JPH10128377A - Ozone treatment of activated sludge method treated water - Google Patents
Ozone treatment of activated sludge method treated waterInfo
- Publication number
- JPH10128377A JPH10128377A JP8287198A JP28719896A JPH10128377A JP H10128377 A JPH10128377 A JP H10128377A JP 8287198 A JP8287198 A JP 8287198A JP 28719896 A JP28719896 A JP 28719896A JP H10128377 A JPH10128377 A JP H10128377A
- Authority
- JP
- Japan
- Prior art keywords
- treatment
- activated sludge
- sludge
- ozone
- treated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010802 sludge Substances 0.000 title claims abstract description 195
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 title claims abstract description 162
- 238000000034 method Methods 0.000 title claims abstract description 111
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 106
- 239000010865 sewage Substances 0.000 claims abstract description 26
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 21
- 239000011941 photocatalyst Substances 0.000 claims description 18
- 239000002351 wastewater Substances 0.000 claims description 16
- 230000001699 photocatalysis Effects 0.000 claims description 6
- 230000000813 microbial effect Effects 0.000 claims 7
- 239000010815 organic waste Substances 0.000 claims 3
- 238000006243 chemical reaction Methods 0.000 abstract description 30
- 238000004062 sedimentation Methods 0.000 abstract description 15
- 230000001590 oxidative effect Effects 0.000 abstract description 10
- 239000007788 liquid Substances 0.000 abstract description 4
- 238000000926 separation method Methods 0.000 abstract description 2
- 238000003672 processing method Methods 0.000 description 18
- 244000005700 microbiome Species 0.000 description 17
- 239000000543 intermediate Substances 0.000 description 16
- 238000007254 oxidation reaction Methods 0.000 description 16
- 230000003647 oxidation Effects 0.000 description 15
- 239000000126 substance Substances 0.000 description 10
- 230000000694 effects Effects 0.000 description 7
- 239000005416 organic matter Substances 0.000 description 7
- 239000008188 pellet Substances 0.000 description 7
- 238000000354 decomposition reaction Methods 0.000 description 5
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 238000005187 foaming Methods 0.000 description 4
- 239000002699 waste material Substances 0.000 description 4
- QOSATHPSBFQAML-UHFFFAOYSA-N hydrogen peroxide;hydrate Chemical compound O.OO QOSATHPSBFQAML-UHFFFAOYSA-N 0.000 description 3
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 3
- 229910052753 mercury Inorganic materials 0.000 description 3
- 238000004065 wastewater treatment Methods 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 238000005273 aeration Methods 0.000 description 2
- 238000011001 backwashing Methods 0.000 description 2
- 238000010170 biological method Methods 0.000 description 2
- 210000002421 cell wall Anatomy 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000004408 titanium dioxide Substances 0.000 description 2
- ZNOKGRXACCSDPY-UHFFFAOYSA-N tungsten trioxide Chemical compound O=[W](=O)=O ZNOKGRXACCSDPY-UHFFFAOYSA-N 0.000 description 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- RHZUVFJBSILHOK-UHFFFAOYSA-N anthracen-1-ylmethanolate Chemical compound C1=CC=C2C=C3C(C[O-])=CC=CC3=CC2=C1 RHZUVFJBSILHOK-UHFFFAOYSA-N 0.000 description 1
- 239000003830 anthracite Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000010840 domestic wastewater Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000007146 photocatalysis Methods 0.000 description 1
- 238000011197 physicochemical method Methods 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000036632 reaction speed Effects 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Treatment Of Sludge (AREA)
- Catalysts (AREA)
- Biological Treatment Of Waste Water (AREA)
- Activated Sludge Processes (AREA)
- Physical Water Treatments (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、有機性排水を生物学的
方法と物理化学的方法の組み合わせで処理する方法であ
って、特に余剰汚泥の生成を抑制する処理方法に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating organic wastewater by a combination of a biological method and a physicochemical method, and more particularly to a method for suppressing the generation of excess sludge.
【0002】[0002]
【従来の技術】下水や生活排水、有機性工場排水等を活
性汚泥法に代表される生物学的な方法で処理する場合、
微生物の増殖にともなって余剰汚泥が発生する。この余
剰汚泥の処理方法としては、脱水、埋め立てが一般的で
あるが、脱水機が高価で操作も面倒であることや、埋め
立て用地が不足していること等の理由から、できるだけ
余剰汚泥を発生させない排水処理法が求められている。2. Description of the Related Art When treating sewage, domestic wastewater, organic factory wastewater, etc. by a biological method represented by the activated sludge method,
Surplus sludge is generated with the growth of microorganisms. Dehydration and landfill are common methods of treating excess sludge.However, excess sludge is generated as much as possible because the dehydrator is expensive and cumbersome to operate, and there is insufficient landfill land. There is a need for a wastewater treatment method that does not allow such wastewater treatment.
【0003】この要求に適した方法として、特開平6−
206088号公報に生物学的処理法にオゾン処理法を
組み合わせた余剰汚泥を発生させない排水処理法が記載
されている。この公報の方法は、好気性微生物を含む活
性汚泥の存在下で、有機性排液を好気性処理する方法に
おいて、被処理液中のBODの同化により増殖する汚泥
量よりも多い量の活性汚泥を好気性処理系から引抜き、
引抜き汚泥をオゾン処理したのち好気性処理系に導入す
ることを特長とする有機性排液の好気性処理方法であ
る。この方法では、活性汚泥の一部をオゾン処理するこ
とにより、微生物の細胞壁を破壊し、微生物を生物分解
可能な有機物に変換して再度処理を行うので、有機物の
分解が促進され汚泥が発生しないことになる。生物処理
とオゾン処理の特長を組み合わせた優れた着想である。[0003] As a method suitable for this demand, Japanese Patent Laid-Open No.
Japanese Patent Publication No. 206088 discloses a wastewater treatment method which does not generate excess sludge by combining a biological treatment method with an ozone treatment method. The method disclosed in this publication is a method for aerobically treating an organic effluent in the presence of activated sludge containing aerobic microorganisms, the amount of activated sludge being larger than the amount of sludge proliferating by assimilation of BOD in the liquid to be treated. From the aerobic treatment system,
This is an aerobic treatment method for organic wastewater, which comprises introducing drawn sludge into an aerobic treatment system after ozone treatment. In this method, a part of the activated sludge is treated with ozone, thereby destroying the cell wall of the microorganism, converting the microorganism into a biodegradable organic substance, and performing the treatment again, so that the decomposition of the organic substance is promoted and no sludge is generated. Will be. This is an excellent idea that combines the features of biological treatment and ozone treatment.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、特開平
6−206088号公報に記載された処理法では、微生
物による分解が困難な溶解性の有機物が次第に反応槽内
に蓄積し、一部が処理水に含まれて流出するため、処理
水中の溶解性CODやTOCが高くなる問題がある。例
えばこの方法で下水を処理した場合、処理水中の溶解性
CODは通常の活性汚泥法処理水のCODの2倍程度と
なってしまう。この様な高いCODの処理水が放流され
ることは環境保護の観点から大きな問題であった。However, in the processing method described in Japanese Patent Application Laid-Open No. 6-2060888, soluble organic substances that are difficult to decompose by microorganisms gradually accumulate in the reaction tank, and a part of the water is treated. , There is a problem that the soluble COD and TOC in the treated water increase. For example, when sewage is treated by this method, the soluble COD in the treated water is about twice as large as the COD of the ordinary activated sludge treated water. Discharging such high COD treated water was a major problem from the viewpoint of environmental protection.
【0005】本発明は上述の点に鑑みてなされたもので
あり、その目的は、生物処理とオゾン処理を組み合わせ
た処理において、余剰汚泥が発生せず、しかも処理水C
ODが低い処理方法を提供することにある。[0005] The present invention has been made in view of the above-mentioned point, and an object of the present invention is to provide a method in which surplus sludge is not generated in a combined treatment of biological treatment and ozone treatment, and the treated water C
It is to provide a processing method with low OD.
【0006】[0006]
【課題を解決するための手段】上記の課題解決のため
に、本発明者らは活性汚泥を活性汚泥処理系(本発明で
は、前段の処理系が無酸素条件のように好気性以外の条
件を有する場合も成立するので、従来の「好気性処理
系」という表現を「活性汚泥処理系」と変更して記載す
る)から引抜き、この引抜き汚泥をオゾン処理したのち
に活性汚泥処理系に導入するという処理方法について研
究開発を行い、処理水に含まれるCOD成分は、微生物
による分解が困難であることから、オゾンの強力な酸化
作用による分解が必要で、しかも処理効果を上げるため
には、オゾンの酸化作用を促進する条件下でのオゾン酸
化が必要であるとの結論を得た。また、水質によって
は、オゾンの酸化作用を促進する条件下でのオゾン酸化
によって、生物分解可能な溶解性有機物が生成する場合
もあるので、その後さらに生物処理を行うことが望まし
いこともあるとの結論に達した。In order to solve the above-mentioned problems, the present inventors have proposed an activated sludge treatment system using an activated sludge treatment system (in the present invention, the treatment system in the former stage is a condition other than aerobic such as anoxic condition). Therefore, the expression "aerobic treatment system" is changed to "activated sludge treatment system"), and the extracted sludge is treated with ozone and then introduced into the activated sludge treatment system. The COD component contained in the treated water is difficult to decompose by microorganisms, so it needs to be decomposed by the strong oxidizing action of ozone. It was concluded that ozone oxidation under conditions that promoted the oxidizing action of ozone was necessary. Also, depending on water quality, biodegradable soluble organic matter may be generated by ozone oxidation under conditions that promote the oxidizing action of ozone, so it may be desirable to further perform biological treatment thereafter. The conclusion has been reached.
【0007】これらの知見を基に、上記の課題を解決す
るために、次に示す7種類の具体的な処理方法を提供す
る。以下に順次これらの処理方法を説明する。本発明の
第1の処理法は、主として生物反応槽と最終沈殿池から
なる活性汚泥処理系から活性汚泥を引抜き、引抜き汚泥
をオゾン処理したのち活性汚泥処理系に導入する処理に
おいて、その後段で前記活性汚泥処理系からの溶解性C
ODが高い処理水を紫外線照射とオゾン処理とを併用す
る処理法である。[0007] Based on these findings, the following seven specific processing methods are provided to solve the above-mentioned problems. Hereinafter, these processing methods will be sequentially described. In the first treatment method of the present invention, activated sludge is drawn from an activated sludge treatment system mainly composed of a biological reaction tank and a final sedimentation tank, and the extracted sludge is treated with ozone and then introduced into the activated sludge treatment system. Soluble C from the activated sludge treatment system
This is a treatment method in which treated water having a high OD is combined with ultraviolet irradiation and ozone treatment.
【0008】この処理法では、紫外線はオゾンに作用し
て強力な酸化作用を有するOHラジカルの生成を促進す
る効果があるので、併用処理を行えば、強い酸化力によ
って前記処理水に含まれていた生物難分解性の溶解性有
機物は分解され、COD濃度が大幅に低減されることに
なる。本発明の第2の処理法は、主として生物反応槽と
最終沈殿池からなる活性汚泥処理系から活性汚泥を引抜
き、引抜き汚泥をオゾン処理したのち活性汚泥処理系に
導入する処理において、その後段で前記活性汚泥処理系
からの溶解性CODが高い処理水に過酸化水素水を添加
しつつオゾン処理を行う処理法である。In this treatment method, ultraviolet rays act on ozone to promote the generation of OH radicals having a strong oxidizing effect. Therefore, if combined treatment is carried out, the ultraviolet light is contained in the treated water by strong oxidizing power. The biodegradable soluble organic matter is decomposed, and the COD concentration is greatly reduced. In the second treatment method of the present invention, activated sludge is extracted from an activated sludge treatment system mainly comprising a biological reaction tank and a final sedimentation tank, and the extracted sludge is treated with ozone and then introduced into the activated sludge treatment system. This is a treatment method in which ozone treatment is performed while adding hydrogen peroxide water to treated water having a high soluble COD from the activated sludge treatment system.
【0009】この処理法では、過酸化水素はオゾンに作
用して強力な酸化作用を有するOHラジカルの生成を促
進する効果があるので、併用処理を行えば、強い酸化力
によって前記処理水に含まれていた生物難分解性の溶解
性有機物は分解され、COD濃度が大幅に低減されるこ
とになる。本発明の第3の処理法は、主として生物反応
槽と最終沈殿池からなる活性汚泥処理系から活性汚泥を
引抜き、引抜き汚泥をオゾン処理したのち活性汚泥処理
系に導入する処理において、その後段で前記活性汚泥処
理系からの溶解性CODが高い処理水をオゾン処理と不
溶性の光触媒処理とを併用する処理法である。In this treatment method, hydrogen peroxide has an effect of promoting the generation of OH radicals having a strong oxidizing effect by acting on ozone. Therefore, if combined treatment is carried out, hydrogen peroxide is contained in the treated water by strong oxidizing power. The biodegradable soluble organic matter that has been decomposed is decomposed, and the COD concentration is greatly reduced. In the third treatment method of the present invention, activated sludge is drawn from an activated sludge treatment system mainly composed of a biological reaction tank and a final sedimentation tank, and the extracted sludge is treated with ozone and then introduced into the activated sludge treatment system. This is a treatment method in which treated water having a high soluble COD from the activated sludge treatment system is used in combination with ozone treatment and insoluble photocatalytic treatment.
【0010】この処理法では、光触媒は有機物をオゾン
酸化した時に生成する中間体を光の照射条件下で効率良
く分解する作用があるので、併用処理を行えば、前記処
理水に含まれていた生物難分解性の溶解性有機物はオゾ
ン酸化による分解と一部中間体の生成、その中間体の光
触媒による分解の経路で除去され、COD濃度が大幅に
低減されることになる。In this treatment method, the photocatalyst has an action of efficiently decomposing an intermediate produced when ozone is oxidized into an organic substance under light irradiation conditions. The biodegradable soluble organic matter is removed by the route of decomposition by ozone oxidation, generation of some intermediates, and decomposition of the intermediates by photocatalysis, and the COD concentration is greatly reduced.
【0011】本発明の第4の処理法は、主として生物反
応槽と最終沈殿池からなる活性汚泥処理系から活性汚泥
を引抜き、引抜き汚泥をオゾン処理したのち活性汚泥処
理系に導入する処理において、その後段で前記活性汚泥
処理系からの溶解性CODが高い処理水のオゾン処理を
行い、さらにこの水を生物処理し、後段の生物処理装置
から発生する汚泥を前記生物反応槽に返送する処理法で
ある。[0011] The fourth treatment method of the present invention is a process for extracting activated sludge from an activated sludge treatment system mainly comprising a biological reaction tank and a final sedimentation tank, treating the extracted sludge with ozone, and then introducing the sludge into the activated sludge treatment system. In a subsequent stage, a treatment method in which treated water having a high soluble COD from the activated sludge treatment system is subjected to ozone treatment, the water is subjected to biological treatment, and sludge generated from a subsequent biological treatment device is returned to the biological reaction tank. It is.
【0012】この処理法では、オゾン処理で前記処理水
に含まれていた生物難分解性の溶解性有機物を酸化分解
した後に、生物処理でオゾン酸化によって生成した中間
体を除去しCOD濃度を低減する。また、後段の生物処
理装置から発生する汚泥を前記生物反応槽に返送し処理
することによって系全体としての汚泥の発生を抑制す
る。In this treatment method, the biodegradable soluble organic matter contained in the treated water is oxidatively decomposed by the ozone treatment, and then the intermediate produced by the ozone oxidation is removed by the biological treatment to reduce the COD concentration. I do. Further, the sludge generated from the biological treatment apparatus at the subsequent stage is returned to the biological reaction tank for processing, thereby suppressing the generation of sludge as a whole system.
【0013】本発明の第5の処理法は、主として生物反
応槽と最終沈殿池からなる活性汚泥処理系から活性汚泥
を引抜き、引抜き汚泥をオゾン処理したのち活性汚泥処
理系に導入する処理において、その後段で前記活性汚泥
処理系からの溶解性CODが高い処理水を紫外線照射と
オゾン処理の併用で処理し、さらにこの水を生物処理
し、後段の生物処理装置から発生する汚泥を前記生物反
応槽に返送する処理法である。[0013] A fifth treatment method of the present invention is a treatment for extracting activated sludge from an activated sludge treatment system mainly comprising a biological reaction tank and a final sedimentation tank, treating the extracted sludge with ozone, and then introducing the treated sludge into the activated sludge treatment system. In the subsequent stage, the treated water having a high soluble COD from the activated sludge treatment system is treated by a combination of ultraviolet irradiation and ozone treatment, and the water is biologically treated, and the sludge generated from the biological treatment device in the subsequent stage is subjected to the biological reaction. This is a processing method of returning to the tank.
【0014】この処理法では、紫外線照射とオゾン処理
との併用で、前記処理水に含まれていた生物難分解性の
溶解性有機物を酸化分解した後に、生物処理で前記併用
処理によって生成した中間体を除去しCOD濃度を低減
する。また、後段の生物処理装置から発生する汚泥を前
記生物反応槽に返送し処理することによって系全体とし
ての汚泥の発生を抑制する。In this treatment method, the bio-degradable soluble organic matter contained in the treated water is oxidatively decomposed by the combined use of the ultraviolet irradiation and the ozone treatment, and then the intermediate formed by the combined treatment in the biological treatment. Removes body and reduces COD concentration. Further, the sludge generated from the biological treatment apparatus at the subsequent stage is returned to the biological reaction tank for processing, thereby suppressing the generation of sludge as a whole system.
【0015】本発明の第6の処理法は、主として生物反
応槽と最終沈殿池からなる活性汚泥処理系から活性汚泥
を引抜き、引抜き汚泥をオゾン処理したのち活性汚泥処
理系に導入する処理において、その後段で前記活性汚泥
処理系からの溶解性CODが高い処理水に過酸化水素水
を添加しつつオゾン処理を行い、さらにこの水を生物処
理し、後段の生物処理装置から発生する汚泥を前記生物
反応槽に返送する処理法である。[0015] A sixth treatment method of the present invention is a treatment for extracting activated sludge from an activated sludge treatment system mainly comprising a biological reaction tank and a final sedimentation tank, treating the extracted sludge with ozone, and then introducing the treated sludge into the activated sludge treatment system. In the subsequent stage, ozone treatment is performed while adding hydrogen peroxide water to the treated water having a high soluble COD from the activated sludge treatment system, and the water is subjected to biological treatment. This is a treatment method to return to the biological reaction tank.
【0016】この処理法では、過酸化水素水とオゾン処
理との併用で、前記処理水に含まれていた生物難分解性
の溶解性有機物を酸化分解した後に、生物処理で前記併
用処理によって生成した中間体を除去しCOD濃度を低
減する。また、後段の生物処理装置から発生する汚泥を
前記生物反応槽に返送し処理することによって系全体と
しての汚泥の発生を抑制する。[0016] In this treatment method, a bio-refractory soluble organic substance contained in the treated water is oxidatively decomposed by a combined use of a hydrogen peroxide solution and an ozone treatment, and then produced by the combined treatment in a biological treatment. To reduce the COD concentration. Further, the sludge generated from the biological treatment apparatus at the subsequent stage is returned to the biological reaction tank for processing, thereby suppressing the generation of sludge as a whole system.
【0017】本発明の第7の処理法は、主として生物反
応槽と最終沈殿池からなる活性汚泥処理系から活性汚泥
を引抜き、引抜き汚泥をオゾン処理したのち活性汚泥処
理系に導入する処理において、その後段で前記活性汚泥
処理系からの溶解性CODが高い処理水をオゾン処理と
不溶性の光触媒処理の併用で処理し、さらにこの水を生
物処理し、後段の生物処理装置から発生する汚泥を前記
生物反応槽に返送する処理法である。[0017] A seventh treatment method of the present invention is a process for extracting activated sludge from an activated sludge treatment system mainly comprising a biological reaction tank and a final sedimentation tank, treating the extracted sludge with ozone, and then introducing the treated sludge into the activated sludge treatment system. In the subsequent stage, the treated water having a high soluble COD from the activated sludge treatment system is treated by a combination of the ozone treatment and the insoluble photocatalytic treatment, and the water is biologically treated. This is a treatment method to return to the biological reaction tank.
【0018】この処理法では、オゾン処理と不溶性の光
触媒処理との併用で、前記処理水に含まれていた生物難
分解性の溶解性有機物を、酸化分解と一部中間体の生
成、その中間体の光触媒による分解の経路で処理した後
に、生物処理で前記併用処理において残存した中間体を
除去しCOD濃度を低減する。また、後段の生物処理装
置から発生する汚泥を前記生物反応槽に返送し処理する
ことによって系全体としての汚泥の発生を抑制する。In this treatment method, by using an ozone treatment and an insoluble photocatalyst treatment together, the biorefractory soluble organic substances contained in the treated water are oxidatively decomposed and partially produced as intermediates, After the body is treated by a photocatalytic decomposition route, the intermediates remaining in the combined treatment are removed by biological treatment to reduce the COD concentration. Further, the sludge generated from the biological treatment apparatus at the subsequent stage is returned to the biological reaction tank for processing, thereby suppressing the generation of sludge as a whole system.
【0019】[0019]
【発明の実施の形態】以下、本発明による処理の実施例
を図面を参照して説明する。図1は下水処理を目的とし
た本発明の第1の処理法の実施例を示すフロー図であ
る。図1において、この処理法は、生物反応槽2と最終
沈殿池3からなる下水1の活性汚泥処理系、引抜汚泥ポ
ンプ7と汚泥用オゾン処理槽10及びオゾン発生機8か
らなる汚泥のオゾン処理系、さらに水用オゾン処理槽1
3と紫外線ランプ12からなる水のオゾン処理系の三つ
の系から構成されている。このうち、下水の活性汚泥処
理系と汚泥のオゾン処理系は特開平6−206088号
公報に記載された処理法を下水処理に適用した形態とな
っている。Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a flowchart showing an embodiment of the first treatment method of the present invention for sewage treatment. In FIG. 1, this treatment method is an ozone treatment system for an activated sludge treatment system for sewage 1 comprising a biological reaction tank 2 and a final sedimentation basin 3, a sludge treatment system comprising a drawing sludge pump 7, an ozone treatment tank 10 for sludge, and an ozone generator 8. System, and ozone treatment tank for water 1
3 and an ultraviolet lamp 12. Among these, the activated sludge treatment system for sewage and the ozone treatment system for sludge have a form in which the treatment method described in JP-A-6-206088 is applied to sewage treatment.
【0020】この従来技術の部分を簡単に説明する。下
水1は生物反応槽2内で散気装置4から空気を供給され
つつ活性汚泥で処理され、最終沈殿池3において固液分
離がなされる。また、汚泥は返送汚泥ポンプ5を経て返
送汚泥6として生物反応槽2に返されるが、その一部は
引抜汚泥ポンプ7を介して汚泥用オゾン処理槽10に送
られ、ここでオゾン処理を受けた後に生物反応槽2に導
入される。オゾン9aの添加量は流入下水量を基準にす
ると、およそ10〜20mg/L程度である。この汚泥
用オゾン処理槽10では活性汚泥を構成する微生物の細
胞壁が破壊され、オゾン処理汚泥11は微生物処理可能
な有機物として生物反応槽2に導入され、大部分が水や
炭酸ガスまで分解される。したがって、この活性汚泥処
理系と汚泥のオゾン処理系からなる従来技術の部分から
は汚泥が発生しない。A brief description of this conventional technique will be given. The sewage 1 is treated with activated sludge in the biological reaction tank 2 while being supplied with air from the diffuser 4, and solid-liquid separation is performed in the final sedimentation basin 3. The sludge is returned to the biological reaction tank 2 as return sludge 6 via a return sludge pump 5, and a part of the sludge is sent to an ozone treatment tank 10 for sludge via a withdrawal sludge pump 7, where it undergoes ozone treatment. After that, it is introduced into the biological reaction tank 2. The addition amount of ozone 9a is about 10 to 20 mg / L, based on the amount of inflow sewage. In this ozone treatment tank 10 for sludge, the cell walls of the microorganisms constituting the activated sludge are destroyed, and the ozone treatment sludge 11 is introduced into the biological reaction tank 2 as an organic substance that can be treated with microorganisms, and is largely decomposed into water and carbon dioxide. . Therefore, no sludge is generated from the prior art portion including the activated sludge treatment system and the sludge ozone treatment system.
【0021】本発明における第1の処理法の特徴は前記
処理系の後段に、紫外線ランプ12を備えた水用オゾン
処理槽13を設けた点にあり、添加するオゾン9bはオ
ゾン発生機8から得ている。処理機能を説明すると、最
終沈殿池3を経た水は溶解性のCODが高い状態で水用
オゾン処理槽13に流入し、紫外線ランプ12から紫外
線照射を受けながらオゾン酸化処理される。紫外線照射
量は水質にもよるが、100〜500W・秒/m3 程度
である。紫外線はオゾンに作用して強力な酸化作用を有
するOHラジカルの生成を促進する効果があるので、こ
の槽内において流入したCOD成分は強い酸化を受け除
去される。実験結果によれば、前述の条件でCOD除去
率は40%以上であり、オゾン添加量は5〜20mg/
L程度、処理時間は10〜60分程度である。添加する
オゾン濃度は20〜200g/Nm3 程度で、オゾン濃
度を濃くすると、反応速度が速くなる、発泡が少なくな
る等の利点がある。ここでのオゾン利用効率は90%以
上であるが、若干の排オゾン14が発生するので、これ
は別途排オゾン処理装置で処理する。また、こうした処
理では同時に水中の色度成分もオゾン酸化により除去さ
れるので、色度が低く透明感が高くCODも除去された
オゾン処理水15が得られる。The feature of the first treatment method in the present invention is that an ozone treatment tank 13 for water provided with an ultraviolet lamp 12 is provided at a later stage of the treatment system. It has gained. Explaining the processing function, the water that has passed through the final sedimentation basin 3 flows into the water ozone treatment tank 13 with high solubility COD, and is subjected to ozone oxidation while being irradiated with ultraviolet rays from the ultraviolet lamp 12. The amount of ultraviolet irradiation depends on the water quality, but is about 100 to 500 W · sec / m 3 . Ultraviolet rays act on ozone to promote the generation of OH radicals having a strong oxidizing effect, so that the COD component that has flowed into the tank is strongly oxidized and removed. According to the experimental results, the COD removal rate was 40% or more under the above-described conditions, and the amount of added ozone was 5 to 20 mg /
The processing time is about 10 to 60 minutes. The ozone concentration to be added is about 20 to 200 g / Nm 3 , and when the ozone concentration is increased, there are advantages such as a higher reaction rate and less foaming. Although the ozone utilization efficiency here is 90% or more, since a small amount of exhausted ozone 14 is generated, this is separately processed by an exhausted ozone treatment device. In addition, in such a process, the chromaticity component in the water is also removed by ozone oxidation, so that the ozone-treated water 15 having low chromaticity, high transparency, and also removing COD can be obtained.
【0022】なお、図1では水用オゾン処理槽13の中
に紫外線ランプ12を浸漬した形態を示したが、オゾン
処理槽と紫外線ランプ照射部を分離し、オゾン添加後に
溶存オゾンが残存している条件で紫外線を照射する方法
でも同様の効果が得られる。この場合、オゾン処理槽と
紫外線ランプ照射部の間で、被処理水を循環させること
もある。また、これまでは生物反応槽2は好気性処理と
して説明したが、間欠曝気により、好気、無酸素処理を
行っている場合にも本実施例は成立する。この条件は以
下の第2から第7の処理法においても同様である。Although FIG. 1 shows an embodiment in which the ultraviolet lamp 12 is immersed in the ozone treatment tank 13 for water, the ozone treatment tank and the irradiation part of the ultraviolet lamp are separated, and dissolved ozone remains after ozone addition. The same effect can be obtained by a method of irradiating with ultraviolet light under certain conditions. In this case, the water to be treated may be circulated between the ozone treatment tank and the ultraviolet lamp irradiation unit. Although the biological reaction tank 2 has been described as an aerobic treatment, the present embodiment is also applicable to a case where an aerobic and anoxic treatment is performed by intermittent aeration. This condition is the same in the following second to seventh processing methods.
【0023】次に、本発明による第2の処理法の実施例
を図面を参照して説明する。図2は下水処理を目的とし
た本発明の第2の処理法の実施例を示すフロー図であ
る。第2の処理法は基本的には第1の処理法に類似して
おり、異なる点はCODの高い生物処理水を、過酸化水
素水を添加しつつオゾン処理している点にある。したが
って、説明はその点に限定し、前段にあたる下水の活性
汚泥処理系と汚泥のオゾン処理系の説明は省略する。Next, an embodiment of the second processing method according to the present invention will be described with reference to the drawings. FIG. 2 is a flowchart showing an embodiment of the second treatment method of the present invention for sewage treatment. The second treatment method is basically similar to the first treatment method, except that the biological treatment water having a high COD is subjected to ozone treatment while adding hydrogen peroxide. Therefore, the description is limited to that point, and the description of the activated sludge treatment system for sewage and the ozone treatment system for sludge, which is the former stage, is omitted.
【0024】本発明における第2の処理法の特徴は前記
処理系の後段に、過酸化水素水貯留槽16に貯留した過
酸化水素水を薬注ポンプ17を用いて注入しつつ、水用
オゾン処理槽13においてオゾン処理を行う点にあり、
添加するオゾン9bはオゾン発生機8から得ている。処
理機能を説明すると、最終沈殿池3を経た水は溶解性の
CODが高い状態で水用オゾン処理槽13に流入し、過
酸化水素存在下でオゾン酸化処理される。過酸化水素添
加量は水質にもよるが、10〜30mg/L程度であ
る。過酸化水素はオゾンに作用して強力な酸化作用を有
するOHラジカルの生成を促進する効果があるので、こ
の槽内において流入したCOD成分は強い酸化を受け除
去されるのである。COD除去率は40%以上であり、
オゾン添加量は5〜50mg/L程度、処理時間は5〜
30分程度である。添加するオゾン濃度は20〜200
g/Nm3 程度で、オゾン濃度を濃くすると、反応速度
が速くなる、発泡が少なくなる等の利点がある。ここで
のオゾン利用効率は90%以上であるが、若干の排オゾ
ン14が発生するので、これは別途排オゾン処理装置で
処理される。また、こうした処理では同時に水中の色度
成分もオゾン酸化により除去されるので、色度が低く透
明感が高くCODも除去されたオゾン処理水15が得ら
れることになる。The second processing method according to the present invention is characterized in that the hydrogen peroxide solution stored in the hydrogen peroxide solution storage tank 16 is injected using the chemical injection pump 17 and the water ozone The ozone treatment is performed in the treatment tank 13,
Ozone 9b to be added is obtained from the ozone generator 8. Describing the treatment function, water that has passed through the final sedimentation basin 3 flows into the water ozone treatment tank 13 in a state of high solubility COD, and is subjected to ozone oxidation treatment in the presence of hydrogen peroxide. The amount of hydrogen peroxide added is about 10 to 30 mg / L, although it depends on the water quality. Since hydrogen peroxide has an effect of acting on ozone to promote the generation of OH radicals having a strong oxidizing action, the COD component that has flowed in this tank is subjected to strong oxidation and removed. COD removal rate is 40% or more,
The ozone addition amount is about 5 to 50 mg / L, and the processing time is 5 to
It takes about 30 minutes. Ozone concentration to be added is 20 to 200
When the ozone concentration is increased to about g / Nm 3 , there are advantages such as a higher reaction rate and less foaming. Although the ozone utilization efficiency here is 90% or more, since a small amount of waste ozone 14 is generated, this is separately processed by a waste ozone treatment device. In addition, since the chromaticity component in the water is also removed by the ozone oxidation in such a process, the ozone-treated water 15 having a low chromaticity, a high transparency, and a COD removal can be obtained.
【0025】次に、本発明による第3の処理法の実施例
を図面を参照して説明する。図3は下水処理を目的とし
た本発明の第3の処理法の実施例を示すフロー図であ
る。第3の処理法は基本的には第1の処理法に類似して
おり、異なる点はCODの高い生物処理水を、光触媒存
在下でオゾン処理している点にある。したがって、説明
はその点に限定し、前段にあたる下水の活性汚泥処理系
と汚泥のオゾン処理系の説明は省略する。Next, an embodiment of the third processing method according to the present invention will be described with reference to the drawings. FIG. 3 is a flowchart showing an embodiment of the third treatment method of the present invention for sewage treatment. The third treatment method is basically similar to the first treatment method, except that the biologically treated water having a high COD is treated with ozone in the presence of a photocatalyst. Therefore, the description is limited to that point, and the description of the activated sludge treatment system for sewage and the ozone treatment system for sludge, which is the former stage, is omitted.
【0026】本発明における第3の処理法の特徴は前記
処理系の後段に、水用オゾン処理槽13に光触媒ペレッ
ト19を投入し流動させつつ水銀灯18の照明下でオゾ
ン処理を行う点にあり、添加するオゾン9bはオゾン発
生機8から得ている。処理機能を説明すると、最終沈殿
池3を経た水は溶解性のCODが高い状態で水用オゾン
処理槽13に流入し、光触媒存在下でオゾン酸化処理さ
れる。光触媒としては二酸化チタン、酸化亜鉛、三酸化
タングステン等が利用できるが、二酸化チタンが効率の
点から望ましい。光触媒ペレット19の大きさは直径3
〜5mm程度であり、光触媒の粉末を重量比1〜10%
でポリエチレングリコールと混合し重合反応を進行させ
た後、塩化カルシウム溶液中に滴下形成して得たもので
ある。このペレットの比重は1程度で、気液混合槽での
流動は良好である。光触媒ペレット19の投入量は50
〜300kg/m3 程度である。光触媒は有機物をオゾ
ン酸化した時に生成する中間体を光の照射条件下で効率
良く分解する作用があるので、オゾンと光触媒との併用
処理によって流入したCOD成分が除去されるのであ
る。なお、光触媒ペレット19が流出しないよう、通常
は目幅1mm程度のウエッジワイヤスクリーンを水用オ
ゾン処理槽13の流出口に設けている。光エネルギーを
与えるための光源としては通常の水銀灯が用いられ、光
の照射量は1〜20kW・秒/m3 程度である。A feature of the third treatment method of the present invention is that ozone treatment is performed under illumination of a mercury lamp 18 while charging and flowing a photocatalyst pellet 19 into an ozone treatment tank 13 for water at a later stage of the treatment system. The ozone 9b to be added is obtained from the ozone generator 8. Describing the treatment function, water that has passed through the final sedimentation basin 3 flows into the water ozone treatment tank 13 in a state of high solubility COD, and is subjected to ozone oxidation treatment in the presence of a photocatalyst. Titanium dioxide, zinc oxide, tungsten trioxide and the like can be used as the photocatalyst, but titanium dioxide is desirable in terms of efficiency. The size of the photocatalyst pellet 19 is 3 in diameter.
About 5 mm, and the weight ratio of the photocatalyst powder is 1 to 10%.
And the polymerization reaction is allowed to proceed with polyethylene glycol, followed by drop formation in a calcium chloride solution. The specific gravity of the pellet is about 1, and the flow in the gas-liquid mixing tank is good. The input amount of the photocatalyst pellet 19 is 50
About 300 kg / m 3 . Since the photocatalyst has an action of efficiently decomposing an intermediate generated when organic matter is oxidized with ozone under light irradiation conditions, the inflowing COD component is removed by the combined use of ozone and the photocatalyst. Note that a wedge wire screen having a mesh width of about 1 mm is usually provided at the outlet of the water ozone treatment tank 13 so that the photocatalyst pellets 19 do not flow out. An ordinary mercury lamp is used as a light source for giving light energy, and the light irradiation amount is about 1 to 20 kW · sec / m 3 .
【0027】オゾン酸化反応を加速する目的で紫外線ラ
ンプを用いることもできる。実験結果によると、こうし
た場合のCOD除去率は40%以上であり、オゾン添加
量は5〜20mg/L程度、処理時間は0.5〜4時間
程度である。添加するオゾン濃度は20〜200g/N
m3 程度で、オゾン濃度を濃くすると、反応速度が速く
なる、発泡が少なくなる等の利点がある。ここでのオゾ
ン利用効率は90%以上であるが、若干の排オゾン14
が発生するので、これは別途排オゾン処理装置で処理さ
れる。また、こうした処理では同時に水中の色度成分も
オゾン酸化により除去されるので、色度が低く透明感が
高くCODも除去されたオゾン処理水15が得られる。
なお、図3では水用オゾン処理槽13の中に光触媒ペレ
ット19を投入した形態を示したが、オゾン処理槽と光
触媒処理部を分離し、新たに光触媒処理槽を設けて、オ
ゾン処理後に光触媒処理をおこなっても同様の効果が得
られる。また、光触媒は板状の構造材に塗布し充填す
る、小片状の板に付着させて投入する等、前記と異なる
方法で槽内に入れてもよい。An ultraviolet lamp can be used for the purpose of accelerating the ozone oxidation reaction. According to the experimental results, the COD removal rate in such a case is 40% or more, the amount of added ozone is about 5 to 20 mg / L, and the processing time is about 0.5 to 4 hours. The ozone concentration to be added is 20 to 200 g / N
When the ozone concentration is increased to about m 3 , there are advantages such as a higher reaction rate and less foaming. Although the ozone utilization efficiency here is 90% or more, some ozone
Is generated, and this is separately processed by a waste ozone treatment device. In addition, in such a process, the chromaticity component in the water is also removed by ozone oxidation, so that the ozone-treated water 15 having low chromaticity, high transparency, and also removing COD can be obtained.
Although FIG. 3 shows an embodiment in which the photocatalyst pellets 19 are put into the water ozone treatment tank 13, the ozone treatment tank and the photocatalyst treatment section are separated, and a new photocatalyst treatment tank is provided. Similar effects can be obtained by performing the processing. Further, the photocatalyst may be put into the tank by a method different from the above, such as applying and filling the plate-like structural material, attaching it to a small plate-like plate, and so on.
【0028】次に、本発明による第4の処理法の実施例
を図面を参照して説明する。図4は下水処理を目的とし
た本発明の第4の処理法の実施例を示すフロー図であ
る。この処理法は下水の活性汚泥処理系と汚泥のオゾン
処理系からなる従来の処理法にオゾン処理と再度の生物
処理を付加した点に特徴がある。したがって、説明はそ
の点に限定し、前段にあたる下水の活性汚泥処理系と汚
泥のオゾン処理系の説明は省略する。Next, an embodiment of the fourth processing method according to the present invention will be described with reference to the drawings. FIG. 4 is a flowchart showing an embodiment of the fourth treatment method of the present invention for sewage treatment. This treatment method is characterized in that ozone treatment and biological treatment are added to the conventional treatment method comprising an activated sludge treatment system for sewage and an ozone treatment system for sludge. Therefore, the description is limited to that point, and the description of the activated sludge treatment system for sewage and the ozone treatment system for sludge, which is the former stage, is omitted.
【0029】本発明における第4の処理法では前記処理
系から流出した水を水用オゾン処理槽13でオゾン処理
し、さらにここで得られたオゾン処理水15を好気性ろ
床20において再度生物処理し処理水25を得ている。
フローの順に処理機能を説明すると、水用オゾン処理槽
13では通常のオゾン酸化処理が行われる。この場合の
COD除去率は20〜30%であり、オゾン添加量は5
〜20mg/L程度、処理時間は5〜20分程度であ
る。添加するオゾン濃度は20〜200g/Nm 3 程度
で、オゾン濃度を濃くすると、反応速度が速くなること
や、発泡が少なくなること等の利点がある。オゾン9b
はオゾン発生機8から得ている。ここでのオゾン利用効
率は90%以上であるが、若干の排オゾン14が発生す
るので、これは別途排オゾン処理装置で処理される。次
にオゾン処理水15は好気性ろ床20に流入し、生物処
理を受ける。この理由は、オゾン処理のみではCOD除
去率は20〜30%とあまり高くないが、オゾン酸化に
より微生物処理可能な中間体が生成しているので、その
中間体を好気性ろ床20において微生物の働きで除去す
ることにより、COD除去率をさらに上げようとするた
めである。ここで好気性ろ床20の構造及び処理機能に
ついて説明すると、この装置は生物処理とろ過処理を兼
用しており、セラミック又はアンスラサイト等からなる
ろ材21が充填され、ろ材21の表面に生育した微生物
の働きによって処理がなされる。処理条件として、ろ過
速度は30〜100m/日程度、空気は下部から処理水
量の2〜5倍程度が供給される。オゾン処理水15はこ
こで生物処理を受け、CODが除去された後、処理水貯
留槽22を経て処理水25として放流される。ただし、
生物処理を続けていると微生物が増殖し、次第にろ材2
1が詰まってくるので余剰微生物を除去する操作が必要
となる。これが、逆洗で、逆洗は空気と水の併用で行わ
れ、水は処理水貯留槽22内の処理水25が使用され、
逆洗ポンプ23によって好気性ろ床20下部から送り込
まれる。逆洗時間は30分程度で、頻度は数日に1度程
度と少ない。逆洗水は汚泥を含むので、逆洗汚泥24と
して再度生物反応槽2に返送される。この逆洗汚泥24
の量は生物反応槽2で増殖する活性汚泥の量よりはるか
に少ないので、逆洗汚泥24の投入によって下水の活性
汚泥処理系と汚泥のオゾン処理系が影響を受けることは
ないのである。したがって、この第4の処理法において
も、汚泥が全体として発生せず、しかも処理水25CO
Dは低くなる。なお、後段の生物処理法として好気性ろ
床法を述べたが、他の方法でも良く、例えば接触曝気法
でも同様の効果が得られ、発生した汚泥は生物反応槽2
に返送されるのは言うまでもない。In a fourth processing method according to the present invention, the processing
Ozone treatment of water flowing out of the system in the water ozone treatment tank 13
Then, the ozone-treated water 15 obtained here is subjected to aerobic filtration.
Biological treatment is again performed on the floor 20 to obtain treated water 25.
The processing function will be described in the order of flow.
At 13, an ordinary ozone oxidation treatment is performed. In this case
The COD removal rate is 20-30%, and the amount of ozone added is 5
~ 20mg / L, processing time is about 5-20 minutes
You. The ozone concentration to be added is 20 to 200 g / Nm Threedegree
The reaction speed increases when the ozone concentration is increased.
Also, there are advantages such as reduced foaming. Ozone 9b
Is obtained from the ozone generator 8. Ozone utilization effect here
Although the rate is 90% or more, a small amount of ozone 14 is generated.
Therefore, this is separately processed by a waste ozone treatment device. Next
In the meantime, the ozonated water 15 flows into the aerobic
Receive The reason is that ozone treatment alone does not remove COD.
Although the leaving rate is not so high as 20-30%,
Since an intermediate that can be processed more microbially is produced,
Intermediates are removed by the action of microorganisms in the aerobic filter bed 20
In order to further increase the COD removal rate,
It is. Here, the structure and processing function of the aerobic filter bed 20
To explain, this device combines biological treatment and filtration.
Made of ceramic or anthracite
Microorganisms filled with the filter medium 21 and grown on the surface of the filter medium 21
The processing is performed by the action of. Filtration as processing conditions
Speed is about 30-100m / day, air is treated water from below
About 2 to 5 times the amount is supplied. Ozonated water 15
After receiving biological treatment and removing COD, treated water storage
The water is discharged as treated water 25 through the reservoir 22. However,
If biological treatment is continued, microorganisms will grow and filter media 2
Operation to remove surplus microorganisms is necessary because 1 is clogged
Becomes This is backwashing, and backwashing is performed using both air and water.
The treated water 25 in the treated water storage tank 22 is used for the water,
Pumped from the bottom of the aerobic filter bed 20 by the backwash pump 23
I will. Backwash time is about 30 minutes and frequency is about once every few days
Not much. Since the backwash water contains sludge, the backwash sludge 24 and
Then, it is returned to the biological reaction tank 2 again. This backwash sludge 24
Is much larger than the amount of activated sludge growing in the biological reactor 2.
Sewage activity by introducing backwash sludge 24
The sludge treatment system and the sludge ozone treatment system will not be affected.
There is no. Therefore, in this fourth processing method
No sludge is generated as a whole, and the treated water 25CO
D becomes lower. In addition, aerobic filtration is used as a biological treatment method in the later stage.
Although the bed method was described, other methods may be used, such as the contact aeration method.
However, the same effect can be obtained, and the generated sludge is
Needless to say, they will be returned to you.
【0030】次に、本発明による第5の処理法の実施例
を図面を参照して説明する。図5は下水処理を目的とし
た本発明の第5の処理法の実施例を示すフロー図であ
る。第5の処理法は第1の処理法に再度の生物処理法と
して好気性ろ床法を付加している。第1の処理法でも処
理水CODの低減は可能であるが、第5の方法はより一
層の低減を目的とした場合で、水用オゾン処理槽13に
おけるオゾン酸化の結果として微生物処理可能な中間体
が生成しているので、その中間体を好気性ろ床20にお
いて微生物の働きで除去することにより、COD除去率
をさらに上げることができる。後段のオゾン処理及び生
物処理についてはすでに第1の処理法、第4の処理法で
述べているので、説明を省略する。Next, an embodiment of the fifth processing method according to the present invention will be described with reference to the drawings. FIG. 5 is a flowchart showing an embodiment of the fifth treatment method of the present invention for the purpose of sewage treatment. In the fifth treatment method, an aerobic filter method is added to the first treatment method as a biological treatment method again. Although the first treatment method can reduce the COD of the treated water, the fifth method is for the purpose of further reducing the COD, and the intermediate treatment capable of treating microorganisms as a result of the ozone oxidation in the water ozone treatment tank 13. Since the body is formed, the COD removal rate can be further increased by removing the intermediate by the action of microorganisms in the aerobic filter bed 20. Since the ozone treatment and the biological treatment in the latter stage have already been described in the first treatment method and the fourth treatment method, description thereof will be omitted.
【0031】次に、本発明による第6の処理法の実施例
を図面を参照して説明する。図6は下水処理を目的とし
た本発明の第6の処理法の実施例を示すフロー図であ
る。第6の処理法は第2の処理法に再度の生物処理法と
して好気性ろ床法を付加している。第2の処理法でも処
理水CODの低減は可能であるが、第6の方法はより一
層の低減を目的とした場合で、水用オゾン処理槽13に
おけるオゾン酸化の結果として微生物処理可能な中間体
が生成しているので、その中間体を好気性ろ床20にお
いて微生物の働きで除去することにより、COD除去率
をさらに上げることができる。後段のオゾン処理及び生
物処理についてはすでに第2の処理法、第4の処理法で
述べているので、説明を省略する。Next, an embodiment of the sixth processing method according to the present invention will be described with reference to the drawings. FIG. 6 is a flowchart showing an embodiment of the sixth treatment method of the present invention for sewage treatment. In the sixth treatment method, an aerobic filter method is added to the second treatment method as a biological treatment method again. Although the second treatment method can reduce the COD of the treated water, the sixth method is for the purpose of further reducing the COD, and the intermediate treatment capable of treating microorganisms as a result of ozone oxidation in the ozone treatment tank 13 for water. Since the body is formed, the COD removal rate can be further increased by removing the intermediate by the action of microorganisms in the aerobic filter bed 20. The ozone treatment and the biological treatment in the latter stage have already been described in the second treatment method and the fourth treatment method, and the description thereof will be omitted.
【0032】次に、本発明による第7の処理法の実施例
を図面を参照して説明する。図7は下水処理を目的とし
た本発明の第7の処理法の実施例を示すフロー図であ
る。第7の処理法は第3の処理法に再度の生物処理法と
して好気性ろ床法を付加している。第3の処理法でも処
理水CODの低減は可能であるが、第7の方法はより一
層の低減を目的とした場合で、水用オゾン処理槽13に
おけるオゾン酸化の結果として微生物処理可能な中間体
が生成しているので、その中間体を好気性ろ床20にお
いて微生物の働きで除去することにより、COD除去率
をさらに上げることができる。後段のオゾン処理及び生
物処理についてはすでに第3の処理法、第4の処理法で
述べているので、説明を省略する。Next, an embodiment of the seventh processing method according to the present invention will be described with reference to the drawings. FIG. 7 is a flowchart showing an embodiment of the seventh treatment method of the present invention for sewage treatment. The seventh treatment method adds an aerobic filter method as a biological treatment method to the third treatment method again. The third treatment method can reduce the COD of the treated water, but the seventh method is for the purpose of further reducing the COD. Since the body is formed, the COD removal rate can be further increased by removing the intermediate by the action of microorganisms in the aerobic filter bed 20. The ozone treatment and the biological treatment in the latter stage have already been described in the third treatment method and the fourth treatment method, and thus the description thereof will be omitted.
【0033】以上、下水を例として実施例を述べたが、
下水に限らず有機性の排水であればこれらの処理法を適
用することができる。また、処理水CODを除去するこ
とができる7種の処理法の実施例を説明しているが、こ
のうちどの方法を選択するかは、対象とする排水の水
質、目標処理水質、経済性、維持管理性等を考慮し、個
々に決定すれば良い。In the above, the embodiment has been described using sewage as an example.
These treatment methods can be applied to not only sewage but also organic wastewater. In addition, the embodiments of the seven types of treatment methods capable of removing the treated water COD are described. Which method is selected depends on the quality of the target wastewater, the target treated water quality, the economic efficiency, It may be determined individually in consideration of the maintainability and the like.
【0034】[0034]
【発明の効果】以上、本発明の処理方法を説明したが、
本発明は特開平6−206088号公報に記載された処
理法の問題点である、CODの高い処理水の流出を解決
したものである。すなわち、本発明は特開平6−206
088号公報に記載された処理法の後段で、オゾン処
理、オゾン酸化促進処理、生物処理を行って処理水CO
Dを除去する方法である。The processing method of the present invention has been described above.
The present invention solves the problem of the treatment method described in JP-A-6-206088, which is an outflow of treated water having a high COD. That is, the present invention relates to JP-A-6-206.
No. 088, ozone treatment, ozone oxidation acceleration treatment, and biological treatment are performed in the latter stage of the treatment method described in
This is a method for removing D.
【0035】第1、第2及び第3の方法は、オゾン処理
と紫外線処理、過酸化水素処理、光触媒処理を併用する
ことによって、オゾン処理単独では得られない高い溶解
性有機物の分解を達成しCODの除去を実現している。
また、第4の方法では、オゾン処理の後で生物処理を行
うことにより、生成した中間体を除去して高いCODの
除去を実現し、さらに発生する少量の汚泥を前段の活性
汚泥処理系に返送して処理することにより、系全体とし
ての汚泥発生も抑制し、汚泥が出ないとする特開平6−
206088号公報に記載された処理法の特徴を堅持し
ている。The first, second and third methods achieve the decomposition of highly soluble organic substances which cannot be obtained by the ozone treatment alone by using the ozone treatment together with the ultraviolet treatment, the hydrogen peroxide treatment and the photocatalytic treatment. COD removal is realized.
In the fourth method, a biological treatment is carried out after the ozone treatment to remove generated intermediates, thereby realizing high COD removal, and furthermore, a small amount of generated sludge is supplied to the activated sludge treatment system at the preceding stage. By returning and processing, the sludge generation as the whole system is suppressed, and no sludge is generated.
The characteristics of the processing method described in JP-A-206088 are maintained.
【0036】さらに、第5、第6及び第7の方法は、第
1、第2及び第3の方法で得られた処理水をさらに生物
処理することにより、より高いCOD除去を実現すすと
ともに、発生する少量の汚泥を前段の生物処理系に返送
して処理することにより、系全体としての汚泥発生も抑
制し、汚泥が出ないとする特開平6−206088号公
報に記載された処理法の特徴を堅持している。Further, the fifth, sixth and seventh methods realize higher COD removal by further biologically treating the treated water obtained by the first, second and third methods, By returning a small amount of generated sludge to the biological treatment system in the preceding stage and treating the sludge, sludge generation as a whole system is also suppressed, and no sludge is produced, which is described in Japanese Patent Application Laid-Open No. 6-2060888. Adhering to features.
【0037】このように、本発明の処理法によれば、高
いCOD除去を安定して実現することができる。As described above, according to the processing method of the present invention, high COD removal can be stably realized.
【図1】本発明の第1の実施例のフロー図FIG. 1 is a flowchart of a first embodiment of the present invention.
【図2】本発明の第2の実施例のフロー図FIG. 2 is a flowchart of a second embodiment of the present invention.
【図3】本発明の第3の実施例のフロー図FIG. 3 is a flowchart of a third embodiment of the present invention.
【図4】本発明の第4の実施例のフロー図FIG. 4 is a flowchart of a fourth embodiment of the present invention.
【図5】本発明の第5の実施例のフロー図FIG. 5 is a flowchart of a fifth embodiment of the present invention.
【図6】本発明の第6の実施例のフロー図FIG. 6 is a flowchart of a sixth embodiment of the present invention.
【図7】本発明の第7の実施例のフロー図FIG. 7 is a flowchart of a seventh embodiment of the present invention.
1 下水 2 生物反応槽 3 最終沈殿池 4 散気装置 5 返送汚泥ポンプ 6 返送汚泥 7 引抜汚泥ポンプ 8 オゾン発生機 9a オゾン 9b オゾン 10 汚泥用オゾン処理槽 11 オゾン処理汚泥 12 紫外線ランプ 13 水用オゾン処理槽 14 排オゾン 15 オゾン処理水 16 過酸化水素水貯留槽 17 薬注ポンプ 18 水銀灯 19 光触媒ペレット 20 好気性ろ床 21 ろ材 22 処理水貯留槽 23 逆洗 24 逆洗汚泥 25 処理水 26 空気 Reference Signs List 1 sewage 2 biological reaction tank 3 final sedimentation basin 4 diffuser 5 return sludge pump 6 return sludge 7 withdrawal sludge pump 8 ozone generator 9a ozone 9b ozone 10 sludge ozone treatment tank 11 ozone treatment sludge 12 ultraviolet lamp 13 water ozone Treatment tank 14 Discharged ozone 15 Ozonated water 16 Hydrogen peroxide water storage tank 17 Chemical injection pump 18 Mercury lamp 19 Photocatalyst pellet 20 Aerobic filter bed 21 Filter media 22 Treated water storage tank 23 Backwash 24 Backwash sludge 25 Treated water 26 Air
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C02F 1/72 101 C02F 1/72 101 1/78 ZAB 1/78 ZAB 3/06 ZAB 3/06 ZAB 11/06 ZAB 11/06 ZABA (72)発明者 高橋 龍太郎 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI C02F 1/72 101 C02F 1/72 101 1/78 ZAB 1/78 ZAB 3/06 ZAB 3/06 ZAB 11/06 ZAB 11 / 06 ZABA (72) The inventor Ryutaro Takahashi 1-1-1, Tanabe Nitta, Kawasaki-ku, Kawasaki City, Kanagawa Prefecture Inside Fuji Electric Co., Ltd.
Claims (7)
て、被処理排水の微生物処理によって増殖する汚泥量よ
りも多い量の活性汚泥を活性汚泥処理系から引抜き、引
抜き汚泥をオゾン処理したのち活性汚泥処理系に導入す
る処理において、その後段で前記活性汚泥処理系からの
処理水を紫外線照射とオゾン処理との併用で処理するこ
とを特徴とする活性汚泥法処理水の処理方法。An activated sludge method for treating organic wastewater, wherein an amount of activated sludge larger than the amount of sludge multiplied by microbial treatment of the treated wastewater is withdrawn from the activated sludge treatment system, and the extracted sludge is treated with ozone. A method for treating activated sludge treated water, wherein the treated water from the activated sludge treatment system is treated by a combination of ultraviolet irradiation and ozone treatment in a subsequent stage in the treatment introduced into the activated sludge treatment system.
て、被処理排水の微生物処理によって増殖する汚泥量よ
りも多い量の活性汚泥を活性汚泥処理系から引抜き、引
抜き汚泥をオゾン処理したのち活性汚泥処理系に導入す
る処理において、その後段で前記活性汚泥処理系からの
処理水に過酸化水素水を添加しつつオゾン処理を行うこ
とを特徴とする活性汚泥法処理水の処理方法。2. An activated sludge method for treating organic wastewater, wherein an amount of activated sludge larger than the amount of sludge multiplied by the microbial treatment of the treated wastewater is withdrawn from the activated sludge treatment system, and the extracted sludge is treated with ozone. A method for treating activated sludge treated water, wherein the ozone treatment is performed while adding hydrogen peroxide to the treated water from the activated sludge treatment system at a subsequent stage in the treatment introduced into the activated sludge treatment system.
て、被処理排水の微生物処理によって増殖する汚泥量よ
りも多い量の活性汚泥を活性汚泥処理系から引抜き、引
抜き汚泥をオゾン処理したのち活性汚泥処理系に導入す
る処理において、その後段で前記活性汚泥処理系からの
処理水をオゾン処理と不溶性の光触媒処理との併用で処
理することを特徴とする活性汚泥法処理水の処理方法。3. An activated sludge method for treating organic wastewater, wherein an amount of activated sludge larger than the amount of sludge multiplied by microbial treatment of the treated wastewater is withdrawn from the activated sludge treatment system, and the extracted sludge is treated with ozone. In a treatment to be subsequently introduced into the activated sludge treatment system, a treatment method for the activated sludge treatment water characterized by treating the treated water from the activated sludge treatment system by a combination of an ozone treatment and an insoluble photocatalytic treatment in a subsequent stage. .
て、被処理排水の微生物処理によって増殖する汚泥量よ
りも多い量の活性汚泥を活性汚泥処理系から引抜き、引
抜き汚泥をオゾン処理したのち活性汚泥処理系に導入す
る処理において、その後段で前記活性汚泥処理系からの
処理水のオゾン処理を行い、さらにこの水を生物処理
し、この生物処理装置から発生する汚泥を前記活性汚泥
処理系に返送することを特徴とする活性汚泥法処理水の
処理方法。4. An activated sludge method for treating organic waste water, wherein a larger amount of activated sludge than the amount of sludge multiplied by microbial treatment of the treated waste water is withdrawn from the activated sludge treatment system, and the extracted sludge is treated with ozone. In the treatment to be subsequently introduced into the activated sludge treatment system, ozone treatment of the treated water from the activated sludge treatment system is performed in the subsequent stage, and the water is further biologically treated. A method for treating activated sludge treated water, which is returned to a system.
て、被処理排水の微生物処理によって増殖する汚泥量よ
りも多い量の活性汚泥を活性汚泥処理系から引抜き、引
抜き汚泥をオゾン処理したのち活性汚泥処理系に導入す
る処理において、その後段で前記活性汚泥処理系からの
処理水を紫外線照射とオゾン処理との併用で処理し、さ
らにこの水を生物処理し、この生物処理装置から発生す
る汚泥を前記活性汚泥処理系に返送することを特徴とす
る活性汚泥法処理水の処理方法。5. An activated sludge method for treating an organic wastewater, wherein a larger amount of activated sludge than the amount of sludge multiplied by microbial treatment of the treated wastewater is withdrawn from the activated sludge treatment system, and the extracted sludge is treated with ozone. In the treatment to be subsequently introduced into the activated sludge treatment system, the treated water from the activated sludge treatment system is treated by a combination of ultraviolet irradiation and ozone treatment in the subsequent stage, and the water is subjected to biological treatment, and is generated from the biological treatment device. A method for treating activated sludge treated water, comprising returning sludge to the activated sludge treatment system.
て、被処理排水の微生物処理によって増殖する汚泥量よ
りも多い量の活性汚泥を活性汚泥処理系から引抜き、引
抜き汚泥をオゾン処理したのち活性汚泥処理系に導入す
る処理において、その後段で前記活性汚泥処理系からの
処理水に過酸化水素水を添加しつつオゾン処理を行い、
さらにこの水を生物処理し、この生物処理装置から発生
する汚泥を前記活性汚泥処理系に返送することを特徴と
する活性汚泥法処理水の処理方法。6. An activated sludge method for treating organic waste water, wherein an amount of activated sludge larger than the amount of sludge multiplied by the microbial treatment of the treated waste water is withdrawn from the activated sludge treatment system, and the extracted sludge is treated with ozone. In the treatment to be subsequently introduced into the activated sludge treatment system, ozone treatment is performed in a subsequent stage while adding hydrogen peroxide to the treated water from the activated sludge treatment system,
The method for treating activated sludge treated water, further comprising subjecting the water to biological treatment, and returning sludge generated from the biological treatment device to the activated sludge treatment system.
て、被処理排水の微生物処理によって増殖する汚泥量よ
りも多い量の活性汚泥を活性汚泥処理系から引抜き、引
抜き汚泥をオゾン処理したのち活性汚泥処理系に導入す
る処理において、その後段で前記活性汚泥処理系からの
処理水をオゾン処理と不溶性の光触媒処理との併用で処
理し、さらにこの水を生物処理し、この生物処理装置か
ら発生する汚泥を前記活性汚泥処理系に返送することを
特徴とする活性汚泥法処理水の処理方法。7. An activated sludge method for treating organic waste water, wherein an amount of activated sludge larger than the amount of sludge multiplied by microbial treatment of the treated waste water is withdrawn from the activated sludge treatment system, and the extracted sludge is treated with ozone. In the treatment to be subsequently introduced into the activated sludge treatment system, in the subsequent stage, the treated water from the activated sludge treatment system is treated by a combination of the ozone treatment and the insoluble photocatalyst treatment, and the water is further biologically treated. A method for treating activated sludge treated water, comprising returning sludge generated from sewage to the activated sludge treatment system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28719896A JP3867326B2 (en) | 1996-10-30 | 1996-10-30 | Ozone treatment method for activated sludge process water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28719896A JP3867326B2 (en) | 1996-10-30 | 1996-10-30 | Ozone treatment method for activated sludge process water |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10128377A true JPH10128377A (en) | 1998-05-19 |
JP3867326B2 JP3867326B2 (en) | 2007-01-10 |
Family
ID=17714346
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28719896A Expired - Fee Related JP3867326B2 (en) | 1996-10-30 | 1996-10-30 | Ozone treatment method for activated sludge process water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3867326B2 (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1142494A (en) * | 1997-05-30 | 1999-02-16 | Shokuhin Sangyo Kankyo Hozen Gijutsu Kenkyu Kumiai | Treatment of waste water by ozone and ozone treating device |
JPH11347596A (en) * | 1998-06-05 | 1999-12-21 | Mitsubishi Electric Corp | Apparatus for treating drainage |
JP2000126787A (en) * | 1998-08-19 | 2000-05-09 | Japan Organo Co Ltd | Method of and apparatus for inactivating chemical substance having hormone-like activity |
JP2000202476A (en) * | 1999-01-18 | 2000-07-25 | Ebara Corp | Treatment of organic sewage containing endocrine desruptor or carcinogen |
JP2003019497A (en) * | 2001-07-06 | 2003-01-21 | Sumitomo Precision Prod Co Ltd | Sludge treatment method and ejector |
JP2003088892A (en) * | 2001-09-18 | 2003-03-25 | Mitsubishi Heavy Ind Ltd | Organic waste water treatment apparatus |
WO2004026773A1 (en) * | 2002-08-13 | 2004-04-01 | Korea Institute Of Science And Technology | Method for advanced wastewater treatment without excess sludge using sludge disintegration |
JP2006239613A (en) * | 2005-03-04 | 2006-09-14 | Sharp Corp | Method and apparatus for wastewater treatment |
KR100885540B1 (en) | 2007-03-22 | 2009-02-26 | 선일엔지니어링 주식회사 | Apparatus and method for zero sludge of organic wastewater treatment of high concentration |
US7578942B2 (en) | 2005-03-03 | 2009-08-25 | Sharp Kabushiki Kaisha | Wastewater treatment equipment and method of wastewater treatment |
US7691268B2 (en) | 2005-03-04 | 2010-04-06 | Sharp Kabushiki Kaisha | Waste gas/wastewater treatment equipment and method of treating waste gas/wastewater |
JP2010221077A (en) * | 2009-03-19 | 2010-10-07 | Nissei Plant Kk | Surplus sludge reduction equipment |
KR101202906B1 (en) | 2010-06-07 | 2012-11-19 | 이은주 | Method and devices to treat wastewater by recycling hybrid system |
NL2009368C2 (en) * | 2012-08-27 | 2014-03-04 | Advanced Waste Water Solutions B V | Method and device for treating water comprising degradable organic matter. |
-
1996
- 1996-10-30 JP JP28719896A patent/JP3867326B2/en not_active Expired - Fee Related
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1142494A (en) * | 1997-05-30 | 1999-02-16 | Shokuhin Sangyo Kankyo Hozen Gijutsu Kenkyu Kumiai | Treatment of waste water by ozone and ozone treating device |
JPH11347596A (en) * | 1998-06-05 | 1999-12-21 | Mitsubishi Electric Corp | Apparatus for treating drainage |
JP2000126787A (en) * | 1998-08-19 | 2000-05-09 | Japan Organo Co Ltd | Method of and apparatus for inactivating chemical substance having hormone-like activity |
JP2000202476A (en) * | 1999-01-18 | 2000-07-25 | Ebara Corp | Treatment of organic sewage containing endocrine desruptor or carcinogen |
JP2003019497A (en) * | 2001-07-06 | 2003-01-21 | Sumitomo Precision Prod Co Ltd | Sludge treatment method and ejector |
JP2003088892A (en) * | 2001-09-18 | 2003-03-25 | Mitsubishi Heavy Ind Ltd | Organic waste water treatment apparatus |
WO2004026773A1 (en) * | 2002-08-13 | 2004-04-01 | Korea Institute Of Science And Technology | Method for advanced wastewater treatment without excess sludge using sludge disintegration |
US7578942B2 (en) | 2005-03-03 | 2009-08-25 | Sharp Kabushiki Kaisha | Wastewater treatment equipment and method of wastewater treatment |
WO2006095509A1 (en) * | 2005-03-04 | 2006-09-14 | Sharp Kabushiki Kaisha | Method of wastewater treatment and wastewater treatment equipment |
JP2006239613A (en) * | 2005-03-04 | 2006-09-14 | Sharp Corp | Method and apparatus for wastewater treatment |
US7641802B2 (en) | 2005-03-04 | 2010-01-05 | Sharp Kabushiki Kaisha | Wastewater treatment method and wastewater treatment equipment |
US7691268B2 (en) | 2005-03-04 | 2010-04-06 | Sharp Kabushiki Kaisha | Waste gas/wastewater treatment equipment and method of treating waste gas/wastewater |
KR100885540B1 (en) | 2007-03-22 | 2009-02-26 | 선일엔지니어링 주식회사 | Apparatus and method for zero sludge of organic wastewater treatment of high concentration |
JP2010221077A (en) * | 2009-03-19 | 2010-10-07 | Nissei Plant Kk | Surplus sludge reduction equipment |
KR101202906B1 (en) | 2010-06-07 | 2012-11-19 | 이은주 | Method and devices to treat wastewater by recycling hybrid system |
NL2009368C2 (en) * | 2012-08-27 | 2014-03-04 | Advanced Waste Water Solutions B V | Method and device for treating water comprising degradable organic matter. |
Also Published As
Publication number | Publication date |
---|---|
JP3867326B2 (en) | 2007-01-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3867326B2 (en) | Ozone treatment method for activated sludge process water | |
JPH09122682A (en) | Method for treating waste water | |
JPH0970598A (en) | Ultrapure water producing device | |
JP2005058854A (en) | Method and apparatus for waste water treatment | |
JP6084150B2 (en) | Denitrification treatment method and denitrification treatment apparatus | |
JP2002079034A (en) | Biological desulfurization method and apparatus | |
Magara et al. | Application of ozone to water treatment and power consumption of ozone generating systems | |
JP2003088885A (en) | Method and apparatus for treating organic waste water | |
JP3448719B2 (en) | Odorless reforming culture tank | |
JPH0839100A (en) | Simultaneous treatment of kitchen waste water and garbage | |
JP2003190987A (en) | Method for cleaning lakes and marshes | |
JP2861045B2 (en) | Treatment of water containing organic matter | |
JPH10323682A (en) | Biological filtering method | |
JP3383541B2 (en) | Biological treatment method and apparatus for organic wastewater | |
JPH05277475A (en) | Treatment method for water containing organic substance | |
JP3373137B2 (en) | Organic wastewater biological treatment method | |
JP3178975B2 (en) | Water treatment method | |
JP2002059200A (en) | Method of treating sewage and sludge | |
JP4156820B2 (en) | Organic wastewater treatment method and treatment apparatus | |
JP3525458B2 (en) | Aerobic treatment of organic wastewater | |
JP5873744B2 (en) | Organic wastewater and organic waste treatment method and treatment equipment | |
JP3963533B2 (en) | Water treatment method | |
JP2003047988A (en) | Method and apparatus for treating organic polluted water | |
JP2002166275A (en) | Method and equipment for treating drainage containing thermally degradable organic compound | |
JP2004097903A (en) | Method of treating sludge returning water |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041129 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060627 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20060703 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20060704 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060828 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060919 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061002 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091020 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091020 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091020 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101020 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111020 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111020 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121020 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121020 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131020 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |