JPH10130728A - Production of grain oriented silicon steel sheet excellent in low magnetic field characteristic compared to high magnetic field characteristic - Google Patents

Production of grain oriented silicon steel sheet excellent in low magnetic field characteristic compared to high magnetic field characteristic

Info

Publication number
JPH10130728A
JPH10130728A JP8286720A JP28672096A JPH10130728A JP H10130728 A JPH10130728 A JP H10130728A JP 8286720 A JP8286720 A JP 8286720A JP 28672096 A JP28672096 A JP 28672096A JP H10130728 A JPH10130728 A JP H10130728A
Authority
JP
Japan
Prior art keywords
magnetic field
annealing
hot
rolling
aln
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8286720A
Other languages
Japanese (ja)
Inventor
Atsuto Honda
厚人 本田
Tetsuo Toge
哲雄 峠
Kenichi Sadahiro
健一 定広
Michiro Komatsubara
道郎 小松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP8286720A priority Critical patent/JPH10130728A/en
Priority to US08/954,504 priority patent/US6039818A/en
Priority to KR1019970053853A priority patent/KR100440994B1/en
Priority to CNB971252890A priority patent/CN1153227C/en
Priority to EP97118278A priority patent/EP0837149B1/en
Priority to DE69705688T priority patent/DE69705688T2/en
Publication of JPH10130728A publication Critical patent/JPH10130728A/en
Priority to US09/493,864 priority patent/US6331215B1/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the core loss characteristics in the low magnetic field of a steel sheet by prescribing the producing conditions in hot rolling and hot rolled sheet annealing. SOLUTION: For obtaining low magnetic field characteristics particularly required for the iron core of a small generator or the like, until hot rolling, the state of AlN is held to solid solution. and, in the temp. rising stage in hot rolled sheet annealing, AlN is precipitated. Concretely, the inlet side temp. in finish hot rolling of a slab is regulated to >=900 deg.C, and the cumulative draft of four passes in the stage before hot rolling is regulated to >=90%. In this way, the precipitation of AlN in the process of the finish rolling does not occur, and its low magnetic field characteristics are made satisfactory. Next, the hot rolled coil in which the precipitation of AlN is suppressed is subjected to hot rolled sheet annealing, and, it is the point that the temp. range is regulated to 800 to 950 deg.C, which is the lower one compared to the conventional case. Namely, in the case the annealing temp. is less than 800 deg.C, the fine precipitation of AlN in the temp. rising stage is made insufficient, and in the case of >950 deg.C, the form of AlN deteriorates, and secondary recrystallization is made unstable to deteriorate its magnetic properties.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、変圧器や発電機
の鉄心に利用される方向性電磁鋼板、中でも小型発電機
の鉄心やEIコアなど、高磁場特性よりも低磁場特性に
優れることが必要とされる用途に供して好適な方向性電
磁鋼板の有利な製造方法に関するものである。
The present invention relates to a grain-oriented electrical steel sheet used for an iron core of a transformer or a generator, and more particularly to an iron core of a small generator or an EI core, which is superior in a low magnetic field characteristic to a high magnetic field characteristic. The present invention relates to an advantageous method for producing a grain-oriented electrical steel sheet suitable for required applications.

【0002】[0002]

【従来の技術】Siを含有し、かつ結晶方位が(110) 001
方位や(100) 001 方位に配向した方向性電磁鋼板は、優
れた軟磁気特性を有することから商用周波数域での各種
鉄心材料として広く使用されている。この種電磁鋼板に
要求される特性としては、特に鉄損(一般に50Hzの周波
数で 1.7Tに磁化させた時の損失であるW17/50(W/kg)
で表わされる)が低いことが重要である。
2. Description of the Related Art Si is contained and the crystal orientation is (110) 001
Oriented electrical steel sheets oriented in the orientation and the (100) 001 orientation are widely used as various iron core materials in the commercial frequency range because of their excellent soft magnetic properties. The characteristics required of this type of electromagnetic steel sheet include, in particular, iron loss (generally, W 17/50 (W / kg), which is the loss when magnetized to 1.7 T at a frequency of 50 Hz).
Is important.

【0003】ところで、大型変圧器の鉄心や巻鉄心で
は、W17/50 の値が低い材料は実機の鉄損特性にも優れ
ている結果を得ている。しかしながら、小型発電機の鉄
心や小型変圧器であるEIコアなどでは、鋼板内部を流
れる磁束が複雑な場合、材料のW17/50 の値と実機の鉄
損特性が一致しないという問題があった。近年、エネル
ギー危機の進行に伴い、変圧器中で無駄に失われるエネ
ルギーの低減が要求され、実機の鉄損を低減する努力が
なされている最中、上記したように材料のW17/50 では
正当な材料評価をなし得ないことから、材料の選定にし
ばしば困難を来していた。
[0003] In the iron core and wound iron core of a large transformer, a material having a low value of W17 / 50 has obtained a result that the iron loss characteristic of an actual machine is excellent. However, in the case of the iron core of a small generator or the EI core which is a small transformer, when the magnetic flux flowing inside the steel plate is complicated, there is a problem that the W17 / 50 value of the material does not match the iron loss characteristic of the actual machine. . In recent years, with the progress of the energy crisis, reduction of energy wasted in transformers has been required, and while efforts have been made to reduce iron loss in actual equipment, as described above, W 17/50 The inability to make a valid material evaluation has often led to difficulties in selecting materials.

【0004】一般に、材料の鉄損を低減する方法として
は、渦電流損の低減に有効なSiを含有させて電気抵抗を
高める方法、鋼板板厚を薄くする方法、結晶粒径を小さ
くする方法、さらには結晶方位の集積度を高めて磁束密
度を向上させる方法等が知られている。このうち磁束密
度を向上させる方法は、これまでよく研究されていて、
例えば特公昭51−2290号公報には、鋼中にインヒビター
成分としてAlを添加し、1300℃以上の高温でスラブ加熱
したのち、熱間仕上げ圧延を高温短時間で行い、980 ℃
以上の温度で熱間圧延を終了する技術が、また、特公昭
46-23820号公報には、鋼中にAlを添加し、熱間圧延後、
1000〜1200℃の高温の熱延板焼鈍とそれに伴う急冷処理
によって微細なAlNを析出させたのち、80〜95%の高圧
下率を施す技術が開示され、これによってB10にして1.
95Tという極めて高い磁束密度の材料が得られるように
なった。しかしながら、W17/50 の低減の際に従来通常
追究されてきたかかる結晶方位を揃えて磁束密度を向上
させる手法は、これら小型発電機の鉄心やEIコアの鉄
損特性を向上させるには有効とはいえなかった。
In general, methods for reducing iron loss of a material include a method of increasing electric resistance by containing Si effective for reducing eddy current loss, a method of reducing the thickness of a steel sheet, and a method of reducing a crystal grain size. Further, there is known a method of improving the magnetic flux density by increasing the degree of integration of the crystal orientation. Among them, the method of improving the magnetic flux density has been well studied so far,
For example, in Japanese Patent Publication No. 51-2290, Al is added as an inhibitor component to steel, and slab heating is performed at a high temperature of 1300 ° C. or more, and hot finish rolling is performed at a high temperature for a short time at 980 ° C.
The technology to end hot rolling at the above temperature
No. 46-23820, Al is added to steel, after hot rolling,
1000-1200 After precipitating fine AlN hot hot-rolled sheet annealing of ℃ and by quenching associated therewith, discloses a technique for performing high pressure ratio of 80% to 95%, whereby in the B 10 1.
A material having an extremely high magnetic flux density of 95T can be obtained. However, the technique of improving the magnetic flux density by aligning the crystal orientation, which has been conventionally pursued when reducing the W17 / 50 , is effective in improving the iron loss characteristics of the iron core and EI core of these small generators. I couldn't say.

【0005】また、磁束密度を向上させる手法にかわる
ものとして、Si含有量を増加させる方法、鋼板板厚を薄
くする方法、結晶粒径を小さくする方法を検討したが、
このうちSi含有量を増加させる方法については、Siを過
度に含有させると圧延性や加工性を劣化させるので好ま
しくなく、限界があり、また鋼板板厚を薄くする方法も
極端な製造コストの増大を招くことから限界があった。
As alternatives to the technique for improving the magnetic flux density, a method of increasing the Si content, a method of reducing the thickness of the steel sheet, and a method of reducing the crystal grain size have been studied.
Among them, the method of increasing the Si content is not preferable because excessively containing Si deteriorates the rollability and workability, so there is a limit, and the method of reducing the thickness of the steel sheet also extremely increases the production cost. There was a limit from inviting.

【0006】[0006]

【発明が解決しようとする課題】この発明は、上述した
現状に鑑み開発されたもので、材料特性を正当に評価し
得る指標を見出すと共に、小型発電機の鉄心やEIコア
に必要とされる高磁場特性に比較して低磁場特性に優れ
た方向性電磁鋼板の有利な製造方法を提案することを目
的とする。
SUMMARY OF THE INVENTION The present invention has been developed in view of the above-mentioned situation, and finds an index capable of properly evaluating material properties, and is required for an iron core and an EI core of a small generator. An object of the present invention is to propose an advantageous method for manufacturing a grain-oriented electrical steel sheet having excellent low magnetic field characteristics as compared with high magnetic field characteristics.

【0007】[0007]

【課題を解決するための手段】以下、この発明の解明経
緯について説明する。さて、発明者らは、実機の小型発
電機の鉄心やEIコアの鉄損について材料評価のよい指
標を検討したところ、表1に示すように高磁場での鉄損
特性に比較して低磁場での鉄損特性が良好なこと、すな
わち(W10/50 /W17/50 )比の値と実機の特性とがよ
い相関を有することを見出した。この理由は、実機の場
合、鋼板内を流れる磁束の分布が不均一であるため、低
磁場における鉄損がより重要で、高磁場鉄損の方はむし
ろ逆に高い方が実機全体における磁束の流れがより均一
化する方向に改善され、結果的に実機の鉄損が効果的に
低減されることになるためと考えられる。
The details of the invention will be described below. The present inventors have examined good indexes for material evaluation with respect to the iron loss of the iron core of the actual small generator and the iron loss of the EI core. As shown in Table 1, compared with the iron loss characteristics at the high magnetic field, the low magnetic field Was found to be good, that is, the value of the (W 10/50 / W 17/50 ) ratio and the characteristics of the actual machine had a good correlation. The reason for this is that, in the case of the actual machine, the distribution of magnetic flux flowing in the steel sheet is not uniform, so iron loss in a low magnetic field is more important. It is considered that the flow is improved in a direction to make the flow more uniform, and as a result, the iron loss of the actual machine is effectively reduced.

【0008】[0008]

【表1】 [Table 1]

【0009】次に、かかる良好な実機特性が得られた材
料a,bの組織について調査したところ、結晶組織が細
粒となっていることが判明した。従来から、鉄損の低減
には結晶粒径が小さい方が有利であるという知識はあっ
ても、その全てが材料のW17/50 低減に関する研究であ
って、EIコア等の鉄損を低減するといった実機特性向
上の観点、すなわちW17/50 を増加し、W10/50やW
10/50 /W17/50 比を低減するといった観点からいかに
製造方法を制御すべきかという研究は皆無であった。
Next, when the structure of the materials a and b from which such good actual machine characteristics were obtained was investigated, it was found that the crystal structure was fine. Conventionally, although there is a knowledge that a smaller crystal grain size is more advantageous for reducing iron loss, all of them are research on W17 / 50 reduction of materials and reduce iron loss of EI cores and the like. To improve the characteristics of the actual machine, that is, increase W 17/50, and increase W 10/50 and W
There has been no research on how to control the production method from the viewpoint of reducing the ratio of 10/50 / W 17/50 .

【0010】この点、発明者らは、鋭意研究の末、W
17/50 を増加し、かつW10/50 を低減する、すなわちW
17/50 /W10/50 比を低減するためには、熱間圧延およ
びそれに引き続く熱延板焼鈍を制御することによってイ
ンヒビターを微細分散させ、かつ仕上げ焼鈍時の2次再
結晶までこの形態を変化させないことが重要であること
を新たに見出し、この発明を完成させたものである。
[0010] In this regard, the present inventors have conducted intensive research and have found that W
Increase 17/50 and reduce W 10/50 , ie W
In order to reduce the 17/50 / W 10/50 ratio, the inhibitor is finely dispersed by controlling hot rolling and subsequent hot-rolled sheet annealing, and this form is formed until secondary recrystallization at the time of finish annealing. It has been newly found that it is important not to change, and the present invention has been completed.

【0011】すなわち、この発明は、C:0.0050〜0.07
0 wt%、Si:1.50〜7.0 wt%、Mn:0.03〜0.15wt%、A
l:0.005 〜0.017 wt%、Sb:0.0010〜0.080 wt%およ
びN:0.0030〜0.010 wt%を含有する組成になる溶鋼
を、連続鋳造によりスラブとし、ついで1300℃以下に加
熱したのち、熱間圧延し、熱延板焼鈍後、1回または中
間焼鈍を含む2回の冷間圧延で最終板厚としたのち、脱
炭焼鈍ついで最終仕上げ焼鈍を施す一連の工程によって
方向性電磁鋼板を製造するに際し、仕上げ熱延入側温
度:900 ℃以上、仕上げ熱延前段4パスの累積圧下率:
90%以上の条件で仕上げ熱延を施すと共に、 800〜950
℃の温度域で熱延板焼鈍を施し、さらに脱炭焼鈍時の昇
温過程および均熱過程における水素分圧に対する水蒸気
分圧の比P(H20)/P(H2)を調整し、均熱過程におけるP
(H20)/P(H2)を 0.7未満とする一方、昇温過程における
P(H20)/P(H2)は均熱過程におけるそれよりも低い値に
設定することを特徴とする、高磁場特性に比較して低磁
場特性に優れた方向性電磁鋼板の製造方法である。
That is, the present invention provides a method for producing C: 0.0050 to 0.07.
0 wt%, Si: 1.50-7.0 wt%, Mn: 0.03-0.15 wt%, A
l: A molten steel having a composition containing 0.005 to 0.017 wt%, Sb: 0.0010 to 0.080 wt% and N: 0.0030 to 0.010 wt% is converted into a slab by continuous casting, and then heated to 1300 ° C or lower, and then hot-rolled. Then, after the hot-rolled sheet annealing, one or two times of cold rolling including intermediate annealing is performed to obtain a final sheet thickness, and then a decarburizing annealing and a final finishing annealing are performed in a series of steps to produce a grain-oriented electrical steel sheet. , Finish hot rolling entry side temperature: 900 ° C or more, Cumulative rolling reduction of 4 passes before finishing hot rolling:
Finish hot rolling at 90% or more, and 800-950
℃ subjected to hot rolled sheet annealing in the temperature range of the ratio P (H 2 0) of the steam partial pressure to hydrogen partial pressure in the further heating process and soaking process during decarburization / P (H 2) to adjust the , P in the soaking process
(H 2 0) / P (H 2 ) is set to less than 0.7, while P (H 2 0) / P (H 2 ) in the heating process is set to a lower value than that in the soaking process. This is a method for producing a grain-oriented electrical steel sheet having excellent low magnetic field characteristics as compared to high magnetic field characteristics.

【0012】この発明では、スラブ成分として、さらに
B:0.0001〜0.0020wt%、Ti:0.0005〜0.0020wt%およ
びNb:0.0010〜0.010 wt%のうちから選んだ少なくとも
一種を含有させることができる。
In the present invention, at least one selected from the group consisting of 0.0001 to 0.0020 wt% of B, 0.0005 to 0.0020 wt% of Ti and 0.0010 to 0.010 wt% of Nb can be further contained as a slab component.

【0013】また、この発明では、連続鋳造時に電磁攪
拌処理を施すことが好ましい。
Further, in the present invention, it is preferable to perform electromagnetic stirring during continuous casting.

【0014】[0014]

【発明の実施の形態】以下、この発明を由来するに至っ
た実験結果について説明する。表2に示す各種スラブの
うち、Aの成分組成になるスラブを、1200℃に加熱し、
熱間粗圧延によりシートバー厚:25〜50mmとしたのち、
仕上圧延機入側温度を950 ℃として、仕上圧延機前段4
パスの累積圧下率を種々に変化させ、7パスで2.5 mm厚
とした。このコイルを、 900℃, 1min の熱延板焼鈍
後、タンデム圧延機によって0.34mm厚に冷間圧延した。
ついで脱脂処理後、 850℃, 2分間の脱炭焼鈍を行っ
た。このとき、昇温域のP(H20)/P(H2)は0.30、均熱域
のそれは0.45とした。その後、焼鈍分離剤を塗布し、 8
00℃から1050℃までは25%N2と75%H2の混合雰囲気中
で、以後はH2単独雰囲気中で1200℃まで昇温し、そのま
ま5時間保持する最終仕上げ焼鈍を施した。これらのコ
イルはさらに40%のコロイダルシリカを含有するリン酸
マグネシウムを主成分とする絶縁コーティング処理を施
し、 800℃で焼き付け、製品とした。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, experimental results which led to the present invention will be described. Of the various slabs shown in Table 2, the slab having the component composition of A was heated to 1200 ° C.
Sheet bar thickness: 25-50mm by hot rough rolling,
Assuming that the inlet temperature of the finishing mill is 950 ° C,
The cumulative rolling reduction of the passes was changed variously, and the thickness was 2.5 mm in 7 passes. The coil was annealed at 900 ° C. for 1 min and then cold rolled to a thickness of 0.34 mm by a tandem rolling mill.
Next, after degreasing, decarburization annealing was performed at 850 ° C. for 2 minutes. At this time, P (H 2 0) / P (H 2 ) in the temperature rising region was 0.30, and that in the soaking region was 0.45. Then, apply an annealing separator,
From 00 ° C. to 1050 ° C., a final finish annealing was performed in a mixed atmosphere of 25% N 2 and 75% H 2 , and thereafter, the temperature was raised to 1200 ° C. in an atmosphere of H 2 alone and held for 5 hours. These coils were further subjected to an insulating coating treatment containing magnesium phosphate containing 40% of colloidal silica as a main component, and baked at 800 ° C. to obtain products.

【0015】[0015]

【表2】 [Table 2]

【0016】得られた各製品から圧延方向に沿ってエプ
スタインサイズの試験片を切り出し、800 ℃で3時間の
歪取焼鈍を施したのち、 1.0Tおよび 1.7Tの磁束密度
における鉄損値W10/50 、W17/50 および磁束密度B8
を測定した。さらに、各製品からEIコア用の鉄心を打
ち抜き、歪取焼鈍後、積み加工、銅線の巻加工などによ
ってEIコアを作製した。図1に、このときの製品特性
(エプスタイン特性とEI特性)を示す。同図から明ら
かなように、仕上圧延機前段4パスの累積圧下率が90%
以上の場合に、高磁場の鉄損が大きくかつ低磁場の鉄損
が低くなり、EIの鉄損値も極めて良好となった。ま
た、これらの製品の結晶組織の特徴は、結晶粒径が従来
製法のものよりも小さい点にあり、4mm未満、特に1mm
未満の微細粒が多数見られた。
An Epstein-sized test piece was cut out from each of the obtained products along the rolling direction, subjected to strain relief annealing at 800 ° C. for 3 hours, and then subjected to a core loss value W 10 at a magnetic flux density of 1.0 T and 1.7 T. / 50 , W 17/50 and magnetic flux density B 8
Was measured. Further, an EI core was manufactured by punching out an iron core for the EI core from each product, performing strain relief annealing, stacking, and winding a copper wire. FIG. 1 shows the product characteristics (Epstein characteristics and EI characteristics) at this time. As is clear from the figure, the cumulative rolling reduction of the four passes in the first stage of the finishing mill is 90%.
In the above case, the iron loss in the high magnetic field was large and the iron loss in the low magnetic field was low, and the iron loss value of EI was extremely good. Also, the feature of the crystal structure of these products is that the crystal grain size is smaller than that of the conventional production method, and is less than 4 mm, especially 1 mm.
Many fine particles having a particle size of less than 10% were found.

【0017】次に、表3に、表2中のスラブA,C,D
を用いて、熱延および熱延焼鈍条件を種々変化させて通
板し、その後は図1の場合と同様に処理したときの実験
条件と製品特性をまとめて示す。表3から明らかなよう
に、スラブ加熱温度(SRT)が1300℃以下、仕上げ圧
延入側温度(FET)が 900℃以上、仕上げ前段4パス
の圧下率が90%以上、熱延板焼鈍温度が 800〜950 ℃の
各条件を満足する場合に限り、高磁場の鉄損が大きく低
磁場の鉄損が低く、EIコアの特性が良好となってい
る。
Next, Table 3 shows slabs A, C, and D in Table 2.
The test conditions and product characteristics when hot-rolling and hot-rolling annealing conditions were variously changed and the sheet was passed through the same manner as in the case of FIG. 1 are shown below. As is clear from Table 3, the slab heating temperature (SRT) is 1300 ° C or less, the finish rolling entry temperature (FET) is 900 ° C or more, the rolling reduction of the four passes before finishing is 90% or more, and the hot rolled sheet annealing temperature is Only when each condition of 800 to 950 ° C. is satisfied, the iron loss in the high magnetic field is large, the iron loss in the low magnetic field is low, and the characteristics of the EI core are good.

【0018】[0018]

【表3】 [Table 3]

【0019】そこで、次に、上述したような場合に、良
好なEI特性が得られた理由について、種々検討を加え
た結果について説明する。まず、第1にインヒビターと
してのAlNの析出方法が新規なものであり、極めて微細
かつ均一に分散できた点が挙げられる。これにより1mm
未満の結晶粒を存在させつつ安定して2次再結晶を生じ
させることができたものと考えられる。従来から行われ
ていたAlNの析出方法は、特公昭46-23820号公報に開示
されているように、熱延板焼鈍おいてAlNを固溶状態と
し、熱延板焼鈍の冷却過程で再析出させ、その際の冷延
速度を制御することによりAlNの析出サイズを制御する
方法である。これに対し、この実験で良好な結果を得た
AlNの析出方法は、熱間圧延まではAlNを固溶状態に保
ち、熱延板焼鈍の昇温過程においてAlNを析出させる斬
新な方法である。
Then, the reason why good EI characteristics were obtained in the above-described case will be described below, based on various studies. First, the method of depositing AlN as an inhibitor is novel, and it can be extremely finely and uniformly dispersed. This makes 1mm
It is considered that secondary recrystallization was able to be stably generated while having less than the crystal grains. As disclosed in Japanese Patent Publication No. 46-23820, the conventional method of precipitating AlN is to make AlN into a solid solution state in hot-rolled sheet annealing and re-precipitate in the cooling process of hot-rolled sheet annealing. This is a method of controlling the precipitation size of AlN by controlling the cold rolling speed at that time. In contrast, good results were obtained in this experiment
The method of precipitating AlN is a novel method of keeping AlN in a solid solution state until hot rolling, and precipitating AlN in the temperature rising process of hot-rolled sheet annealing.

【0020】この方法において、AlNを微細に析出させ
るためには、AlNの溶解度積を低下させるため、Al含有
量を従来の好適な値より低くし、AlNの析出温度を低下
させて熱延工程で析出しにくくし、かつ仕上げ圧延開始
温度を 900℃以上としてできるだけ高温域で圧下率をか
せぐことにより、AlNの熱間圧延での析出を抑制する必
要がある。また、熱延板焼鈍については、1150℃という
AlNの固溶を狙った従来のような高温はかえって有害で
あり、さらに昇温過程で析出した微細なAlNのオストワ
ルド成長をも抑制するためには焼鈍温度として 950℃以
下という従来は全く不適合とされていた極めて低い温度
での熱延板焼鈍が適合する結果となったのである。しか
も、かような昇温過程での微細AlNの析出にはSbの添加
が有効であり、析出核を増大させることが判明した。こ
れは、Sbの粒界偏析によりAlNの粒界析出が抑制される
ためと考えられる。
In this method, in order to precipitate AlN finely, in order to reduce the solubility product of AlN, the Al content is made lower than the conventional preferable value, the AlN precipitation temperature is lowered, and the hot rolling process is performed. It is necessary to suppress the precipitation of AlN by hot rolling by making the finish rolling start temperature at 900 ° C. or higher and increasing the rolling reduction as high as possible. For hot-rolled sheet annealing, 1150 ° C
The conventional high temperature aimed at solid solution of AlN is rather harmful, and in order to suppress the Ostwald growth of fine AlN precipitated in the temperature rise process, the conventional annealing temperature of 950 ° C or less is completely incompatible. The result was that the hot-rolled sheet annealing at an extremely low temperature, which had been performed, was suitable. In addition, it has been found that the addition of Sb is effective for the precipitation of fine AlN during such a heating process, and increases the number of precipitation nuclei. This is considered to be because the grain boundary segregation of Sb suppresses the grain boundary precipitation of AlN.

【0021】第2の革新的技術としては、2次再結晶の
ために必要な1次再結晶粒の組織の改善が挙げられる。
従来から、2次再結晶粒の急激な成長のためには、蚕食
される1次再結晶粒のサイズが均一に小さいことが好ま
しいことが知られている。ここで、1次再結晶粒のサイ
ズが増大する原因および不均一性が増大する原因として
は、熱間圧延や冷間圧延の前における結晶粒の粗大化が
原因であることも従来から良く知られていたが、熱間圧
延の前はインヒビターの固溶のために高温スラブ加熱を
行うことが必然であり、これに伴って熱間圧延前の結晶
粒径は当然増大する。また、熱延板焼鈍もインヒビター
の固溶のために高温とすることが必然であり、この処理
に伴って当然冷間圧延前の結晶粒径は増大していた。従
って、インヒビターの粒成長抑制力が弱い場合には1次
粒径は当然のこととして増大し、例えば特開平6−1728
61号公報に示されるように18〜35μm といった粗大なも
のとなっていた。
A second innovative technique involves improving the structure of primary recrystallized grains necessary for secondary recrystallization.
Conventionally, it is known that the size of the primary recrystallized grains consumed by the silkworm is preferably uniformly small for rapid growth of the secondary recrystallized grains. Here, it is well known that the cause of the increase in the size of the primary recrystallized grains and the increase in the non-uniformity are caused by coarsening of the crystal grains before hot rolling or cold rolling. However, prior to hot rolling, it is necessary to perform high-temperature slab heating to form a solid solution of the inhibitor, and accordingly, the crystal grain size before hot rolling naturally increases. In addition, the hot-rolled sheet annealing must be performed at a high temperature for the solid solution of the inhibitor, and the crystal grain size before cold rolling naturally increases with this treatment. Therefore, when the inhibitor has a weak grain growth suppressing power, the primary particle size naturally increases.
As shown in Japanese Patent Publication No. 61, it was as coarse as 18 to 35 μm.

【0022】これらの点においても、この実験で良好な
結果を得た条件は、1200℃前後という低温でのスラブ加
熱温度、 900℃前後という低温での熱延板焼鈍であるの
で、熱延、冷延の前の結晶粒の成長を抑え1次再結晶組
織の細粒化、均一化を得るためには絶好の条件であり、
画期的な技術である。
Also in these respects, the conditions under which good results were obtained in this experiment were the slab heating temperature at a low temperature of around 1200 ° C. and the hot-rolled sheet annealing at a low temperature of around 900 ° C. It is a perfect condition to suppress the growth of crystal grains before cold rolling and to refine and homogenize the primary recrystallization structure.
This is a revolutionary technology.

【0023】さらに、熱間圧延前の結晶粒を粗大化させ
ないという観点からは、鋼の鋳造組織が細かいことがよ
り効果的である。そのためには、例えば連続鋳造中に電
磁攪拌処理を施して、柱状晶の発達を抑制する方法は絶
大な効果がある。また、この観点からは、鋳造後のスラ
ブを加熱しないで直接圧延する方法も好ましい。
Further, from the viewpoint that the crystal grains before hot rolling are not coarsened, it is more effective that the steel has a fine cast structure. For that purpose, for example, a method of performing electromagnetic stirring during continuous casting to suppress the development of columnar crystals has a great effect. From this viewpoint, a method of directly rolling the slab after casting without heating is also preferable.

【0024】次に、前掲表2に示したスラブAを、1200
℃に加熱し、FET:950 ℃、仕上げ圧延前段4パス累
積圧下率:92%の条件で熱間圧延を施したのち、900 ℃
で1分間の熱延板焼鈍を施し、酸洗後、冷間タンデム圧
延機にて0.34mm厚まで冷間圧延し、脱脂後、表4に示す
種々の雰囲気条件で脱炭焼鈍を施した。ついで、これら
のコイルに、焼鈍分離剤を塗布してから、 800℃から10
50℃までは25%N2と75%H2の混合雰囲気中で、以後はH2
単独雰囲気中で1200℃まで昇温し、そのまま5時間保持
する最終仕上げ焼鈍を施した。これらのコイルはさらに
40%のコイダルシリカを含有するリン酸マグネシウムを
主成分とする絶縁コーティング処理を施し、800 ℃で焼
き付け、製品とした。
Next, the slab A shown in Table 2 above was
After heating to 950 ° C., hot rolling was performed under the conditions of FET: 950 ° C., 4-pass cumulative rolling reduction before finish rolling: 92%, and then 900 ° C.
After hot-rolled sheet annealing for 1 minute, pickling, cold rolling to a thickness of 0.34 mm with a cold tandem rolling mill, degreasing, and decarburizing annealing under various atmosphere conditions shown in Table 4. Then, after applying an annealing separator to these coils,
In a mixed atmosphere of 25% N 2 and 75% H 2 up to 50 ° C., the subsequent H 2
The temperature was raised to 1200 ° C. in a single atmosphere, and final finishing annealing was performed for 5 hours. These coils are
An insulating coating containing magnesium phosphate containing 40% colloidal silica as a main component was applied and baked at 800 ° C. to obtain a product.

【0025】得られた各製品より圧延方向に沿ってエプ
スタインサイズの試験片を切り出し、800 ℃で3時間の
歪取焼鈍を施したのち、鉄損値W10/50 ,W17/50 およ
び磁束密度B8 を測定した。さらに各製品からEIコア
用の鉄心を打ち抜き、歪取焼鈍後、EIコアを作製し、
実機鉄損を測定した。かくして得られた結果を表4に併
記する。
A specimen of Epstein size was cut out from each of the obtained products along the rolling direction, subjected to strain relief annealing at 800 ° C. for 3 hours, and then subjected to iron loss values W 10/50 , W 17/50 and magnetic flux. density B 8 were measured. Furthermore, an EI core is punched out of each product, and after the strain relief annealing, an EI core is manufactured.
The actual machine iron loss was measured. The results thus obtained are also shown in Table 4.

【0026】[0026]

【表4】 [Table 4]

【0027】同表から明らかなように、脱炭焼鈍の昇温
過程におけるP(H20)/P(H2)を均熱過程のそれよりも低
く設定すると共に、その均熱過程のP(H20)/P(H2)を
0.7未満とすることにより、高磁場特性に対して低磁場
の特性が良好で、しかもEI特性の良好なものが得られ
ることが判る。
As is clear from the table, P (H 2 0) / P (H 2 ) in the heating process of the decarburizing annealing is set lower than that in the soaking process, and P (H 2 0) / P (H 2 )
It can be seen that when the ratio is less than 0.7, the characteristics in the low magnetic field are better than those in the high magnetic field, and the EI characteristics are good.

【0028】このような磁気特性の改善機構は、次のと
おりと考えられる。前述したとおり、この発明では、ノ
ルマ昇温過程でインヒビターであるAlNを均一微細に析
出させることによって2次再結晶を安定化させ、1mm未
満の2次粒を適度に存在させるところがポイントであ
る。従って、均一微細でしかも適度なインヒビター強度
を有するAlNの析出形態が脱炭焼鈍あるいは仕上げ焼鈍
の昇温過程において変化してしまうことは、2次再結晶
における1次粒径とインヒビター強度のバランスを損ね
ることになって2次粒形態を変化させ、特に低磁場の磁
気特性を劣化させることになる。
The mechanism for improving such magnetic properties is considered as follows. As described above, the point of the present invention is to stabilize the secondary recrystallization by uniformly and finely depositing the inhibitor AlN in the process of raising the temperature of the norma, and to allow secondary grains of less than 1 mm to be appropriately present. Therefore, the fact that the precipitation form of AlN having uniform and fine and moderate inhibitor strength changes in the temperature rising process of decarburizing annealing or finish annealing is necessary to balance the primary particle size and the inhibitor strength in the secondary recrystallization. As a result, the secondary grain morphology is changed, and the magnetic properties particularly in a low magnetic field are deteriorated.

【0029】ところで、脱炭焼鈍時の雰囲気は鋼板表面
のサブスケールの構造に影響し、これが仕上げ焼鈍時の
フォルステライト形成に影響する。もし、このフォルス
テライトの形成が不均一な場合には、仕上げ焼鈍中の雰
囲気に対する保護性が劣化し、追加酸化によるAlNの分
解を招いたり、窒化が促進されることにより、AlNの形
態分布が変化し、2次再結晶挙動が変化する。この点、
この発明のように、脱炭焼鈍の昇温過程における雰囲気
酸化性を低くしてやれば、昇温過程で生成するサブスケ
ールが均熱過程で生成するサブスケールの保護性を高め
ることになって、フォルステライトを均質化し、AlNの
形態を最適に保ったまま2次再結晶を起こすことができ
るものと考えられる。このように、この発明は、熱延条
件を制御し、熱延板焼鈍の昇温過程でAlNを微細に析出
させ、後続の2次再結晶に至るまで、この形態を凍結す
べく、脱炭焼鈍条件を制御するという全く新しい技術思
想に基づくものである。
The atmosphere during the decarburizing annealing affects the structure of the subscale on the surface of the steel sheet, which affects the formation of forsterite during the final annealing. If the formation of this forsterite is non-uniform, the protection against the atmosphere during the finish annealing is deteriorated, causing the decomposition of AlN by additional oxidation or promoting the nitridation, and the morphological distribution of AlN is reduced. And the secondary recrystallization behavior changes. In this regard,
As in the present invention, if the atmosphere oxidizing property in the heating process of decarburization annealing is reduced, the sub-scale generated in the heating process will increase the protection of the sub-scale generated in the soaking process. It is considered that the stellite can be homogenized and secondary recrystallization can occur while maintaining the AlN morphology optimally. Thus, the present invention controls the hot-rolling conditions, deposits AlN finely during the heating process of hot-rolled sheet annealing, and decarburizes this form until the subsequent secondary recrystallization to freeze this form. It is based on a completely new technical idea of controlling the annealing conditions.

【0030】次に、この発明について、各構成要件の限
定理由について述べる。まず、素材の成分組成を前記の
範囲に限定した理由について説明する。 C:0.0050〜0.070 wt% C含有量が 0.070wt%を超えるとγ変態量が過剰とな
り、熱間圧延中のAlの分布が不均一となって熱延板焼鈍
の昇温過程で析出するAlNの分布も不均一となり低磁場
において良好な磁気特性が得られなくなる。一方、0.00
50wt%未満では組織の改善効果が得られず2次再結晶が
不完全となり、やはり磁気特性の劣化を招く。従って、
Cは0.0050〜0.070 wt%の範囲に限定した。
Next, the reasons for limiting each component of the present invention will be described. First, the reason why the component composition of the material is limited to the above range will be described. C: 0.0050 to 0.070 wt% If the C content exceeds 0.070 wt%, the amount of γ transformation becomes excessive, the distribution of Al during hot rolling becomes non-uniform, and AlN precipitates during the heating process of hot-rolled sheet annealing. Is not uniform, and good magnetic properties cannot be obtained in a low magnetic field. On the other hand, 0.00
If it is less than 50% by weight, the effect of improving the structure cannot be obtained and the secondary recrystallization becomes incomplete, which also leads to the deterioration of the magnetic properties. Therefore,
C was limited to the range of 0.0050 to 0.070 wt%.

【0031】Si:1.50〜7.0 wt% Siは、電気抵抗を増加させ鉄損を低減するために必須の
元素であり、このためには1.50wt%以上含有させること
が必要であるが、 7.0wt%を超えると加工性が劣化し、
製造や製品の加工が極めて困難になるので、 1.5〜7.0
wt%の範囲に限定した。
Si: 1.50 to 7.0 wt% Si is an essential element for increasing electric resistance and reducing iron loss. For this purpose, it is necessary to contain 1.50 wt% or more. %, The workability deteriorates,
It is extremely difficult to manufacture and process the product.
Limited to the wt% range.

【0032】Mn:0.03〜0.15wt% Mnも、同じく電気抵抗を高め、また製造時の熱間加工性
を向上させるので必要な元素である。この目的のために
は0.03wt%以上の含有が必要であるが、0.15wt%を超え
て含有させた場合、γ変態を誘起して磁気特性が劣化す
るので、0.03〜0.15wt%の範囲に限定した。
Mn: 0.03 to 0.15 wt% Mn is also an element necessary for increasing electric resistance and improving hot workability at the time of production. For this purpose, a content of 0.03 wt% or more is necessary. However, if the content exceeds 0.15 wt%, γ transformation is induced and magnetic properties are deteriorated. Limited.

【0033】Al:0.005 〜0.017 wt% 鋼中には上記の元素の他に、2次再結晶を誘起するため
のインヒビター成分の含有が不可欠であり、そのためイ
ンヒビター成分としてAlを 0.005〜0.017 wt%の範囲で
含有させる。ここに、Alの含有量が 0.005wt%未満の場
合、熱延板焼鈍の昇温過程において析出するAlNの量が
不足し、逆に 0.017wt%を超える場合には、1200℃前後
でのスラブの低温加熱においてのAlNの固溶が困難とな
り、またAlNの固溶温度が上昇するため熱間圧延におい
てAlNが析出し、熱延板焼鈍の昇温過程におけるAlNの
微細析出が不可能となり、低磁場での良好な鉄損特性が
得られない。従って、Alは 0.005〜0.017 wt%の範囲で
含有させるものとした。なお、上記の不備を解消するた
めに、1400℃前後の高温度でスラブ加熱を行うと、製品
の結晶粒径が粗大化し、高磁場での鉄損が低減し、低磁
場での鉄損が増大する結果となり実機の鉄損が劣化す
る。
Al: 0.005 to 0.017 wt% In addition to the above elements, the steel must contain an inhibitor component for inducing secondary recrystallization. Therefore, Al is contained as an inhibitor component in an amount of 0.005 to 0.017 wt%. Content within the range. Here, if the Al content is less than 0.005 wt%, the amount of AlN precipitated during the heating process in hot-rolled sheet annealing is insufficient, and if it exceeds 0.017 wt%, the slab at around 1200 ° C is used. It becomes difficult to form a solid solution of AlN at low temperature heating, and the solid solution temperature of AlN rises, so that AlN precipitates in hot rolling, and it becomes impossible to finely precipitate AlN in a heating process of hot-rolled sheet annealing. Good iron loss characteristics in a low magnetic field cannot be obtained. Therefore, Al was contained in the range of 0.005 to 0.017 wt%. In addition, when slab heating is performed at a high temperature of about 1400 ° C. to eliminate the above deficiencies, the crystal grain size of the product becomes coarse, iron loss in a high magnetic field is reduced, and iron loss in a low magnetic field is reduced. As a result, the iron loss of the actual machine deteriorates.

【0034】Sb:0.0010〜0.080 wt% Sbは、粒界に偏析することによって粒内へのAlNの微細
析出を促進させ、かつ2次再結晶までの間に窒化による
AlN形態の変化を抑制する有用元素であるが、0.0010未
満ではその効果に乏しく、一方 0.080wt%を超えると製
品のベンド特性などの機械的特性が劣化するので、0.00
10〜0.080 wt%の範囲で含有させるものとした。
Sb: 0.0010-0.080 wt% Sb promotes fine precipitation of AlN in the grains by segregating at the grain boundaries, and is nitrided by the time of secondary recrystallization.
It is a useful element that suppresses the change of AlN form. However, if it is less than 0.0010, its effect is poor. On the other hand, if it exceeds 0.080 wt%, mechanical properties such as bend characteristics of the product are deteriorated.
The content was set in the range of 10 to 0.080 wt%.

【0035】N:0.0030〜0.010 wt% Nは、AlNを構成する成分であるので、0.0030wt%以上
の含有が必要である。しかしながら、0.010 wt%を超え
て含有すると鋼中でガス化しフクレなどの欠陥をもたら
すので、0.0030〜0.010 wt%の範囲に限定した。
N: 0.0030 to 0.010 wt% Since N is a component constituting AlN, it must be contained in an amount of 0.0030 wt% or more. However, if the content exceeds 0.010 wt%, it gasifies in the steel and causes defects such as blisters, so the content is limited to the range of 0.0030 to 0.010 wt%.

【0036】B:0.0001〜0.0020wt%、Ti:0.0005〜0.
0020wt%、Nb:0.0010〜0.010 wt% B、TiおよびNbはいずれも、熱間圧延において微細な析
出物を形成し、次工程の熱延板焼鈍の昇温過程における
AlNの析出核を増加させる作用を有するので、必要に応
じて含有させる。かかる作用を得るためには、Bにおい
ては0.0001wt%以上、Tiにおいては0.0005wt%以上、Nb
においては0.0010wt%以上の含有を必要とする。ただ
し、Bにおいては0.0020wt%を超えて含有した場合、Ti
においては0.0020wt%を超えて含有した場合、Nbにおい
ては 0.010wt%を超えて含有した場合には、製品のベン
ド特性など機械的特性が劣化させるので、それぞれ上記
の各範囲で含有させる必要がある。
B: 0.0001 to 0.0020 wt%, Ti: 0.0005 to 0.
0020 wt%, Nb: 0.0010-0.010 wt% B, Ti and Nb all form fine precipitates in hot rolling, and are used in the subsequent process of raising the temperature of hot-rolled sheet annealing.
Since it has the effect of increasing the precipitation nuclei of AlN, it is contained as necessary. In order to obtain such an effect, the content of B is 0.0001% by weight or more, the content of Ti is 0.0005% by weight or more,
Requires a content of 0.0010 wt% or more. However, if the content of B exceeds 0.0020 wt%, Ti
If the content exceeds 0.0020 wt% in Nb, and if the content exceeds 0.010 wt% in Nb, the mechanical properties such as the bend characteristics of the product will be deteriorated. is there.

【0037】その他の元素について述べると、SnやCr
は、Sbと同様な働きを有するので鋼中に随時添加するこ
とができ、このための好適量は0.0010〜0.30wt%であ
る。また、Moの添加などは鋼板の表面性状を改善する効
果があるので、適宜含有させることも可能である。
As for other elements, Sn and Cr
Has a function similar to that of Sb and can be added to steel at any time, and a preferable amount for this is 0.0010 to 0.30 wt%. Since addition of Mo and the like has the effect of improving the surface properties of the steel sheet, it can be appropriately contained.

【0038】次に、製造条件の限定理由について説明す
る。 スラブ加熱温度:1300℃以下 1300℃を超える温度でスラブ加熱を行った場合、製品結
晶粒のうち1mm以下の細粒が減少して粗大粒が増加する
ため、低磁場での鉄損が劣化する。従って、良好な結晶
粒分布と低磁場特性を得るためにはスラブ加熱温度を13
00℃以下とする必要がある。さらに近年、スラブ加熱を
行わずに連続鋳造後、直接熱間圧延を行う方法が開発さ
れているが、この方法はスラブ温度が上昇しないので、
この発明法に適した方法といえる。
Next, the reasons for limiting the manufacturing conditions will be described. Slab heating temperature: 1300 ° C or less When slab heating is performed at a temperature exceeding 1300 ° C, fine grains of 1 mm or less in product crystal grains decrease and coarse grains increase, resulting in deterioration of iron loss in a low magnetic field. . Therefore, in order to obtain good crystal grain distribution and low magnetic field characteristics, the slab heating temperature must be 13
It is necessary to be lower than 00 ° C. Furthermore, in recent years, a method of performing direct hot rolling after continuous casting without performing slab heating has been developed, but since this method does not increase the slab temperature,
It can be said that this method is suitable for the method of the present invention.

【0039】仕上げ熱延入側温度:900 ℃以上 仕上げ圧延入側温度が 900℃を下回ると、仕上げ圧延中
にAlNの析出が生じてしまい、磁気特性が劣化するの
で、仕上げ熱延入側温度は 900℃以上とする必要があ
る。
Temperature of finishing hot-rolling side: 900 ° C. or more If the temperature of finishing hot-rolling side is lower than 900 ° C., precipitation of AlN occurs during finish rolling and magnetic properties are deteriorated. Must be at least 900 ° C.

【0040】仕上げ熱延前段4パスの累積圧下率:90%
以上 仕上げ圧延は通常4〜10パスで行われるが、この発明で
は、前掲図1に示したように、前段4パスの累積圧下率
が90%以上の場合に、仕上げ圧延中におけるAlNの析出
が生ぜず、低磁場特性が良好となるので、仕上げ熱延前
段4パスについてその累積圧下率を90%以上に規定し
た。なお、仕上げ熱延出側温度(FDT)は特に規定し
ないが、750 ℃を下回ると圧延が困難となるので 750℃
以上が好ましい。また、巻取り温度(CT)も特に規定
しないが、500 ℃を下回ると巻取り性が劣化するので、
500 ℃以上とすることが有利である。
Cumulative rolling reduction of 4 passes before finishing hot rolling: 90%
Although the finish rolling is usually performed in 4 to 10 passes, according to the present invention, as shown in FIG. 1, when the cumulative rolling reduction in the preceding 4 passes is 90% or more, the precipitation of AlN during the finish rolling is reduced. Since the low magnetic field characteristics are not improved and the low magnetic field characteristics are improved, the cumulative rolling reduction of the four passes before the finishing hot rolling is specified to be 90% or more. The finish hot-rolling temperature (FDT) is not particularly specified, but if it is lower than 750 ° C, it becomes difficult to perform rolling.
The above is preferred. Also, the winding temperature (CT) is not particularly specified, but if the temperature is lower than 500 ° C, the winding property deteriorates.
Advantageously, it is above 500 ° C.

【0041】熱延板焼鈍温度:800 〜950 ℃ 上記したような制御圧延によって、熱間圧延でのAlNの
析出を抑制した熱延コイルに熱延板焼鈍を施すが、この
熱延板焼鈍を従来に比べると極めて低い温度で行う点が
この発明のポイントである。ここに、焼鈍温度が 800℃
に満たないと昇温過程におけるAlNの微細析出が不十分
となり、一方 950℃を超えるとAlNの形態が劣化し、2
次再結晶が不安定となって磁気特性が劣化するので、熱
延板焼鈍は 800〜950 ℃の温度範囲で行うものとした。
Hot rolled sheet annealing temperature: 800 to 950 ° C. By the above-described controlled rolling, hot rolled sheet annealing is performed on a hot rolled coil in which AlN precipitation is suppressed during hot rolling. The point of the present invention is that the operation is performed at an extremely low temperature as compared with the related art. Here, the annealing temperature is 800 ℃
If the temperature is lower than 950 ° C., fine precipitation of AlN during the heating process becomes insufficient.
Since the secondary recrystallization becomes unstable and the magnetic properties deteriorate, the annealing of the hot-rolled sheet was performed at a temperature in the range of 800 to 950 ° C.

【0042】ついで、1回または中間焼鈍を含む2回の
冷間圧延を施して最終板厚に仕上げる。この時、冷間圧
延はタンデム圧延でもゼンジマー圧延でも良いが、生産
性の観点からはタンデムによる圧延が好ましい。
Then, cold rolling is performed once or twice including intermediate annealing to finish to a final thickness. At this time, the cold rolling may be tandem rolling or sendzimer rolling, but tandem rolling is preferable from the viewpoint of productivity.

【0043】 均熱過程におけるP(H20)/P(H2):0.7 未満 昇温過程におけるP(H20)/P(H2):均熱過程よりも低い
値 この発明では、冷間圧延に引き続く脱炭焼鈍も重要なポ
イントである。均熱過程におけるP(H20)/P(H2)が 0.7
以上になると光沢のある美麗で灰色の均一なフォルステ
ライト被膜が得られず、ひいては良好な磁気特性が得ら
れない。また、昇温過程におけるP(H20)/P(H2)が均熱
過程のそれより高い場合には、仕上げ焼鈍時のフォルス
テライトによる保護性が劣化し、2次再結晶前にインヒ
ビター形態が変化し、十分な量の1mm以下の2次粒が得
られないため、低磁場特性が劣化する。このため、昇温
過程におけるP(H20)/P(H2)を均熱過程のそれより低く
(好ましくは0.05以上) すると共に、均熱過程における
P(H20)/P(H2)を 0.7未満(好ましくは 0.3以上)に制
限したのである。
P (H 2 0) / P (H 2 ) in the soaking process: less than 0.7 P (H 2 0) / P (H 2 ) in the heating process: a value lower than that in the soaking process Decarburizing annealing following cold rolling is also an important point. P (H 2 0) / P (H 2 ) in the soaking process is 0.7
Above this, a beautiful glossy and uniform gray forsterite film cannot be obtained, and good magnetic properties cannot be obtained. Also, if P (H 2 0) / P (H 2 ) in the heating process is higher than that in the soaking process, the protection by the forsterite at the time of finish annealing is deteriorated, and the inhibitor before secondary recrystallization. Since the morphology changes and a sufficient amount of secondary particles of 1 mm or less cannot be obtained, the low magnetic field characteristics deteriorate. For this reason, P (H 20 ) / P (H 2 ) in the heating process is set lower (preferably 0.05 or more) than that in the soaking process, and P (H 20 ) / P (H (H)) in the soaking process. 2 ) was limited to less than 0.7 (preferably 0.3 or more).

【0044】その後、焼鈍分離剤を塗布したのち、最終
仕上げ焼鈍を施して2次再結晶させる。最終仕上げ焼鈍
は、1200℃前後の高温まで昇温して、純化とフォルステ
ライト質の下地被膜を形成させることが好ましい。その
後、鋼板表面に絶縁コーティングを施して製品とする
が、コーティング前後に鋼板表面の鏡面化処理を施して
もよい。また、絶縁コーティングとして張力コーティン
グを用いても良い。
After that, after applying an annealing separating agent, a final finishing annealing is performed to perform secondary recrystallization. In the final finish annealing, it is preferable to raise the temperature to a high temperature of about 1200 ° C. so as to purify and form a forsterite base coat. Thereafter, the steel sheet surface is coated with an insulating coating to obtain a product, but the steel sheet surface may be subjected to a mirror finishing treatment before and after the coating. Further, a tension coating may be used as the insulating coating.

【0045】[0045]

【実施例】【Example】

実施例1 前掲表2に示したA〜Mの成分組成になる溶鋼を、電磁
攪拌しつつ連続鋳造によってスラブとし、1180℃に加熱
後、粗5パスで45mm厚のシートバーとし、FET:950
℃で7パスの仕上げ熱延によって 2.2mm厚まで熱延し
た。その際、仕上げ前段4パスの累積圧下率を93%とし
た。ついで、得られた熱コイルを、 900℃, 1min の熱
延板焼鈍後、タンデム圧延機にて0.34mm厚まで冷間圧延
した。ついで、脱炭焼鈍を施したが、その際、昇温過程
のP(H20)/P(H2)を0.45とし、均熱過程のそれを0.50と
して、820 ℃で焼鈍した。その後、焼鈍分離剤を塗布し
てから、昇温時 700℃まではN2単独の雰囲気中で、つい
で 950℃までは25%N2と75%H2の混合雰囲気中で、以後
はH2単独雰囲気中で1100℃まで昇温後、5h保持する最
終仕上げ焼鈍を施した。その後、絶縁コーティングを施
して製品とした。
Example 1 Molten steel having the component composition of A to M shown in Table 2 above was formed into a slab by continuous casting while being electromagnetically stirred, heated to 1180 ° C, formed into a 45 mm thick sheet bar with five coarse passes, and FET: 950.
The sample was hot-rolled at 2.2 ° C. to a thickness of 2.2 mm by 7-pass finishing hot rolling. At that time, the cumulative draft of the four passes before finishing was set to 93%. Then, the obtained hot coil was annealed at 900 ° C. for 1 minute, and then cold rolled to a thickness of 0.34 mm by a tandem rolling mill. Then, decarburization annealing was performed. At that time, P (H 20 ) / P (H 2 ) in the temperature raising process was set to 0.45, and that in the soaking process was set to 0.50, and annealing was performed at 820 ° C. Thereafter, after applying an annealing separator, the temperature is raised in an atmosphere of N 2 alone up to 700 ° C., then in a mixed atmosphere of 25% N 2 and 75% H 2 up to 950 ° C., and thereafter H 2 After the temperature was raised to 1100 ° C. in a single atmosphere, final finishing annealing was performed for 5 hours. Thereafter, an insulating coating was applied to obtain a product.

【0046】得られた各製品板からエプスタイン試験片
とEIコア用鉄心を打ち抜き、これらの鉄損特性を評価
した。得られた結果を表5に示す。同表から明らかなよ
うに、この発明に従い得られた方向性電磁鋼板は、高磁
場特性に比較して低磁場での鉄損特性に優れており、ま
た実機の鉄損も良好であった。
An Epstein test piece and an iron core for an EI core were punched from each of the obtained product plates, and the iron loss characteristics thereof were evaluated. Table 5 shows the obtained results. As is clear from the table, the grain-oriented electrical steel sheet obtained according to the present invention was excellent in iron loss characteristics in a low magnetic field as compared with high magnetic field characteristics, and also had good iron loss in an actual machine.

【0047】[0047]

【表5】 [Table 5]

【0048】実施例2 表2中、Hの成分組成の溶鋼を、電磁攪拌しつつ連続鋳
造によってスラブとし、1230℃に加熱後、粗5パスで45
mm厚のシートバーとし、FET:930 ℃で6パスの仕上
げ熱延により 2.1mm厚まで熱延した。その際、仕上げ前
段4パスの累積圧下率を種々に変化させた。ついで、得
られた熱延コイルを、 900℃, 1min の熱延板焼鈍後、
タンデム圧延機にて0.26mm厚まで冷間圧延した。つい
で、脱炭焼鈍を施すに当たり、昇温過程のP(H20)/P(H
2)と均熱過程のそれとを種々に変化させ、820 ℃で焼鈍
した。その後、焼鈍分離剤を塗布してから、昇温時 700
℃まではN2単独の雰囲気中で、ついで 950℃までは25%
N2と75%H2の混合雰囲気中で、以後はH2単独雰囲気中で
1080℃まで昇温後5h保持する最終仕上げ焼鈍を施し
た。その後、絶縁コーティングを施して製品とした。
Example 2 In Table 2, molten steel having a composition of H was formed into a slab by continuous casting while being electromagnetically stirred, heated to 1230 ° C., and then subjected to 45 coarse passes in 5 passes.
The sheet bar was formed into a sheet bar having a thickness of 2 mm, and the FET was hot-rolled to a thickness of 2.1 mm at 930 ° C. by 6-pass finishing hot rolling. At that time, the cumulative draft of the four passes before the finishing was varied in various ways. Then, the obtained hot rolled coil was annealed at 900 ° C. for 1 min.
It was cold rolled to a thickness of 0.26 mm by a tandem rolling mill. Next, in performing decarburization annealing, P (H 2 0) / P (H
2 ) and that of the soaking process were variously changed, and annealing was performed at 820 ° C. Then, apply an annealing separator, and then
Until ° C. in an atmosphere of N 2 alone, then up to 950 ° C. 25%
In a mixed atmosphere of N 2 and 75% H 2, then in an atmosphere of H 2 alone
After the temperature was raised to 1080 ° C., final finishing annealing was performed for 5 hours. Thereafter, an insulating coating was applied to obtain a product.

【0049】得られた製品板からエプスタイン試験片と
EIコア用鉄心を打ち抜き、これらの鉄損特性を評価し
た。得られた結果を表6に示す。同表から明らかなよう
に、この発明法に従って得られた方向性電磁鋼板は、高
磁場特性に比較して低磁場での鉄損特性に優れており、
また実機の鉄損も良好であった。
An Epstein test piece and an iron core for an EI core were punched from the obtained product plate, and the iron loss characteristics thereof were evaluated. Table 6 shows the obtained results. As is clear from the table, the grain-oriented electrical steel sheet obtained according to the present invention method is superior in iron loss characteristics in a low magnetic field as compared with high magnetic field characteristics,
The iron loss of the actual machine was also good.

【0050】[0050]

【表6】 [Table 6]

【0051】実施例3 表2中、Fの成分組成になる溶鋼を、電磁攪拌しつつ連
続鋳造でスラブとし、1180℃に加熱後、粗5パスで45mm
厚のシートバーとしたのち、FET:950 ℃で6パスの
仕上げ熱延にて2.4mm 厚まで熱延した。その際、仕上げ
前段4パスの累積圧下率を種々に変化させた。ついで、
得られた熱延コイルを、 900℃, 1minの熱延板焼鈍
後、タンデム圧延機にて0.49mm厚まで冷間圧延した。つ
いで、脱炭焼鈍を施すに当たり、昇温過程のP(H20)/P
(H2)と均熱過程のそれとを種々変化させ、840 ℃で焼鈍
した。その後、焼鈍分離剤を塗布してから、昇温時 500
℃まではN2単独の雰囲気中で、ついで1000℃までは25%
N2と75%H2の混合雰囲気中で、以後はH2単独雰囲気中で
1150℃まで昇温後5h保持する最終仕上げ焼鈍を施し
た。その後、絶縁コーティングを施して製品とした。
Example 3 In Table 2, the molten steel having the composition of F was formed into a slab by continuous casting while being electromagnetically stirred, heated to 1180 ° C., and then 45 mm in five coarse passes.
After forming a thick sheet bar, the FET was hot-rolled to a thickness of 2.4 mm at 950 ° C. by 6-pass finishing hot rolling. At that time, the cumulative draft of the four passes before the finishing was varied in various ways. Then
The obtained hot-rolled coil was annealed at 900 ° C. for 1 min and then cold-rolled to a thickness of 0.49 mm by a tandem rolling mill. Next, in performing decarburization annealing, P (H 2 0) / P
(H 2 ) and that of the soaking process were variously changed, and annealing was performed at 840 ° C. Then, apply an annealing separator, and then
In an atmosphere of N 2 alone up to ℃, then 25% up to 1000 ℃
In a mixed atmosphere of N 2 and 75% H 2, then in an atmosphere of H 2 alone
After the temperature was raised to 1150 ° C., final finishing annealing was performed for 5 hours. Thereafter, an insulating coating was applied to obtain a product.

【0052】得られた製品板からエプスタイン試験片と
EIコア用鉄心を打ち抜き、これらの鉄損特性を評価し
た。得られた結果を表7に示す。
An Epstein test piece and an iron core for an EI core were punched from the obtained product plate, and their iron loss characteristics were evaluated. Table 7 shows the obtained results.

【0053】[0053]

【表7】 [Table 7]

【0054】同表から明らかなように、この発明法に従
って得られた方向性電磁鋼板は、高磁場特性に比較して
低磁場での鉄損特性に優れており、また実機の鉄損も良
好であった。
As is clear from the table, the grain-oriented electrical steel sheet obtained according to the present invention is superior in iron loss characteristics in a low magnetic field as compared with high magnetic field characteristics, and has good iron loss in an actual machine. Met.

【0055】かくして、この発明によれば、高磁場特性
に比較して低磁場での鉄損特性に優れ、ひいては実機の
鉄損特性にも優れた方向性電磁鋼板を得ることができ、
特に小型発電機の鉄心やEIコアなどの用途に用いて偉
効を奏する。
Thus, according to the present invention, it is possible to obtain a grain-oriented electrical steel sheet which is more excellent in iron loss characteristics in a low magnetic field than in a high magnetic field characteristic, and is also excellent in iron loss characteristics of an actual machine.
It is particularly effective when used in applications such as small generator iron cores and EI cores.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、仕上げ熱延前段4パスの累積圧下率と
材料の(W10/50 /W17/50 )およびEIコアの実機鉄
損W17/50 との関係を示したグラフである。
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a graph showing a relationship between a cumulative rolling reduction of four passes in a first stage of finishing hot rolling , a material (W 10/50 / W 17/50 ), and an actual iron loss W 17/50 of an EI core. It is.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 定広 健一 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 (72)発明者 小松原 道郎 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kenichi Sadahiro 1-chome, Mizushima-Kawasaki-dori, Kurashiki-shi, Okayama Pref. Chome (without address) Inside Kawasaki Steel Corporation Mizushima Works

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】C:0.0050〜0.070 wt%、 Si:1.50〜7.0 wt%、 Mn:0.03〜0.15wt%、 Al:0.005 〜0.017 wt%、 Sb:0.0010〜0.080 wt%およびN:0.0030〜0.010 wt%
を含有する組成になる溶鋼を、連続鋳造によりスラブと
し、ついで1300℃以下に加熱したのち、熱間圧延し、熱
延板焼鈍後、1回または中間焼鈍を含む2回の冷間圧延
で最終板厚としたのち、脱炭焼鈍ついで最終仕上げ焼鈍
を施す一連の工程によって方向性電磁鋼板を製造するに
際し、 仕上げ熱延入側温度:900 ℃以上、仕上げ熱延前段4パ
スの累積圧下率:90%以上の条件で仕上げ熱延を施すと
共に、 800〜950 ℃の温度域で熱延板焼鈍を施し、さら
に脱炭焼鈍時の昇温過程および均熱過程における水素分
圧に対する水蒸気分圧の比P(H20)/P(H2)を調整し、均
熱過程におけるP(H20)/P(H2)を 0.7未満とする一方、
昇温過程におけるP(H20)/P(H2)は均熱過程におけるそ
れよりも低い値に設定することを特徴とする、高磁場特
性に比較して低磁場特性に優れた方向性電磁鋼板の製造
方法。
1. C: 0.0050 to 0.070 wt%, Si: 1.50 to 7.0 wt%, Mn: 0.03 to 0.15 wt%, Al: 0.005 to 0.017 wt%, Sb: 0.0010 to 0.080 wt%, and N: 0.0030 to 0.010 wt% wt%
Slab by continuous casting, and then heated to 1300 ° C or lower, hot-rolled, and after hot-rolled sheet annealing, finalized by cold rolling twice, including once or intermediate annealing After manufacturing the grain-oriented electrical steel sheet through a series of steps of decarburizing annealing followed by final finish annealing after the sheet thickness is reached, the finishing hot-rolling side temperature: 900 ° C or more, and the cumulative rolling reduction of 4 passes before finishing hot rolling: Finish hot rolling at 90% or more, hot-rolled sheet annealing in the temperature range of 800 to 950 ° C, and the partial pressure of steam with respect to the hydrogen partial pressure in the heating and soaking processes during decarburization annealing While adjusting the ratio P (H 2 0) / P (H 2 ) to make P (H 2 0) / P (H 2 ) less than 0.7 in the soaking process,
P (H 2 0) / P (H 2 ) in the heating process is set to a lower value than that in the soaking process. Directivity superior to low magnetic field characteristics compared to high magnetic field characteristics. Manufacturing method of electrical steel sheet.
【請求項2】 請求項1において、スラブが、さらに
B:0.0001〜0.0020wt%、 Ti:0.0005〜0.0020wt%およびNb:0.0010〜0.010 wt%
のうちから選んだ少なくとも一種を含有する組成になる
ことを特徴とする高磁場特性に比較して低磁場特性に優
れた方向性電磁鋼板の製造方法。
2. The slab according to claim 1, further comprising: B: 0.0001 to 0.0020 wt%, Ti: 0.0005 to 0.0020 wt%, and Nb: 0.0010 to 0.010 wt%.
A method for producing a grain-oriented electrical steel sheet having excellent low magnetic field characteristics as compared with high magnetic field characteristics, characterized in that the composition contains at least one selected from the group consisting of:
【請求項3】 請求項1または2において、連続鋳造時
に電磁攪拌処理を施すことを特徴とする高磁場特性に比
較して低磁場特性に優れた方向性電磁鋼板の製造方法。
3. The method for producing a grain-oriented electrical steel sheet according to claim 1 or 2, wherein electromagnetic stirring is performed during continuous casting.
JP8286720A 1996-10-21 1996-10-29 Production of grain oriented silicon steel sheet excellent in low magnetic field characteristic compared to high magnetic field characteristic Pending JPH10130728A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP8286720A JPH10130728A (en) 1996-10-29 1996-10-29 Production of grain oriented silicon steel sheet excellent in low magnetic field characteristic compared to high magnetic field characteristic
US08/954,504 US6039818A (en) 1996-10-21 1997-10-20 Grain-oriented electromagnetic steel sheet and process for producing the same
KR1019970053853A KR100440994B1 (en) 1996-10-21 1997-10-20 Directional electromagnetic steel sheet and manufacturing method thereof
CNB971252890A CN1153227C (en) 1996-10-21 1997-10-20 Grain-oriented electromagnetic steel sheet and process for producing the same
EP97118278A EP0837149B1 (en) 1996-10-21 1997-10-21 Grain-oriented electromagnetic steel sheet and process for producing the same
DE69705688T DE69705688T2 (en) 1996-10-21 1997-10-21 Grain-oriented electromagnetic steel sheet and its manufacturing process
US09/493,864 US6331215B1 (en) 1996-10-21 2000-01-28 Process for producing grain-oriented electromagnetic steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8286720A JPH10130728A (en) 1996-10-29 1996-10-29 Production of grain oriented silicon steel sheet excellent in low magnetic field characteristic compared to high magnetic field characteristic

Publications (1)

Publication Number Publication Date
JPH10130728A true JPH10130728A (en) 1998-05-19

Family

ID=17708144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8286720A Pending JPH10130728A (en) 1996-10-21 1996-10-29 Production of grain oriented silicon steel sheet excellent in low magnetic field characteristic compared to high magnetic field characteristic

Country Status (1)

Country Link
JP (1) JPH10130728A (en)

Similar Documents

Publication Publication Date Title
JP2983128B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH02274815A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
US4888066A (en) Method for producing grain-oriented electrical steel sheet with very high magnetic flux density
JP3392664B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP4123629B2 (en) Electrical steel sheet and manufacturing method thereof
JP3357603B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet with extremely low iron loss
JP3392579B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH08134551A (en) Production of grain oriented silicon steel sheet excellent in iron loss and magnetostrictive characteristic
JPH0978129A (en) Production of nonortiented silicon steel sheet extremely excellent in magnetic property in all orientation
JP2679928B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP2679927B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP2659655B2 (en) Thick grain-oriented electrical steel sheet with excellent magnetic properties
JP3434936B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP3397293B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JPH10130728A (en) Production of grain oriented silicon steel sheet excellent in low magnetic field characteristic compared to high magnetic field characteristic
JP3498978B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3392699B2 (en) Method for manufacturing grain-oriented electrical steel sheet having extremely low iron loss characteristics
JPH0762437A (en) Production of grain oriented silicon steel sheet having extremely low iron loss
JP3326083B2 (en) Manufacturing method of grain-oriented electrical steel sheet with superior low-field iron loss characteristics compared to high-field iron loss characteristics
JP3061515B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH08269553A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP3561323B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JPH08253815A (en) Production of grain oriented silicon steel sheet with ultrahigh magnetic flux density
JP3399721B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JPH10183249A (en) Production of grain oriented silicon steel sheet excellent in magnetic property