JP4831581B2 - Low loss dielectric material for high frequency, its manufacturing method and member - Google Patents

Low loss dielectric material for high frequency, its manufacturing method and member Download PDF

Info

Publication number
JP4831581B2
JP4831581B2 JP2007174664A JP2007174664A JP4831581B2 JP 4831581 B2 JP4831581 B2 JP 4831581B2 JP 2007174664 A JP2007174664 A JP 2007174664A JP 2007174664 A JP2007174664 A JP 2007174664A JP 4831581 B2 JP4831581 B2 JP 4831581B2
Authority
JP
Japan
Prior art keywords
high frequency
dielectric material
low
compound
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007174664A
Other languages
Japanese (ja)
Other versions
JP2009012994A (en
Inventor
広行 宮崎
喜代司 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007174664A priority Critical patent/JP4831581B2/en
Publication of JP2009012994A publication Critical patent/JP2009012994A/en
Application granted granted Critical
Publication of JP4831581B2 publication Critical patent/JP4831581B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Ceramic Products (AREA)
  • Inorganic Insulating Materials (AREA)

Description

本発明は、高周波用低損失誘電体材料に関するものであり、更に詳しくは、低い誘電損失と高い熱伝導率の両者の要求を満たすことを実現した新規高周波用低損失誘電体材料及びその部材等に関するものである。本発明は、プラズマ処理装置部材、例えば、半導体製造装置、液晶製造装置などにおいて、主にマイクロ波などの高周波を使用してプラズマを発生させる装置に用いられる高周波用低損失誘電体材料等を提供するものである。   The present invention relates to a high-frequency low-loss dielectric material. More specifically, the present invention relates to a novel high-frequency low-loss dielectric material that satisfies both requirements of low dielectric loss and high thermal conductivity, its members, and the like. It is about. The present invention provides a high-frequency low-loss dielectric material used in a plasma processing apparatus member, for example, a semiconductor manufacturing apparatus, a liquid crystal manufacturing apparatus, etc., which is mainly used in an apparatus that generates plasma using a high frequency such as microwaves. To do.

近年、主に半導体、液晶薄膜製造におけるCVD、エッチング、レジスト工程に、マイクロ波プラズマ処理装置が多用されている。マイクロ波などの高周波を用いてプラズマを発生させるこれらの装置には、高周波透過性の良い材料で構成された部材が使用されている。これらの部材には、高周波透過性(低い誘電率、低い誘電損失)とともに、部材内の温度分布をなくして反応の均一性を高めるために、高い熱伝導率が必要とされている。   In recent years, microwave plasma processing apparatuses have been frequently used mainly for CVD, etching, and resist processes in semiconductor and liquid crystal thin film manufacturing. In these devices that generate plasma using a high frequency such as a microwave, a member made of a material having a high frequency permeability is used. These members are required to have high thermal conductivity (low dielectric constant, low dielectric loss) and high thermal conductivity in order to eliminate the temperature distribution in the member and improve the uniformity of the reaction.

高周波透過性については、例えば、シリカガラスが、低誘電率で誘電損失も低くて優れるが、熱伝導率は〜2W・m−1・K−1と低く、部材としての要求を満たさない。また、高純度のアルミナセラミックスも、低誘電損失であるが、熱伝導率が〜30W・m−1・K−1と低く、要求を満たさない。反対に、窒化アルミニウムは、熱伝導率が〜160W・m−1・K−1と非常に高いが、誘電損失が10−3以上あるので、要求を満たすことができない。 Regarding high-frequency permeability, for example, silica glass is excellent because of its low dielectric constant and low dielectric loss, but its thermal conductivity is as low as ˜2 W · m −1 · K −1, and does not satisfy the requirements as a member. High-purity alumina ceramics also have a low dielectric loss, but have a low thermal conductivity of ˜30 W · m −1 · K −1 and do not meet the requirements. In contrast, aluminum nitride has a very high thermal conductivity of ~ 160 W · m −1 · K −1 , but cannot satisfy the requirement because it has a dielectric loss of 10 −3 or more.

一方、耐熱性、耐熱衝撃性、機械的強度が上記セラミックスに比べて格段に優れるセラミックスとして、窒化ケイ素(Si)が知られ、100W・m−1・K−1以上の高い熱伝導率を有するSiも開発されている。また、Siの誘電損失に関しては、高周波導入窓材の信頼性を付与するために、機械的強度に優れた窒化ケイ素の誘電損失を低下させることを目的とした研究が行われている。 On the other hand, silicon nitride (Si 3 N 4 ) is known as a ceramic that is remarkably superior in heat resistance, thermal shock resistance, and mechanical strength compared to the above ceramics, and has a high thermal conductivity of 100 W · m −1 · K −1 or higher. Si 3 N 4 having a rate has also been developed. In addition, with respect to the dielectric loss of Si 3 N 4 , research has been conducted for the purpose of reducing the dielectric loss of silicon nitride having excellent mechanical strength in order to provide reliability of the high-frequency introduction window material. .

先行引用文献として、例えば、窒化ケイ素を用いた低誘電損失な高周波導入窓材の報告例があるように、従来、10GHzにおいて10−4以下の低い誘電損失が達成されている。しかしながら、前述の要求を満たすために、低い誘電損失とともに、高い熱伝導率を兼ね備える緻密質Siに関しては、これまで、ほとんど検討されてこなかった。 As a prior cited document, for example, a low dielectric loss of 10 −4 or less at 10 GHz has been achieved so far as there is a report example of a low dielectric loss high-frequency introduction window material using silicon nitride. However, in order to satisfy the above-described requirements, a dense Si 3 N 4 that has a low dielectric loss and a high thermal conductivity has been hardly studied so far.

これまでは、先行技術として、例えば、周期律表第3a族化合物(RE3)とSiOのモル比、(RE/SiO)が0.1〜0.67の組成が低誘電損失窒化ケイ素材料として有望であることが報告されている(特許文献1)。 So far, as a prior art, for example, a molar ratio of Group 3a compound (RE 2 O 3 ) and SiO 2 in the periodic table, and a composition having (RE 2 O 3 / SiO 2 ) of 0.1 to 0.67 has been proposed. It is reported that it is promising as a low dielectric loss silicon nitride material (Patent Document 1).

また、周期律表第3a族化合物を添加した窒化ケイ素質焼結体の熱伝導率に関して、RE/SiO比が〜1まで上昇するに従い窒化ケイ素粒内の固溶酸素が低減され、熱伝導率が100W・m−1・K−1程度まで向上することが報告されている(非特許文献1)。 In addition, regarding the thermal conductivity of the silicon nitride sintered body to which the Group 3a compound of the periodic table is added, as the RE 2 O 3 / SiO 2 ratio increases to ˜1, the dissolved oxygen in the silicon nitride grains is reduced. It has been reported that the thermal conductivity is improved to about 100 W · m −1 · K −1 (Non-patent Document 1).

これらの知見からすると、従来報告されている組成の低誘電損失窒化ケイ素の熱伝導率の向上は困難であり、市販されている低誘電損失窒化ケイ素質材料の熱伝導率は60W・m−1・K−1程度にとどまっている。 From these findings, it is difficult to improve the thermal conductivity of the low dielectric loss silicon nitride having a composition reported so far, and the thermal conductivity of the commercially available low dielectric loss silicon nitride material is 60 W · m −1.・ It remains at around K- 1 .

一方、窒化ケイ素の高熱伝導化は、例えば、高熱伝導化を促すための希土類酸化物と、緻密化を促進する焼結助剤としてのMg元素化合物の添加により行われている(非特許文献2)。   On the other hand, high thermal conductivity of silicon nitride is performed, for example, by adding a rare earth oxide for promoting high thermal conductivity and an Mg element compound as a sintering aid for promoting densification (Non-patent Document 2). ).

しかしながら、MgOを6.6mol%添加して焼結した窒化ケイ素の9.1GHzにおける誘電損失が2×10−3と大きいことが報告されており(非特許文献3)、誘電損失の観点からは、MgやCaなどのアルカリ土類金属やNaやKなどのアルカリ金属は窒化ケイ素の誘電損失に悪影響を及ぼすものと考えられてきた。 However, it has been reported that the dielectric loss at 9.1 GHz of silicon nitride added with 6.6 mol% of MgO and sintered is as large as 2 × 10 −3 (Non-patent Document 3). It has been considered that alkaline earth metals such as Mg and Ca and alkali metals such as Na and K adversely affect the dielectric loss of silicon nitride.

また、例えば、先に示した特許文献(特開平10−134956号公報)などでは、低誘電損失化するためには、これらのアルカリ金属化合物やアルカリ土類金属化合物は好ましくなく、できる限り存在しないことが必要とされてきた。すなわち、アルカリ土類金属を焼結助剤に用いた窒化ケイ素においては、緻密かつ高熱伝導となるが、誘電損失を低減することは困難であると予想される。   Further, for example, in the above-mentioned patent document (Japanese Patent Laid-Open No. 10-134956), these alkali metal compounds and alkaline earth metal compounds are not preferable and do not exist as much as possible in order to reduce the dielectric loss. It has been needed. That is, silicon nitride using an alkaline earth metal as a sintering aid is dense and has high thermal conductivity, but it is expected that it is difficult to reduce dielectric loss.

アルカリ土類金属を用いずに周期律表第3a族化合物の単独添加の場合、先に示したように、先行技術文献(Journal of American Ceramics Society,第83巻(2000),pp.1985−1992)において、RE/SiOが〜1まで増加するに従い熱伝導率が向上することが報告されているが、この組成では、ガス圧焼結のみでは十分に緻密化させることがこれまでは困難であり、難焼結性を示す。 In the case of adding a Group 3a compound of the periodic table without using an alkaline earth metal, as previously indicated, the prior art document (Journal of American Ceramics Society, Vol. 83 (2000), pp. 1985-1992). ), It has been reported that the thermal conductivity is improved as RE 2 O 3 / SiO 2 increases to ˜1, but with this composition, it has so far been made sufficiently dense only by gas pressure sintering. Is difficult and exhibits poor sinterability.

これは、RE/SiO比が〜1の場合には、REとSiOの反応よる液相の生成温度が高く、この比が小さい組成のものに比べて焼結温度近傍での液相の生成量が少ないためである。 This is because when the RE 2 O 3 / SiO 2 ratio is ˜1, the liquid phase formation temperature due to the reaction of RE 2 O 3 and SiO 2 is high, and the sintering temperature is lower than that of the composition with a small ratio. This is because the amount of liquid phase generated in the vicinity is small.

このため、製造コストのかさむ熱間静水圧焼結法(ホットプレス焼結)などによらなければ緻密な焼結体を得ることが難しく、低損失誘電体材料の工業的な生産には不向きであるとして、この組成領域の誘電特性は調査されてこなかったのが実情である。   For this reason, it is difficult to obtain a dense sintered body without using hot isostatic pressing (hot press sintering), which is expensive to manufacture, and is not suitable for industrial production of low-loss dielectric materials. As a matter of fact, the dielectric properties of this composition region have not been investigated.

特開平10−134956号公報Japanese Patent Laid-Open No. 10-134956 Journal of American Ceramics Society,第83巻(2000),pp.1985−1992Journal of American Ceramics Society, Volume 83 (2000), pp. 1985-1992. 日本セラミックス協会学術論文誌、第109巻、第12号(2001)、pp.1046−1050Journal of the Ceramic Society of Japan, Vol. 109, No. 12 (2001), pp. 1046-1050 Journal of Nuclear Materials,第155−157巻(1988),pp.372−377Journal of Nuclear Materials, 155-157 (1988), pp. 372-377.

このような状況の中で、本発明者等は、上記従来技術に鑑みて、低い誘電損失と高い熱伝導率の両者の要求を満たす新しい高周波用低損失緻密質誘電体材料を開発することを目標として鋭意研究を積み重ねた結果、窒化ケイ素質焼結体に含まれる周期律表第3a族元素化合物の含有量を特定量に制御し、焼結体の緻密化を促進し、更に、粒界相を結晶化させることにより、2GHzと3GHzにおける誘電損失を2×10−4以下に、熱伝導率を90W・m−1・K−1以上にすることができ、これが、高熱伝導・低誘電損失な緻密質セラミックス誘電体材料として好適な材料となることを見出し、本発明に至った。 Under such circumstances, the present inventors have developed a high-frequency low-loss dense dielectric material that satisfies the requirements of both low dielectric loss and high thermal conductivity in view of the above-described conventional technology. As a result of earnest research as a target, the content of the Group 3a element compound in the periodic table contained in the silicon nitride sintered body is controlled to a specific amount, and the densification of the sintered body is promoted. By crystallizing the phase, the dielectric loss at 2 GHz and 3 GHz can be reduced to 2 × 10 −4 or lower, and the thermal conductivity can be increased to 90 W · m −1 · K −1 or higher. It has been found that the material is suitable as a lossy dense ceramic dielectric material, and has led to the present invention.

本発明は、窒化ケイ素を主体とし、周期律表第3a族元素化合物と不純物的酸素を含有する窒化ケイ素質焼結体からなり、該焼結体中の結晶粒界が結晶化され、2GHzと3GHzにおける誘電損失が2×10−4以下で、熱伝導率が90W・m−1・K−1以上である高周波用低損失緻密質誘電体材料を提供することを目的とするものである。 The present invention comprises a silicon nitride sintered body mainly composed of silicon nitride and containing a group 3a element compound of periodic table and impurity oxygen, and a crystal grain boundary in the sintered body is crystallized, and 2 GHz. An object of the present invention is to provide a high-frequency low-loss dense dielectric material having a dielectric loss at 3 GHz of 2 × 10 −4 or less and a thermal conductivity of 90 W · m −1 · K −1 or more.

上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)窒化ケイ素を主体とし、周期律表第3a族元素化合物、不純物的酸素を含有する窒化ケイ素質焼結体からなり、相対密度97%以上の緻密な焼結体であり、2GHzと3GHzにおける誘電損失が2×10−4より低く、かつ熱伝導率が90W・m−1・K−1より高い高周波用低損失誘電体材料であって、
1)焼結体中に含有される周期律表第3a族元素化合物(RE)の割合が、酸化物換算(RE )で少なくとも16重量%であり、酸窒化ケイ素化合物結晶相を含有し、2)該酸窒化ケイ素化合物が、RE Si 7 で示される化合物であることを特徴とする高周波用低損失誘電体材料。
)焼結体中の粒界相が主にRE−Si−O−N化合物からなり、結晶化している、前記(1)に記載の高周波用低損失誘電体材料。
)Al含有量が、酸化物換算(Al)で0.1重量%以下である、前記(1)に記載の高周波用低損失誘電体材料。
)前記(1)から()のいずれかに記載の高周波用低損失誘電体材料からなる部材であって、電気部品の製造装置に適用される高周波透過用部材であることを特徴とする高周波透過用部材。
)部材が、半導体製造装置、又は液晶製造装置に適用される高周波透過用部材である、前記()に記載の高周波透過用部材。
)前記(1)に記載の材料を製造する方法であって、
周期律表第3a族元素化合物の存在量が、酸化物換算で少なくとも7モル%であり、酸化ケイ素(SiO)とのモル比(RE/SiO)が、1.0〜1.5の範囲にある出発原料を用いて、成形、焼成することにより、
1)焼結体中に含有される周期律表第3a族元素化合物(RE)の割合が、酸化物換算(RE )で少なくとも16重量%であり、酸窒化ケイ素化合物結晶相を含有し、2)該酸窒化ケイ素化合物が、RE Si 7 で示される化合物を製造することを特徴とする高周波用低損失誘電体材料の製造方法。
)少なくとも400MPaの静水圧プレス成形により、52%以上の相対密度を有する成形体を作製し、これを焼成する、前記()に記載の高周波用低損失誘電体材料の製造方法。
The present invention for solving the above-described problems comprises the following technical means.
(1) It is a dense sintered body having a relative density of 97% or more, composed of a silicon nitride sintered body mainly composed of silicon nitride, containing a Group 3a element compound of the periodic table and impurity oxygen, and has a relative density of 97% or more. in the dielectric loss is less than 2 × 10 -4, and the thermal conductivity of a low-loss dielectric material for high have higher frequency than 90W · m -1 · K -1,
1) The ratio of Group 3a element compound (RE) in the periodic table contained in the sintered body is at least 16% by weight in terms of oxide (RE 2 O 3 ), and contains a silicon oxynitride compound crystal phase And 2) the low-loss dielectric material for high frequency, wherein the silicon oxynitride compound is a compound represented by RE 4 Si 2 N 2 O 7 .
( 2 ) The low-loss dielectric material for high frequencies according to (1), wherein the grain boundary phase in the sintered body is mainly composed of a RE-Si-O-N compound and is crystallized.
( 3 ) The high-frequency low-loss dielectric material according to (1), wherein the Al content is 0.1% by weight or less in terms of oxide (Al 2 O 3 ).
( 4 ) A member made of the high-frequency low-loss dielectric material according to any one of (1) to ( 3 ), wherein the member is a high-frequency transmitting member applied to an electrical component manufacturing apparatus A high-frequency transmitting member.
( 5 ) The member for high frequency transmission according to ( 4 ), wherein the member is a member for high frequency transmission applied to a semiconductor manufacturing apparatus or a liquid crystal manufacturing apparatus.
( 6 ) A method for producing the material according to (1) above,
Abundance of the periodic table group 3a element compound is at least 7 mol% in terms of oxide, the molar ratio of silicon oxide (SiO 2) (RE 2 O 3 / SiO 2) is 1.0 to 1 By using a starting material in the range of .5, molding and firing ,
1) The ratio of Group 3a element compound (RE) in the periodic table contained in the sintered body is at least 16% by weight in terms of oxide (RE 2 O 3 ), and contains a silicon oxynitride compound crystal phase 2) A method for producing a low-loss dielectric material for high frequency, wherein the silicon oxynitride compound produces a compound represented by RE 4 Si 2 N 2 O 7 .
( 7 ) The method for producing a high-frequency low-loss dielectric material as described in ( 6 ) above, wherein a molded body having a relative density of 52% or more is produced by isostatic pressing at least 400 MPa and fired.

次に、本発明について更に詳細に説明する。
本発明は、低誘電損失と高熱伝導率の両者を満たす高周波用低損失誘電体材料であって、窒化ケイ素を主体とし、周期律表第3a族元素化合物、不純物的酸素を含有する窒化ケイ素質焼結体からなり、相対密度97%以上の緻密な焼結体であり、2GHzと3GHzにおける誘電損失が2×10−4より低く、かつ熱伝導率が90W・m−1・K−1より高いことを特徴とするものである。
Next, the present invention will be described in more detail.
The present invention relates to a high-frequency low-loss dielectric material satisfying both low dielectric loss and high thermal conductivity, which is mainly composed of silicon nitride, and contains silicon nitride based on Group 3a element compound of periodic table and impurity oxygen It is a dense sintered body made of a sintered body and having a relative density of 97% or more, dielectric loss at 2 GHz and 3 GHz is lower than 2 × 10 −4 , and thermal conductivity is from 90 W · m −1 · K −1 It is characterized by being high.

本発明では、焼結体中に含有される周期律表第3a族元素化合物(RE)の割合が、酸化物換算(RE)で少なくとも16重量%であり、酸窒化ケイ素化合物結晶相を含有すること、酸窒化ケイ素化合物が、RESi7で示される化合物であること、焼結体中に含有される周期律表第3a族元素が、Yb、Y、Dy、Er、Tm、Lu又はScであること、焼結体中の粒界相が主にRE−Si−O−N化合物からなり、結晶化していること、を好ましい実施の態様としている。 In the present invention, the proportion of the Group 3a element compound (RE) in the periodic table contained in the sintered body is at least 16% by weight in terms of oxide (RE 2 O 3 ), and the silicon oxynitride compound crystal phase , The silicon oxynitride compound is a compound represented by RE 4 Si 2 N 2 O 7 , and the group 3a element of the periodic table contained in the sintered body is Yb, Y, Dy, A preferred embodiment is that it is Er, Tm, Lu, or Sc, and that the grain boundary phase in the sintered body is mainly composed of a RE-Si-O-N compound and is crystallized.

本発明に係る高周波用低損失緻密質誘電体材料は、窒化ケイ素を主成分とするものであり、窒化ケイ素以外の成分として、不純物的酸素と周期律表第3a族元素を含有するものである。ここで、不純物的酸素とは、窒化ケイ素原料中に不可避的に含まれる不純物酸素、又は意図的に添加された酸化ケイ素(SiO)を意味する。 The high-frequency low-loss dense dielectric material according to the present invention is mainly composed of silicon nitride, and contains impurity oxygen and Group 3a elements of the periodic table as components other than silicon nitride. . Here, impurity oxygen means impurity oxygen inevitably contained in the silicon nitride raw material, or intentionally added silicon oxide (SiO 2 ).

また、周期律表第3a族元素は、焼結助剤として添加される成分であり、Yb、Y、Dy、Er、Tm、Lu又はScが例示される。これらの周期律表第3a族元素は、出発原料として、酸化物換算で7モル%以上が適当で、上記不純物的酸素のSiO換算量は、RE/SiOモル比が、1〜1.5が適当である。 The group 3a element of the periodic table is a component added as a sintering aid, and examples thereof include Yb, Y, Dy, Er, Tm, Lu, or Sc. These Periodic Table Group 3a elements are suitably 7 mol% or more in terms of oxides as starting materials, and the amount of the above-mentioned impurity oxygen in terms of SiO 2 is such that the RE 2 O 3 / SiO 2 molar ratio is 1 ~ 1.5 is suitable.

この組成領域では、REとSiOの反応よる液相の生成温度が高く、この比が小さい組成のものに比べて、焼結温度近傍での液相の生成量が少なくなるために、これまで、ガス圧焼結を用いて十分に緻密化させることが困難であった。 In this composition region, the generation temperature of the liquid phase due to the reaction of RE 2 O 3 and SiO 2 is high, and the generation amount of the liquid phase in the vicinity of the sintering temperature is reduced compared to the composition having a small ratio. Until now, it has been difficult to achieve sufficient densification using gas pressure sintering.

しかしながら、本発明に係る低損失誘電体材料の作製において重要な点は、冷間静水圧プレスのプレス圧力を400MPa以上と高く設定することにより、成形体の相対密度を52%以上に上昇させることで、焼結温度付近での液相生成量が比較的少ない組成においても、コストの低いガス圧焼結で、相対密度97%以上の緻密化が達成できることを明らかにした点にある。   However, an important point in the production of the low-loss dielectric material according to the present invention is that the relative density of the molded body is increased to 52% or more by setting the press pressure of the cold isostatic press as high as 400 MPa or more. Thus, it has been clarified that, even in a composition having a relatively small amount of liquid phase generation near the sintering temperature, densification with a relative density of 97% or more can be achieved by low-pressure gas pressure sintering.

更に、本発明の低誘電損失材料においては、窒化ケイ素質焼結体中の粒界相が結晶化していることも重要である。粒界相が影響する原因として、粒界相がガラス化した場合、粒界相の誘電損失が増大することが予想される。ここで、粒界相とは、窒化ケイ素結晶相以外の部分で、主に珪素(Si)と前記周期律表第3a族元素(RE)、酸素及び窒素を含み、主にRE−Si−O−N化合物からなる。結晶相としては、RESi相を析出させることが望ましい。 Furthermore, in the low dielectric loss material of the present invention, it is also important that the grain boundary phase in the silicon nitride sintered body is crystallized. As a cause of the influence of the grain boundary phase, when the grain boundary phase is vitrified, it is expected that the dielectric loss of the grain boundary phase increases. Here, the grain boundary phase is a portion other than the silicon nitride crystal phase, and mainly contains silicon (Si), the Group 3a element (RE) of the periodic table, oxygen and nitrogen, and mainly RE-Si-O. -N compound. As the crystal phase, it is desirable to deposit the RE 4 Si 2 N 2 O 7 phase.

また、誘電損失に大きな影響を与える焼結体中の陽イオン不純物としては、焼結体中のアルミニウム(Al)が、酸化物換算量で2重量%以下であることが好ましい。一方、熱伝導率の観点からは、Al含有量がごく微量であっても、熱伝導率は著しく低下することが知られており、焼結体中のAl元素が更に低減されることが望ましい。先行技術文献によれば、わずか1モル%のAlの添加により熱伝導率が約35%低下することが報告されている。Alの存在量が0から1モル%の範囲では、熱伝導率が存在量に対し直線的に減少すると仮定して、熱伝導率の減少率が5%以内までを許容範囲と考えるならば、Alの存在量は0.1重量%以下であることが望ましい(Journal of Materials Research,第13巻(1998),pp.3473−3477)。 Moreover, as a cation impurity in a sintered compact which has a big influence on dielectric loss, it is preferable that aluminum (Al) in a sintered compact is 2 weight% or less in oxide conversion amount. On the other hand, from the viewpoint of thermal conductivity, it is known that even if the Al content is very small, it is known that the thermal conductivity is remarkably lowered, and it is desirable that the Al element in the sintered body is further reduced. . According to the prior art literature, it has been reported that the addition of only 1 mol% Al 2 O 3 reduces the thermal conductivity by about 35%. When the Al 2 O 3 abundance is in the range of 0 to 1 mol%, it is assumed that the thermal conductivity decreases linearly with respect to the abundance, and the reduction rate of the thermal conductivity is considered to be within 5%. Then, it is desirable that the amount of Al 2 O 3 is 0.1% by weight or less (Journal of Materials Research, Vol. 13 (1998), pp. 3473-3477).

本発明の低損失誘電体材料を製造する方法としては、窒化ケイ素原料に、周期律表第3a族元素の酸化物などの化合物を添加し、これを混合した後、400MPa以上の高圧の冷間静水圧プレスで成形して相対密度を52%以上にした後、Al元素の汚染がない黒鉛抵抗炉などを用いて焼成する。   As a method for producing the low-loss dielectric material of the present invention, a compound such as an oxide of a group 3a element of the periodic table is added to a silicon nitride raw material, and after mixing this, a high-pressure cold of 400 MPa or more After forming with a hydrostatic press to a relative density of 52% or more, firing is performed using a graphite resistance furnace or the like that is free from Al element contamination.

焼成は、窒素中で窒化ケイ素の分解を抑制できる条件下で焼成することが必要であり、窒素ガス圧焼結や熱間静水圧焼結法など、周知の焼成方法による。焼結温度としては、その組成によるが、1600〜2000℃の温度範囲で、相対密度97%以上が達成されるように焼成する。   Firing is required to be performed under conditions that can suppress decomposition of silicon nitride in nitrogen, and is performed by a known firing method such as nitrogen gas pressure sintering or hot isostatic pressing. As the sintering temperature, although it depends on the composition, it is fired in a temperature range of 1600 to 2000 ° C. so that a relative density of 97% or more is achieved.

以上のようにして作製される誘電体材料は、2GHzと3GHzでの高周波での誘電損失が2×10−4以下で、熱伝導率が90W・m−1・K−1以上の緻密な焼結体である。したがって、本発明の誘電体材料は、例えば、半導体製造工程などにおいて、2.45GHzでの高周波を用いてプラズマを発生させて処理を行う装置内での使用に適した材料であり、該材料を用いることで、高周波を十分に透過できるのみならず、処理材の温度分布が平坦化されて均一な反応が促進されることから、製品の歩留まりの向上が図れる。 The dielectric material produced as described above is a dense sintered material having a dielectric loss of 2 × 10 −4 or less at a high frequency of 2 GHz and 3 GHz and a thermal conductivity of 90 W · m −1 · K −1 or more. It is a ligation. Therefore, the dielectric material of the present invention is a material suitable for use in an apparatus that performs processing by generating plasma using a high frequency of 2.45 GHz, for example, in a semiconductor manufacturing process. By using it, not only the high frequency can be sufficiently transmitted, but also the temperature distribution of the treatment material is flattened and the uniform reaction is promoted, so that the yield of the product can be improved.

本発明により、次のような効果が奏される。
(1)2GHzと3GHzにおける誘電損失が2×10−4以下で、かつ熱伝導率が90W・m−1・K−1以上である高熱伝導・低誘電損失の高周波用低損失緻密質誘電体材料を提供することができる。
(2)本発明の誘電体材料は、例えば、半導体製造工程などにおいて、2.45GHzでの高周波を用いてプラズマを発生させて処理を行う装置内で好適に使用される。
(3)本発明の誘電体材料を用いることで、高周波を十分に透過できるのみならず、処理材の温度分布が平坦化されて均一な反応が促進され、製品の歩留まりの向上が図れる。
(4)誘電体材料では、熱伝導率が高いことから、耐熱衝撃性に優れることが一般に予想されるが、本発明の誘電体材料を用いることで、耐熱衝撃性が改善され、部材の長寿命化や、急速な昇温や降温といったより苛酷な条件下での利用が可能となる。
(5)本発明の誘電体材料は、機械的特性に優れる窒化ケイ素を主成分とすることから、本発明の誘電体材料を用いることで、機械的特性が改善され、薄肉の部材でも強度を維持できるようになり、それにより、部材の軽量化を図ることができる。
(6)本発明の製造方法によれば、製造コストのかさむホットプレス焼結を使わないでガス圧焼結のみで誘電体材を製造でき、粒界ガラス相の結晶化のための熱処理工程が不要であることから、製造コストの低減を図ることができる。
The present invention has the following effects.
(1) Low loss dense dielectric for high frequency with high thermal conductivity and low dielectric loss having dielectric loss at 2 GHz and 3 GHz of 2 × 10 −4 or less and thermal conductivity of 90 W · m −1 · K −1 or more Material can be provided.
(2) The dielectric material of the present invention is suitably used in an apparatus that performs processing by generating plasma using a high frequency of 2.45 GHz, for example, in a semiconductor manufacturing process.
(3) By using the dielectric material of the present invention, not only can a high frequency be sufficiently transmitted, but the temperature distribution of the treatment material is flattened to promote a uniform reaction, and the yield of products can be improved.
(4) The dielectric material is generally expected to be excellent in thermal shock resistance because of its high thermal conductivity, but by using the dielectric material of the present invention, the thermal shock resistance is improved and the length of the member is increased. Use under severer conditions such as life extension and rapid temperature rise and fall is possible.
(5) Since the dielectric material of the present invention is mainly composed of silicon nitride having excellent mechanical characteristics, the mechanical characteristics are improved by using the dielectric material of the present invention, and the strength is improved even in a thin member. Thus, the weight of the member can be reduced.
(6) According to the manufacturing method of the present invention, a dielectric material can be manufactured only by gas pressure sintering without using hot press sintering, which is expensive to manufacture, and a heat treatment step for crystallization of the grain boundary glass phase is performed. Since it is not necessary, the manufacturing cost can be reduced.

次に、実施例により本発明を具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited at all by the following examples.

原料として、イミド分解法にて製造されたα率95%以上の高純度窒化ケイ素原料(遷移金属不純物総量100ppm以下)と、周期律表第3a族酸化物として、純度99.9%以上の微粉のYbを使用した。Yb粉末の添加量は、表1に示すように、0.5,1,2,3,5,7モル%の5水準とした。これらの組成となるように粉末を秤量した後、窒化ケイ素製ポットに入れ、窒化ケイ素製のボールとメタノール溶媒を用いて、回転数280rpmの遊星ボールミルにて1時間湿式混合した。 As raw materials, a high-purity silicon nitride raw material (total amount of transition metal impurities of 100 ppm or less) produced by an imide decomposition method and having an α ratio of 95% or more, and a fine powder having a purity of 99.9% or more as Group 3a oxide of the periodic table Yb 2 O 3 was used. As shown in Table 1, the amount of Yb 2 O 3 powder added was set at five levels of 0.5, 1, 2, 3 , 5, and 7 mol%. After weighing the powder so as to have these compositions, it was put in a silicon nitride pot and wet mixed in a planetary ball mill with a rotation speed of 280 rpm for 1 hour using a silicon nitride ball and a methanol solvent.

得られたスラリーを、なすフラスコに移し替え、ロータリーエバポレーターで約30分乾燥させ、その後、110℃の真空乾燥器内で24時間乾燥させた。次いで、メッシュ#60の篩がけを行った。得られた粉末をゴム袋に充填して、441MPa(4.5ton/cm)の静水圧プレスにより、直径13mmで長さ約100mmの円柱形状に成形し、焼成用試料とした。 The obtained slurry was transferred to an eggplant flask, dried by a rotary evaporator for about 30 minutes, and then dried in a vacuum dryer at 110 ° C. for 24 hours. Next, mesh # 60 was screened. The obtained powder was filled into a rubber bag, and formed into a cylindrical shape having a diameter of 13 mm and a length of about 100 mm by a hydrostatic pressure press of 441 MPa (4.5 ton / cm 2 ) to obtain a sample for firing.

比較として、118MPa(1.2ton/cm)の静水圧プレスを用いた成形体も作製し、焼成した。成形体の相対密度は、組成にもよるが、プレス圧力118MPaの場合は47〜50%であったが、プレス圧力441MPaの場合は52〜57%であり、プレス圧力118MPaの成形体に比べて、明らかに上昇していた。 As a comparison, a molded body using a 118 MPa (1.2 ton / cm 2 ) isostatic press was also produced and fired. The relative density of the molded body was 47 to 50% when the press pressure was 118 MPa, but was 52 to 57% when the press pressure was 441 MPa, depending on the composition, compared with the molded body having a press pressure of 118 MPa. Was clearly rising.

BNの詰め粉を敷き詰めたBN製の焼成るつぼに、焼成用試料を埋没させ、このるつぼを黒鉛抵抗炉にセットした。焼成は、9気圧窒素中で1900℃、3時間行って焼結体を作製した。   A firing sample was buried in a BN fired crucible covered with BN packing powder, and this crucible was set in a graphite resistance furnace. Firing was performed in 9 atm nitrogen at 1900 ° C. for 3 hours to produce a sintered body.

得られた焼結体を切断し、平面研削により、誘電特性測定用試料として、1.5mm×1.5mm×75mmの細長い角柱に加工した。また、円筒研削などを用いて、熱伝導率測定用試料として、直径9mmで厚さ3mmのペレット試料を作製した。各試料から2〜3個の測定試料をそれぞれ作製した。   The obtained sintered body was cut and processed into a 1.5 mm × 1.5 mm × 75 mm elongated prism as a dielectric property measurement sample by surface grinding. In addition, a pellet sample having a diameter of 9 mm and a thickness of 3 mm was prepared as a sample for measuring thermal conductivity by using cylindrical grinding or the like. Two to three measurement samples were prepared from each sample.

これらの試料を用いて、アルキメデス法により、かさ密度を求めた。添加したYbとSiOがそのままの相で残っているものとして、添加した助剤量から計算した理論密度でかさ密度を除することにより、相対密度を算出した。 Using these samples, the bulk density was determined by the Archimedes method. Assuming that the added Yb 2 O 3 and SiO 2 remain as they are, the relative density was calculated by dividing the bulk density by the theoretical density calculated from the added auxiliary agent amount.

誘電損失の測定は、試料を十分に乾燥させた後に、円筒空洞共振器を用いた摂動法により、2GHzと3GHzの共振周波数にて測定した。熱伝導率は、ペレット試料表面をイオンスパッタ装置で金コーティングした後に、カーボンスプレーでカーボンを被覆して、レーザーフラッシュ法により測定した。   The dielectric loss was measured at a resonance frequency of 2 GHz and 3 GHz by a perturbation method using a cylindrical cavity resonator after sufficiently drying the sample. The thermal conductivity was measured by a laser flash method after the pellet sample surface was coated with gold by an ion sputtering apparatus and then coated with carbon with a carbon spray.

いずれの測定においても、ひとつのサンプルについて、3回測定を繰り返し、3回の測定値の平均を求めた。そして、各試料の測定値は、2〜3サンプルの平均値を用いた。ただし、静水圧プレス圧力を118MPaとして成形後、焼結した試料で、相対密度が90%以下の緻密化が不十分な試料については、測定をしなかった。   In any measurement, the measurement was repeated three times for one sample, and the average of the three measurement values was obtained. And the measured value of each sample used the average value of 2-3 samples. However, measurements were not performed on samples that were sintered after being hydrostatically pressed at a pressure of 118 MPa and were insufficiently densified with a relative density of 90% or less.

X線回折により、窒化ケイ素結晶相以外の結晶相の同定を行った。静水圧プレス圧力を441MPaとして成形し、焼結した試料中心部から切出した試料をICP分析し、Yb量を定量し、Ybの重量%に換算した。以上の結果を表1に示す。 Crystal phases other than the silicon nitride crystal phase were identified by X-ray diffraction. An ICP analysis was performed on the sample cut from the center of the sintered sample, which was molded at a hydrostatic press pressure of 441 MPa, and the amount of Yb was quantified and converted to the weight percent of Yb 2 O 3 . The results are shown in Table 1.

Figure 0004831581
Figure 0004831581

表1から明らかなように、静水圧プレス圧力が441MPaの試料は、プレス圧力が118MPaの試料に比べて、いずれの組成においても高い相対密度を示した。特に、Yb/SiO比が0.5以上の試料No.4、5、6の試料において、プレス圧力を441MPaとすることにより、10%程度の著しい緻密化促進効果が見られ、Yb添加量が7モル%のNo.12の試料においては、相対密度97%以上の緻密体が得られた。 As is clear from Table 1, the sample having a hydrostatic press pressure of 441 MPa showed a higher relative density in any composition than the sample having a press pressure of 118 MPa. In particular, Sample No. with a Yb 2 O 3 / SiO 2 ratio of 0.5 or more. In the samples 4, 5, and 6, when the press pressure was 441 MPa, a remarkable densification promoting effect of about 10% was observed, and the amount of Yb 2 O 3 added was 7 mol%. In the 12 samples, a dense body having a relative density of 97% or more was obtained.

焼結体のICP発光分析で得られたYb元素の存在量を酸化物換算の重量%で表した表1の値(Yb含有量)は、Yb添加量から計算される値にほぼ等しく、添加したYb元素がほぼ残っていることが確認された。 The values in Table 1 (Yb 2 O 3 content) in which the abundance of the Yb element obtained by ICP emission analysis of the sintered body is expressed in terms of weight% in terms of oxide are calculated from the Yb 2 O 3 addition amount. It was confirmed that the added Yb element remained almost equal to the value.

各試料の誘電損失を見ると、Yb添加量が最も少ない試料No.1、7の誘電損失が1〜2×10−4と小さいが、Yb添加量が1、2モル%と増加するに伴い、誘電損失は徐々に増加する傾向を示した。 Looking at the dielectric loss of each sample, the smallest sample Yb 2 O 3 amount No. Although the dielectric loss of 1 and 7 was as small as 1 to 2 × 10 −4 , the dielectric loss tended to increase gradually as the Yb 2 O 3 addition amount increased to 1 to 2 mol%.

しかし、Yb添加量が3、5モル%と増加すると、誘電損失は減少傾向を示し、Yb添加量が7モル%の試料No.12の場合、2×10−4以下の誘電損失が達成された。熱伝導率はYb/SiOの増加に従い単調に増加し、Yb添加量が7モル%の場合において、90W・m−1・K−1以上の高い熱伝導率を得ることができた。尚、他の周期律表第3a族元素化合物を用いた場合についても同様の結果が得られた。 However, when the added amount of Yb 2 O 3 is increased to 3, 5 mol%, the dielectric loss tends to decrease, and the sample No. 7 with the added amount of Yb 2 O 3 is 7 mol%. In the case of 12, a dielectric loss of 2 × 10 −4 or less was achieved. The thermal conductivity increases monotonously as Yb 2 O 3 / SiO 2 increases, and a high thermal conductivity of 90 W · m −1 · K −1 or higher is obtained when the amount of Yb 2 O 3 added is 7 mol%. I was able to. Similar results were obtained when other Group 3a element compounds of the periodic table were used.

以上詳述したとおり、本発明は、高周波用低損失誘電体材料、その製造方法及び部材に係るものであり、本発明により、2GHzと3GHzの高周波でも誘電損失が2×10−4以下の優れた特性を示すと同時に、高い熱伝導を有する低損失緻密質誘電体材料を提供することができる。本発明の高周波用低損失誘電体材料を用いることで、温度分布が均一で処理反応の均一性を保障することができ、ひいては半導体などの製品の歩留まりの向上に貢献することができる。本発明は、2GHzと3GHzにおける誘電損失が2×10−4以下で、かつ熱伝導率が90W・m−1・K−1以上である高熱伝導・低誘電損失の高周波用低損失緻密質誘電体材料及びその部材を提供するものとして有用である。 As described above in detail, the present invention relates to a high-frequency low-loss dielectric material, a manufacturing method thereof, and a member. According to the present invention, the dielectric loss is excellent at 2 × 10 −4 or less even at a high frequency of 2 GHz and 3 GHz. It is possible to provide a low-loss dense dielectric material that exhibits high thermal conductivity and at the same time. By using the high-frequency low-loss dielectric material of the present invention, the temperature distribution is uniform and the uniformity of the processing reaction can be ensured, and as a result, the yield of products such as semiconductors can be improved. The present invention is a high-frequency, low-loss, dense dielectric with high thermal conductivity and low dielectric loss that has a dielectric loss of 2 × 10 −4 or less at 2 GHz and 3 GHz and a thermal conductivity of 90 W · m −1 · K −1 or more. It is useful for providing body materials and members thereof.

Claims (7)

窒化ケイ素を主体とし、周期律表第3a族元素化合物、不純物的酸素を含有する窒化ケイ素質焼結体からなり、相対密度97%以上の緻密な焼結体であり、2GHzと3GHzにおける誘電損失が2×10−4より低く、かつ熱伝導率が90W・m−1・K−1より高い高周波用低損失誘電体材料であって、
1)焼結体中に含有される周期律表第3a族元素化合物(RE)の割合が、酸化物換算(RE )で少なくとも16重量%であり、酸窒化ケイ素化合物結晶相を含有し、2)該酸窒化ケイ素化合物が、RE Si 7 で示される化合物であることを特徴とする高周波用低損失誘電体材料。
It consists of a silicon nitride sintered body mainly composed of silicon nitride, containing a group 3a element compound of the periodic table and impurity oxygen, and is a dense sintered body having a relative density of 97% or more, and dielectric loss at 2 GHz and 3 GHz. there 2 × 10 lower than -4, and a high have low loss dielectric materials for high frequency than the thermal conductivity of 90W · m -1 · K -1,
1) The ratio of Group 3a element compound (RE) in the periodic table contained in the sintered body is at least 16% by weight in terms of oxide (RE 2 O 3 ), and contains a silicon oxynitride compound crystal phase And 2) the low-loss dielectric material for high frequency, wherein the silicon oxynitride compound is a compound represented by RE 4 Si 2 N 2 O 7 .
焼結体中の粒界相が主にRE−Si−O−N化合物からなり、結晶化している、請求項1に記載の高周波用低損失誘電体材料。   The low-loss dielectric material for high frequency according to claim 1, wherein the grain boundary phase in the sintered body is mainly composed of a RE-Si-O-N compound and is crystallized. Al含有量が、酸化物換算(Al)で0.1重量%以下である、請求項1に記載の高周波用低損失誘電体材料。 Al content, in terms of oxide is 0.1 wt% or less (Al 2 O 3), the high frequency low loss dielectric material of claim 1. 請求項1からのいずれかに記載の高周波用低損失誘電体材料からなる部材であって、電気部品の製造装置に適用される高周波透過用部材であることを特徴とする高周波透過用部材。 A member made of the high frequency low loss dielectric material according to any one of claims 1 to 3, the high frequency transmission member which is a member for radio frequency transmission to be applied to the manufacturing apparatus of the electrical components. 部材が、半導体製造装置、又は液晶製造装置に適用される高周波透過用部材である、請求項に記載の高周波透過用部材。 The high frequency transmission member according to claim 4 , wherein the member is a high frequency transmission member applied to a semiconductor manufacturing apparatus or a liquid crystal manufacturing apparatus. 請求項1に記載の材料を製造する方法であって、
周期律表第3a族元素化合物の存在量が、酸化物換算で少なくとも7モル%であり、酸化ケイ素(SiO)とのモル比(RE/SiO)が、1.0〜1.5の範囲にある出発原料を用いて、成形、焼成することにより、
1)焼結体中に含有される周期律表第3a族元素化合物(RE)の割合が、酸化物換算(RE )で少なくとも16重量%であり、酸窒化ケイ素化合物結晶相を含有し、2)該酸窒化ケイ素化合物が、RE Si 7 で示される化合物を製造することを特徴とする高周波用低損失誘電体材料の製造方法。
A method for producing the material of claim 1, comprising:
Abundance of the periodic table group 3a element compound is at least 7 mol% in terms of oxide, the molar ratio of silicon oxide (SiO 2) (RE 2 O 3 / SiO 2) is 1.0 to 1 By using a starting material in the range of .5, molding and firing ,
1) The ratio of Group 3a element compound (RE) in the periodic table contained in the sintered body is at least 16% by weight in terms of oxide (RE 2 O 3 ), and contains a silicon oxynitride compound crystal phase 2) A method for producing a low-loss dielectric material for high frequency, wherein the silicon oxynitride compound produces a compound represented by RE 4 Si 2 N 2 O 7 .
少なくとも400MPaの静水圧プレス成形により、52%以上の相対密度を有する成形体を作製し、これを焼成する、請求項に記載の高周波用低損失誘電体材料の製造方法。 The method for producing a high-frequency low-loss dielectric material according to claim 6 , wherein a molded body having a relative density of 52% or more is produced by isostatic pressing at least 400 MPa and fired.
JP2007174664A 2007-07-02 2007-07-02 Low loss dielectric material for high frequency, its manufacturing method and member Expired - Fee Related JP4831581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007174664A JP4831581B2 (en) 2007-07-02 2007-07-02 Low loss dielectric material for high frequency, its manufacturing method and member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007174664A JP4831581B2 (en) 2007-07-02 2007-07-02 Low loss dielectric material for high frequency, its manufacturing method and member

Publications (2)

Publication Number Publication Date
JP2009012994A JP2009012994A (en) 2009-01-22
JP4831581B2 true JP4831581B2 (en) 2011-12-07

Family

ID=40354351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007174664A Expired - Fee Related JP4831581B2 (en) 2007-07-02 2007-07-02 Low loss dielectric material for high frequency, its manufacturing method and member

Country Status (1)

Country Link
JP (1) JP4831581B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5120857B2 (en) * 2008-05-16 2013-01-16 独立行政法人産業技術総合研究所 Dense dielectric material for high frequency with high thermal conductivity and low dielectric loss, its manufacturing method and member

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3481779B2 (en) * 1996-06-28 2003-12-22 京セラ株式会社 Low loss dielectric material for high frequency
JPH10134956A (en) * 1996-10-31 1998-05-22 Kyocera Corp Material for high frequency wave introduction window
JPH11100273A (en) * 1997-09-26 1999-04-13 Denki Kagaku Kogyo Kk Silicon nitride sintered compact, its production and circuit board
JP3797905B2 (en) * 2000-10-27 2006-07-19 株式会社東芝 Silicon nitride ceramic substrate, silicon nitride ceramic circuit substrate using the same, and manufacturing method thereof
JP2003327474A (en) * 2003-05-19 2003-11-19 Toshiba Corp High thermal conductivity silicon nitride structural member and package for semiconductor
JP4556162B2 (en) * 2004-03-11 2010-10-06 日立金属株式会社 Silicon nitride-based sintered body, method for producing the same, and circuit board using the same

Also Published As

Publication number Publication date
JP2009012994A (en) 2009-01-22

Similar Documents

Publication Publication Date Title
KR101757069B1 (en) Alumina composite ceramic composition and method of manufacturing the same
Lei et al. Phase evolution and near-zero shrinkage in BaAl2Si2O8 low-permittivity microwave dielectric ceramics
Tong et al. Low-temperature synthesis/densification and properties of Si2N2O prepared with Li2O additive
JP5120857B2 (en) Dense dielectric material for high frequency with high thermal conductivity and low dielectric loss, its manufacturing method and member
Ding et al. Low-temperature-sintering characteristic and microwave dielectric properties of (Zn0. 7Mg0. 3) TiO3 ceramics with LBSCA glass
Wang et al. Low-Temperature Sintering Li 3 Mg 1.8 Ca 0.2 NbO 6 Microwave Dielectric Ceramics with LMZBS Glass
Li et al. Effect of magnesium titanate content on microstructures, mechanical performances and dielectric properties of Si3N4-based composite ceramics
JP2021116202A (en) Hexagonal boron nitride powder, and sintered body raw material composition
JPH10194824A (en) Zirconia-containing alumina sintered compact
JP2003112963A (en) Alumina sintered compact, and production method therefor
JP4831581B2 (en) Low loss dielectric material for high frequency, its manufacturing method and member
Qi et al. Effects of Bi2O3–ZnO–B2O3–SiO2 glass addition on the sintering and microwave dielectric properties of ZnZrNb2O8 ceramics for LTCC applications
JP5421092B2 (en) Alumina sintered body
JP4808837B2 (en) High frequency alumina sintered body
CN110734290A (en) silicon nitride ceramic materials and preparation method thereof
JP3481779B2 (en) Low loss dielectric material for high frequency
JP5134819B2 (en) High frequency dielectric ceramics
US5885916A (en) Dielectric material having a low dielectric loss factor for high-frequency use
JP3347516B2 (en) High frequency window material
JPH0524931A (en) Aluminum nitride sintered compact
KR102626997B1 (en) Composition for manufacturing AlN ceramics including Sc2O3 as sintering aid and the AlN ceramics and the manufacturing method of the same
CN115925401B (en) Low-dielectric silicate microwave dielectric ceramic material and preparation method thereof
JP2006008493A (en) Plasma corrosion-resistant material, manufacturing method therefor, and component using the same
JP3318471B2 (en) Window material for high frequency introduction
JP2004284830A (en) Forsterite ceramic sintered compact

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110913

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees