JPH1012230A - Manufacture of electrode for battery - Google Patents

Manufacture of electrode for battery

Info

Publication number
JPH1012230A
JPH1012230A JP8155763A JP15576396A JPH1012230A JP H1012230 A JPH1012230 A JP H1012230A JP 8155763 A JP8155763 A JP 8155763A JP 15576396 A JP15576396 A JP 15576396A JP H1012230 A JPH1012230 A JP H1012230A
Authority
JP
Japan
Prior art keywords
slurry
powder
methyl
water
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8155763A
Other languages
Japanese (ja)
Inventor
Atsushi Furukawa
淳 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP8155763A priority Critical patent/JPH1012230A/en
Publication of JPH1012230A publication Critical patent/JPH1012230A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To shorten a time for drying coating slurry by specifying a component of slurry coating a substrate. SOLUTION: First, a powdery component related to battery reaction and a prescribed solution are mixed so as to prepare slurry. The powdery component is mainly composed of a hydrogen storage alloy. The solution is fused with powder of polyfluorovinylidene in n-methyl-2-pyrolidone. Next, after coating of the slurry in a conductive substrate immediately the substrate is put into the water. By this treating, n-methyl-2-pyrolidone in the slurry is moved to the water, the polyfluoro vinylidene is uniformly precipitated in the coating slurry as a solid. Thereafter, the substrate is taken out from in the water, water adhering to a surface is dried and removed. Here, without n-methyl-2- pyrolidone which is a solvent, necessity for heat drying for a long time is eliminated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電池用電極の製造方
法に関し、更に詳しくは、従来に比べて簡単かつ短時間
で電池用電極を製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a battery electrode, and more particularly, to a method for manufacturing a battery electrode more simply and in a shorter time than before.

【0002】[0002]

【従来の技術】密閉型アルカリ二次電池の正極や負極の
多くは、通常、導電性基板に、その電池特有の電池反応
に例えば活物質として関与する粉末成分を担持させた構
造になっている。例えば、近年、高容量電池として急速
に実用化が進んでいるニッケル・水素二次電池の場合、
それに組み込まれる負極としては次のような水素吸蔵合
金電極が知られている。
2. Description of the Related Art Most of the positive and negative electrodes of sealed alkaline secondary batteries usually have a structure in which a conductive substrate carries a powder component that participates in a battery reaction peculiar to the battery, for example, as an active material. . For example, in recent years, nickel-hydrogen secondary batteries, which have been rapidly commercialized as high capacity batteries,
The following hydrogen storage alloy electrodes are known as negative electrodes incorporated therein.

【0003】すなわち、活物質である水素を電気化学的
に吸蔵・放出することができる水素吸蔵合金の粉末の所
定量を導電性の網状シートや所望開口率のパンチングメ
タルシートのような導電性基板に塗着または充填して担
持させたものである。このような水素吸蔵合金電極は、
従来から、概ね次のようにして製造されている。
That is, a predetermined amount of a powder of a hydrogen storage alloy capable of electrochemically storing and releasing hydrogen as an active material is applied to a conductive substrate such as a conductive mesh sheet or a punched metal sheet having a desired aperture ratio. Is applied or filled and carried. Such a hydrogen storage alloy electrode,
Conventionally, it is generally manufactured as follows.

【0004】まず、水素吸蔵合金粉末のスラリーが調製
される。すなわち、イオン交換水や蒸留水にメチルセル
ロース,カルボキシメチルセルロース,ポリエチレンオ
キサイド,ポリビニルアルコールのような増粘剤の1種
または2種以上を所定量溶解して増粘剤水溶液を調製
し、そして、ここに、所定粒径の水素吸蔵合金粉末の所
定量を分散させて所望の粘性状態にあるスラリーを調製
する。なお、このスラリー調整時には、導電性基板に水
素吸蔵合金粉末を層状に担持させたときに、形成された
水素吸蔵合金層における各合金粉末の相互結着性を高
め、前記導電性基板から脱落することを防止するため
に、例えば、ポリテトラフルオロエチレン粉末,ポリエ
チレン粉末,ポリプロピレン粉末,ポリフッ化ビニリデ
ン粉末などの所定量を結着剤として更に配合したり、ま
た前記水素吸蔵合金層の導電性を高めて負極としての集
電能を向上させるために、例えば、ニッケル粉末,コバ
ルト粉末,銅粉末,カーボン粉末などの所定量が配合さ
れる。
First, a slurry of a hydrogen storage alloy powder is prepared. That is, a predetermined amount of one or more thickeners such as methylcellulose, carboxymethylcellulose, polyethylene oxide, and polyvinyl alcohol is dissolved in ion-exchanged water or distilled water to prepare a thickener aqueous solution. Then, a predetermined amount of the hydrogen storage alloy powder having a predetermined particle size is dispersed to prepare a slurry having a desired viscosity. During the preparation of the slurry, when the hydrogen-absorbing alloy powder is supported on the conductive substrate in a layered manner, the interconnectivity of each alloy powder in the formed hydrogen-absorbing alloy layer is increased, and the slurry is dropped from the conductive substrate. In order to prevent this, a predetermined amount of, for example, polytetrafluoroethylene powder, polyethylene powder, polypropylene powder, polyvinylidene fluoride powder or the like is further blended as a binder, or the conductivity of the hydrogen storage alloy layer is increased. For example, a predetermined amount of a nickel powder, a cobalt powder, a copper powder, a carbon powder or the like is blended in order to improve the current collecting ability as a negative electrode.

【0005】このようにして調製されたスラリーに前記
した導電性基板を浸漬したのち、それを所定速度で引き
上げる。その結果、導電性基板が網状シートの場合に
は、粘稠なスラリーはパンチングメタルシートの開口を
埋めると同時に表面に付着して所望厚みのスラリー層が
形成される。得られたスラリー塗着基板に、ついで、8
0〜100℃の温度で乾燥処理を行って塗着スラリーか
ら水分を除去して乾燥したのち、全体に所定の圧力で圧
延処理を行うことにより、全体の厚みを所定の厚みに調
整するとともに、乾燥スラリーを導電性基板に密着した
状態で担持させる。
After the above-mentioned conductive substrate is immersed in the slurry thus prepared, it is pulled up at a predetermined speed. As a result, when the conductive substrate is a mesh sheet, the viscous slurry fills the openings of the punched metal sheet and adheres to the surface at the same time, forming a slurry layer of a desired thickness. The obtained slurry-coated substrate was then treated with 8
After performing drying treatment at a temperature of 0 to 100 ° C. to remove water from the coating slurry and drying, by performing a rolling treatment at a predetermined pressure on the whole, the entire thickness is adjusted to a predetermined thickness, The dried slurry is carried in a state in which the slurry is in close contact with the conductive substrate.

【0006】なお、結着剤としてポリフッ化ビニリデン
粉末を用いた場合には、上記した圧延処理に続けて、例
えば150〜210℃程度の窒素雰囲気中で所望時間の
加熱処理を行い、これら結着剤を軟化させ、結合させる
という処置が採られている。このように、水素吸蔵合金
電極の製造に際しては、水素吸蔵合金粉末や導電材粉末
や結着剤粉末などの粉末成分を増粘剤水溶液で粘稠なス
ラリーとし、これを導電性基板に塗着したのち、乾燥処
理,圧延処理が順次施されている。
When polyvinylidene fluoride powder is used as a binder, a heat treatment is performed for a desired time in a nitrogen atmosphere of, for example, about 150 to 210 ° C., following the above-mentioned rolling treatment. Measures have been taken to soften and bind the agent. As described above, when producing the hydrogen storage alloy electrode, powder components such as the hydrogen storage alloy powder, the conductive material powder, and the binder powder are formed into a viscous slurry with a thickener aqueous solution, and the slurry is applied to a conductive substrate. After that, a drying process and a rolling process are sequentially performed.

【0007】また、ニッケル・水素二次電池の正極の場
合も正極活物質として機能する水酸化ニッケル粉末や導
電材粉末などの粉末成分と水を混合して粘稠なペースト
を調製し、これを導電性基板に充填または塗着したの
ち、乾燥処理,圧延処理を順次行って製造されている。
いずれの場合にしても、固体である粉末成分と液体であ
る増粘剤水溶液または水とを混合して、粉末成分が均一
に分散するスラリー(またはペースト)が調製され、そ
れが導電性基板に塗着されることになる。
In the case of a positive electrode of a nickel-hydrogen secondary battery, a viscous paste is prepared by mixing powder components such as nickel hydroxide powder and conductive material powder which function as a positive electrode active material with water. It is manufactured by filling or coating a conductive substrate, followed by drying and rolling.
In either case, a slurry (or paste) in which the powder component is uniformly dispersed is prepared by mixing the solid powder component and the liquid thickener aqueous solution or water, and the slurry (or paste) is applied to the conductive substrate. It will be painted.

【0008】[0008]

【発明が解決しようとする課題】ところで、上記した従
来の電極の製造方法において、結着剤としてポリテトラ
フルオロエチレンやポリフッ化ビニリデンのようなフッ
素系樹脂の粉末を配合した場合、これら粉末はスラリー
中に均一分散していることが好ましい。仮に、スラリー
中に偏在していると、形成された水素吸蔵合金層におい
ても偏在することになる。そして、これら粉末はいずれ
も強い撥水性を有しているのでこれら粉末が偏在してい
る個所もまた強い撥水性を示す。
In the above-described conventional method for manufacturing an electrode, when powders of a fluorine-based resin such as polytetrafluoroethylene or polyvinylidene fluoride are blended as a binder, these powders are formed into a slurry. It is preferable that they are uniformly dispersed in the inside. If it is unevenly distributed in the slurry, it will be unevenly distributed in the formed hydrogen storage alloy layer. And since all of these powders have strong water repellency, the places where these powders are unevenly distributed also show strong water repellency.

【0009】しかしながら、このような状態は、電極表
面における電池反応、すなわち気−液共存領域が適正に
形成されていることを前提にして進行する電池反応を阻
害することであって、好ましいことではない。したがっ
て、結着剤としてポリテトラフルオロエチレンやポリフ
ッ化ビニリデンのようなフッ素系樹脂を採用した場合、
これらを固体粉末状で使用するのではなく、溶剤に溶解
して液状で用いることができれば、調製されたスラリー
中に当該結着剤を均一に存在せしめることができ、上記
したような偏在に基づく不都合の発生は略完全に解消す
ることができる。
However, such a state impedes the battery reaction on the electrode surface, that is, the battery reaction that proceeds on the premise that the gas-liquid coexistence region is properly formed. Absent. Therefore, when a fluorine-based resin such as polytetrafluoroethylene or polyvinylidene fluoride is used as a binder,
Rather than using these in the form of solid powder, if they can be used in the form of a solution by dissolving them in a solvent, the binder can be uniformly present in the prepared slurry. The inconvenience can be almost completely eliminated.

【0010】このような溶剤としては、現在までのとこ
ろ、ポリフッ化ビニリデンを溶解することができるn−
メチル−2−ピロリドンが知られており、リチウム電池
の製造に適用することが提案されている(特開平6−3
33566号公報および特開平7−335263号公報
を参照)。上記先行技術に記載されているように、この
n−メチル−2−ピロリドンはポリフッ化ビニリデンを
溶解することができ、しかも得られた溶液は適度な粘性
を発揮するので、これをそのまま用いて目的とするスラ
リーを調製することができる。すなわち、上記溶液は、
前記した粉末成分に対する前記した増粘剤水溶液として
の機能も併有しているということができる。
As such a solvent, up to now, n- which can dissolve polyvinylidene fluoride is used.
Methyl-2-pyrrolidone is known and has been proposed to be applied to the production of lithium batteries (Japanese Patent Application Laid-Open No. Hei 6-3).
See JP-A-33566 and JP-A-7-335263). As described in the above prior art, this n-methyl-2-pyrrolidone is capable of dissolving polyvinylidene fluoride, and the resulting solution exhibits an appropriate viscosity. Can be prepared. That is, the solution is
It can be said that it also has the function as the above-mentioned aqueous solution of the thickener for the above-mentioned powder component.

【0011】しかしながら、このn−メチル−2−ピロ
リドンの沸点は202℃であるため、導電性基板へのス
ラリー塗着後に行う乾燥処理で当該n−メチル−2−ピ
ロリドンを除去するときに従来の乾燥処理時に採用され
ている140〜180℃程度の温度を適用すると、乾燥
終了までには非常に長い時間を要することになる。この
ように、n−メチル−2−ピロリドンの採用は、結着剤
であるポリフッ化ビニリデンを電極表面に均一に存在せ
しめるという点で有効であるが、他方では、電極製造時
における生産性を低下させるという問題を招くことにな
る。
However, since the boiling point of this n-methyl-2-pyrrolidone is 202 ° C., a conventional drying process for removing the n-methyl-2-pyrrolidone after the slurry is applied to the conductive substrate is used. If a temperature of about 140 to 180 ° C. employed during the drying process is applied, it takes a very long time to finish the drying. As described above, the use of n-methyl-2-pyrrolidone is effective in that polyvinylidene fluoride as a binder is uniformly present on the electrode surface, but on the other hand, lowers productivity during electrode production. This leads to the problem of causing

【0012】本発明は、電池反応に関与する前記粉末成
分をポリフッ化ビニリデンで結着する場合、当該ポリフ
ッ化ビニリデンをn−メチル−2−ピロリドンに溶解し
て用いたときにおける上記した問題を解決し、塗着スラ
リーの乾燥時間を短くするとができる電池用電極の製造
方法の提供を目的とする。
The present invention solves the above-mentioned problem when the powder component involved in the battery reaction is bound with polyvinylidene fluoride and the polyvinylidene fluoride is dissolved in n-methyl-2-pyrrolidone and used. It is another object of the present invention to provide a method for manufacturing a battery electrode which can shorten the drying time of the coating slurry.

【0013】[0013]

【課題を解決するための手段】本発明者は上記した目的
を達成するために、n−メチル−2−ピロリドンにつき
その性状を検討し、以下の知見を得るに至った。まず、
このn−メチル−2−ピロリドンは、前記したように、
ポリフッ化ビニリデンをよく溶解する。そして、得られ
た溶液は粘稠になる。
The present inventors have studied the properties of n-methyl-2-pyrrolidone in order to achieve the above object, and have obtained the following findings. First,
This n-methyl-2-pyrrolidone, as described above,
Dissolves polyvinylidene fluoride well. Then, the obtained solution becomes viscous.

【0014】また、このn−メチル−2−ピロリドンは
水と自由に混和し、そのときの極性は、ポリフッ化ビニ
リデンを溶解しているときの極性よりも安定化する。し
たがって、ポリフッ化ビニリデンが溶解されているn−
メチル−2−ピロリドンが水に接すると、n−メチル−
2−ピロリドンは水の方に移動していき、結局、溶解さ
れていたポリフッ化ビニリデンが固体として析出するこ
とになる。
Further, the n-methyl-2-pyrrolidone is freely mixed with water, and the polarity at that time is more stabilized than the polarity when polyvinylidene fluoride is dissolved. Therefore, n- in which polyvinylidene fluoride is dissolved
When methyl-2-pyrrolidone comes into contact with water, n-methyl-
2-Pyrrolidone moves toward water, and eventually, the dissolved polyvinylidene fluoride precipitates as a solid.

【0015】本発明者は、上記知見に基づき、ポリフッ
化ビニリデンがn−メチル−2−ピロリドンに溶解され
ている溶液を用いて調製したスラリーが導電性基板に塗
着されている当該基板を水に接触させれば、n−メチル
−2−ピロリドンは水の方に移動して結着剤であるポリ
フッ化ビニリデンは塗着スラリー側に残留することがで
きるとの着想を抱き、本発明を開発するに至った。
Based on the above findings, the present inventor has determined that a slurry prepared by using a solution of polyvinylidene fluoride dissolved in n-methyl-2-pyrrolidone is coated on a conductive substrate with water. The present invention was developed based on the idea that n-methyl-2-pyrrolidone would move toward water and polyvinylidene fluoride as a binder could remain on the coating slurry side if it was contacted. I came to.

【0016】すなわち、本発明の電池用電極の製造方法
は、n−メチル−2−ピロリドンにポリフッ化ビニリデ
ンを溶解して成る溶液と、電池反応に関与する粉末成分
とを混合してスラリーを調製し、前記スラリーを導電性
基板に塗着してスラリー塗着基板とし、ついで前記スラ
リー塗着基板と水とを接触させることを特徴とする。
That is, according to the method for producing a battery electrode of the present invention, a slurry is prepared by mixing a solution obtained by dissolving polyvinylidene fluoride in n-methyl-2-pyrrolidone and a powder component involved in a battery reaction. The slurry is applied to a conductive substrate to form a slurry-coated substrate, and then the slurry-coated substrate is brought into contact with water.

【0017】[0017]

【発明の実施の形態】本発明においては、まず、電池反
応に関与する粉末成分と後述する溶液とを混合してスラ
リーが調製される。ここで、電池反応に関与する粉末成
分とは、前記したように、水素吸蔵合金粉末,水酸化ニ
ッケル粉末,導電材粉末など、製造する電極における目
的の電池反応を実現するために必要な粉末のことをい
う、これらの粉末成分は、それぞれが所定の割合で混合
された状態でスラリー調製に供される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, first, a slurry is prepared by mixing a powder component involved in a battery reaction with a solution described later. Here, the powder component involved in the battery reaction is, as described above, a powder such as a hydrogen storage alloy powder, a nickel hydroxide powder, and a conductive material powder necessary for realizing a target battery reaction in an electrode to be manufactured. That is, these powder components are used for slurry preparation in a state where they are mixed at a predetermined ratio.

【0018】次に、上記した溶液はn−メチル−2−ピ
ロリドンにポリフッ化ビニリデンの粉末を溶解したもの
である。このときに、n−メチル−2−ピロリドンに溶
解させるポリフッ化ビニリデンの量は次のように設定さ
れる。すなわち、n−メチル−2−ピロリドンに対する
溶解度も勘案しながらも、前記した粉末成分を適正に結
着させることができる量である。溶解させる量が多すぎ
ると、粉末成分に対する結着能は良好になるが、他方で
は撥水性も強くなってきて良好な電池反応を阻害するよ
うになり、逆に溶解させる量が少なすぎると、粉末成分
に対する結着能の低下を招くようになるからである。
The above solution is obtained by dissolving polyvinylidene fluoride powder in n-methyl-2-pyrrolidone. At this time, the amount of polyvinylidene fluoride dissolved in n-methyl-2-pyrrolidone is set as follows. That is, the amount is such that the above-mentioned powder components can be properly bound while considering the solubility in n-methyl-2-pyrrolidone. If the amount to be dissolved is too large, the binding ability to the powder component becomes good, but on the other hand, the water repellency also becomes strong and hinders a good battery reaction, while if the amount to be dissolved is too small, This is because the binding ability to the powder component is reduced.

【0019】このようなことから、ポリフッ化ビニリデ
ンの溶解量は、粉末成分100重量部に対し0.1〜5重
量部であるとが好ましい。このとき、n−メチル−2−
ピロリドンに対するポリフッ化ビニリデンの溶解濃度は
格別限定されるものではないが、この溶解濃度が高すぎ
ると溶液の粘性も高くなって、粉末成分のスラリー調製
操作が行いづらくなり、また、この溶解濃度が低すぎる
と、スラリー粘度が低くなりすぎて、塗布後にダレが生
ずるという問題が生じてくるので、ポリフッ化ビニリデ
ンのn−メチル−2−ピロリドンに対する溶解濃度は1
〜15重量%程度であることが好ましい。
For this reason, the amount of polyvinylidene fluoride dissolved is preferably 0.1 to 5 parts by weight based on 100 parts by weight of the powder component. At this time, n-methyl-2-
The concentration of polyvinylidene fluoride dissolved in pyrrolidone is not particularly limited, but if the dissolved concentration is too high, the viscosity of the solution also increases, making it difficult to perform a slurry preparation operation of the powder component. If the viscosity is too low, the viscosity of the slurry will be too low, causing a problem of sagging after coating. Therefore, the solubility of polyvinylidene fluoride in n-methyl-2-pyrrolidone is 1%.
It is preferably about 15% by weight.

【0020】このようにして調製された溶液と粉末成分
とを混合し、所望する粘性状態のスラリーを調製する。
ついで、このスラリーを、従来と同じようにして、導電
性基板に塗着したのち、直ちに、スラリー塗着基板と水
とを接触させる。具体的には、スラリー塗着基板を水中
に投入すればよい。水としては、例えばイオン交換水や
蒸留水が用いられ、その水温は50℃以下になっている
ことが好ましい。
The solution thus prepared is mixed with the powder component to prepare a slurry having a desired viscosity.
Then, the slurry is applied to a conductive substrate in the same manner as in the related art, and immediately, the slurry-coated substrate is brought into contact with water. Specifically, the slurry-coated substrate may be put into water. As the water, for example, ion-exchanged water or distilled water is used, and the water temperature is preferably 50 ° C. or less.

【0021】この処理によって、塗着スラリーに含有さ
れていたn−メチル−2−ピロリドンは水の方に移動し
ていき、塗着スラリー内にはポリフッ化ビニリデンが固
体として均一に析出する。その後、水中からスラリー塗
着基板を取り出し、表面に付着している水を例えば乾燥
除去したのち、従来と同じように、圧延処理を行うこと
により目的とする電極が得られる。
By this treatment, n-methyl-2-pyrrolidone contained in the coating slurry moves toward water, and polyvinylidene fluoride is uniformly precipitated as a solid in the coating slurry. Thereafter, the slurry-coated substrate is taken out of the water, and the water adhering to the surface is dried and removed, for example, and then subjected to a rolling treatment in the same manner as in the related art to obtain a target electrode.

【0022】[0022]

【実施例】組成がMmNi3.3Co1.0Mn0.4Al
0.3(ただし、Mmはミッシュメタル)の水素吸蔵合金
を粉砕して150メッシュ以下(タイラー篩)の水素吸
蔵合金粉末とし、この合金粉末91重量部に対し平均粒
径約0.7μmのニッケル粉末9重量部を混合して粉末成
分とした。
EXAMPLES composition MmNi 3.3 Co 1.0 Mn 0.4 Al
A hydrogen storage alloy of 0.3 (Mm is a misch metal) is pulverized into a hydrogen storage alloy powder of 150 mesh or less (Tyler sieve), and a nickel powder having an average particle size of about 0.7 μm is added to 91 parts by weight of the alloy powder. Parts by weight were mixed to obtain a powder component.

【0023】一方、n−メチル−2−ピロリドン18g
に平均粒径約5μmのポリフッ化ビニリデン粉末2gを
溶解して、ポリフッ化ビニリデン濃度が10重量%の溶
液を調製した。前記粉末成分100重量部に上記溶液2
0重量部を添加し、全体を攪拌・混合してスラリーを調
製した。
On the other hand, 18 g of n-methyl-2-pyrrolidone
Was dissolved in 2 g of polyvinylidene fluoride powder having an average particle size of about 5 μm to prepare a solution having a polyvinylidene fluoride concentration of 10% by weight. The solution 2 was added to 100 parts by weight of the powder component.
0 parts by weight were added, and the whole was stirred and mixed to prepare a slurry.

【0024】ついで、このスラリーにパンチングニッケ
ルシート(開口径1.5mm,開口率38%,厚み0.65m
m)を浸漬したのち、直ちに、蒸留水(室温)の中に投
入した。10秒後に蒸留水から取り出したところ、合金
粉末とニッケル粉末はポリフッ化ビニリデンととも成膜
していた。この後、温度80℃で10分間の乾燥処理を
行った。ついで、圧延処理を行って厚み0.35mmに成形
して実施例の水素吸蔵合金電極にした。
Then, a punched nickel sheet (opening diameter 1.5 mm, opening ratio 38%, thickness 0.65 m) was added to the slurry.
m) was immediately immersed in distilled water (room temperature). Ten seconds later, when taken out of distilled water, the alloy powder and the nickel powder formed a film together with polyvinylidene fluoride. Thereafter, a drying treatment was performed at a temperature of 80 ° C. for 10 minutes. Then, rolling treatment was performed to form a 0.35 mm-thick hydrogen-absorbing alloy electrode of the example.

【0025】比較のために、スラリーが塗着されたパン
チングニッケルシートを蒸留水に投入することなく乾燥
処理を行ったところ、n−メチル−2−ピロリドンを乾
燥除去するためには、温度100℃で60分の加熱処理
が必要であった。その後は、実施例と同様にして水素吸
蔵合金電極を製造し、これを比較例電極とした。
For comparison, a punching nickel sheet coated with a slurry was subjected to a drying treatment without being poured into distilled water. To remove n-methyl-2-pyrrolidone by drying, a temperature of 100 ° C. was used. Required a heat treatment of 60 minutes. Thereafter, a hydrogen storage alloy electrode was manufactured in the same manner as in the example, and this was used as a comparative example electrode.

【0026】これらの電極を、濃度30%のKOH水溶
液の中にセットし、温度20℃において70mA/gで5時
間の放電、70mAで終止電圧0.75V(vsHg/HgO)まで
の放電を行い、各電極の放電容量を調べた。いずれの電
極の場合も、水素吸蔵合金1g当たりの放電容量は27
0mAhであった。
These electrodes are set in an aqueous KOH solution having a concentration of 30%, and discharged at 70 mA / g at 70 mA / g for 5 hours, and discharged at 70 mA to a final voltage of 0.75 V (vsHg / HgO). Then, the discharge capacity of each electrode was examined. In each case, the discharge capacity per gram of the hydrogen storage alloy was 27.
It was 0 mAh.

【0027】[0027]

【発明の効果】以上の説明で明らかなように、本発明方
法で水素吸蔵合金電極を製造する場合、スラリー調製時
に従来のように増粘剤水溶液を用いなくても放電容量特
性に遜色のない電極にすることができる。これは、スラ
リー調製時に用いたn−メチル−2−ピロリドンにポリ
フッ化ビニリデンを溶解して成る溶液が増粘剤として、
また結着剤としても機能していることを示している。
As is apparent from the above description, when a hydrogen storage alloy electrode is produced by the method of the present invention, the discharge capacity characteristics are not inferior to the conventional case without using a thickener aqueous solution during slurry preparation. It can be an electrode. This is because a solution obtained by dissolving polyvinylidene fluoride in n-methyl-2-pyrrolidone used in preparing the slurry is used as a thickener,
It also shows that it also functions as a binder.

【0028】そして、本発明においては、導電性基板に
塗着されたスラリーを水と接触させることにより、前記
溶液の溶媒であるn−メチル−2−ピロリドンを短時間
で除去しているので、溶媒除去のための長時間の加熱乾
燥は不要になり、工程時間の短縮を実現することができ
る。
In the present invention, the solvent applied to the conductive substrate is brought into contact with water to remove n-methyl-2-pyrrolidone, which is the solvent of the solution, in a short time. Long-time heat drying for removing the solvent is not required, and the process time can be reduced.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 n−メチル−2−ピロリドンにポリフッ
化ビニリデンを溶解して成る溶液と、電池反応に関与す
る粉末成分とを混合してスラリーを調製し、前記スラリ
ーを導電性基板に塗着してスラリー塗着基板とし、つい
で前記スラリー塗着基板と水とを接触させることを特徴
とする電池用電極の製造方法。
1. A slurry prepared by mixing a solution obtained by dissolving polyvinylidene fluoride in n-methyl-2-pyrrolidone and a powder component involved in a battery reaction, and applying the slurry to a conductive substrate. Producing a slurry-coated substrate, and then contacting the slurry-coated substrate with water.
【請求項2】 前記電池反応に関与する粉末成分が、水
素吸蔵合金粉末を主成分とする請求項1の電池用電極の
製造方法。
2. The method for producing an electrode for a battery according to claim 1, wherein the powder component involved in the battery reaction is mainly composed of a hydrogen storage alloy powder.
JP8155763A 1996-06-17 1996-06-17 Manufacture of electrode for battery Pending JPH1012230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8155763A JPH1012230A (en) 1996-06-17 1996-06-17 Manufacture of electrode for battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8155763A JPH1012230A (en) 1996-06-17 1996-06-17 Manufacture of electrode for battery

Publications (1)

Publication Number Publication Date
JPH1012230A true JPH1012230A (en) 1998-01-16

Family

ID=15612884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8155763A Pending JPH1012230A (en) 1996-06-17 1996-06-17 Manufacture of electrode for battery

Country Status (1)

Country Link
JP (1) JPH1012230A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017130284A (en) * 2016-01-18 2017-07-27 トヨタ自動車株式会社 Method for manufacturing current collector, and method for manufacturing solid battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017130284A (en) * 2016-01-18 2017-07-27 トヨタ自動車株式会社 Method for manufacturing current collector, and method for manufacturing solid battery

Similar Documents

Publication Publication Date Title
JP4667513B2 (en) Hydrogen storage alloy powder and surface treatment method thereof, negative electrode for alkaline storage battery, and alkaline storage battery
JP2002279980A (en) Electrode and battery using the electrode
JPH1012230A (en) Manufacture of electrode for battery
JPH10106550A (en) Hydrogen storage alloy electrode and its manufacture
JPH09265990A (en) Nonaqueous electrolyte battery and manufacture thereof
JPH10162820A (en) Manufacture of hydrogen storage alloy for alkaline storage battery
JP4475720B2 (en) Method for producing hydrogen storage alloy electrode and nickel metal hydride storage battery
JPH09171821A (en) Manufacture of hydrogen storage alloy electrode
JP3433008B2 (en) Method for producing hydrogen storage alloy for alkaline storage battery
JP2733231B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2623409B2 (en) Hydrogen storage electrode and method for producing the same
JP3897527B2 (en) Non-sintered nickel positive electrode for alkaline storage battery, method for producing the same, and alkaline storage battery using the same
JP4404447B2 (en) Method for producing alkaline storage battery
JP2610565B2 (en) Manufacturing method of sealed alkaline storage battery using paste-type nickel positive electrode
JP2003045420A (en) Non-sintered positive electrode, its manufacturing method, and alkaline storage battery using same
JP3516312B2 (en) Method for producing hydrogen storage alloy electrode
JP2008269888A (en) Nickel-hydrogen storage battery
JPH11126613A (en) Nonaqueous electrolyte secondary battery
JP4536209B2 (en) Method for producing hydrogen storage alloy electrode
JPH10172550A (en) Alkaline battery with nickel positive electrode and its activating method
JP3316946B2 (en) Sintered cadmium cathode plate for alkaline storage battery and method of manufacturing the same
JPH10241678A (en) Manufacture of electrode hydrogen-storage alloy powder and hydrogen-storage alloy electrode
JP3994155B2 (en) Secondary battery formation method
JP2001266860A (en) Nickel hydrogen storage battery
JP3942310B2 (en) Method for producing hydrogen storage alloy for alkaline storage battery