JPH10120946A - Shielding material of infrared ray - Google Patents

Shielding material of infrared ray

Info

Publication number
JPH10120946A
JPH10120946A JP29768996A JP29768996A JPH10120946A JP H10120946 A JPH10120946 A JP H10120946A JP 29768996 A JP29768996 A JP 29768996A JP 29768996 A JP29768996 A JP 29768996A JP H10120946 A JPH10120946 A JP H10120946A
Authority
JP
Japan
Prior art keywords
tin
fine powder
shielding material
indium
indium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29768996A
Other languages
Japanese (ja)
Other versions
JP3122375B2 (en
Inventor
Takeshi Murakami
武 村上
Kuniyoshi Watabe
邦好 渡部
Fuminori Oosako
史憲 大迫
Hitoshi Okada
均 岡田
Asao Kamiya
朝夫 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Titanium Industry Co Ltd
Original Assignee
Fuji Titanium Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Titanium Industry Co Ltd filed Critical Fuji Titanium Industry Co Ltd
Priority to JP29768996A priority Critical patent/JP3122375B2/en
Publication of JPH10120946A publication Critical patent/JPH10120946A/en
Application granted granted Critical
Publication of JP3122375B2 publication Critical patent/JP3122375B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a shielding material of infrared rays, capable of forming a indium oxide membrane containing tin and excellent in transparency and shielding properties of the infrared rays by including a fine powder of tin- containing indium oxide and obtained by a specific method, a coating binder and a solvent. SOLUTION: This shielding material of infrared rays comprises (A) indium oxide fine powder containing tin obtained by heat treating the hydrate of the tin oxide and indium oxide obtained by adding an aqueous alkali solution (preferably aqueous ammonia or an aqueous solution of an ammonium salt) to a solution of a tin salt and an indium salt while keeping the temperature <=30 deg.C, under an inert gas atmosphere or a reductive gas atmosphere, (B) a coating material binder and (C) a solvent. Preferably, the shielding material is obtained by using the tin and the indium so that the weight ratio of SnO2 :In2 O3 may be (4:26) to (15:85), adding the aqueous alkali solution thereto so that the pH may be 5-9 for 30min to 12hr, and heating the resultant hydrate under the before atmosphere at 300-1,000 deg.C. The content of the component A is preferably 40-95wt.% in the solid of the objective material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は塗布法によって赤外
線遮蔽膜を形成するのに好適な赤外線遮蔽材料に関す
る。
The present invention relates to an infrared shielding material suitable for forming an infrared shielding film by a coating method.

【0002】[0002]

【従来の技術】従来から酸化錫、酸化亜鉛あるいは錫含
有酸化インジウム(ITO)といった導電性材料は、そ
の導電性から太陽電池や液晶ディスプレイ等の透明電極
或いはエレクトロルミネッセンスディスプレイやタッチ
パネル等の透明導電膜として広く用いられる一方で、も
う1つの機能である選択透光性を利用しての熱線反射
(赤外線遮蔽)膜としても活用されている。具体的には
白熱電球やハロゲンランプの管球、あるいはランプハウ
ジング面に成膜し、それぞれの光源の強い熱線を遮断し
たり、あるいは熱線輻射を増大させたり、建築関係で
は、窓ガラス表面に応用し、冬期には室内暖気の放射損
失を防いだり、夏期には太陽光熱線の入射と室内冷気の
放出を防いで省エネルギー効果を発揮したりする。これ
らの導電性材料による薄膜の中でもITO膜はその可視
部での優れた透明性に加え、赤外部での反射率も高く、
この用途に最も適していると言える。そのようなITO
膜はスパッタリング法、真空蒸着法、塗布法等により形
成される。その中でも塗布法はスパッタリング法や真空
蒸着法では困難な大面積或いは複雑な形状への加工が可
能で、コスト的にも有利である。塗布法としては、無機
あるいは有機インジウム塩を用いてのいわゆるスプレー
熱分解法が一般的であるが、近年の微粒子製造技術の発
展に伴い、微粉末を用いてこれを塗布する方法が成膜温
度を低く抑えられ、基材材質の選択自由度を高め、コス
トも低減できる等から注目されている。
2. Description of the Related Art Conventionally, conductive materials such as tin oxide, zinc oxide and tin-containing indium oxide (ITO) have been used because of their conductivity, transparent electrodes such as solar cells and liquid crystal displays, or transparent conductive films such as electroluminescent displays and touch panels. While it is widely used as a film, it is also used as a heat ray reflection (infrared ray shielding) film utilizing selective translucency which is another function. Specifically, it is deposited on the bulbs of incandescent lamps and halogen lamps, or on the surface of the lamp housing, to block the strong heat rays from each light source or to increase the heat ray radiation. In winter, it prevents radiation loss of indoor warm air, and in summer, it prevents solar heat rays and releases cold indoor air to achieve energy saving effects. Among the thin films made of these conductive materials, ITO films have high reflectivity in the infrared region in addition to excellent transparency in the visible region,
It can be said that it is most suitable for this use. Such an ITO
The film is formed by a sputtering method, a vacuum evaporation method, a coating method, or the like. Among them, the coating method can be processed into a large area or a complicated shape which is difficult by a sputtering method or a vacuum evaporation method, and is advantageous in cost. As a coating method, a so-called spray pyrolysis method using an inorganic or organic indium salt is generally used, but with the development of fine particle manufacturing technology in recent years, a method of applying this using fine powder has a film forming temperature. Has been attracted attention because it is possible to reduce the amount of material used, increase the degree of freedom in selecting the material of the base material, and reduce the cost.

【0003】ITO微粉末を用い、これを塗料化、基材
上に塗布し薄膜とする場合、先ずその分散性が重要であ
り、これが不十分であると可視部での透過率及び赤外部
での反射率が低い数値に止まってしまう。分散性を向上
させるにはITO微粉末が微細であることと同時に、粗
大粒子が少なく、かつ粒度分布幅の狭いことが必須条件
である。
In the case of using ITO fine powder, forming it into a paint and applying it on a substrate to form a thin film, first, its dispersibility is important. If this is insufficient, the transmittance in the visible part and the infrared Reflectivity is low. In order to improve the dispersibility, it is essential that the fine ITO powder is fine, the number of coarse particles is small, and the width of the particle size distribution is narrow.

【0004】また、赤外部での反射性を向上させるに
は、膜の導電性を高くすることがDrudeの古典的分散理
論に基づくプラズマ波長とキャリアー濃度の関係(自由
電子による吸収が最大になるプラズマ波長は、キャリア
ー濃度が増大、即ち導電性が向上するに従い短波長側に
シフトし、その波長より長波長の光は反射する)より明
らかである。
[0004] In order to improve the reflectivity in the infrared region, it is necessary to increase the conductivity of the film by using the relationship between the plasma wavelength and the carrier concentration based on Drude's classical dispersion theory (the absorption by free electrons is maximized). The plasma wavelength shifts to a shorter wavelength side as the carrier concentration increases, that is, as the conductivity increases, and light having a wavelength longer than that wavelength is reflected.)

【0005】従って、ITO微粉末を用いての赤外線遮
蔽材の場合には、ITO微粉末自体の導電性を向上させ
ることが赤外部での反射率を高めることにつながる。I
TO微粉末の導電性を向上させる手段としては、不活性
ガス雰囲気中あるいは還元性ガス雰囲気中で加熱し、脱
酸素処理することが知られている(特開平1−1000
23号)。
Therefore, in the case of an infrared shielding material using fine ITO powder, improving the conductivity of the fine ITO powder itself leads to an increase in the reflectance in the infrared region. I
As a means for improving the conductivity of the TO fine powder, it is known to perform heating and deoxidation treatment in an inert gas atmosphere or a reducing gas atmosphere (JP-A-1-1000).
No. 23).

【0006】これまで、ITO微粉末を用いた赤外線遮
蔽材ということでは、特開平7−70363号、特開平
7−70445号、特開平7−70481号、特開平7
−70482号あるいは特開平8−41441号などが
提案されているが、これらは何れも従来からの導電性塗
料に用いるITO微粉末をその原料とし、その後に加圧
不活性ガス雰囲気中処理等の処理を施しているため、以
下のような問題点を含むものである。即ち、これらの赤
外線遮蔽材では、インジウムと錫の化合物の水溶液とア
ルカリ水溶液とを反応させることによりインジウムと錫
の水酸化物を共沈させたもの、あるいは該共沈水酸化物
を加熱処理したものを、更に加圧不活性ガス雰囲気中処
理、あるいはメタノール含有窒素ガス等により還元処理
して得られたITO微粉末を用いており、最初に生成す
る共沈水酸化物がいわゆるコロイド粒子故に加熱処理の
際に粗大粒子を生じやすく、また粒度分布幅も広くなら
ざるを得ず、塗料化する際の分散が難しく、従って得ら
れる膜は透明性・赤外線遮蔽性共、上記用途に充分と言
えないものである。
Hitherto, regarding the infrared shielding material using the fine ITO powder, JP-A-7-70363, JP-A-7-70445, JP-A-7-70481, and JP-A-7-70481.
Japanese Patent Application Laid-Open No. 70482/1994 or Japanese Patent Application Laid-Open No. H08-41441 has been proposed, all of which use ITO fine powder used as a conventional conductive coating material as a raw material, and then perform treatment in a pressurized inert gas atmosphere. Since the processing is performed, the following problems are included. That is, in these infrared shielding materials, those obtained by co-precipitating indium and tin hydroxide by reacting an aqueous solution of a compound of indium and tin with an aqueous alkali solution, or those obtained by heat-treating the co-precipitated hydroxide Is further treated in a pressurized inert gas atmosphere, or by using ITO fine powder obtained by a reduction treatment with methanol-containing nitrogen gas or the like. In this case, coarse particles are likely to be generated, and the particle size distribution width must be widened, and it is difficult to disperse when forming a coating, so that the resulting film is not enough for the above applications, both in transparency and infrared shielding properties It is.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、上記
した問題点を解消し、透明性及び赤外線遮蔽性に優れた
錫含有酸化インジウム(ITO)膜を形成し得る赤外線
遮蔽材を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an infrared shielding material capable of solving the above-mentioned problems and forming a tin-containing indium oxide (ITO) film having excellent transparency and infrared shielding properties. It is in.

【0008】[0008]

【課題を解決するための手段】本発明は錫塩及びインジ
ウム塩の溶液に温度を30℃以下に保持しながらアルカ
リ水溶液を添加して得られた酸化錫及び酸化インジウム
の水和物を不活性ガス雰囲気下あるいは還元性ガス雰囲
気下加熱処理して得られた錫含有酸化インジウム微粉
末、塗料バインダー及び溶媒を含有することを特徴とす
る赤外線遮蔽材に係る。
According to the present invention, a tin salt and indium oxide hydrate obtained by adding an aqueous alkali solution to a tin salt and indium salt solution while maintaining the temperature at 30 ° C. or lower is made inert. The present invention relates to an infrared shielding material comprising a tin-containing indium oxide fine powder obtained by heat treatment in a gas atmosphere or a reducing gas atmosphere, a paint binder, and a solvent.

【0009】[0009]

【発明の実施の形態】本発明において使用するITO微
粉末は錫塩及びインジウム塩の溶液に温度を30℃以下
に保持しながらアルカリ水溶液を添加して得られた酸化
錫及び酸化インジウムの水和物を不活性ガス雰囲気下あ
るいは還元性ガス雰囲気下加熱処理することにより得ら
れる。使用する錫塩及びインジウム塩は水溶性のもので
あれば良く、塩化錫、硫酸錫、硝酸錫、塩化インジウ
ム、硫酸インジウム、硝酸インジウム等が例示でき、又
錫塩は第1錫塩、第2錫塩何れでもよい。そのような錫
塩及びインジウム塩を水に溶解させ、必要によつてはア
ルコール、アセトン等の水溶性有機溶媒及び/又は塩
酸、硝酸等の鉱酸を加えた後、温度を30℃以下、好ま
しくは0〜20℃に保持しながらアルカリ水溶液を添加
する。30℃を超える場合には他の条件にもよるが概し
て粒度は粗くなり、針状形状を有するもの、凝集形態を
有するものが生成するようになる。0℃未満にしても特
に効果は上がらず冷却用の冷媒等のコストが上昇してし
まう。また、この場合の錫とインジウムの割合はSn
2:In23重量比にて1:99〜20:80、好まし
くは4:96〜15:85であり、この範囲より錫は多
すぎても、少なすぎても所望とする赤外線遮蔽性が得ら
れない。
BEST MODE FOR CARRYING OUT THE INVENTION The fine ITO powder used in the present invention is a hydrate of tin oxide and indium oxide obtained by adding an aqueous alkali solution to a tin salt and indium salt solution while maintaining the temperature at 30 ° C. or less. It is obtained by subjecting the product to a heat treatment in an inert gas atmosphere or a reducing gas atmosphere. The tin salt and the indium salt used may be any water-soluble ones, and examples thereof include tin chloride, tin sulfate, tin nitrate, indium chloride, indium sulfate, indium nitrate, and the like. Any of tin salts may be used. After dissolving such tin salt and indium salt in water and adding a water-soluble organic solvent such as alcohol and acetone and / or a mineral acid such as hydrochloric acid and nitric acid as necessary, the temperature is preferably 30 ° C. or lower, preferably 30 ° C. or less. While maintaining the temperature at 0 to 20 ° C, an aqueous alkali solution is added. When the temperature exceeds 30 ° C., although depending on other conditions, the particle size generally becomes coarse, and one having a needle-like shape and one having an agglomerated form are formed. Even if the temperature is lower than 0 ° C., the effect is not particularly enhanced, and the cost of the cooling refrigerant or the like increases. In this case, the ratio of tin and indium is Sn
The O 2 : In 2 O 3 weight ratio is from 1:99 to 20:80, preferably from 4:96 to 15:85. If the amount of tin is too large or too small, the desired infrared shielding is obtained. I can not get the nature.

【0010】このときの濃度は、反応終了時に(SnO2
+In23)濃度にて2〜50g/lの範囲が適当で、2g
/l未満では収量が少なく不経済であり、50g/lを越
えると粒度が粗くなつてしまう。
At this time, the concentration at the end of the reaction (SnO 2
+ In 2 O 3 ) concentration is suitably in the range of 2 to 50 g / l, and 2 g
If it is less than 50 g / l, the particle size becomes coarse.

【0011】アルカリ水溶液としては、アンモニア水、
水酸化アルカリ、炭酸アルカリ、炭酸アンモニウム等の
水溶液を例示できるが、赤外線遮蔽性につながる導電性
を阻害する成分を含むアルカリ金属塩は適当でなく、ア
ンモニア水及びアンモニウム塩が好ましい。そして、そ
のようなアルカリ水溶液を最終的にpHが5.0〜9.0
となるように添加することにより酸化錫及び酸化インジ
ウムの水和物が生成する。pHが5.0未満では反応が不
完全であり、又、pHが9.0を越えると逆に一部生成物
の解膠が起き、何れもその後の加熱処理工程での焼結を
招き粗大粒子が生成してしまう。
As the alkaline aqueous solution, ammonia water,
Aqueous solutions such as alkali hydroxide, alkali carbonate, and ammonium carbonate can be exemplified, but alkali metal salts containing a component that inhibits conductivity leading to infrared shielding properties are not suitable, and ammonia water and ammonium salts are preferred. Then, the pH of the alkaline aqueous solution is finally adjusted to 5.0 to 9.0.
The hydrate of tin oxide and indium oxide is produced by adding so as to be as follows. If the pH is less than 5.0, the reaction is incomplete, and if the pH exceeds 9.0, some products are deflocculated. Particles are generated.

【0012】又、アルカリ水溶液の添加時間は特に限定
するものではないが、30分から12時間程度が好まし
く、30分未満では生成物がゲル状となり濾過洗浄が困
難となる上、後の加熱処理工程での焼結を招く。12時
間以上の添加時間は生産性が低下する上、粒度も粗くな
つてくる。
The addition time of the aqueous alkali solution is not particularly limited, but is preferably about 30 minutes to 12 hours. If the time is less than 30 minutes, the product becomes gel-like, and it becomes difficult to carry out filtration and washing. Causes sintering. If the addition time is longer than 12 hours, the productivity will be reduced and the particle size will be coarse.

【0013】以上のような条件により、一次粒子径0.
015〜0.05μm程度の酸化錫及び酸化インジウムの
水和物が生成する。本発明では、該水和物を必要によつ
ては副生してくる塩を除去した後、あるいは更に乾燥
後、不活性ガス雰囲気下あるいは還元性ガス雰囲気下、
200〜1200℃、好ましくは300〜1000℃に
て加熱処理することにより目的とする錫含有酸化インジ
ウム微粉末を得ることができる。不活性ガス雰囲気とし
ては窒素ガス雰囲気、アルゴンガス雰囲気等、あるいは
これらの混合ガス雰囲気が、還元性ガス雰囲気としては
水素ガス雰囲気、一酸化炭素ガス雰囲気、あるいはこれ
らと不活性ガスとの組み合わせによる混合ガス雰囲気が
あげられる。
[0013] Under the above conditions, the primary particle size is 0.1
A hydrate of tin oxide and indium oxide of about 015 to 0.05 μm is formed. In the present invention, the hydrate may be removed, if necessary, after removing by-produced salts, or after further drying, under an inert gas atmosphere or a reducing gas atmosphere.
The desired tin-containing indium oxide fine powder can be obtained by heat treatment at 200 to 1200 ° C, preferably 300 to 1000 ° C. As an inert gas atmosphere, a nitrogen gas atmosphere, an argon gas atmosphere, or a mixed gas atmosphere thereof is used, and as a reducing gas atmosphere, a hydrogen gas atmosphere, a carbon monoxide gas atmosphere, or a mixture of these and an inert gas is used. Gas atmosphere.

【0014】得られるITO微粉末は、水和物として生
成する段階で従来法がコロイド粒子であるのに対し、既
に0.015〜0.05μm程度の一次粒子としての形骸
を有しており、その後の乾燥、加熱処理の過程で焼結を
招くことなく結晶化されるため、粗大粒子を含まない均
一な粒度を有する微粉末である。
The obtained ITO fine powder has a form as primary particles of about 0.015 to 0.05 μm, whereas the conventional method is a colloidal particle at the stage of forming as a hydrate, Since it is crystallized without inducing sintering in the course of subsequent drying and heat treatment, it is a fine powder having a uniform particle size without coarse particles.

【0015】本発明で用いる塗料バインダーとしては、
通常の塗料技術により使用できるものであればよく、例
えば、アクリル系、ビニル系、カーボネート系、ポリエ
ステル系、ウレタン系、エポキシ系、ポリプロピレン
系、フエノール系、ポリアミド系、ポリイミド系樹脂等
の有機系バインダー、及び水溶性珪酸塩、アルキルシリ
ケート等の無機系バインダーが挙げられる。又、これら
バインダーの混合物あるいは共重合体でもよく、機能性
樹脂としての耐熱性樹脂、紫外線(UV)硬化性樹脂な
ども使用できる。
[0015] The paint binder used in the present invention includes:
Any binder can be used as long as it can be used by ordinary coating techniques.Examples include organic binders such as acrylic, vinyl, carbonate, polyester, urethane, epoxy, polypropylene, phenol, polyamide, and polyimide resins. And inorganic binders such as water-soluble silicates and alkyl silicates. In addition, a mixture or a copolymer of these binders may be used, and a heat-resistant resin as a functional resin, an ultraviolet (UV) curable resin, or the like can also be used.

【0016】ITO微粉末の含有量は、赤外線遮蔽材の
固形分中40〜95重量%となるように混合されること
が好ましい。ITO微粉末が40重量%未満では得られ
る塗膜の赤外線遮蔽効果が充分でなく、95重量%を超
えると分散が悪くなり塗膜の透明性・赤外線遮蔽性及び
基材との密着性が損なわれてしまう。
The content of the ITO fine powder is preferably mixed so as to be 40 to 95% by weight in the solid content of the infrared shielding material. If the amount of the ITO fine powder is less than 40% by weight, the infrared ray shielding effect of the obtained coating film is not sufficient. I will be.

【0017】本発明の赤外線遮蔽材はITO微粉末と塗
料バインダーとを溶剤中に分散あるいは溶解させること
により得ることができる。溶剤としては、塗料バインダ
ーを溶解し得るものであれば使用でき、メタノール、エ
タノール、n−プロパノール、i−プロパノール、n−
ブタノール、シクロヘキサノール等のアルコール類、ア
セトン、メチルエチルケトン、シクロヘキサノン等のケ
トン類、メチルセロソルブ、エチルセロソルブ等のエー
テル類、酢酸エチル、メチルセロソルブアセテート等の
エステル類、ヘキサン、シクロヘキサン、トルエン、キ
シレン等が例示できる。又、水溶性樹脂を用いた場合に
は溶剤として水を用いることもできる。これら溶剤の使
用割合は特に限定するものではなく、使用目的に応じ設
定すればよいが、分散、粘度等を考慮し塗料中の固形分
が10〜90重量%となるようにすることが好ましい。
The infrared shielding material of the present invention can be obtained by dispersing or dissolving a fine ITO powder and a paint binder in a solvent. Any solvent can be used as long as it can dissolve the paint binder. Methanol, ethanol, n-propanol, i-propanol, n-
Examples include alcohols such as butanol and cyclohexanol, ketones such as acetone, methyl ethyl ketone and cyclohexanone, ethers such as methyl cellosolve and ethyl cellosolve, esters such as ethyl acetate and methyl cellosolve acetate, hexane, cyclohexane, toluene and xylene. it can. When a water-soluble resin is used, water can be used as a solvent. The proportion of these solvents used is not particularly limited and may be set according to the purpose of use. However, it is preferable that the solid content in the paint be 10 to 90% by weight in consideration of dispersion, viscosity and the like.

【0018】本発明の赤外線遮蔽材の調製は上記したI
TO微粉末、塗料バインダー及び溶剤を通常用いられる
ボールミル、サンドミル、ペイントシェーカー、3本ロ
ールなどにて混合することにより行われる。又、その際
分散性を向上させる目的でシラン系あるいはチタネート
系等のカツプリング剤や界面活性剤などを添加してもよ
い。
The preparation of the infrared shielding material of the present invention is performed according to the method described in I above.
It is carried out by mixing the TO fine powder, the paint binder and the solvent with a commonly used ball mill, sand mill, paint shaker, three rolls or the like. In this case, a silane-based or titanate-based coupling agent or a surfactant may be added for the purpose of improving dispersibility.

【0019】以上のようにして調製された本発明の赤外
線遮蔽材はスプレー法、バーコート法、デイッピング
法、ドクターブレード法などの塗布法により基材に塗布
され、乾燥あるいは必要によっては加熱処理することに
よって実用に供される。
The infrared shielding material of the present invention prepared as described above is applied to a substrate by a coating method such as a spray method, a bar coating method, a dipping method, a doctor blade method, and dried or, if necessary, heat-treated. It is put to practical use.

【0020】[0020]

【実施例】以下に実施例を挙げて説明するが、本発明は
これに限定されるものではない。
The present invention will be described below with reference to examples, but the present invention is not limited to these examples.

【0021】実施例1 塩化第2錫(SnCl4・5H2O)5.9g及び塩化インジ
ウム(InCl3)75.9gを水 4000mlに溶解し、こ
れに2%アンモニア水を58分かけて添加し、pHを最
終的に7.85とすることにより酸化錫及び酸化インジ
ウムの水和物を共沈させた。この間、液温は5℃を維持
するようにした。次いで、該共沈物を洗浄後乾燥、更に
窒素ガスと水素ガスの混合ガス(N2:H2=98.0:
2.0)雰囲気下で400℃にて3時間焼成することに
より、一次粒子径約0.02μmと微細でかつ粗大粒子を
含まない均一粒度を有する錫含有酸化インジウム(IT
O)微粉末を得た。該ITO微粉末 40g、ポリエステ
ル樹脂 8g、(トルエン−MEK−酢酸エチル)混合溶
剤 50g、及びノニオン系界面活性剤 1gをジルコニア
ビーズを分散メデイアとするペイントコンデイシヨナー
にて8時間混合し、赤外線遮蔽材を調製した。
[0021] Example 1 stannic chloride (SnCl 4 · 5H 2 O) 5.9g and indium chloride (InCl 3) 75.9 g were dissolved in water 4000 ml, added over 58 minutes a 2% aqueous ammonia thereto Then, the hydrate of tin oxide and indium oxide was co-precipitated by finally adjusting the pH to 7.85. During this time, the liquid temperature was kept at 5 ° C. Next, the coprecipitate was washed, dried, and further mixed gas of nitrogen gas and hydrogen gas (N 2 : H 2 = 98.0:
2.0) By baking in an atmosphere at 400 ° C. for 3 hours, a tin-containing indium oxide (IT) having a primary particle size of about 0.02 μm and a uniform particle size that is fine and does not contain coarse particles is used.
O) A fine powder was obtained. 40 g of the ITO fine powder, 8 g of a polyester resin, 50 g of a mixed solvent of (toluene-MEK-ethyl acetate), and 1 g of a nonionic surfactant were mixed for 8 hours by a paint conditioner using zirconia beads as a dispersion medium for 8 hours. Materials were prepared.

【0022】実施例2 実施例1と同様にして得られた酸化錫及び酸化インジウ
ムの水和物の共沈物を洗浄後乾燥、更に窒素ガスと水素
ガスの混合ガス(N2:H2=99.8:0.2)雰囲気下
で400℃にて3時間焼成することにより、一次粒子径
約0.02μmと微細でかつ粗大粒子を含まない均一粒度
を有するITO微粉末を得た。該ITO微粉末 40g、
ポリアミド樹脂 8g、(トルエン−i−プロパノール)
混合溶剤50g、及びノニオン系界面活性剤 1gをジル
コニアビーズを分散メデイアとするペイントコンデイシ
ヨナーにて8時間混合し、赤外線遮蔽材を調製した。
Example 2 A coprecipitate of a hydrate of tin oxide and indium oxide obtained in the same manner as in Example 1 was washed and dried, and further a mixed gas of nitrogen gas and hydrogen gas (N 2 : H 2 = 99.8: 0.2) By baking in an atmosphere at 400 ° C. for 3 hours, an ITO fine powder having a primary particle diameter of about 0.02 μm and a uniform fine particle size containing no fine particles was obtained. 40 g of the ITO fine powder,
8 g of polyamide resin, (toluene-i-propanol)
50 g of the mixed solvent and 1 g of the nonionic surfactant were mixed for 8 hours by a paint conditioner using zirconia beads as a dispersion medium to prepare an infrared shielding material.

【0023】実施例3 実施例1と同様にして得られた酸化錫及び酸化インジウ
ムの水和物の共沈物を洗浄後乾燥、更に窒素ガス雰囲気
下で400℃にて3時間焼成することにより、一次粒子
径約0.02μmと微細でかつ粗大粒子を含まない均一粒
度を有するITO微粉末を得た。該ITO微粉末 40
g、ポリアミド樹脂 8g、(トルエン−i−プロパノー
ル)混合溶剤 50g、及びノニオン系界面活性剤 1gを
ジルコニアビーズを分散メデイアとするペイントコンデ
イシヨナーにて8時間混合し、赤外線遮蔽材を調製し
た。
Example 3 A coprecipitate of a hydrate of tin oxide and indium oxide obtained in the same manner as in Example 1 was washed, dried, and further calcined at 400 ° C. for 3 hours in a nitrogen gas atmosphere. Thus, an ITO fine powder having a primary particle diameter of about 0.02 μm and a uniform particle size that is fine and free from coarse particles was obtained. The ITO fine powder 40
g, 8 g of a polyamide resin, 50 g of a mixed solvent of (toluene-i-propanol), and 1 g of a nonionic surfactant were mixed for 8 hours with a paint conditioner using zirconia beads as a dispersion medium to prepare an infrared shielding material.

【0024】実施例4 塩化第1錫(SnCl2・2H2O)3.9g及び硝酸インジ
ウム〔In(NO3 3 ・3H2O〕121.6gを水400
0mlに溶解し、これに2%アンモニア水を73分かけて
添加し、pHを最終的に7.80とすることにより酸化錫
及び酸化インジウムの水和物を共沈させた。この間、液
温は20℃を維持するようにした。次いで該共沈物を洗
浄後乾燥、更に窒素ガスと水素ガスの混合ガス(N2
2=98.0:2.0)雰囲気下で700℃にて3時間
焼成することにより、一次粒子径約0.035μmと微細
でかつ粗大粒子を含まない均一粒度を有するITO微粉
末を得た。該ITO微粉末 40g、ウレタン樹脂 8g、
(キシレン−酢酸ブチル)混合溶剤 50g、及びノニオ
ン系界面活性剤 1gをジルコニアビーズを分散メデイア
とするペイントコンデイシヨナーにて8時間混合し、赤
外線遮蔽材を調製した。
EXAMPLE 4 3.9 g of stannous chloride (SnCl 2 .2H 2 O) and 121.6 g of indium nitrate [In (NO 3 ) 3 .3H 2 O] were added to 400 parts of water.
The solution was dissolved in 0 ml, and 2% aqueous ammonia was added thereto over 73 minutes to adjust the pH to 7.80 to coprecipitate a hydrate of tin oxide and indium oxide. During this time, the liquid temperature was maintained at 20 ° C. Next, the coprecipitate is washed and dried, and further a mixed gas of nitrogen gas and hydrogen gas (N 2 :
(H 2 = 98.0: 2.0) By firing at 700 ° C. for 3 hours in an atmosphere, an ITO fine powder having a primary particle diameter of about 0.035 μm and a uniform particle size that is fine and does not contain coarse particles is obtained. Was. 40 g of the ITO fine powder, 8 g of urethane resin,
(Xylene-butyl acetate) 50 g of a mixed solvent and 1 g of a nonionic surfactant were mixed for 8 hours with a paint conditioner using zirconia beads as a dispersion medium to prepare an infrared shielding material.

【0025】実施例5 塩化第2錫(SnCl4・5H2O)5.9g及び塩化インジ
ウム(InCl3)75.9gを水4000mlに溶解し、こ
れに4.5%NH4HCO3水溶液を360分かけて添加
し、pHを最終的に5.8とすることにより酸化錫及び酸
化インジウムの水和物を共沈させた。この間、液温は2
5℃を維持するようにした。次いで該共沈物を洗浄後乾
燥、更に窒素ガスと水素ガスの混合ガス(N2:H2=9
8.0:2.0)雰囲気下で900℃にて3時間焼成し、
一次粒子径約0.045μmと微細でかつ粗大粒子を含ま
ない均一粒度を有するITO微粉末を得た。該ITO微
粉末を用い、実施例1と同様にして赤外線遮蔽材を調製
した。
Example 5 5.9 g of stannic chloride (SnCl 4 .5H 2 O) and 75.9 g of indium chloride (InCl 3 ) were dissolved in 4000 ml of water, and a 4.5% NH 4 HCO 3 aqueous solution was added thereto. The hydrate of tin oxide and indium oxide was co-precipitated by adding over 360 minutes to a final pH of 5.8. During this time, the liquid temperature was 2
It was kept at 5 ° C. Next, the coprecipitate was washed, dried, and further mixed with a nitrogen gas and a hydrogen gas (N 2 : H 2 = 9).
8.0: 2.0) firing at 900 ° C. for 3 hours in an atmosphere;
An ITO fine powder having a primary particle size of about 0.045 μm and a uniform particle size that is fine and free from coarse particles was obtained. Using the ITO fine powder, an infrared shielding material was prepared in the same manner as in Example 1.

【0026】比較例1 液温を35℃に維持する以外は実施例1と同様にしてI
TO微粉末を得た。該微粉末は短軸径0.05〜0.07
μm、長軸径0.30〜0.35μmの針状形状を有してい
た。該微粉末を用い、実施例1と同様にして赤外線遮蔽
材を調製した。
Comparative Example 1 The procedure of Example 1 was repeated except that the solution temperature was maintained at 35 ° C.
TO fine powder was obtained. The fine powder has a minor axis diameter of 0.05 to 0.07.
μm and a needle-like shape having a long axis diameter of 0.30 to 0.35 μm. Using the fine powder, an infrared shielding material was prepared in the same manner as in Example 1.

【0027】比較例2 pHを最終的に4.5とする以外は実施例1と同様にして
ITO微粉末を得た。該微粉末は粗大粒子を多く含むも
のであつた。該微粉末を用い、実施例1と同様にして赤
外線遮蔽材を調製した。
Comparative Example 2 An ITO fine powder was obtained in the same manner as in Example 1 except that the pH was finally adjusted to 4.5. The fine powder contained a large amount of coarse particles. Using the fine powder, an infrared shielding material was prepared in the same manner as in Example 1.

【0028】比較例3 pHを最終的に9.5とする以外は実施例1と同様にして
ITO微粉末を得た。該微粉末は比較例2と同様粗大粒
子を多く含むものであつた。該微粉末を用い、実施例1
と同様にして赤外線遮蔽材を調製した。
Comparative Example 3 An ITO fine powder was obtained in the same manner as in Example 1 except that the pH was finally changed to 9.5. The fine powder contained a large amount of coarse particles as in Comparative Example 2. Example 1 using the fine powder
An infrared shielding material was prepared in the same manner as described above.

【0029】比較例4 添加時間を20分とする以外は実施例1と同様にしてI
TO微粉末を得た。該微粉末は比較例2と同様粗大粒子
を多く含むものであつた。該微粉末を用い、実施例1と
同様にして赤外線遮蔽材を調製した。
Comparative Example 4 The procedure of Example 1 was repeated except that the addition time was changed to 20 minutes.
TO fine powder was obtained. The fine powder contained a large amount of coarse particles as in Comparative Example 2. Using the fine powder, an infrared shielding material was prepared in the same manner as in Example 1.

【0030】試験例1 実施例1〜5及び比較例1〜4で調製した各赤外線遮蔽
材をポリエステルシート上に1milのドクターブレード
を用いて塗布し、常温乾燥して塗膜を得た。各塗膜の分
光特性を分光光度計UV−3100PC(島津製作所
製)にて測定した結果を図1に示す。図1においては
実施例1、〜は比較例1〜4の結果を示す。図1か
ら本発明の赤外線遮蔽材により形成された膜は、可視光
域においては80%以上の透過率を維持しつつ、120
0nm以上の赤外線を有効に遮蔽することが明らかであ
る。一方、比較例1は赤外線遮蔽性は優れるが透過率が
低く、比較例2〜3は透過率は同等であるが赤外線遮蔽
性に劣り、比較例4は透過率及び赤外線遮蔽性の両方に
おいて不十分である。
Test Example 1 Each infrared ray shielding material prepared in Examples 1 to 5 and Comparative Examples 1 to 4 was applied on a polyester sheet using a 1 mil doctor blade and dried at room temperature to obtain a coating film. FIG. 1 shows the results of measuring the spectral characteristics of each coating film using a spectrophotometer UV-3100PC (manufactured by Shimadzu Corporation). FIG. 1 shows the results of Examples 1 and 2 and Comparative Examples 1 to 4. FIG. 1 shows that the film formed by the infrared shielding material of the present invention maintains a transmittance of 80% or more in the visible light region while maintaining a transmittance of 120% or more.
It is clear that infrared rays of 0 nm or more are effectively shielded. On the other hand, Comparative Example 1 has excellent infrared shielding properties but low transmittance, Comparative Examples 2 and 3 have the same transmittance but are inferior in infrared shielding properties, and Comparative Example 4 has poor transmittance and infrared shielding properties. It is enough.

【0031】[0031]

【発明の効果】本発明の赤外線遮蔽材は、粗大粒子を含
まない均一な粒度を有するITO微粉末を用いているた
め、これを用いて形成された塗膜は透明性及び赤外線遮
蔽性に優れ、白熱電球やハロゲンランプの管球、あるい
はランプハウジング面に成膜した場合には、それぞれの
光源の強い熱線を遮断したり、あるいは熱線輻射を増大
させ、また、建築関係では、窓ガラス表面に応用した場
合、冬期には室内暖気の放射損失を防いだり、夏期には
太陽光熱線の入射と室内冷気の放出を防いで省エネルギ
ー効果を発揮する。
As described above, since the infrared shielding material of the present invention uses ITO fine powder having a uniform particle size without coarse particles, a coating film formed using this is excellent in transparency and infrared shielding property. If the film is formed on the bulb of an incandescent lamp or halogen lamp, or on the surface of the lamp housing, it will block the strong heat rays from each light source or increase the heat ray radiation. When applied, it prevents radiation loss of indoor warm air in winter, and prevents solar heat rays and discharge of indoor cool air in summer, thus exhibiting energy saving effects.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例及び比較例で得られた赤外線遮蔽材よ
り形成された膜の光透過スペクトルである。
FIG. 1 is a light transmission spectrum of a film formed from infrared shielding materials obtained in Examples and Comparative Examples.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡田 均 兵庫県神戸市北区道場町生野96番地の1 富士チタン工業株式会社神戸研究所内 (72)発明者 神谷 朝夫 兵庫県神戸市北区道場町生野96番地の1 富士チタン工業株式会社神戸研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hitoshi Okada 96-1 Ikuno, Dojo-machi, Kita-ku, Kobe-shi, Hyogo Prefecture Inside the Kobe Research Laboratory, Fuji Titanium Industry Co., Ltd. 96 Ikuno 1 Kobe Research Laboratory, Fuji Titanium Industry Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 錫塩及びインジウム塩の溶液に温度を3
0℃以下に保持しながらアルカリ水溶液を添加して得ら
れた酸化錫及び酸化インジウムの水和物を不活性ガス雰
囲気下あるいは還元性ガス雰囲気下加熱処理して得られ
た錫含有酸化インジウム微粉末、塗料バインダー及び溶
媒を含有することを特徴とする赤外線遮蔽材。
1. The temperature of a solution of a tin salt and an indium salt is set to 3
Tin-containing indium oxide fine powder obtained by heating a hydrate of tin oxide and indium oxide obtained by adding an aqueous alkali solution while maintaining the temperature to 0 ° C. or lower under an inert gas atmosphere or a reducing gas atmosphere. An infrared shielding material comprising: a paint binder and a solvent.
JP29768996A 1996-10-18 1996-10-18 Infrared shielding material Expired - Lifetime JP3122375B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29768996A JP3122375B2 (en) 1996-10-18 1996-10-18 Infrared shielding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29768996A JP3122375B2 (en) 1996-10-18 1996-10-18 Infrared shielding material

Publications (2)

Publication Number Publication Date
JPH10120946A true JPH10120946A (en) 1998-05-12
JP3122375B2 JP3122375B2 (en) 2001-01-09

Family

ID=17849887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29768996A Expired - Lifetime JP3122375B2 (en) 1996-10-18 1996-10-18 Infrared shielding material

Country Status (1)

Country Link
JP (1) JP3122375B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004060807A1 (en) * 2002-12-27 2004-07-22 Sumitomo Metal Mining Co., Ltd. FINE In4Sn3O12 COMPOSITE OXIDE PARTICLE FOR SOLAR RADIATION SHIELDING, PROCESS FOR PRODUCING THE SAME, COATING FLUID FOR FORMING SOLAR RADIATION SHIELDING FILM, SOLAR RADIATION SHIELDING FILM, AND SUBSTRATE FOR SOLAR RADIATION SHIELDING
CN100357378C (en) * 2005-01-05 2007-12-26 中国科学院过程工程研究所 Insulating mold coating and its uses
JP2011063495A (en) * 2009-09-18 2011-03-31 Mitsubishi Materials Corp Heat ray shielding composition containing cylindrical indium tin oxide powder and method for producing the same
US8330045B2 (en) 2005-12-26 2012-12-11 Industrial Technology Research Institute Fire-resistant wire/cable
EP2682991A2 (en) 2005-11-30 2014-01-08 Daikin Industries, Limited Coating composition for protection cover of solar cell
CN107674462A (en) * 2017-10-11 2018-02-09 大连理工大学 A kind of preparation method and application of 3 D multi-colour CQDs@MeOOH anti-infrared nano-functional materials

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004060807A1 (en) * 2002-12-27 2004-07-22 Sumitomo Metal Mining Co., Ltd. FINE In4Sn3O12 COMPOSITE OXIDE PARTICLE FOR SOLAR RADIATION SHIELDING, PROCESS FOR PRODUCING THE SAME, COATING FLUID FOR FORMING SOLAR RADIATION SHIELDING FILM, SOLAR RADIATION SHIELDING FILM, AND SUBSTRATE FOR SOLAR RADIATION SHIELDING
CN100357378C (en) * 2005-01-05 2007-12-26 中国科学院过程工程研究所 Insulating mold coating and its uses
EP2682991A2 (en) 2005-11-30 2014-01-08 Daikin Industries, Limited Coating composition for protection cover of solar cell
US8330045B2 (en) 2005-12-26 2012-12-11 Industrial Technology Research Institute Fire-resistant wire/cable
JP2011063495A (en) * 2009-09-18 2011-03-31 Mitsubishi Materials Corp Heat ray shielding composition containing cylindrical indium tin oxide powder and method for producing the same
CN107674462A (en) * 2017-10-11 2018-02-09 大连理工大学 A kind of preparation method and application of 3 D multi-colour CQDs@MeOOH anti-infrared nano-functional materials

Also Published As

Publication number Publication date
JP3122375B2 (en) 2001-01-09

Similar Documents

Publication Publication Date Title
JP4626284B2 (en) Method for producing tungsten oxide fine particles for forming solar shield, and tungsten oxide fine particles for forming solar shield
KR102371492B1 (en) Near-infrared shielding material fine particles, method for preparing the same, and near-infrared shielding material fine particle dispersion
CA2343085C (en) Titanium-containing finely divided particulate material, aqueous sol composition and coating liquid containing same, process for producing same, and shaped article having film thereof
JPH1067516A (en) Anatase dispersion and its production
JP5835860B2 (en) Heat ray shielding composition and method for producing the same
JP5585812B2 (en) Near-infrared shielding material fine particle dispersion, near-infrared shielding material, method for producing near-infrared shielding material fine particles, and near-infrared shielding material fine particles
CN112969744A (en) Environment-friendly heat-insulating film using non-radioactive stable isotope and preparation method thereof
JP5233007B2 (en) Paint for transparent conductive material and method for producing transparent conductive film
JP3122375B2 (en) Infrared shielding material
JP2008230954A (en) Manufacturing method for antimony-containing tin oxide fine particles for forming solar radiation shielding body, dispersion for forming solar radiation shielding body, solar radiation shielding body, and solar radiation shielding base material
JP3009581B2 (en) Conductive paint
JP2004083397A (en) Antimony-tin oxide fine particle for solar radiation shielding, dispersion liquid for forming solar radiation shielding body using the same, solar radiation shielding body and transparent base material for solar radiation shielding
JP4941637B2 (en) Method for producing boride particles and boride particles
JP3915880B2 (en) Method for producing fine particles for solar radiation shielding film formation
JP2006213576A (en) Boride microparticle for insolation shield, dispersion for forming insolation shield body using the boride microparticle and insolation shield body, and method of manufacturing boride microparticle for insolation shield and method of manufacturing dispersion for forming insolation shield body
JP6413969B2 (en) Dispersion for forming solar shading body and solar shading body using the dispersion
JP2009132599A (en) Method for producing ultraviolet shielding material fine particle, ultraviolet shielding material fine particle dispersion, and ultraviolet shielding body
CN111344375B (en) Infrared absorber
JP6952051B2 (en) Method for manufacturing infrared shielding material and tin oxide particles
JPH06227815A (en) Production of electrically conductive fine powder
JP2001279304A (en) Chain-shaped metallic colloid dispersed liquid and its production method
JP2002138271A (en) Manufacturing method of fine particle for heat ray shielding and manufacturing method of coating liquid for forming heat ray shielding film using the fine particle manufactured by the former method
JP2004284904A (en) Method of producing sunbeam shielding material, sunbeam shielding material, coating liquid for forming sunbeam shielding film, and sunbeam shielding film
JP2004143022A (en) Tin-containing indium oxide particle and its production method, conductive coating film, and conductive sheet
JP2012082109A (en) Method for producing tungsten oxide fine particle for forming highly heat-resistant heat ray-shielding material, tungsten oxide fine particle for forming highly heat-resistant heat ray-shielding material and dispersion for forming highly heat-resistant heat ray-shielding material, and highly heat-resistant heat ray-shielding material

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081020

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091020

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131020

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term