JPH10134956A - Material for high frequency wave introduction window - Google Patents

Material for high frequency wave introduction window

Info

Publication number
JPH10134956A
JPH10134956A JP29042396A JP29042396A JPH10134956A JP H10134956 A JPH10134956 A JP H10134956A JP 29042396 A JP29042396 A JP 29042396A JP 29042396 A JP29042396 A JP 29042396A JP H10134956 A JPH10134956 A JP H10134956A
Authority
JP
Japan
Prior art keywords
silicon nitride
introduction window
less
high frequency
dielectric loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29042396A
Other languages
Japanese (ja)
Inventor
Kenichi Tajima
健一 田島
Toru Matsuoka
徹 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP29042396A priority Critical patent/JPH10134956A/en
Publication of JPH10134956A publication Critical patent/JPH10134956A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide material for a high frequency wave introduction window, which can enhance the reliability of the introduction window to a great extent, and simultaneously can introduce/output microwaves, and millimeter waves at the level of high electric power. SOLUTION: The material for a high frequency wave introduction window is so constituted as to be formed out of the sintered product by the nature of silicon nitride, which is mainly composed of silicon nitride, and contains both the 3a th group element compound in the periodic table, of at least one kind selected out of a group of Y, Dy, Er, Yb, Tm, Lu and Sc, and impurity oxygen, wherein in the sintered product by the nature of silicon nitride, the grain boundaries of silicon nitride crystals are crystalized while silicon nitride is being sintered, the amount of aluminium in the aforesaid sintered product is less than 2% by weight in terms of aluminium oxide, and dielectric loss in 10GHz is less than 1×10<-4> .

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高周波導入窓に関
するものであり、例えば、半導体製造装置,液晶製造装
置,感光ドラム製造装置,ダイヤモンド成膜装置,核融
合装置等において、主にマイクロ波,ミリ波等の高周波
を使用し、プラズマを発生させるCVD装置、あるいは
マイクロ波出力器、発振器に用いられる高周波導入窓材
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-frequency introduction window, for example, in a semiconductor manufacturing apparatus, a liquid crystal manufacturing apparatus, a photosensitive drum manufacturing apparatus, a diamond film forming apparatus, a nuclear fusion apparatus, and the like. The present invention relates to a CVD apparatus for generating plasma using a high frequency such as a millimeter wave or a high frequency introducing window material used for a microwave output device and an oscillator.

【0002】[0002]

【従来技術】近年、主に半導体,液晶,薄膜製造におけ
るCVD,エッチング,レジスト工程にマイクロ波プラ
ズマ処理装置が多用されている。また、線形加速器、核
融合に用いる高周波発生装置(例えばジャイラトロン)
では20GHzを越えるマイクロ波あるいはミリ波大電
力を出力させ、核融合炉内に導入し、高エネルギープラ
ズマを発生させている。これら、マイクロ波,ミリ波等
の高周波を用いてプラズマを生成する装置の高周波導入
部および出力部には、高周波の透過性の良い材料で構成
された導入窓、出力窓が用いられている。
2. Description of the Related Art In recent years, a microwave plasma processing apparatus has been widely used mainly for CVD, etching, and resist processes in the production of semiconductors, liquid crystals, and thin films. In addition, linear accelerators, high-frequency generators used for nuclear fusion (eg, gyratron)
In U.S. Pat. No. 5,953,867, microwave or millimeter-wave large power exceeding 20 GHz is output and introduced into a fusion reactor to generate high-energy plasma. An introduction window and an output window made of a material having good high-frequency transmissivity are used for a high-frequency introduction section and an output section of the apparatus for generating plasma using high frequencies such as microwaves and millimeter waves.

【0003】このような導入窓、出力窓(以下、これら
を総称して導入窓と記す)には、高周波透過性(低誘電
率、低誘電損失性)とともに、温度上昇や急激な温度変
化に耐える耐熱性、耐熱衝撃性及び真空気密性が必要と
されるが、近年では、製造装置における生産性向上が要
求されるとともに、核融合を達成させるにはプラズマの
高温化、即ち導入する高周波の大電力化が必要とされ、
導入窓においても更なる高性能、高信頼性が要求されて
いる。
[0003] Such an introduction window and an output window (hereinafter collectively referred to as an introduction window) have a high-frequency transmissivity (low dielectric constant and low dielectric loss property) as well as a temperature rise and a rapid temperature change. Although heat resistance, thermal shock resistance, and vacuum tightness are required, in recent years, productivity improvement in manufacturing equipment is required, and in order to achieve nuclear fusion, high temperature of plasma, that is, introduction of high frequency High power is required,
Even higher performance and higher reliability are required for introduction windows.

【0004】これら導入窓には、これまで高周波透過
性、真空気密性を重視し低誘電率、低誘電損失で緻密体
である石英ガラス,アルミナセラミックス,単結晶アル
ミナ(サファイア),窒化アルミニウム(AlN),ベ
リリア(BeO)が主に用いられている。
In these introduction windows, quartz glass, alumina ceramics, single-crystal alumina (sapphire), aluminum nitride (AlN), which have been considered to be high-density, low-dielectric-loss, and dense with emphasis on high-frequency transmittance and vacuum tightness. ) And beryllia (BeO) are mainly used.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、これら
の材料はすべて耐熱衝撃性が悪く大電力の高周波を透過
させると、導入窓の局部的な温度上昇により、導入窓に
クラックや溶融によるピンホールが発生しやすいという
問題があった。この結果、真空気密性が低下するという
問題があった。
However, when these materials all have poor thermal shock resistance and transmit high power and high frequency, pinholes due to cracks and melting occur in the introduction window due to local temperature rise of the introduction window. There was a problem that it easily occurred. As a result, there is a problem that the vacuum tightness is reduced.

【0006】これらの問題を解決するために、従来、導
入窓表面の温度上昇を防止する見地から、例えば、窓表
面にTiNや高熱伝導性の膜のコーティングをしたり、
また、強度向上の見地から、例えば、特開平6−345
527号公報に示されるアルミナセラミックスや、特開
平4−280976号公報に示されるアルミナ−ジルコ
ニア複合材料で窓材を製造することが提案されている
が、これらセラミックスの耐熱衝撃性は200〜300
℃程度と低く信頼性の面で不十分であり、導入窓にクラ
ック等が生じ易いため、機械的信頼性に劣り、高周波の
大電力化が困難であった。
[0006] In order to solve these problems, conventionally, from the viewpoint of preventing a rise in the temperature of the surface of the introduction window, for example, coating the surface of the window with TiN or a film having high thermal conductivity,
Further, from the viewpoint of improving strength, for example, Japanese Patent Application Laid-Open No. 6-345
No. 527, and a window material made of an alumina-zirconia composite material disclosed in JP-A-4-280976 have been proposed. These ceramics have a thermal shock resistance of 200 to 300.
Since the temperature is as low as about ° C., the reliability is insufficient, and cracks and the like are easily generated in the introduction window. Therefore, the mechanical reliability is poor, and it is difficult to increase the power at a high frequency.

【0007】すなわち、高周波導入窓材にはマイクロ波
透過性に優れる低誘電損失特性に加えて、高強度、耐熱
性、耐熱衝撃性を合わせ持つことが要求されているが、
これまでそのような材料を得ることは困難であった。
That is, it is required that the high-frequency window material has high strength, heat resistance, and thermal shock resistance in addition to low dielectric loss characteristics having excellent microwave transmission properties.
Heretofore, obtaining such materials has been difficult.

【0008】一方、耐熱性,耐熱衝撃性,機械的特性が
上記セラミックスと比較し、格段に優れるセラミックス
として窒化珪素(Si3 4 )が知られているが、構造
部品用としては窒化珪素が用いられるものの、高周波導
入窓材としては検討されていなかった。
On the other hand, silicon nitride (Si 3 N 4 ) is known as a ceramic which is remarkably superior in heat resistance, thermal shock resistance and mechanical properties as compared with the above ceramics, but silicon nitride is used for structural parts. Although used, it has not been studied as a high frequency introduction window material.

【0009】[0009]

【課題を解決するための手段】本発明者等は、焼結助剤
である周期律表第3a族元素酸化物として特定の元素を
選択し配合した窒化珪素質焼結体中に含まれるアルミニ
ウム含有量を特定量に制御し、更に粒界相を結晶化させ
ることにより10GHzにおける誘電損失が1×10-4
以下まで低減することができ、これが高周波導入窓材と
してた適した材料となることを見いだし本発明に至っ
た。
Means for Solving the Problems The inventors of the present invention have proposed a method of selecting a specific element as a group 3a element oxide of the periodic table, which is a sintering aid, and blending the aluminum contained in a silicon nitride sintered body. By controlling the content to a specific amount and further crystallizing the grain boundary phase, the dielectric loss at 10 GHz becomes 1 × 10 −4.
It has been found that this can be reduced to the following, and that this is a suitable material for a high-frequency introduction window material, leading to the present invention.

【0010】即ち、本発明の高周波導入窓材は、窒化珪
素を主体とし、Y,Dy,Er,Yb,Tm,Luおよ
びScの群から選ばれる少なくとも1種の周期律表第3
a族元素化合物と、不純物的酸素を含有する窒化珪素質
焼結体からなり、該焼結体中の窒化珪素結晶の粒界が結
晶化され、且つ該焼結体中におけるアルミニウムの酸化
物換算量が2重量%以下、10GHzにおける誘電損失
が1×10-4以下であることを特徴とするものである。
That is, the high-frequency introduction window material of the present invention is mainly composed of silicon nitride, and at least one kind of the third material in the periodic table of the third type selected from the group consisting of Y, Dy, Er, Yb, Tm, Lu and Sc.
a silicon nitride-based sintered body containing a group a element compound and impurity oxygen, wherein the grain boundaries of silicon nitride crystals in the sintered body are crystallized, and the oxide equivalent of aluminum in the sintered body is calculated. The amount is 2% by weight or less, and the dielectric loss at 10 GHz is 1 × 10 −4 or less.

【0011】[0011]

【発明の実施の形態】本発明における高周波導入窓は、
窒化珪素を主成分とするものであり、窒化珪素以外の成
分として、周期律表第3a族元素の中で、Y,Dy,E
r,Yb,Tm,LuおよびScの群から選ばれる少な
くとも1種と、不純物的酸素を含有するものである。こ
こで、不純物的酸素とは、窒化珪素質焼結体中に含まれ
る酸素のうちの二酸化珪素(SiO2 )成分を示し、こ
の不純物的酸素は、窒化珪素原料中に不可避的に含まれ
る不純物酸素、あるいは意図的に添加された酸化珪素
(SiO2 )によるものである。
BEST MODE FOR CARRYING OUT THE INVENTION
It is mainly composed of silicon nitride, and as a component other than silicon nitride, among the elements of Group 3a of the periodic table, Y, Dy, E
It contains at least one selected from the group consisting of r, Yb, Tm, Lu and Sc and impurity oxygen. Here, the impurity oxygen refers to a silicon dioxide (SiO 2 ) component of the oxygen contained in the silicon nitride sintered body, and the impurity oxygen is an impurity unavoidably contained in the silicon nitride raw material. This is due to oxygen or intentionally added silicon oxide (SiO 2 ).

【0012】また、周期律表第3a族元素化合物は、焼
結助剤として添加される成分であり、例えば、Y、L
a、Ce、Sm、Dy、Ho、Er、Yb、Luおよび
Scなどが挙げられるが、本発明では、これらの中でも
強度、誘電損失を低減させるためにイオン半径の小さい
Y、Dy、Er、Yb、Tm、LuおよびScの群の少
なくとも1種を含有させるのが重要であり、これらの中
でも特にLuが望ましい。これら特定の周期律表第3a
族元素化合物は、酸化物換算で0.5〜10mol%が
適当で、望ましくは0.5〜3mol%である。また、
上記不純物的酸素のSiO2 換算量は、周期律表第3a
族元素化合物の酸化物換算(RE2 3 )量とのモル比
(SiO2 /RE2 3 )で1.5〜10が適当で、特
に1.8〜3.5が望ましい。
The Group 3a element compound of the periodic table is a component added as a sintering aid.
a, Ce, Sm, Dy, Ho, Er, Yb, Lu and Sc. Among them, in the present invention, Y, Dy, Er, Yb having a small ionic radius to reduce the strength and the dielectric loss among them. , Tm, Lu and Sc, it is important to contain at least one of them, and among these, Lu is particularly desirable. These specific periodic table 3a
The group-group element compound is suitably 0.5 to 10 mol%, preferably 0.5 to 3 mol% in terms of oxide. Also,
The amount of the above-mentioned impurity oxygen in terms of SiO 2 is calculated according to Periodic Table 3a.
The molar ratio (SiO 2 / RE 2 O 3 ) with respect to the oxide equivalent (RE 2 O 3 ) amount of the group element compound is preferably 1.5 to 10, and particularly preferably 1.8 to 3.5.

【0013】また、誘電体特性の見地から、Al量は誘
電体としての誘電損失を大きく影響を与える。アルミニ
ウムの存在が誘電損失を大きくする明確な理由は定かで
は無いが、通常アルミニウムは、窒化珪素に固溶しサイ
アロン(Si−Al−O−N)を形成し熱伝導を低下さ
せると同時に粒界に低融点組成を形成し高温強度も劣化
させることが知られている。このようなことからサイア
ロンまたは低融点組成物が誘電損失特性に大きく影響す
るのではないかと推測される。
Further, from the viewpoint of dielectric properties, the amount of Al greatly affects the dielectric loss as a dielectric. It is not clear why the presence of aluminum increases the dielectric loss, but aluminum usually forms a solid solution with silicon nitride to form sialon (Si-Al-O-N), lowering the thermal conductivity and simultaneously reducing the grain boundary. It is known that a low melting point composition is formed and the high temperature strength is also deteriorated. From these facts, it is presumed that Sialon or the low melting point composition greatly affects the dielectric loss characteristics.

【0014】かかる知見から、本発明の窓材中における
アルミニウム(Al)含有量は、酸化物(Al2 3
換算で2重量%以下であることが重要であり、特に0.
5重量%以下、0.1重量%未満であることが望まし
い。前記Al量が2重量%を超えると本発明の目的とす
る低損失の焼結体が得られない。
From these findings, the content of aluminum (Al) in the window material of the present invention is determined by the oxide (Al 2 O 3 )
It is important that the content is 2% by weight or less in terms of conversion.
It is desirable that the content be 5% by weight or less and less than 0.1% by weight. If the Al content exceeds 2% by weight, a low-loss sintered body aimed at by the present invention cannot be obtained.

【0015】さらに、本発明の窓材によれば、窒化珪素
質焼結体中の粒界相が結晶化していることも重要であ
る。粒界相が影響する原因についても粒界相がガラス化
した場合、粒界相自体の誘電損失が大きくなることが予
想される。その際、よりイオン半径が小さい方が粒界相
自体の誘電損失も小さくなり、結果焼結体中の誘電損失
も小さくなるものと推測される。
Further, according to the window material of the present invention, it is also important that the grain boundary phase in the silicon nitride based sintered body is crystallized. Regarding the cause of the influence of the grain boundary phase, when the grain boundary phase is vitrified, the dielectric loss of the grain boundary phase itself is expected to increase. At that time, it is presumed that the smaller the ionic radius, the smaller the dielectric loss of the grain boundary phase itself, and as a result, the smaller the dielectric loss in the sintered body.

【0016】ここで粒界相とは、窒化珪素結晶粒子間に
存在する部分で、主として、焼結助剤として添加した周
期律表第3a族元素を含み、主にRE−Si−O−N化
合物、またはRE−Si−O化合物(REは希土類元
素)から成る。結晶化させた場合には主にRE2 Si2
7 ,RE2 SiO5 、RE4 Si2 2 7 、RE20
2 Si1218等が析出するが、特に強度、誘電損失を
低下させるためにはRE2 Si2 7 ,RE2 SiO5
等酸化物、特にRE2 Si2 7 を析出させた方が好ま
しい。
Here, the grain boundary phase is a portion existing between silicon nitride crystal grains, mainly containing a Group 3a element of the periodic table added as a sintering aid, and is mainly composed of RE-Si-O-N. A compound or an RE-Si-O compound (RE is a rare earth element). When crystallized, mainly RE 2 Si 2
O 7 , RE 2 SiO 5 , RE 4 Si 2 N 2 O 7 , RE 20
N 2 Si 12 O 18 and the like are deposited, but in order to reduce strength and dielectric loss in particular, RE 2 Si 2 O 7 , RE 2 SiO 5
It is preferable to deposit an oxide such as RE 2 Si 2 O 7 .

【0017】特に、粒界相は実質的に完全に結晶化され
ていることが望ましい。ここで、完全に結晶化とは、例
えば1000〜1500℃の結晶化熱処理等を実施しそ
の結晶化度をX線回折によって調べたときに、処理前後
でX線回折結果が変化しない、結晶化処理が飽和した状
態のことを指す。
In particular, it is desirable that the grain boundary phase is substantially completely crystallized. Here, complete crystallization means that, for example, when a crystallization heat treatment or the like at 1000 to 1500 ° C. is performed and the degree of crystallization is examined by X-ray diffraction, the X-ray diffraction result does not change before and after the treatment. It indicates that the processing is saturated.

【0018】加えて、本発明の誘電体材料は、焼結体と
して緻密化しているものであれば、特にその密度を格別
制限するものでないが、高強度化の面から相対密度95
%、特には98%以上であることが望ましい。
In addition, the density of the dielectric material of the present invention is not particularly limited as long as it is dense as a sintered body.
%, Particularly preferably 98% or more.

【0019】また、本発明の窓材は、上記Al量を満足
することを除き、また、誘電特性に影響を及ぼさない限
りにおいて、他の成分としてアルカリ土類金属やモリブ
デン、タングステン化合物等の複合粒子を微量含有して
いても構わない。但し、陽イオン不純物としては、アル
ミニウムが前述の範囲を満足すれば特に制限しないが、
強度の点からは少ない方が好ましく、Fe、Ni、Zn
等の遷移金属は酸化物換算の合量で1重量%以下、好ま
しくは0.5重量%以下が良い。また、窒化珪素原料に
吸着しているフッ素(F)、塩素(Cl)は市販されて
いる窒化珪素粉末レベル、即ち、0.1重量%以下であ
れば問題ないが少ないほうが好ましい。またNaやKな
どのアルカリ金属は、その量が多すぎると、誘電損失に
影響を与える場合があるため、アルカリ金属量は、0.
1重量%以下であることをが望ましい。
The window material of the present invention is not limited to satisfying the above-mentioned Al content, and as long as it does not affect the dielectric properties, a composite of an alkaline earth metal, molybdenum, a tungsten compound or the like as another component. A small amount of particles may be contained. However, the cationic impurities are not particularly limited as long as aluminum satisfies the above range,
From the viewpoint of strength, a smaller one is preferable. Fe, Ni, Zn
The transition metal is preferably 1% by weight or less, preferably 0.5% by weight or less, in terms of oxide. The amount of fluorine (F) and chlorine (Cl) adsorbed on the silicon nitride raw material is not problematic as long as it is at or below the level of a commercially available silicon nitride powder, that is, 0.1% by weight or less. If the amount of an alkali metal such as Na or K is too large, the dielectric loss may be affected.
It is desirable that the content be 1% by weight or less.

【0020】本発明の高周波導入窓材は、例えば、窒化
珪素原料としてAl量の少ない原料を用いて、これに前
記特定の周期律表第3a族元素の酸化物等の化合物や、
場合によっては酸化珪素を添加し、これを混合した後、
所望の成形手段、例えば、金型プレス,冷間静水圧プレ
ス,押出し成形、ドクターブレード法等によりブロック
形状あるいはシート形状などの任意の形状に成形後、焼
成する。
The high frequency introduction window material of the present invention uses, for example, a raw material having a small amount of Al as a silicon nitride raw material, and adds a compound such as an oxide of the specific group 3a element of the periodic table,
In some cases, after adding silicon oxide and mixing it,
After being formed into a desired shape such as a block shape or a sheet shape by a desired forming means, for example, a die press, a cold isostatic press, an extrusion molding, a doctor blade method or the like, it is fired.

【0021】焼成は、窒素中で窒化珪素の分解を抑制し
える条件下で焼成することが必要で、常圧焼成、窒素ガ
ス加圧焼成、熱間静水圧焼成法など周知の焼成方法を採
用することができる。焼成温度としてはその組成にもよ
るが、1600〜2000℃の温度範囲で密度90%以
上が達成されるように焼成する。その際、粒界相を結晶
化させるためには冷却速度を小さくする、あるいは10
00〜1500℃で10〜100時間程度の結晶化のた
めの熱処理を施すことで容易に結晶化する。
It is necessary to perform calcination in nitrogen under conditions capable of suppressing the decomposition of silicon nitride, and a known calcination method such as normal pressure calcination, nitrogen gas pressure calcination, or hot isostatic calcination is used. can do. The firing temperature depends on the composition, but firing is performed so that a density of 90% or more is achieved in a temperature range of 1600 to 2000 ° C. At this time, in order to crystallize the grain boundary phase, the cooling rate is reduced, or
It is easily crystallized by performing a heat treatment for crystallization at 00 to 1500 ° C. for about 10 to 100 hours.

【0022】本発明によれば、高周波導入窓材として、
窒化珪素を主成分として、特定の周期律表第3a族元素
を含み、Al量を低減し、且つ粒界相が結晶化した焼結
体からなり、10GHzにおける誘電損失が1×10-4
以下の優れた特性、例えば、耐熱性,耐熱衝撃性,機械
的特性および真空気密性に優れた低損失の高周波導入窓
材となるものである。
According to the present invention, as the high frequency introduction window material,
It is made of a sintered body containing silicon nitride as a main component, containing a specific Group 3a element of the periodic table, reducing the amount of Al, and crystallizing the grain boundary phase, and having a dielectric loss of 1 × 10 −4 at 10 GHz.
It is a low-loss high-frequency window material excellent in the following excellent properties, for example, heat resistance, thermal shock resistance, mechanical properties, and vacuum tightness.

【0023】本発明の高周波導入窓材は、10GHzの
高周波でも誘電損失(tanδ)が1×10-4以下の低
損失の優れた高周波透過性を示すと同時に、これまで知
られる導入窓材に比較して格段に優れた耐熱衝撃性,耐
熱性,高強度を有する。よって、本発明の高周波導入窓
材はプラズマを発生させるために導入されるマイクロ
波、ミリ波等の数百MHz〜300GHz、特に1〜2
00GHzの高周波を導入、出力する装置、発振器用に
適した窓材であり、かかる窓材を用いることにより導入
窓の信頼性を格段に高められると同時に、より高電力の
マイクロ波,ミリ波の導入,出力が可能になり、製造装
置等の高効率化、高性能化が図れる。
The high-frequency window material of the present invention exhibits excellent high-frequency transmittance with a low dielectric loss (tan δ) of 1 × 10 −4 or less even at a high frequency of 10 GHz, It has significantly better thermal shock resistance, heat resistance and high strength. Therefore, the high-frequency introduction window material of the present invention has a frequency of several hundred MHz to 300 GHz, such as microwaves, millimeter waves, etc., and more preferably
It is a window material suitable for devices and oscillators for introducing and outputting a high frequency of 00 GHz. By using such a window material, the reliability of the introduction window can be remarkably improved, and at the same time, microwaves and millimeter waves of higher power can be used. Introduction and output are possible, and higher efficiency and higher performance of manufacturing equipment can be achieved.

【0024】[0024]

【実施例】イミド分解法にて製造されたα率95%の高
純度窒化珪素原料(遷移金属不純物総量100ppm以
下、Al量20ppm以下;A原料)と、直接窒化法に
て製造されたα率90%の窒化珪素原料(遷移金属不純
物総量1000ppm以下、Al量200ppm以下;
B原料)、及び直接窒化法にて製造されたα率70%の
低純度窒化珪素原料(遷移金属不純物量10000pp
m以下、Al量1000ppm以下;C原料)の3種
(いずれもBET比表面積8m2 /g以上、平均粒径2
〜5μm)を用意した。
EXAMPLE A high-purity silicon nitride raw material with an α ratio of 95% (transition metal impurity total amount 100 ppm or less, Al content 20 ppm or less; A raw material) produced by an imide decomposition method and an α ratio produced by a direct nitridation method 90% silicon nitride raw material (total transition metal impurity total 1000 ppm or less, Al content 200 ppm or less;
B raw material) and a low-purity silicon nitride raw material (transition metal impurity amount of 10,000 pp) with an α ratio of 70% manufactured by a direct nitriding method.
m, an Al content of 1000 ppm or less; a C raw material (BET specific surface area of at least 8 m 2 / g, average particle size of 2)
55 μm).

【0025】焼結助剤として純度99.9%以上、微粉
のAl2 3 、SiO2 、周期律表第3a族元素酸化物
(RE2 3 )を使用し、表1、表2に示す組成に秤量
した。このうち、SiO2 は窒化珪素原料中の不純物酸
素をSiO2 換算したものも含めた。この秤量粉末を所
定量ポリエチレン製500mlポットにいれウレタンボ
ールを用い、IPA(イソプロパノール)を有機溶媒と
して72時間回転ミルにて混合、粉砕し、得たスラリー
にバインダーを添加しスプレードライして造粒粉末を得
た。成形は金型プレスにて1ton/cm2 の成形圧で
直径20mm、厚さ10mmの形状及び強度測定用とし
て5×6×45mm形状に成形し、成形体は500℃に
て脱脂後、焼成用試料とした。
As a sintering aid, Al 2 O 3 , SiO 2 and oxide of a Group 3a element of the periodic table (RE 2 O 3 ) having a purity of 99.9% or more were used. Weighed to the indicated composition. Among them, SiO 2 includes those obtained by converting impurity oxygen in the silicon nitride raw material into SiO 2 . A predetermined amount of this weighed powder is placed in a polyethylene 500 ml pot, mixed with a urethane ball using a rotary mill for 72 hours using IPA (isopropanol) as an organic solvent, pulverized, a binder is added to the obtained slurry, and spray-dried to granulate. A powder was obtained. Molding was performed with a mold press at a molding pressure of 1 ton / cm2 to a shape of 20 mm in diameter and 10 mm in thickness and a 5 x 6 x 45 mm shape for strength measurement. And

【0026】焼成は、1750℃、5時間、1.2気圧
窒素中焼成(PLS法)、前記PLS法で焼成後、さら
に1850℃、5時間、9気圧窒素中焼成(GPS)す
る2種の方法を採用した。更に粒界相の結晶化のために
1000〜1500℃、24時間、窒素中にて熱処理を
施した。
The firing is performed at 1750 ° C. for 5 hours in a nitrogen atmosphere at 1.2 atm (PLS method). After firing by the PLS method, firing is further performed at 1850 ° C. for 5 hours in a nitrogen atmosphere at 9 atm (GPS). The method was adopted. Further, heat treatment was performed in nitrogen at 1000 to 1500 ° C. for 24 hours for crystallization of the grain boundary phase.

【0027】試料は95%以上に緻密化していることを
確認し、円筒、平面研削を施し誘電損失特性測定用とし
て直径15mm、厚さ7mmの試料に加工し、また強度
その他分析用としてJIS試験片形状(3×4×35m
m)に加工し評価用試料とした。
After confirming that the sample has been densified to 95% or more, a cylinder and a surface are ground and processed into a sample having a diameter of 15 mm and a thickness of 7 mm for measuring dielectric loss characteristics, and a JIS test for strength and other analysis. Piece shape (3 × 4 × 35m
m) to obtain a sample for evaluation.

【0028】誘電損失の測定は円柱誘電体共振器測定法
により10GHzの共振周波数にて測定した。試料は測
定後中心部を切り出し、ICP分析からAl量を定量し
アルミナ(Al2 3 )換算し、また粉末X線回折より
窒化珪素結晶相以外の結晶相を同定した。また強度特性
はJISR1601に準じて4点曲げ試験にて測定し結
果を表1、表2に示した。
The dielectric loss was measured at a resonance frequency of 10 GHz by a cylindrical dielectric resonator measurement method. The center of the sample was cut out after the measurement, the amount of Al was quantified by ICP analysis, converted to alumina (Al 2 O 3 ), and crystal phases other than the silicon nitride crystal phase were identified by powder X-ray diffraction. The strength characteristics were measured by a four-point bending test according to JISR1601, and the results are shown in Tables 1 and 2.

【0029】また、各試料について導入窓材としての性
能を確認するため、それぞれの試料を直径60mm、厚
さ1.5〜2.0mm(誘電率から算出した反射の少な
い厚さ)に製造、加工し、28GHz、10KWのジャ
イロトロンから出力されたマイクロ波を試料に対して照
射径30mmの大きさで照射し、中心部の温度上昇をI
Rカメラにて測定し、温度上昇が暴走(サーマルランナ
ウェイ)する出力、すなわち使用限界出力を測定した。
また、10KWで1分照射後の試料の温度も測定した。
これらの結果を表1、2に併せて示す。
In order to confirm the performance of each sample as an introduction window material, each sample was manufactured to have a diameter of 60 mm and a thickness of 1.5 to 2.0 mm (thickness with small reflection calculated from the dielectric constant). The sample was irradiated with a microwave output from a 28 GHz, 10 KW gyrotron with an irradiation diameter of 30 mm to the sample, and the temperature rise at the center was reduced by I
The output was measured with an R camera, and the output at which the temperature rise runs away (thermal runaway), that is, the usage limit output was measured.
Further, the temperature of the sample after irradiation at 10 KW for 1 minute was also measured.
These results are also shown in Tables 1 and 2.

【0030】また、本発明者等は、導入窓材としての性
能を比較するため、マイクロ波導入窓用石英ガラス及び
純度99%以上の高純度アルミナ焼結体を導入窓として
用い、同様の試験を行った。石英ガラスはSiO2 を9
9.9モル%含有するものであり、誘電損失が1×10
-4、室温強度が100MPa以下である。アルミナ焼結
体は、SiO2 を0.5モル%含有するもので、誘電損
失が1×10-4、室温強度が400MPaである。試験
の結果、石英ガラスを用いた試料では、10KWで約2
00℃の温度上昇であったが、出力を終了した瞬間にク
ラックが発生した。また、アルミナ焼結体を用いた試料
では、このアルミナ焼結体を用いた場合、10KWで3
00℃を超え熱暴走に至った。
In order to compare the performance as an introduction window material, the present inventors used quartz glass for a microwave introduction window and a high-purity alumina sintered body having a purity of 99% or more as an introduction window. Was done. Quartz glass is made of SiO 2 9
9.9 mol%, and the dielectric loss is 1 × 10
-4 , the room temperature strength is 100 MPa or less. The alumina sintered body contains 0.5 mol% of SiO 2, has a dielectric loss of 1 × 10 −4 and a room temperature strength of 400 MPa. As a result of the test, in the case of the sample using quartz glass, about 10
Although the temperature was increased by 00 ° C., a crack occurred at the moment when the output was terminated. Further, in the case of the sample using the alumina sintered body, when this alumina
It exceeded 00 ° C and led to thermal runaway.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】表1、表2の結果によれば、Al量が2重
量%より多い試料No.15、16、18、19、また、
結晶化処理を施さなかった試料No.20、21、22、
23では、いずれも誘電損失が1×10-4を越えるもの
であり、10KW未満の電力で熱暴走が生じ、10K
W、1分照射後の温度も200℃を越えたり、クラック
等の発生が認められた。
According to the results shown in Tables 1 and 2, Samples Nos. 15, 16, 18, and 19 having an Al content of more than 2% by weight,
Samples No. 20, 21, 22, without crystallization treatment
In No. 23, the dielectric loss exceeds 1 × 10 −4 , and thermal runaway occurs with power of less than 10 KW.
W, the temperature after 1 minute irradiation also exceeded 200 ° C., and cracks and the like were observed.

【0034】これらの比較例に対して、Al量を低減
し、熱処理を施し粒界を結晶化させることにより、誘電
損失が1×10-4以下まで低減できることがわかる。特
に、Al量が0.05重量%以下の場合には、周期律表
第3a族元素として、Dy、Er、Yを選択した場合に
は、0.9×10-4以下、Sc、Yb、Tmを選択した
場合は、0.8×10-4以下、Luを選択した場合に
は、0.7×10-4以下が達成され、10KWの電力下
でも熱暴走することはなく、しかも10KW、1分照射
後の温度も200℃以下と良好な特性を示した。
From these comparative examples, it can be seen that the dielectric loss can be reduced to 1 × 10 −4 or less by reducing the amount of Al and performing heat treatment to crystallize the grain boundaries. In particular, when the Al content is 0.05% by weight or less, when Dy, Er, and Y are selected as Group 3a elements of the periodic table, 0.9 × 10 −4 or less, Sc, Yb, When Tm is selected, 0.8 × 10 −4 or less is achieved, and when Lu is selected, 0.7 × 10 −4 or less is attained. The temperature after irradiation for 1 minute was 200 ° C. or less, showing good characteristics.

【0035】[0035]

【発明の効果】以上詳述した通り、本発明の高周波導入
窓材は、10GHzの高周波でも誘電損失(tanδ)
が1×10-4以下の低損失の優れた誘電特性を示すと同
時に、これまで知られる導入窓材に比較して格段に優れ
た耐熱衝撃性,耐熱性,高強度を有するため、高電力下
のマイクロ波通過時でも熱暴走の発生のない良好な透過
特性を示すものである。よって、本発明の高周波導入窓
材はプラズマを発生させるために導入されるマイクロ
波,ミリ波等の数百MHz〜300GHz、特に1〜2
00GHzの高周波を導入、出力する装置、発振器用に
適した窓材であり、かかる窓材を用いることにより導入
窓の信頼性を格段に高められると同時に、より高電力の
マイクロ波,ミリ波の導入,出力が可能になり、製造装
置等の高効率化、高性能化が図れる。
As described above in detail, the high-frequency window material of the present invention has a dielectric loss (tan δ) even at a high frequency of 10 GHz.
Has excellent dielectric properties with low loss of 1 × 10 -4 or less, and also has much higher thermal shock resistance, heat resistance, and high strength than previously known introduction window materials. It shows good transmission characteristics without thermal runaway even when passing through the lower microwave. Therefore, the high-frequency introduction window material of the present invention has a frequency of several hundred MHz to 300 GHz, particularly 1-2 GHz, such as microwaves and millimeter waves introduced to generate plasma.
It is a window material suitable for devices and oscillators for introducing and outputting a high frequency of 00 GHz. By using such a window material, the reliability of the introduction window can be remarkably improved, and at the same time, microwaves and millimeter waves of higher power can be used. Introduction and output are possible, and higher efficiency and higher performance of manufacturing equipment can be achieved.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】窒化珪素を主体とし、Y,Dy,Er,Y
b,Tm,LuおよびScの群から選ばれる少なくとも
1種の周期律表第3a族元素化合物と、不純物的酸素を
含有する窒化珪素質焼結体からなり、該焼結体中の窒化
珪素結晶の粒界が結晶化され、且つ該焼結体中における
アルミニウムの酸化物換算量が2重量%以下、10GH
zにおける誘電損失が1×10-4以下であることを特徴
とする高周波導入窓材。
1. The method according to claim 1, wherein the main component is silicon nitride, and Y, Dy, Er, Y
b, Tm, Lu and Sc, at least one element selected from the group 3a element of the periodic table and a silicon nitride-based sintered body containing impurity oxygen, and the silicon nitride crystal in the sintered body And the amount of aluminum oxide in the sintered body is not more than 2% by weight and 10 GH
A high frequency introducing window material, wherein the dielectric loss at z is 1 × 10 −4 or less.
JP29042396A 1996-10-31 1996-10-31 Material for high frequency wave introduction window Pending JPH10134956A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29042396A JPH10134956A (en) 1996-10-31 1996-10-31 Material for high frequency wave introduction window

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29042396A JPH10134956A (en) 1996-10-31 1996-10-31 Material for high frequency wave introduction window

Publications (1)

Publication Number Publication Date
JPH10134956A true JPH10134956A (en) 1998-05-22

Family

ID=17755849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29042396A Pending JPH10134956A (en) 1996-10-31 1996-10-31 Material for high frequency wave introduction window

Country Status (1)

Country Link
JP (1) JPH10134956A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006302721A (en) * 2005-04-22 2006-11-02 Idx Corp High pressure heating device with microwave
JP2009012994A (en) * 2007-07-02 2009-01-22 National Institute Of Advanced Industrial & Technology Low core loss dielectric material for high frequency, method for producing the same, and member thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006302721A (en) * 2005-04-22 2006-11-02 Idx Corp High pressure heating device with microwave
JP2009012994A (en) * 2007-07-02 2009-01-22 National Institute Of Advanced Industrial & Technology Low core loss dielectric material for high frequency, method for producing the same, and member thereof

Similar Documents

Publication Publication Date Title
Ohasto et al. Millimeter-wave dielectric ceramics of alumina and forsterite with high quality factor and low dielectric constant
WO2001083395A1 (en) Low temperature sinterable and low loss dielectric ceramic compositions and method thereof
Wang et al. Low-Temperature Sintering Li 3 Mg 1.8 Ca 0.2 NbO 6 Microwave Dielectric Ceramics with LMZBS Glass
JP5120857B2 (en) Dense dielectric material for high frequency with high thermal conductivity and low dielectric loss, its manufacturing method and member
US7208434B2 (en) Dielectric ceramic composition of forsterite system for microwave and millimeter-wave application and method for forming the same
Xie et al. Microwave dielectric properties of Li2O–xMgO–ZnO–B2O3–SiO2 glass-ceramics (x= 30–50 wt.%)
JP5421092B2 (en) Alumina sintered body
JP2001240482A (en) Plasma resistance material, high-frequency transmission material, and plasma equipment
JP3904874B2 (en) Components for semiconductor manufacturing equipment
US5885916A (en) Dielectric material having a low dielectric loss factor for high-frequency use
JPH10134956A (en) Material for high frequency wave introduction window
JP3347516B2 (en) High frequency window material
JP3481779B2 (en) Low loss dielectric material for high frequency
JP4969488B2 (en) Alumina sintered body, semiconductor manufacturing apparatus member, and liquid crystal panel manufacturing apparatus member
JPH09268069A (en) Highly heat conductive material and its production
JPH0542762B2 (en)
US8247337B2 (en) Alumina sintered article
JP3318471B2 (en) Window material for high frequency introduction
JP4533994B2 (en) Plasma corrosion resistant material, manufacturing method thereof and member thereof
JP5435932B2 (en) Alumina sintered body, manufacturing method thereof, member for semiconductor manufacturing apparatus, member for liquid crystal panel manufacturing apparatus, and member for dielectric resonator
JP4831581B2 (en) Low loss dielectric material for high frequency, its manufacturing method and member
Zhang et al. A novel temperature-stable (1− m) Li2TiO3–m Zn3Nb2O8 microwave dielectric ceramic
JP3450400B2 (en) Aluminum nitride sintered body and aluminum nitride multilayer circuit board
JP5371372B2 (en) Alumina sintered body, semiconductor manufacturing apparatus member, liquid crystal panel manufacturing apparatus member, and dielectric resonator member
KR101200385B1 (en) Aluminous sinter, process for producing the same, member for semiconductor production apparatus, member for liquid-crystal-panel production apparatus, and member for dielectric resonator