powder Expired - Lifetime JP3463911B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16619297A JP3463911B2 (en) 1997-06-23 1997-06-23 Anisotropic magnet powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16619297A JP3463911B2 (en) 1997-06-23 1997-06-23 Anisotropic magnet powder

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP8285597A Division JP2881409B2 (en) 1996-10-28 1996-10-28 Method for producing anisotropic magnet powder

Related Child Applications (3)

Application Number Title Priority Date Filing Date
JP2000319447A Division JP3587158B2 (en) 2000-10-19 2000-10-19 Magnetic anisotropic bonded magnet
JP2000319320A Division JP2001148306A (en) 2000-10-19 2000-10-19 Anisotropy magnet powder
JP2003043632A Division JP2003282311A (en) 2003-02-21 2003-02-21 Anisotropic magnet powder

Publications (2)

Publication Number Publication Date
JPH10135019A true JPH10135019A (en) 1998-05-22
JP3463911B2 JP3463911B2 (en) 2003-11-05

Family

ID=15826803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16619297A Expired - Lifetime JP3463911B2 (en) 1997-06-23 1997-06-23 Anisotropic magnet powder

Country Status (1)

Country Link
JP (1) JP3463911B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100452787B1 (en) * 2000-09-20 2004-10-14 아이치 세이코우 가부시키가이샤 Manufacturing method of an anisotropic magnet powder, precursory anisotropic magnet powder and bonded magnet
JP2014209547A (en) * 2013-03-28 2014-11-06 Tdk株式会社 Rare earth magnet
CN110767400A (en) * 2019-11-06 2020-02-07 有研稀土新材料股份有限公司 Rare earth anisotropic bonded magnetic powder, preparation method thereof and magnet

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5267800B2 (en) 2009-02-27 2013-08-21 ミネベア株式会社 Self-repairing rare earth-iron magnet
JP5344171B2 (en) 2009-09-29 2013-11-20 ミネベア株式会社 Anisotropic rare earth-iron resin magnet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100452787B1 (en) * 2000-09-20 2004-10-14 아이치 세이코우 가부시키가이샤 Manufacturing method of an anisotropic magnet powder, precursory anisotropic magnet powder and bonded magnet
JP2014209547A (en) * 2013-03-28 2014-11-06 Tdk株式会社 Rare earth magnet
US10546672B2 (en) 2013-03-28 2020-01-28 Tdk Corporation Rare earth based magnet
CN110767400A (en) * 2019-11-06 2020-02-07 有研稀土新材料股份有限公司 Rare earth anisotropic bonded magnetic powder, preparation method thereof and magnet
CN110767400B (en) * 2019-11-06 2021-12-14 有研稀土新材料股份有限公司 Rare earth anisotropic bonded magnetic powder, preparation method thereof and magnet

Also Published As

Publication number Publication date
JP3463911B2 (en) 2003-11-05

Similar Documents

Publication Publication Date Title
JP3250551B2 (en) Method for producing anisotropic rare earth magnet powder
JP2881409B2 (en) Method for producing anisotropic magnet powder
JP2703281B2 (en) Magnetic anisotropic material and method of manufacturing the same
WO2004030000A1 (en) Method for producing r-t-b based rare earth element permanent magnet
JP3560387B2 (en) Magnetic material and its manufacturing method
JP3463911B2 (en) Anisotropic magnet powder
JP2006203216A (en) Anisotropic rare-earth magnet powder and magnetically anisotropic bonded magnet
JP3597615B2 (en) Method for producing RTB based anisotropic bonded magnet
JP3587158B2 (en) Magnetic anisotropic bonded magnet
JPH10326705A (en) Rare-earth magnet powder and manufacture thereof
JP2002025813A (en) Anisotropic rare earth magnet powder
JP3645312B2 (en) Magnetic materials and manufacturing methods
JP2001148306A (en) Anisotropy magnet powder
JP2003282311A (en) Anisotropic magnet powder
JP3623564B2 (en) Anisotropic bonded magnet
JP2003309006A (en) Magnetic anisotropic bond magnet
JP3209291B2 (en) Magnetic material and its manufacturing method
JPS60255941A (en) Manufacture of rare earth element-transition metal element-semimetal alloy magnet
JPH05152115A (en) Manufacture of magnetic recording powder
JP3295674B2 (en) Method for producing rare earth-iron-cobalt-nitrogen based magnetic material
JPH06112019A (en) Nitride magnetic material
JPH04188805A (en) Manufacture of rare-earth bonded magnet
JPH08176617A (en) Production of rare-earth element-iron-boron alloy magnet powder excellent in magnetic anisotropy
JP2024134583A (en) Manufacturing method of rare earth magnet powder
JP2007005786A (en) Rare-earth magnet powder and method for manufacturing same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100822

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100822

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140822

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term