JPH10116603A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPH10116603A
JPH10116603A JP8289265A JP28926596A JPH10116603A JP H10116603 A JPH10116603 A JP H10116603A JP 8289265 A JP8289265 A JP 8289265A JP 28926596 A JP28926596 A JP 28926596A JP H10116603 A JPH10116603 A JP H10116603A
Authority
JP
Japan
Prior art keywords
manganese
manganese oxide
battery
positive electrode
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8289265A
Other languages
Japanese (ja)
Inventor
Atsushi Yanai
敦志 柳井
Yasuyuki Kusumoto
靖幸 樟本
Mikiya Yamazaki
幹也 山崎
Toshiyuki Noma
俊之 能間
Koji Nishio
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP8289265A priority Critical patent/JPH10116603A/en
Publication of JPH10116603A publication Critical patent/JPH10116603A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To enhance the storage characteristics by adding additives such as Al2 O3 to manganese oxides, thereby deactivating the active portion of the manganese oxide, and making the reaction of the manganese oxide with non-aqueous electrolyte during storage be hardly caused. SOLUTION: In the process of fabricating a positive electrode, alumina (Al2 O3 ) is added to manganese dioxide which has undergone a dehydrating process, and the obtained mixture is mixed with carbon powder as electroconductive aid material and fluororesin powder as a binder, and the resultant material is pressure molded into a disc shape, followed by a heating process. In lieu of alumina, it may be accepted to add to manganese oxide at least one of the additives selected among In2 O2 , Tl2 O3 , LiAlO2 , LiGaO2 , and LiTlO2 . As a result, the active portion of the manganese oxide is deactivated so as to make the reaction of manganese oxide with a non-aqueous electrolyte during storage be hardly caused, and excellent storage characteristics can be established.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、マンガン酸化物を
活物質とする正極と、負極と、非水電解液とを備えるリ
チウム二次電池に係わり、詳しくはその保存特性を改善
することを目的とした、正極の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery including a positive electrode using manganese oxide as an active material, a negative electrode, and a non-aqueous electrolyte, and more particularly, to improving the storage characteristics thereof. And improvement of the positive electrode.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
リチウム二次電池が、従前のアルカリ二次電池に比べ
て、高電圧化乃至高容量化が可能であることから注目さ
れている。アルカリ電解液を使用しないリチウム二次電
池の場合は、電池設計をする際に水の分解電圧を考慮す
る必要が無いからである。
2. Description of the Related Art In recent years,
Lithium secondary batteries have attracted attention because they can achieve higher voltages and higher capacities than conventional alkaline secondary batteries. This is because in the case of a lithium secondary battery that does not use an alkaline electrolyte, it is not necessary to consider the decomposition voltage of water when designing the battery.

【0003】リチウム二次電池の正極活物質としては、
主に金属酸化物が使用されており、中でも、マンガン酸
化物は、非常に安価であることから注目されている材料
である。
As a positive electrode active material of a lithium secondary battery,
Metal oxides are mainly used, and among them, manganese oxide is a material that has attracted attention because it is very inexpensive.

【0004】しかしながら、リチウム二次電池では正極
の電圧が3V以上になるため、活性の高いマンガン酸化
物を正極活物質として使用した場合、これと非水電解液
とが反応する。そのため、電池を長期間保存すると、放
電特性やサイクル特性が低下するという問題がある。こ
のため、マンガン酸化物と非水電解液との反応を抑制す
ることが、この種の二次電池の実用化に向けて急務とな
っている。
However, in a lithium secondary battery, since the voltage of the positive electrode becomes 3 V or more, when a highly active manganese oxide is used as the positive electrode active material, it reacts with the non-aqueous electrolyte. Therefore, when the battery is stored for a long period of time, there is a problem that discharge characteristics and cycle characteristics are deteriorated. For this reason, suppressing the reaction between the manganese oxide and the non-aqueous electrolyte has become an urgent task toward the practical use of this type of secondary battery.

【0005】ところで、マンガン酸化物を正極活物質と
するリチウム二次電池の保存特性を改善するべく、充放
電サイクル時の結晶構造の崩れが少ないマンガンとホウ
素とを特定の原子比で含有するマンガン・ホウ素複合酸
化物を正極活物質として使用することが提案されている
(特開平3−297058号公報)。この公報に開示の
技術は、充放電サイクル時の結晶構造の崩れが少ないマ
ンガン・ホウ素複合酸化物を正極活物質として使用する
ことにより、正極活物質からの水分(付着水及び結合
水)の流出を抑制し、保存中の水分とリチウムとの反応
に起因する電池特性の低下を抑制せんとするものであ
る。
By the way, in order to improve the storage characteristics of a lithium secondary battery using manganese oxide as a positive electrode active material, manganese containing manganese and boron in a specific atomic ratio, which causes little change in crystal structure during charge / discharge cycles, is provided. -It has been proposed to use a boron composite oxide as a positive electrode active material (Japanese Unexamined Patent Publication No. Hei 3-297058). The technology disclosed in this publication uses a manganese-boron composite oxide, which has little crystal structure collapse during a charge / discharge cycle, as a positive electrode active material, so that water (adhered water and bound water) flows out of the positive electrode active material. To suppress the deterioration of battery characteristics due to the reaction between water and lithium during storage.

【0006】しかしながら、上記のマンガン・ホウ素複
合酸化物も二酸化マンガンと同じく表面の活性が高いた
めに、電池を長期間保存したり、高温で保存したりする
と、非水電解液と徐々に反応し、反応生成物が正極又は
負極の表面に被膜となって付着して、放電特性、充放電
サイクル特性などの電池特性が低下する。すなわち、上
記の従来の技術では、保存特性を充分に改善するには至
っていないのが実情である。
However, the above manganese-boron composite oxide also has a high surface activity like manganese dioxide. Therefore, when the battery is stored for a long time or at a high temperature, it gradually reacts with the nonaqueous electrolyte. In addition, the reaction product adheres as a film to the surface of the positive electrode or the negative electrode, and battery characteristics such as discharge characteristics and charge / discharge cycle characteristics are deteriorated. That is, the conventional technology described above does not sufficiently improve storage characteristics.

【0007】本発明は、かかる実情に鑑みてなされたも
のであって、保存中のマンガン酸化物と非水電解液との
反応が起こりにくいために電池特性が低下しにくい保存
特性に優れたリチウム二次電池を提供することを目的と
する。
The present invention has been made in view of the above circumstances, and has been made in view of the fact that a reaction between a manganese oxide and a non-aqueous electrolyte during storage is unlikely to occur, so that lithium having excellent storage characteristics is hardly deteriorated in battery characteristics. It is intended to provide a secondary battery.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
の本発明に係るリチウム二次電池(本発明電池)は、マ
ンガン酸化物を活物質とする正極と、負極と、非水電解
液とを備え、前記マンガン酸化物に、Al2 3 、In
2 3 、Ga2 3 、Tl2 3 、LiAlO2 、Li
InO2 、LiGaO2 及びLiTlO2 の中から選ば
れた少なくとも一種の添加剤が添加されているものであ
る。
Means for Solving the Problems A lithium secondary battery (battery of the present invention) according to the present invention for achieving the above object has a positive electrode using manganese oxide as an active material, a negative electrode, and a nonaqueous electrolyte. Wherein the manganese oxide includes Al 2 O 3 , In
2 O 3 , Ga 2 O 3 , Tl 2 O 3 , LiAlO 2 , Li
At least one additive selected from InO 2 , LiGaO 2 and LiTlO 2 is added.

【0009】マンガン酸化物としては、リチウムとマン
ガンとの複合酸化物及び二酸化マンガンが例示される。
リチウムとマンガンとの複合酸化物としては、LiMn
2 4 が例示される。この外、充放電サイクル時の結晶
構造の崩壊が少ない複合酸化物として、水酸化リチウム
などのリチウム原料と二酸化マンガンとのLi:Mnの
原子比1:9〜7:3の混合物を300〜430°Cで
加熱処理して得たものが挙げられる。マンガン酸化物と
して、特開平3−297058号公報に開示のマンガン
・ホウ素複合酸化物を使用することも可能である。
Examples of the manganese oxide include a composite oxide of lithium and manganese and manganese dioxide.
As a composite oxide of lithium and manganese, LiMn
2 O 4 is exemplified. In addition, a mixture of lithium material such as lithium hydroxide and manganese dioxide having an atomic ratio of Li: Mn of 1: 9 to 7: 3 as a composite oxide with less collapse of the crystal structure during charge / discharge cycles is 300 to 430. And those obtained by heat treatment at ° C. As the manganese oxide, a manganese-boron composite oxide disclosed in JP-A-3-297058 can be used.

【0010】Al2 3 、In2 3 、Ga2 3 、T
2 3 、LiAlO2 、LiInO2 、LiGaO2
及びLiTlO2 は、一種単独を添加してもよく、必要
に応じて二種以上を併用添加してもよい。これらの添加
剤のマンガン酸化物に対する添加割合は、マンガン10
0原子に対して、総量で0.1〜30モルが好ましい。
同添加割合がこの範囲を外れると、充分な保存特性が得
られにくくなる。
Al 2 O 3 , In 2 O 3 , Ga 2 O 3 , T
l 2 O 3 , LiAlO 2 , LiInO 2 , LiGaO 2
LiTlO 2 and LiTlO 2 may be used alone or in combination of two or more as needed. The proportion of these additives to manganese oxide is 10% manganese.
The total amount is preferably 0.1 to 30 mol per 0 atom.
If the addition ratio is out of this range, it becomes difficult to obtain sufficient storage characteristics.

【0011】本発明は、リチウム二次電池の正極の改良
に関する。それゆえ、正極以外の部材には、次に示す如
き従来公知のものを特に制限無く用いることができる。
The present invention relates to an improvement in a positive electrode of a lithium secondary battery. Therefore, as the members other than the positive electrode, conventionally known members as shown below can be used without particular limitation.

【0012】負極材料としては、リチウムイオンを電気
化学的に吸蔵及び放出することが可能な物質及び金属リ
チウムが例示される。リチウムイオンを電気化学的に吸
蔵及び放出することが可能な物質の具体例としては、黒
鉛、コークス、有機物焼成体等の炭素材料;リチウム−
アルミニウム合金、リチウム−鉛合金、リチウム−錫合
金等のリチウム合金;SnO2 、SnO、TiO2 、N
2 3 等の電位が正極活物質に比べて卑な金属酸化物
が挙げられる。
Examples of the negative electrode material include a substance capable of electrochemically absorbing and releasing lithium ions and lithium metal. Specific examples of the substance capable of electrochemically occluding and releasing lithium ions include carbon materials such as graphite, coke, and fired organic materials;
Lithium alloys such as aluminum alloys, lithium-lead alloys, lithium-tin alloys; SnO 2 , SnO, TiO 2 , N
A metal oxide having a potential such as b 2 O 3 which is lower than that of the positive electrode active material may be used.

【0013】非水電解液の溶媒の具体例としては、エチ
レンカーボネートと1,2−ジメトキシエタンとの混合
溶媒、エチレンカーボネートとプロピレンカーボネート
と1,2−ジメトキシエタンとの混合溶媒、エチレンカ
ーボネートとブチレンカーボネートと1,2−ジメトキ
シエタンとの混合溶媒が挙げられる。また、非水電解液
の溶質の具体例としては、LiPF6 、LiAsF6
LiSbF6 、LiClO4 、LiCF3 SO3 が挙げ
られる。
Specific examples of the solvent of the nonaqueous electrolyte include a mixed solvent of ethylene carbonate and 1,2-dimethoxyethane, a mixed solvent of ethylene carbonate, propylene carbonate and 1,2-dimethoxyethane, and a mixed solvent of ethylene carbonate and butylene. A mixed solvent of carbonate and 1,2-dimethoxyethane is exemplified. Specific examples of the solute of the non-aqueous electrolyte include LiPF 6 , LiAsF 6 ,
LiSbF 6 , LiClO 4 , LiCF 3 SO 3 are mentioned.

【0014】本発明電池においては、高活性なマンガン
酸化物に特定の添加剤が添加されて、マンガン酸化物中
の活性部分が不活性化されているので、保存時のマンガ
ン酸化物と非水電解液との反応が起こりにくい。このた
め、本発明電池は保存特性に優れる。
In the battery of the present invention, a specific additive is added to the highly active manganese oxide to inactivate the active portion in the manganese oxide. The reaction with the electrolyte does not easily occur. For this reason, the battery of the present invention has excellent storage characteristics.

【0015】[0015]

【実施例】本発明を実施例に基づいてさらに詳細に説明
するが、本発明は下記実施例に何ら限定されるものでは
なく、その要旨を変更しない範囲で適宜変更して実施す
ることが可能なものである。
EXAMPLES The present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples and can be carried out by appropriately changing the scope of the invention without changing its gist. It is something.

【0016】(実施例1) 〔正極の作製〕400°Cで脱水処理した二酸化マンガ
ン(MnO2 )にアルミナ(Al2 3 )を、マンガン
100原子に対して5モルの割合で添加混合した。この
ようにして得た混合物と、導電剤としての炭素粉末と、
結着剤としてのフッ素樹脂粉末とを、重量比8:1:1
で混合し、円板状に加圧成形した後、250°Cで加熱
処理して、正極を作製した。
(Example 1) [Preparation of positive electrode] Alumina (Al 2 O 3 ) was added to manganese dioxide (MnO 2 ) dehydrated at 400 ° C. at a ratio of 5 mol per 100 atoms of manganese. . The mixture thus obtained, and carbon powder as a conductive agent,
A fluororesin powder as a binder was mixed in a weight ratio of 8: 1: 1.
And press-molded into a disk shape, followed by heat treatment at 250 ° C. to produce a positive electrode.

【0017】〔負極の作製〕リチウム−アルミニウム合
金板を打ち抜いて円板状の負極を作製した。
[Preparation of Negative Electrode] A disk-shaped negative electrode was prepared by punching a lithium-aluminum alloy plate.

【0018】〔非水電解液の調製〕エチレンカーボネー
トと1,2−ジメトキシエタンとの体積比1:1の混合
溶媒に、LiPF6 を1モル/リットル溶かして、非水
電解液を調製した。
[Preparation of Nonaqueous Electrolyte] A nonaqueous electrolyte was prepared by dissolving 1 mol / l of LiPF 6 in a mixed solvent of ethylene carbonate and 1,2-dimethoxyethane at a volume ratio of 1: 1.

【0019】〔電池の組立〕上記の正極、負極及び非水
電解液を使用して、扁平形のリチウム二次電池(本発明
電池A1;電池寸法:外径24.0mm、厚み3.0m
m)を組み立てた。セパレータには、ポリプロピレン製
の微多孔膜を使用し、これに非水電解液を含浸させた。
[Assembly of Battery] Using the above positive electrode, negative electrode and non-aqueous electrolyte, a flat lithium secondary battery (Battery A1 of the present invention; battery dimensions: outer diameter 24.0 mm, thickness 3.0 m)
m) was assembled. A microporous film made of polypropylene was used for the separator, and this was impregnated with a non-aqueous electrolyte.

【0020】(比較例1)正極の作製においてアルミナ
を添加しなかったこと以外は実施例1と同様にして、比
較電池B1を組み立てた。
Comparative Example 1 A comparative battery B1 was assembled in the same manner as in Example 1 except that no alumina was added in the preparation of the positive electrode.

【0021】(実施例2)正極の作製において、正極活
物質として、二酸化マンガンに代えて、水酸化リチウム
と二酸化マンガンとのLi:Mnの原子比3:7の混合
物を375°Cで加熱処理して得たリチウム・マンガン
複合酸化物(以下、Li・Mn複合酸化物と記す)を使
用したこと以外は実施例1と同様にして、本発明電池A
2を組み立てた。
Example 2 In the preparation of the positive electrode, a mixture of lithium hydroxide and manganese dioxide in a Li: Mn atomic ratio of 3: 7 was heated at 375 ° C. instead of manganese dioxide as the positive electrode active material. The battery A of the present invention was prepared in the same manner as in Example 1 except that the lithium-manganese composite oxide (hereinafter, referred to as Li-Mn composite oxide) obtained as described above was used.
2 was assembled.

【0022】(比較例2)正極の作製においてアルミナ
を添加しなかったこと以外は実施例2と同様にして、比
較電池B2を組み立てた。
Comparative Example 2 A comparative battery B2 was assembled in the same manner as in Example 2 except that alumina was not added in the production of the positive electrode.

【0023】(実施例3)正極の作製において、正極活
物質として、二酸化マンガンに代えて、LiMn2 4
を使用したこと以外は実施例1と同様にして、本発明電
池A3を組み立てた。
Example 3 In the preparation of the positive electrode, LiMn 2 O 4 was used instead of manganese dioxide as the positive electrode active material.
Battery A3 of the present invention was assembled in the same manner as Example 1 except that was used.

【0024】(比較例3)正極の作製においてアルミナ
を添加しなかったこと以外は実施例3と同様にして、比
較電池B3を組み立てた。
Comparative Example 3 A comparative battery B3 was assembled in the same manner as in Example 3 except that alumina was not added in the production of the positive electrode.

【0025】〈保存特性〉組立直後の各電池を25°C
にて1kΩで定抵抗放電させて、放電容量C1を求め
た。また、組立直後の各電池を80°Cで2ケ月保存し
た後、同じ条件で定抵抗放電させて、放電容量C2を求
めた。下式に基づき、各電池の自己放電率(%)を算出
した。結果を表1に示す。
<Storage characteristics> Each battery immediately after assembly was stored at 25 ° C.
At a constant resistance of 1 kΩ to determine the discharge capacity C1. Each battery immediately after the assembly was stored at 80 ° C. for 2 months, and then discharged under a constant resistance under the same conditions to obtain a discharge capacity C2. The self-discharge rate (%) of each battery was calculated based on the following equation. Table 1 shows the results.

【0026】 自己放電率(%)=(1−C2/C1)×100Self-discharge rate (%) = (1−C2 / C1) × 100

【0027】[0027]

【表1】 [Table 1]

【0028】表1に示すように、本発明電池A1,A
2,A3は、それぞれ比較電池B1,B2,B3に比べ
て、自己放電率が低い。この事実から、マンガン酸化物
の種類にかかわらず、アルミナを添加することにより、
保存特性が大きく改善されることが分かる。
As shown in Table 1, the batteries A1, A of the present invention
2 and A3 have lower self-discharge rates than the comparative batteries B1, B2 and B3, respectively. From this fact, regardless of the type of manganese oxide, by adding alumina,
It can be seen that the storage characteristics are greatly improved.

【0029】〈添加剤の添加割合と保存特性の関係〉正
極の作製において、Li・Mn複合酸化物に対するアル
ミナの添加割合を、マンガン100原子に対してそれぞ
れ0.05モル、0.1モル、1モル、10モル、20
モル、30モル及び40モルとしたこと以外は実施例2
と同様にして、順に本発明電池A4〜A10を組み立て
た。次いで、先述と同じ条件で試験を行い、各電池の自
己放電率を求めた。結果を表2に示す。なお、表2に
は、本発明電池A2及び比較電池B2の結果も表1より
転記して示してある。
<Relationship Between Additive Ratio of Additive and Storage Characteristics> In the preparation of the positive electrode, the additive ratio of alumina to the Li.Mn composite oxide was 0.05 mol, 0.1 mol, and 1 mol, 10 mol, 20
Example 2 except that the moles were 30 moles and 40 moles.
In the same manner as in the above, batteries A4 to A10 of the present invention were assembled in this order. Next, a test was performed under the same conditions as described above, and the self-discharge rate of each battery was determined. Table 2 shows the results. In Table 2, the results of Battery A2 of the present invention and Comparative Battery B2 are also transcribed from Table 1.

【0030】[0030]

【表2】 [Table 2]

【0031】表2より、Li・Mn複合酸化物に対する
アルミナの添加割合は、マンガン100原子に対して
0.1〜30モルの範囲が好ましいことが分かる。な
お、他のマンガン酸化物(二酸化マンガン及びLiMn
2 4 )及び他の添加剤を使用する場合も、マンガン1
00原子に対する添加剤のモル数を0.1〜30とする
ことが好ましいことを確認した。
From Table 2, it can be seen that the addition ratio of alumina to the Li.Mn composite oxide is preferably in the range of 0.1 to 30 mol per 100 atoms of manganese. In addition, other manganese oxides (manganese dioxide and LiMn
When using 2 O 4 ) and other additives,
It was confirmed that the number of moles of the additive relative to 00 atoms is preferably 0.1 to 30.

【0032】〈添加剤の種類と保存特性の関係〉正極の
作製において、アルミナに代えてそれぞれIn2 3
Ga2 3 、Tl2 3 、LiAlO2 、LiGa
2 、LiInO2 、LiTlO2 をLi・Mn複合酸
化物に添加したこと以外は実施例2と同様にして、順に
本発明電池A11〜A17を組み立てた。また、正極の
作製において、Li・Mn複合酸化物にアルミナを添加
混合して得た混合物に代えて、Li・Mn複合酸化物に
ホウ酸(H3 BO3 )を、マンガン100原子に対して
5モルの割合で添加混合した後、350°Cで加熱処理
した混合物を使用したこと以外は実施例1と同様にし
て、比較電池B4を組み立てた。さらに、正極の作製に
おいて、二酸化マンガンにアルミナを添加混合して得た
混合物に代えて、二酸化マンガンにホウ酸を、マンガン
100原子に対して5モルの割合で添加し、水を加えて
充分攪拌混合した後、400°Cで4時間加熱処理して
得たマンガン・ホウ素複合酸化物(Mn・B複合酸化
物)を使用したこと以外は実施例1と同様にして、比較
電池B5を組み立てた。この比較電池B5は、特開平3
−297058号公報に開示の従来電池に相当する電池
である。次いで、先述と同じ条件で試験を行い、各電池
の自己放電率を求めた。結果を表3に示す。なお、表3
には、比較電池B2の結果も表1より転記して示してあ
る。
<Relationship between Type of Additive and Storage Characteristics> In the preparation of the positive electrode, In 2 O 3 ,
Ga 2 O 3 , Tl 2 O 3 , LiAlO 2 , LiGa
Batteries A11 to A17 of the invention were assembled in the same manner as in Example 2 except that O 2 , LiInO 2 , and LiTlO 2 were added to the Li · Mn composite oxide. Further, in the production of the positive electrode, boric acid (H 3 BO 3 ) was added to the Li · Mn composite oxide instead of the mixture obtained by adding and mixing alumina to the Li · Mn composite oxide with respect to 100 atoms of manganese. A comparative battery B4 was assembled in the same manner as in Example 1 except that a mixture heated at 350 ° C. was used after addition and mixing at a ratio of 5 mol. Further, in the preparation of the positive electrode, boric acid was added to manganese dioxide at a ratio of 5 mol based on 100 atoms of manganese, and water was added, and the mixture was sufficiently stirred in place of the mixture obtained by adding and mixing manganese dioxide with alumina. After mixing, a comparative battery B5 was assembled in the same manner as in Example 1 except that a manganese-boron composite oxide (Mn-B composite oxide) obtained by performing a heat treatment at 400 ° C. for 4 hours was used. . This comparative battery B5 is disclosed in
This is a battery corresponding to the conventional battery disclosed in Japanese Patent Application Laid-Open No. 297058. Next, a test was performed under the same conditions as described above, and the self-discharge rate of each battery was determined. Table 3 shows the results. Table 3
5 also shows the results of the comparative battery B2 transcribed from Table 1.

【0033】[0033]

【表3】 [Table 3]

【0034】表3に示すように、本発明電池A11〜A
17は、比較電池B1,B4,B5に比べて自己放電率
が格段低い。この事実から、マンガン酸化物にIn2
3 、Ga2 3 、Tl2 3 、LiAlO2 、LiGa
2 、LiInO2 又はLiTlO2 を添加した場合
も、アルミナを添加した場合と同様、保存特性に極めて
優れたリチウム二次電池が得られることが分かる。
As shown in Table 3, the batteries A11 to A of the present invention
17 has a significantly lower self-discharge rate than the comparative batteries B1, B4, and B5. From this fact, In 2 O was added to the manganese oxide.
3 , Ga 2 O 3 , Tl 2 O 3 , LiAlO 2 , LiGa
It can be seen that when O 2 , LiInO 2, or LiTlO 2 is added, a lithium secondary battery with extremely excellent storage characteristics can be obtained, similarly to the case where alumina is added.

【0035】上記の実施例では、添加剤を1種類添加す
る場合について述べたが、本発明で特定する2種類以上
の添加剤を併用添加した場合にも、保存特性に極めて優
れたリチウム二次電池が得られることを確認した。
In the above embodiment, the case where one kind of additive is added has been described. However, even when two or more kinds of additives specified in the present invention are added in combination, lithium secondary having extremely excellent storage characteristics can be obtained. It was confirmed that a battery was obtained.

【0036】[0036]

【発明の効果】本発明電池においては、マンガン酸化物
の活性部分が不活性化されているので、保存時のマンガ
ン酸化物と非水電解液との反応が起こりにくい。このた
め、本発明電池は保存特性に優れる。
In the battery of the present invention, since the active portion of the manganese oxide is inactivated, the reaction between the manganese oxide and the non-aqueous electrolyte during storage hardly occurs. For this reason, the battery of the present invention has excellent storage characteristics.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 能間 俊之 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Toshiyuki Noma 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Koji Nishio 2-chome Keihanhondori, Moriguchi-shi, Osaka No. 5-5 in Sanyo Electric Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】マンガン酸化物を活物質とする正極と、負
極と、非水電解液とを備えるリチウム二次電池におい
て、前記マンガン酸化物に、Al2 3 、In2 3
Ga23 、Tl2 3 、LiAlO2 、LiIn
2 、LiGaO2 及びLiTlO2 の中から選ばれた
少なくとも一種の添加剤が添加されていることを特徴と
するリチウム二次電池。
1. A lithium secondary battery comprising a positive electrode using a manganese oxide as an active material, a negative electrode, and a non-aqueous electrolyte, wherein the manganese oxide includes Al 2 O 3 , In 2 O 3 ,
Ga 2 O 3 , Tl 2 O 3 , LiAlO 2 , LiIn
A lithium secondary battery comprising at least one additive selected from O 2 , LiGaO 2 and LiTlO 2 .
【請求項2】前記マンガン酸化物が、リチウムとマンガ
ンとの複合酸化物又は二酸化マンガンである請求項1記
載のリチウム二次電池。
2. The lithium secondary battery according to claim 1, wherein the manganese oxide is a composite oxide of lithium and manganese or manganese dioxide.
【請求項3】Al2 3 、In2 3 、Ga2 3 、T
2 3 、LiAlO2 、LiInO2 、LiGaO2
及びLiTlO2 の中から選ばれた少なくとも一種の添
加剤が、マンガン酸化物中のマンガン100原子に対し
て、0.1〜30モルの割合で添加されている請求項1
又は2記載のリチウム二次電池。
3. An Al 2 O 3 , In 2 O 3 , Ga 2 O 3 , T
l 2 O 3 , LiAlO 2 , LiInO 2 , LiGaO 2
And at least one additive selected from among LiTlO 2 is, with respect to manganese 100 atoms in the manganese oxide, claim is added in an amount of 0.1 to 30 mol 1
Or the lithium secondary battery according to 2.
JP8289265A 1996-10-11 1996-10-11 Lithium secondary battery Pending JPH10116603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8289265A JPH10116603A (en) 1996-10-11 1996-10-11 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8289265A JPH10116603A (en) 1996-10-11 1996-10-11 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH10116603A true JPH10116603A (en) 1998-05-06

Family

ID=17740928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8289265A Pending JPH10116603A (en) 1996-10-11 1996-10-11 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH10116603A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005502161A (en) * 2001-08-20 2005-01-20 エフエムシー・コーポレイション Positive electrode active material for secondary battery and method for producing the same
EP1505680A2 (en) * 2003-08-08 2005-02-09 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Non-aqueous electrolyte and a battery, a supercapacitor, an electrochromic device and a solar cell including such an electrolyte
KR100551007B1 (en) * 2003-10-23 2006-02-13 삼성에스디아이 주식회사 Rechargeable lithium battery
JP2006512742A (en) * 2002-12-23 2006-04-13 スリーエム イノベイティブ プロパティズ カンパニー Cathode composition for rechargeable lithium batteries
US7700240B2 (en) 2003-08-08 2010-04-20 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. Non-aqueous electrolyte for use in a battery
WO2012022624A1 (en) 2010-08-17 2012-02-23 Umicore Aluminum dry-coated and heat treated cathode material precursors
CN116779836A (en) * 2023-08-24 2023-09-19 深圳海辰储能控制技术有限公司 Lithium supplementing material, preparation method, positive pole piece, energy storage device and power utilization device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4856847B2 (en) * 2001-08-20 2012-01-18 ユミコア Positive electrode active material for secondary battery and method for producing the same
JP2005502161A (en) * 2001-08-20 2005-01-20 エフエムシー・コーポレイション Positive electrode active material for secondary battery and method for producing the same
JP2006512742A (en) * 2002-12-23 2006-04-13 スリーエム イノベイティブ プロパティズ カンパニー Cathode composition for rechargeable lithium batteries
EP1505680A2 (en) * 2003-08-08 2005-02-09 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Non-aqueous electrolyte and a battery, a supercapacitor, an electrochromic device and a solar cell including such an electrolyte
EP1505680A3 (en) * 2003-08-08 2005-04-06 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Non-aqueous electrolyte and a battery, a supercapacitor, an electrochromic device and a solar cell including such an electrolyte
US7700240B2 (en) 2003-08-08 2010-04-20 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. Non-aqueous electrolyte for use in a battery
KR100551007B1 (en) * 2003-10-23 2006-02-13 삼성에스디아이 주식회사 Rechargeable lithium battery
WO2012022624A1 (en) 2010-08-17 2012-02-23 Umicore Aluminum dry-coated and heat treated cathode material precursors
CN103081189A (en) * 2010-08-17 2013-05-01 尤米科尔公司 Aluminum dry-coated and heat treated cathode material precursors
JP2013541129A (en) * 2010-08-17 2013-11-07 ユミコア Cathode material precursor with aluminum dry coating and heat treatment
US9876226B2 (en) 2010-08-17 2018-01-23 Umicore Aluminum dry-coated and heat treated cathode material precursors
CN116779836A (en) * 2023-08-24 2023-09-19 深圳海辰储能控制技术有限公司 Lithium supplementing material, preparation method, positive pole piece, energy storage device and power utilization device
CN116779836B (en) * 2023-08-24 2024-04-16 深圳海辰储能控制技术有限公司 Lithium supplementing material, preparation method, positive pole piece, energy storage device and power utilization device

Similar Documents

Publication Publication Date Title
JP3244314B2 (en) Non-aqueous battery
JP2007194202A (en) Lithium ion secondary battery
JP2000156229A (en) Nonaqueous electrolyte lithium secondary battery
JP2001223008A (en) Lithium secondary battery, positive electrode active substance for it and their manufacturing method
JP2002260632A (en) Secondary battery
JP2008226693A (en) Lithium-ion secondary battery
JP2000277110A (en) Nonaqueous secondary battery
JPH08264179A (en) Lithium battery
JP2004265749A (en) Lithium secondary battery
JPH10188982A (en) Lithium secondary battery
JP2005158737A (en) Positive electrode for lithium secondary battery, and lithium secondary battery
JPH10116603A (en) Lithium secondary battery
JPH09115515A (en) Lithium secondary battery
JP4746846B2 (en) Negative electrode active material for lithium ion battery, method for producing the same, and lithium ion battery
US6395425B1 (en) Non-aqueous electrolyte secondary battery with a lithium copper titanium oxide electrode
JPH1126018A (en) Lithium secondary battery
JP3268924B2 (en) Non-aqueous electrolyte battery
JPH04253162A (en) Lithium secondary battery
JPH06243870A (en) Nonaqeous secondary battery
JPH06111820A (en) Nonaqueous battery
JPH04289662A (en) Manufacture of nonaqueous electrolyte secondary battery and its positive electrode active material
JP3282495B2 (en) Non-aqueous electrolyte secondary battery
JP2000058068A (en) Nonaqueous electrolyte secondary battery
JP2000067869A (en) Non-aqueous electrolyte secondary battery
JPH06243869A (en) Nonaqueous secondary battery