JP2008226693A - Lithium-ion secondary battery - Google Patents

Lithium-ion secondary battery Download PDF

Info

Publication number
JP2008226693A
JP2008226693A JP2007064752A JP2007064752A JP2008226693A JP 2008226693 A JP2008226693 A JP 2008226693A JP 2007064752 A JP2007064752 A JP 2007064752A JP 2007064752 A JP2007064752 A JP 2007064752A JP 2008226693 A JP2008226693 A JP 2008226693A
Authority
JP
Japan
Prior art keywords
active material
positive electrode
secondary battery
ion secondary
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007064752A
Other languages
Japanese (ja)
Other versions
JP5103961B2 (en
Inventor
Kaoru Osada
かおる 長田
Tetsuo Minamino
哲郎 南野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2007064752A priority Critical patent/JP5103961B2/en
Publication of JP2008226693A publication Critical patent/JP2008226693A/en
Application granted granted Critical
Publication of JP5103961B2 publication Critical patent/JP5103961B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium-ion secondary battery with a high capacity and safety having no deterioration in cycle characteristics and preservation characteristics, in particular, a lithium ion secondary battery improved in safety at the time of overcharge. <P>SOLUTION: This is a non-aqueous secondary battery in which an electrode group is constructed by winding or laminating through a separator a positive electrode plate and a negative electrode plate in which an active material layer capable of storing and releasing lithium ion is installed on a current collector. The lithium-ion secondary battery has the active material to be charged at 4.3 V or less in Li/Li+ standard and a substance which generates oxygen gas at the time of overcharge existing in the positive electrode plate. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、リチウムイオン二次電池に関し、特に安全性を向上したものに関する。   The present invention relates to a lithium ion secondary battery, and particularly relates to an improved safety.

近年、パソコン、携帯電話などの電子機器のモバイル化が急速に進んでおり、これらの駆動電源として、小型で軽量かつ高容量な二次電池が必要とされている。このような理由から高エネルギー密度が可能なリチウムイオン二次電池の開発が広くなされている。そこで、高エネルギー密度化に伴い、電池の安全性確保はますます重要となっている。   In recent years, electronic devices such as personal computers and mobile phones are rapidly becoming mobile, and a small, light and high capacity secondary battery is required as a driving power source for these devices. For these reasons, lithium ion secondary batteries capable of high energy density have been widely developed. Therefore, as the energy density increases, ensuring the safety of batteries is becoming more and more important.

電池が過充電された場合、負極でのリチウムイオン吸蔵量が過剰になるとリチウム金属が析出し、セパレータを貫通して正極に達し短絡する恐れがある。また、過充電により溶媒の分解が生じると、電池が発熱したり、分解によるガスにより電池の内圧が上昇したりする恐れがある。さらに、電池が発熱すること、また、正極活物質から過剰にリチウムイオンが放出されることにより、活物質自体が電解液と反応しやすくなり発煙にいたる恐れがある。   When the battery is overcharged, if the amount of occlusion of lithium ions at the negative electrode becomes excessive, lithium metal may be deposited, penetrate the separator, reach the positive electrode, and short circuit. In addition, when the solvent is decomposed due to overcharge, the battery may generate heat, or the internal pressure of the battery may increase due to gas generated by the decomposition. Further, the battery generates heat, and excessive release of lithium ions from the positive electrode active material may cause the active material itself to easily react with the electrolytic solution, resulting in smoke generation.

このような課題を解決するために、特許文献1には、4V級の高い放電電圧が得られるリチウムとマンガンとマンガン以外の金属からなるスピネル構造の酸化物と、リチウムとニッケルコバルトとニッケルとマンガン以外の金属を含む酸化物を混合することで、高エネルギー密度で容量維持率が高くサイクル特性の良好な活物質が提案されている。   In order to solve such a problem, Patent Document 1 discloses an oxide having a spinel structure made of a metal other than lithium, manganese, and manganese, and lithium, nickel cobalt, nickel, and manganese. An active material having a high energy density, a high capacity retention rate, and a good cycle characteristic has been proposed by mixing an oxide containing a metal other than the above.

また、特許文献2には、マンガンを含み、かつアルミニウムまたはマグネシウムを含むリチウム酸化物とLixCoMgyAlz2(1≦x≦1.03、0.005≦y≦0.1、0.001≦z≦0.02)からなる2種類の活物質を混合することで、充電電位が4.3〜4.4Vである充電を行っても、マンガンの溶出量を抑え、安全性を確保する方法が開示されている。 Further, Patent Document 2, includes a manganese and lithium oxide and Li x CoMg y Al z O 2 (1 ≦ x ≦ 1.03,0.005 ≦ y ≦ containing aluminum or magnesium 0.1, .001 ≦ z ≦ 0.02) by mixing two kinds of active materials, even when charging with a charging potential of 4.3 to 4.4 V, the elution amount of manganese is suppressed and safety is improved. A method of ensuring is disclosed.

また、特許文献3には、 異種元素を導入したリチウム複合ニッケル酸化物と異種元素を導入したリチウム複合コバルト酸化物の2種類を少なくとも含むことで、過放電特性、過充電安全性、保存特性が優れた活物質が提案されている。
特開2000−315503号公報 特開2004−207120号公報 特開2002−319398号公報
Patent Document 3 includes at least two types of lithium composite nickel oxide into which different elements are introduced and lithium composite cobalt oxide into which different elements are introduced, thereby providing overdischarge characteristics, overcharge safety, and storage characteristics. Excellent active materials have been proposed.
JP 2000-315503 A JP 2004-207120 A JP 2002-319398 A

しかしながら、特許文献1のように、活物質として、マンガンとそれ以外の金属を含むスピネル構造の酸化物を用いた場合、高エネルギー密度で容量維持率が高くなるものの、過充電により溶媒の分解が生じた場合の、電池が発熱したり、分解によるガスにより電池の内圧が上昇したりする問題を解決するのものではなかった。   However, as in Patent Document 1, when an oxide having a spinel structure containing manganese and other metals is used as the active material, the capacity retention rate is high at a high energy density, but the solvent is decomposed by overcharging. When this occurs, it does not solve the problem that the battery generates heat or the internal pressure of the battery rises due to gas due to decomposition.

また、特許文献2のように、Mnの溶出を抑え安全性を確保しても、さらに、特許文献3のように、 異種元素を導入したリチウム複合ニッケル酸化物と異種元素を導入したリチウム複合コバルト酸化物の2種類を少なくとも含むことで、過充電安全性を向上させても、過充電により溶媒の分解が生じた場合の、電池が発熱したり、分解によるガスにより電池の内圧が上昇したりする問題を解決するのものではなかった。   Moreover, even if elution of Mn is suppressed and the safety is ensured as in Patent Document 2, a lithium composite nickel oxide into which a different element is introduced and a lithium composite cobalt into which a different element is introduced as in Patent Document 3. Even if the overcharge safety is improved by including at least two kinds of oxides, the battery may generate heat or the internal pressure of the battery may increase due to the gas due to the decomposition when the solvent is decomposed due to overcharge. It did not solve the problem.

また、特許文献2または3では、それぞれ、混合する活物質の相乗効果を含んで安全性の向上を図るものであり、その効果が見込める活物質同士の組み合わせが限定されていた。   Moreover, in patent document 2 or 3, the improvement of safety | security is aimed at including the synergistic effect of the active material to mix, respectively, The combination of the active materials which can anticipate the effect was limited.

本発明のリチウムイオン二次電池は、集電体にリチウムイオンを吸蔵放出可能な活物質層を設けた正極板と負極板とをセパレータを介して巻回または積層して電極群を構成し非水電解質とともにケースに封入してなるリチウムイオン二次電池であって、前記正極板にLi/Li+基準で4.3V以下で充電する活物質を含み、過充電時に酸素ガスを発生する物質を存在させた構成であることを特徴とする。上記構成によれば、過充電時にガス発生により、正極活物質層と集電体間、または、正極極板とセパレータ間、または、正極層内が離れるため、充電を遮断し、電解液の分解、正極活物質の分解、また、負極側へのLi析出による短絡を防ぐことができる。 The lithium ion secondary battery of the present invention comprises a positive electrode plate having a current collector provided with an active material layer capable of occluding and releasing lithium ions, and a negative electrode plate wound or laminated via a separator to form an electrode group. A lithium ion secondary battery encapsulated in a case together with a water electrolyte, wherein the positive electrode plate includes an active material that is charged at 4.3 V or less on the basis of Li / Li + , and a substance that generates oxygen gas when overcharged It is the structure which existed. According to the above configuration, due to gas generation at the time of overcharge, separation between the positive electrode active material layer and the current collector, or between the positive electrode plate and the separator, or the inside of the positive electrode layer is interrupted, so that charging is interrupted and the electrolytic solution is decomposed. In addition, decomposition of the positive electrode active material and short circuit due to Li deposition on the negative electrode side can be prevented.

本発明のリチウムイオン二次電池では、過充電時に酸素ガスを発生する正極活物質として、リチウム過剰正極活物質Li[(Ni0.5Mn0.5xCoy(Li1/3Mn1/3z]O2(ただし、x+y+z=1 z>0 )またはLiαNiβMnγO2(αが1.1以上でβ:γ=1:1)で示される活物質を用いることが好ましい。上記活物質を用いれば、Li/Li+基準において4.5V程度で、酸素ガスの発生が起こることにより、正極と負極の極間を広げることが可能となる。 In the lithium ion secondary battery of the present invention, a lithium-excess cathode active material Li [(Ni 0.5 Mn 0.5 ) x Co y (Li 1/3 Mn 1/3 ) z is used as a cathode active material that generates oxygen gas during overcharge. It is preferable to use an active material represented by O 2 (where x + y + z = 1 z> 0) or LiαNiβMnγO 2 (α is 1.1 or more and β: γ = 1: 1). If the above active material is used, the generation of oxygen gas occurs at about 4.5 V on the basis of Li / Li + , so that the gap between the positive electrode and the negative electrode can be widened.

また、本発明のリチウムイオン二次電池は、正極板として、Li/Li+基準で4.3V以下で充電する活物質を含む正極活物質層と集電体との間に酸素ガスを発生する物質を設けた構成とすることができる。これによって過充電時に、集電体と活物質層との間に速やかに抵抗が生じ、充電を遮断することが出来る。 The lithium ion secondary battery of the present invention generates oxygen gas between the positive electrode active material layer containing the active material charged at 4.3 V or less on the basis of Li / Li + and the current collector as the positive electrode plate. It can be set as the structure which provided the substance. As a result, resistance is quickly generated between the current collector and the active material layer during overcharging, and charging can be interrupted.

本発明のリチウムイオン二次電池では、正極板として、Li/Li+基準で4.3V以下で充電する活物質を含む、正極活物質の前記セパレータに対向する外表面に過充電時に酸素ガスを発生する物質を設けて構成することもできる。このような構成にすることによって急速に過充電状態になった場合にも、ガス発生で速やかに正負極間の空間を確保することが出来る。 In the lithium ion secondary battery of the present invention, the positive electrode plate contains an active material that is charged at 4.3 V or less on the basis of Li / Li + , and oxygen gas is supplied to the outer surface facing the separator of the positive electrode active material during overcharging. It is also possible to provide a material to be generated. With such a configuration, even when an overcharged state is rapidly reached, a space between the positive and negative electrodes can be secured quickly by gas generation.

また、本発明のリチウムイオン二次電池では、前記正極板として、Li/Li+基準で4.3V以下で充電する活物質を含む、正極活物質層に過充電時に酸素ガスを発生する物質を混合した構成とすることが出来る。このような構成にすることによって、ガス発生が万遍なく起こり、過充電によるガス発生時に正極層内で空間を比較的均一に形成することが出来る。 Further, in the lithium ion secondary battery of the present invention, the positive electrode plate includes a material that generates an oxygen gas when overcharged in the positive electrode active material layer, including an active material charged at 4.3 V or less on the basis of Li / Li +. A mixed configuration can be obtained. With this configuration, gas generation occurs uniformly, and spaces can be formed relatively uniformly in the positive electrode layer when gas is generated due to overcharging.

本発明のリチウムイオン二次電池では、過充電時に酸素ガスを発生する物質が、活物質として10%以上存在するのも好ましい。   In the lithium ion secondary battery of the present invention, it is preferable that a substance that generates oxygen gas at the time of overcharge is present as an active material in an amount of 10% or more.

本発明のリチウムイオン二次電池によれば、過充電時に酸素ガスを発生する正極活物質を正極極板に含むことにより、過充電時において正/負極板間の間隔を広げることができるので、高容量で、サイクル特性・保存特性が劣化することなく安全性の高い電池を提供することができる。   According to the lithium ion secondary battery of the present invention, by including a positive electrode active material that generates oxygen gas during overcharge in the positive electrode plate, the interval between the positive and negative electrode plates can be increased during overcharge, A battery having high capacity and high safety without deterioration in cycle characteristics and storage characteristics can be provided.

以下、本発明を実施するための最良の形態について、図面を参照しながら説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

本発明のリチウムイオン二次電池は正極板と負極板とをセパレータを介して巻回または積層して構成した電極群を非水電解質とともにケースに封入したものである。   In the lithium ion secondary battery of the present invention, an electrode group formed by winding or laminating a positive electrode plate and a negative electrode plate via a separator is enclosed in a case together with a non-aqueous electrolyte.

本発明のリチウムイオン二次電池は、過充電時に酸素ガスを発生する正極活物質が存在する活物質を用いる。   The lithium ion secondary battery of the present invention uses an active material in which a positive electrode active material that generates oxygen gas during overcharge is present.

本発明のリチウムイオン二次電池に用いる過充電時に酸素ガスを発生する正極活物質としては、Li/Li+を基準として、4.5V以上でガスを発生する活物質が好ましい。 As the positive electrode active material that generates oxygen gas at the time of overcharging used in the lithium ion secondary battery of the present invention, an active material that generates gas at 4.5 V or higher with respect to Li / Li + is preferable.

過充電時に酸素ガスを発生する正極活物質として、好ましくは、Mnを多く含む方が、4.5V以上で酸素ガスを放出しやすいため良好である。   As the positive electrode active material that generates oxygen gas at the time of overcharge, it is preferable that a large amount of Mn is contained because oxygen gas is easily released at 4.5 V or higher.

具体的な好ましい例としてLi[(Ni0.5Mn0.5xCoy(Li1/3Mn1/3z]O2(ただし、x+y+z=1 z>0 )またはLiαNiβMnγO2(αが1.1以上でβ:γ=1:1)で示される活物質が、本発明のリチウムイオン二次電池に用いることができる。これら活物質は、層状構造に帰属されるリチウム過剰正極活物質であり、一般的にLiMeO2(Meは遷移金属)と表され、リチウム層、遷移金属層、酸素層が一軸方向に積層したリチウム遷移金属酸化物と同様の構造を有するもので、R3−M構造に帰属される活物質、または、Li「Li1/3Me2/3」O2で表されるLi層とLi1/3Me2/3層および酸素層が積層したC2/m構造の活物質を指す。これらの活物質が好ましい活物質であるが、本発明はこれらの活物質に限定されるものではない。 As a specific preferred example, Li [(Ni 0.5 Mn 0.5 ) x Co y (Li 1/3 Mn 1/3 ) z ] O 2 (where x + y + z = 1 z> 0) or LiαNiβMnγO 2 (α Can be used in the lithium ion secondary battery of the present invention. These active materials are lithium-rich positive electrode active materials attributed to a layered structure, generally expressed as LiMeO 2 (Me is a transition metal), and lithium in which a lithium layer, a transition metal layer, and an oxygen layer are laminated in a uniaxial direction. An active material belonging to the R3-M structure, or a Li layer represented by Li “Li 1/3 Me 2/3 ” O 2 and Li 1/3 An active material having a C2 / m structure in which a Me 2/3 layer and an oxygen layer are stacked. These active materials are preferred active materials, but the present invention is not limited to these active materials.

また、過充電時に酸素ガスを発生する正極活物質は、混合されていてもよく、集電体側にあってもセパレータ側にあっても良い。   Moreover, the positive electrode active material which generates oxygen gas at the time of overcharge may be mixed, and may exist in the collector side or the separator side.

本発明のリチウムイオン二次電池は、図1に模式的に示すように、集電体2上にLi/Li+基準で4.3V以下でリチウムイオンを吸蔵放出可能な正極活物質と過充電時に酸素ガスを発生する正極活物質との混合正極活物質層1を設けた正極板を用いる。 As schematically shown in FIG. 1, the lithium ion secondary battery of the present invention is overcharged with a positive electrode active material capable of occluding and releasing lithium ions at 4.3 V or less on the basis of Li / Li + on a current collector 2. A positive electrode plate provided with a mixed positive electrode active material layer 1 with a positive electrode active material that sometimes generates oxygen gas is used.

また、図2に示すように、集電体2上に過充電時に酸素ガスを発生する正極活物質層4を設け、さらにその上にLi/Li+基準で4.3V以下でリチウムイオンを吸蔵放出可能な活物質層3を設けた正極板を用いる。 Further, as shown in FIG. 2, a positive electrode active material layer 4 that generates oxygen gas at the time of overcharge is provided on the current collector 2, and further, lithium ions are occluded at 4.3 V or less on the basis of Li / Li +. A positive electrode plate provided with a releasable active material layer 3 is used.

さらに別の形態としては、図3に示すように、集電体2上にLi/Li+基準で4.3V以下でリチウムイオンを吸蔵放出可能な活物質層3を設け、さらにその上に過充電時に酸素ガスを発生する正極活物質4の層を設けた正極板を用いる。 As yet another form, as shown in FIG. 3, an active material layer 3 capable of occluding and releasing lithium ions at 4.3 V or less on the basis of Li / Li + is provided on the current collector 2, and the active material layer 3 is further formed thereon. A positive electrode plate provided with a layer of the positive electrode active material 4 that generates oxygen gas during charging is used.

図1に示すように4.3V以下でリチウムイオンを吸蔵放出可能な正極活物質に過充電時に酸素ガスを発生する正極活物質が混合されていることにより、ガス発生が万遍なく起こり、過充電によるガス発生時に正極層内の空間を比較的均一に形成することが出来る。   As shown in FIG. 1, the cathode active material that can absorb and release lithium ions at 4.3 V or less is mixed with the cathode active material that generates oxygen gas at the time of overcharging. When the gas is generated by charging, the space in the positive electrode layer can be formed relatively uniformly.

また、図2に示すように過充電時に酸素ガスを発生する正極活物質を、集電体側に層状もしくはこれに準ずるよう高濃度で配することで、極端な過充電時における内部抵抗をより高くすることが出来る。   Further, as shown in FIG. 2, the positive electrode active material that generates oxygen gas at the time of overcharge is arranged on the current collector side in a layered manner or at a high concentration so that the internal resistance at the time of extreme overcharge is higher. I can do it.

また、図3に示すように過充電時に酸素ガスを発生する正極活物質を、セパレータ側に層状もしくはこれに準ずるように高濃度で配することで、急速に過充電状態になった場合にも、ガス発生で速やかに正負極間の空間を確保することができる。   Also, as shown in FIG. 3, the positive electrode active material that generates oxygen gas during overcharge is arranged in a layered or high concentration on the separator side so that it can be overcharged rapidly. The space between the positive and negative electrodes can be secured quickly by gas generation.

なお、図2〜3において、Li/Li+基準で4.3V以下でリチウムを吸蔵放出可能
な正極活物質層3と、過充電時に酸素ガスを発生する正極活物質層4に明瞭な境界は必ずしも必要ではなく、徐々に過充電時に酸素ガスを発生する正極活物質の濃度が変化する構成であっても良い。
In FIGS. 2 to 3, there is a clear boundary between the positive electrode active material layer 3 that can occlude and release lithium at 4.3 V or less on the basis of Li / Li + and the positive electrode active material layer 4 that generates oxygen gas during overcharge. A configuration in which the concentration of the positive electrode active material that generates oxygen gas at the time of overcharging gradually changes may be used.

過充電時に酸素ガスを発生する正極活物質と同時に用いるLi/Li+基準で4.3V以下でリチウムを吸蔵放出可能な正極活物質は、具体的には、LiCoO2、LiNiO2、LiNi1/2Mn1/22、LiNiCoO2などの活物質を好ましく用いることができるが、本発明はこれらの活物質に限定されるものではない。 The positive electrode active material capable of occluding and releasing lithium at 4.3 V or less on the basis of Li / Li + used simultaneously with the positive electrode active material that generates oxygen gas at the time of overcharge is specifically LiCoO 2 , LiNiO 2 , LiNi 1 / Active materials such as 2 Mn 1/2 O 2 and LiNiCoO 2 can be preferably used, but the present invention is not limited to these active materials.

また、過充電時に酸素ガスを発生する正極活物質は、Li/Li+基準で4.3V以下でリチウムを吸蔵放出可能な正極活物質と比較し、活物質の重量比10%以上含まれることが好ましい。10%未満の場合、酸素ガス発生による効果が十分に発揮できない場合がある。   In addition, the positive electrode active material that generates oxygen gas during overcharge may be included in a weight ratio of 10% or more of the active material as compared with a positive electrode active material capable of occluding and releasing lithium at 4.3 V or less on the basis of Li / Li +. preferable. If it is less than 10%, the effect of oxygen gas generation may not be sufficiently exhibited.

正極集電体の材質としては、アルミニウム、ステンレス鋼、ニッケルメッキ、チタン、タンタル等の金属材料やカーボンペーパーなどの炭素材料が用いられる。中でも、金属材料が好ましく、アルミニウムが特に好ましい。   As a material of the positive electrode current collector, a metal material such as aluminum, stainless steel, nickel plating, titanium, or tantalum, or a carbon material such as carbon paper is used. Among these, a metal material is preferable, and aluminum is particularly preferable.

以下、本発明を実施例により更に詳しく説明するが、本発明はこれらの実施例により制限されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in more detail, this invention is not restrict | limited by these Examples.

(実施例1)
正極板の製造方法を説明する。
(Example 1)
A method for manufacturing the positive electrode plate will be described.

まず、Li1.2Ni0.4Mn0.42を合成した。硫酸ニッケルと硫酸マンガンとをニッケルとマンガンの比が1:1となるようにてイオン交換水に溶かし、これを、LiOHをイオン交換水に溶解しpH=13としたアルカリ水溶液に滴下し、ニッケルとマンガンの水酸化物を作製した。この水酸化物をLiOHと化学量論比にあうように混合し、480℃3時間にて焼成したあと粉砕し、さらに900℃3時間で焼成しLi1.2Ni0.4Mn0.42を合成した。 First, Li 1.2 Ni 0.4 Mn 0.4 O 2 was synthesized. Nickel sulfate and manganese sulfate were dissolved in ion-exchange water so that the ratio of nickel to manganese was 1: 1, and this was dropped into an alkaline aqueous solution in which LiOH was dissolved in ion-exchange water and adjusted to pH = 13. And manganese hydroxide were prepared. This hydroxide was mixed with LiOH so as to have a stoichiometric ratio, calcined at 480 ° C. for 3 hours, pulverized, and further calcined at 900 ° C. for 3 hours to synthesize Li 1.2 Ni 0.4 Mn 0.4 O 2 .

このLi1.2Ni0.4Mn0.42粉末をLiCoO2粉末と重量比で1:1となるように混合した。混合した粉末3kgを、呉羽化学(株)製PVDF#1320(固形分12重量%のN−メチルピロリドン(NMP)溶液)1.5kg、アセチレンブラック120gおよび適量のNMPとともに双腕式練合機にて攪拌し、正極ペーストを作製した。このペーストを図1に示すように20μm厚のアルミニウム箔に塗布乾燥した。総厚が160μmとなるように圧延した後、18650型の円筒電池に挿入可能な幅にスリットし、正極フープを得た。 This Li 1.2 Ni 0.4 Mn 0.4 O 2 powder was mixed with the LiCoO 2 powder at a weight ratio of 1: 1. 3 kg of the mixed powder was added to a double-arm kneader together with 1.5 kg of PVDF # 1320 (N-methylpyrrolidone (NMP) solution with a solid content of 12% by weight), 120 g of acetylene black and an appropriate amount of NMP. And stirred to prepare a positive electrode paste. As shown in FIG. 1, this paste was applied to an aluminum foil having a thickness of 20 μm and dried. After rolling to a total thickness of 160 μm, it was slit to a width that could be inserted into a 18650-type cylindrical battery to obtain a positive electrode hoop.

一方、人造黒鉛3kgを、日本ゼオン(株)製スチレン−ブタジエン共重合体ゴム粒子結着剤BM−400B(固形分40重量%)200g、CMC50gおよび適量の水とともに双腕式練合機にて攪拌し、負極ペーストを作製した。このペーストを12μm厚の銅箔に塗布乾燥し、総厚が160μmとなるように圧延した後、18650型の円筒電池に挿入可能な幅にスリットし、負極フープを得た。セパレータと前記正負極を捲回構成し、所定の長さで切断して電槽缶内に挿入し、エチレンカーボネート(EC)/メチルエチルカーボネート(MEC)=1/3の混合溶媒にLiPF6を1.5Mの濃度で溶解させた電解液を5g添加して封口し、18650型のリチウムイオン電池を作製した。 On the other hand, 3 kg of artificial graphite was mixed with Nippon Zeon Co., Ltd. styrene-butadiene copolymer rubber particle binder BM-400B (solid content 40% by weight) 200 g, CMC 50 g and an appropriate amount of water in a double arm kneader. Stirring to prepare a negative electrode paste. This paste was applied and dried on a 12 μm thick copper foil, rolled to a total thickness of 160 μm, and then slit into a width that could be inserted into a 18650-type cylindrical battery to obtain a negative electrode hoop. The separator and the positive and negative electrodes are wound, cut into a predetermined length, inserted into a battery case, and LiPF 6 is added to a mixed solvent of ethylene carbonate (EC) / methyl ethyl carbonate (MEC) = 1/3. 5 g of an electrolytic solution dissolved at a concentration of 1.5 M was added and sealed to produce a 18650 type lithium ion battery.

(実施例2)
まず、Li1.2Ni0.4Mn0.42粉末1.5kg、LiCoO2粉末1.5kgを、それぞれ呉羽化学(株)製PVDF#1320(固形分12重量%のN−メチルピロリドン(NMP)溶液)0.75kg、アセチレンブラック60gおよび適量のNMPとともに双腕式練合機にて攪拌し、正極ペーストを2種類作製した。Li1.2Ni0.4Mn0.42のペーストをまず20μm厚のアルミニウム箔に塗布乾燥した。つぎに、LiCoO2のペーストを、Li1.2Ni0.4Mn0.42が塗工された極板にさらに塗布乾燥し、図2に示すような正極板を作製した。総厚が160μmとなるように圧延した後、18650型の円筒電池に挿入可能な幅にスリットし、正極フープを得た。その後の工程は、実施例1と同様にして、18650型のリチウムイオン電池を作製した。
(Example 2)
First, 1.5 kg of Li 1.2 Ni 0.4 Mn 0.4 O 2 powder and 1.5 kg of LiCoO 2 powder were respectively converted into PVDF # 1320 (N-methylpyrrolidone (NMP) solution having a solid content of 12% by weight) manufactured by Kureha Chemical Co., Ltd. Two types of positive electrode pastes were prepared by stirring with a double arm kneader together with .75 kg, acetylene black 60 g and an appropriate amount of NMP. First, a paste of Li 1.2 Ni 0.4 Mn 0.4 O 2 was applied to an aluminum foil having a thickness of 20 μm and dried. Next, the LiCoO 2 paste was further applied and dried on the electrode plate coated with Li 1.2 Ni 0.4 Mn 0.4 O 2 to produce a positive electrode plate as shown in FIG. After rolling to a total thickness of 160 μm, it was slit to a width that could be inserted into a 18650-type cylindrical battery to obtain a positive electrode hoop. Subsequent steps were carried out in the same manner as in Example 1, and a 18650 type lithium ion battery was produced.

(実施例3)
実施例2と同様に、Li1.2Ni0.4Mn0.42のペーストとLiCoO2のペーストの2種類を作製した。LiCoO2のペーストをまず20μm厚のアルミニウム箔に塗布乾燥した。つぎに、Li1.2Ni0.4Mn0.42のペーストを、LiCoO2が塗工された極板にさらに塗布乾燥し、図3に示すような正極板を作製した。その後の工程は、実施例2と同様にして、18650型のリチウムイオン電池を作製した。
(Example 3)
In the same manner as in Example 2, two types of pastes were prepared: Li 1.2 Ni 0.4 Mn 0.4 O 2 paste and LiCoO 2 paste. First, a LiCoO 2 paste was applied to an aluminum foil having a thickness of 20 μm and dried. Next, a paste of Li 1.2 Ni 0.4 Mn 0.4 O 2 was further applied to and dried on the electrode plate coated with LiCoO 2 to prepare a positive electrode plate as shown in FIG. Subsequent steps were performed in the same manner as in Example 2 to produce a 18650 type lithium ion battery.

(実施例4)
まず、 Li[(Ni0.5Mn0.51/12Co1/4(Li1/3Mn2/3)1/3]O2(x=5/12、y=1/4、z=1/3のとき)を合成した。
Example 4
First, Li [(Ni 0.5 Mn 0.5 ) 1/12 Co 1/4 (Li 1/3 Mn 2/3) 1/3 ] O 2 (x = 5/12, y = 1/4, z = 1 / 3) was synthesized.

硫酸ニッケルと硫酸マンガンと硫酸コバルトをマンガンとニッケルとコバルトの比が0.60:0.36:0.25となるようにしてイオン交換水に溶かし、これを、LiOHをイオン交換水に溶解しpH=13としたアルカリ水溶液に滴下し、ニッケルとマンガンとコバルトの水酸化物を作製した。この水酸化物をLiOHと化学量論比にあうように混合し、480℃3時間にて焼成したあと粉砕し、さらに900℃3時間で焼成しLi[(Ni0.5Mn0.51/12Co1/4(Li1/3Mn2/31/3]O2を合成した。 Nickel sulfate, manganese sulfate, and cobalt sulfate were dissolved in ion exchange water so that the ratio of manganese, nickel, and cobalt was 0.60: 0.36: 0.25, and this was dissolved in ion exchange water. The solution was dropped into an alkaline aqueous solution having pH = 13 to produce a hydroxide of nickel, manganese and cobalt. This hydroxide was mixed with LiOH so as to have a stoichiometric ratio, calcined at 480 ° C. for 3 hours, pulverized, further calcined at 900 ° C. for 3 hours, and Li [(Ni 0.5 Mn 0.5 ) 1/12 Co 1/4 (Li 1/3 Mn 2/3 ) 1/3 ] O 2 was synthesized.

Li1.2Ni0.4Mn0.42の代わりにLi[(Ni0.5Mn0.51/12Co1/4(Li1/3Mn2/31/3]O2を用いた以外は、実施例1と同様にして18650型のリチウムイオン電池を作製した。 Example except that Li [(Ni 0.5 Mn 0.5 ) 1/12 Co 1/4 (Li 1/3 Mn 2/3 ) 1/3 ] O 2 was used instead of Li 1.2 Ni 0.4 Mn 0.4 O 2 In the same manner as in Example 1, a 18650 type lithium ion battery was produced.

(実施例5)
Li1.2Ni0.4Mn0.42の代わりにLi[(Ni0.5Mn0.51/12Co1/4(Li1/3Mn2/31/3]O2を用いた以外は、実施例2と同様にして、18650型のリチウムイオン電池を作製した。
(Example 5)
Example except that Li [(Ni 0.5 Mn 0.5 ) 1/12 Co 1/4 (Li 1/3 Mn 2/3 ) 1/3 ] O 2 was used instead of Li 1.2 Ni 0.4 Mn 0.4 O 2 In the same manner as in Example 2, a 18650 type lithium ion battery was produced.

(実施例6)
Li1.2Ni0.4Mn0.42の代わりにLi[(Ni0.5Mn0.51/12Co1/4(Li1/3Mn2/31/3]O2を用いた以外は、実施例3と同様にして、18650型のリチウムイオン電池を作製した。
(Example 6)
Example except that Li [(Ni 0.5 Mn 0.5 ) 1/12 Co 1/4 (Li 1/3 Mn 2/3 ) 1/3 ] O 2 was used instead of Li 1.2 Ni 0.4 Mn 0.4 O 2 In the same manner as in Example 3, a 18650 type lithium ion battery was produced.

(実施例7)
Li1.2Ni0.4Mn0.42粉末0.3kg、LiCoO2粉末2.7kgを用いて、それぞれ正極ペーストを2種類作製した。LiCoO2のペーストをまず20μm厚のアルミニウム箔に塗布乾燥した。つぎに、Li1.2Ni0.4Mn0.42のペーストを、LiCoO2が塗工された極板にさらに塗布乾燥し、図3に示すような正極板を作製した。その後の工程は、実施例1と同様にして、18650型のリチウムイオン電池を作製した。
(Example 7)
Two types of positive electrode pastes were prepared using 0.3 kg of Li 1.2 Ni 0.4 Mn 0.4 O 2 powder and 2.7 kg of LiCoO 2 powder. LiCoO 2 paste was first applied to an aluminum foil having a thickness of 20 μm and dried. Next, a paste of Li 1.2 Ni 0.4 Mn 0.4 O 2 was further applied to and dried on the electrode plate coated with LiCoO 2 to prepare a positive electrode plate as shown in FIG. Subsequent steps were carried out in the same manner as in Example 1, and a 18650 type lithium ion battery was produced.

(比較例1)
LiCoO2粉末のみを用いて、実施例1と同様にして、18650型のリチウムイオン電池を作製した。
(Comparative Example 1)
A 18650 type lithium ion battery was produced in the same manner as in Example 1 using only LiCoO 2 powder.

(比較例2)
まず、 LiNi0.5Mn0.52を合成した。
(Comparative Example 2)
First, LiNi 0.5 Mn 0.5 O 2 was synthesized.

硫酸ニッケルと硫酸マンガンとをニッケルとマンガンの比が1:1となるようにてイオン交換水に溶かし、これを、LiOHをイオン交換水に溶解しpH=13としたアルカリ水溶液に滴下し、ニッケルとマンガンの水酸化物を作製した。この水酸化物をLiOHと化学量論比にあうように混合し、480℃3時間にて焼成したあと粉砕し、さらに900℃3時間で焼成しLiNi0.5Mn0.52を合成した。 Nickel sulfate and manganese sulfate were dissolved in ion-exchange water so that the ratio of nickel to manganese was 1: 1, and this was dropped into an alkaline aqueous solution in which LiOH was dissolved in ion-exchange water and adjusted to pH = 13. And manganese hydroxide were prepared. This hydroxide was mixed with LiOH so as to have a stoichiometric ratio, calcined at 480 ° C. for 3 hours, pulverized, and further calcined at 900 ° C. for 3 hours to synthesize LiNi 0.5 Mn 0.5 O 2 .

Li1.2Ni0.4Mn0.42の代わりにLiNi0.5Mn0.52を用いた以外は、実施例1と同様にして18650型のリチウムイオン電池を作製した。 A 18650 type lithium ion battery was produced in the same manner as in Example 1 except that LiNi 0.5 Mn 0.5 O 2 was used instead of Li 1.2 Ni 0.4 Mn 0.4 O 2 .

(比較例3)
まず、 Li(N1/3Mn1/3Co1/3)O2を合成した。
(Comparative Example 3)
First, Li (N 1/3 Mn 1/3 Co 1/3 ) O 2 was synthesized.

硫酸ニッケルと硫酸マンガンと硫酸コバルトをマンガンとニッケルとコバルトの比が0.33:0.33:0.33となるようにしてイオン交換水に溶かし、これを、LiOHをイオン交換水に溶解しpH=13としたアルカリ水溶液に滴下し、ニッケルとマンガンとコバルトの水酸化物を作製した。この水酸化物をLiOHと化学量論比にあうように混合し、480℃3時間にて焼成したあと粉砕し、さらに900℃3時間で焼成しLi(N1/3Mn1/3Co1/3)O2を合成した。 Nickel sulfate, manganese sulfate, and cobalt sulfate were dissolved in ion-exchanged water so that the ratio of manganese, nickel, and cobalt was 0.33: 0.33: 0.33, and LiOH was dissolved in ion-exchanged water. The solution was dropped into an alkaline aqueous solution having pH = 13 to produce a hydroxide of nickel, manganese and cobalt. This hydroxide was mixed with LiOH so as to have a stoichiometric ratio, calcined at 480 ° C. for 3 hours, pulverized, further calcined at 900 ° C. for 3 hours, and Li (N 1/3 Mn 1/3 Co 1 / 3 ) O 2 was synthesized.

Li1.2Ni0.4Mn0.42の代わりにLi(N1/3Mn1/3Co1/3)O2を用いた以外は、実施例1と同様にして18650型のリチウムイオン電池を作製した。 A 18650 type lithium ion battery was produced in the same manner as in Example 1 except that Li (N 1/3 Mn 1/3 Co 1/3 ) O 2 was used instead of Li 1.2 Ni 0.4 Mn 0.4 O 2 . .

(比較例4)
Li1.2Ni0.4Mn0.42粉末0.27kg、LiCoO2粉末2.73kgを用いた以外は、実施例7と同様にして18650型のリチウムイオン電池を作製した。
(Comparative Example 4)
A 18650 type lithium ion battery was fabricated in the same manner as in Example 7 except that 0.27 kg of Li 1.2 Ni 0.4 Mn 0.4 O 2 powder and 2.73 kg of LiCoO 2 powder were used.

(放電容量)
実施例1〜6、比較例1の3.0〜4.2Vで0.05Cレートの定電流で充放電を行った時の放電容量を表1に示す。
(Discharge capacity)
Table 1 shows discharge capacities when charging and discharging were performed at a constant current of 0.05 C rate at 3.0 to 4.2 V in Examples 1 to 6 and Comparative Example 1.

Figure 2008226693
Figure 2008226693

実施例1〜6では、放電容量が比較例1〜4に対し、若干減少するものの、Li1.2Ni0.4Mn0.42とLi[(Ni0.5Mn0.51/12Co1/4(Li1/3Mn2/31/3]O2がそれぞれ充放電に寄与していることがわかった。 In Examples 1 to 6, Li 1.2 Ni 0.4 Mn 0.4 O 2 and Li [(Ni 0.5 Mn 0.5 ) 1/12 Co 1/4 (Li 1 / 3 Mn 2/3 ) 1/3 ] O 2 was found to contribute to charge / discharge.

(過充電安全性)
電池充放電特性評価後の電池について、8000mAの電流で最大印加電圧10Vの条件で過充電を行った。
(Overcharge safety)
About the battery after battery charging / discharging characteristic evaluation, it overcharged on the conditions of the maximum applied voltage 10V with the electric current of 8000 mA.

このときの発熱状態を観測し、電池側面温度の最高到達温度を(表2)中に示した。   The heat generation state at this time was observed, and the maximum reached temperature of the battery side surface temperature is shown in (Table 2).

以下、順を追って評価結果を記す。   The evaluation results are described below in order.

Figure 2008226693
Figure 2008226693

実施例1〜6の電池は充電中、4.5Vあたりから急激に電圧上昇が起こり、比較例1〜4よりも短時間で最高電圧に到達した。   The batteries of Examples 1 to 6 suddenly increased in voltage from around 4.5 V during charging, and reached the maximum voltage in a shorter time than Comparative Examples 1 to 4.

過充電後、実施例1〜6、比較例1の電池の分解を行ったところ、実施例1〜6では、小さな気泡がいくつか正極極板に見えたが比較例1では見られなかった。   After overcharging, the batteries of Examples 1 to 6 and Comparative Example 1 were disassembled. In Examples 1 to 6, some small bubbles were seen in the positive electrode plate, but were not seen in Comparative Example 1.

また、過充電後の電池はいずれも膨れ上がっていた。ガス分析を行ったところ、実施例1〜6までの電池は、いずれも酸素ガスが最も多く含まれ、比較例1〜4では、二酸化炭素ガス、水素ガスが多かった。   In addition, all the batteries after overcharging were swollen. As a result of gas analysis, all of the batteries of Examples 1 to 6 contained the largest amount of oxygen gas, and Comparative Examples 1 to 4 contained a large amount of carbon dioxide gas and hydrogen gas.

急激な電圧上昇が起こった理由は、実施例1〜3では、Li1.2Ni0.4Mn0.42から酸素ガスが、実施例4〜6では、Li[(Ni0.5Mn0.51/12Co1/4(Li1/3Mn2/31/3]O2から酸素ガスが放出されることによって、イオン・電子の伝導パスが遮断され、急激な電圧上昇を引き起こしたと考えられる。この伝導パスが遮断されることにより、正極活物質から引き抜かれるLi量は、伝導パスが遮断されなかった活物質より、減少するため活物質自体の熱安定性は保たれると予測できる。 The reason for the rapid voltage increase is that in Examples 1 to 3, oxygen gas was generated from Li 1.2 Ni 0.4 Mn 0.4 O 2 , and in Examples 4 to 6, Li [(Ni 0.5 Mn 0.5 ) 1/12 Co 1 / 4 (Li 1/3 Mn 2/3 ) 1/3 ] The release of oxygen gas from O 2 is considered to have interrupted the ion / electron conduction path, causing a rapid voltage increase. It can be predicted that the thermal stability of the active material itself is maintained because the amount of Li extracted from the positive electrode active material is smaller than that of the active material where the conduction path is not blocked by blocking this conduction path.

また、4.5V程度から電解液の分解が発熱を伴いながらが起こるが、実施例1〜6では、急激に電圧上昇が起こるため、分解が起こりにくくなり、表2に示すように、比較例1〜4よりも電池側面温度の最高到達温度が低くなった理由と考えられる。また、実施例1〜3よりも実施例4〜6の方が電池側面温度の最高到達温度が低い理由は、Li[(Ni0.5Mn0.51/12Co1/4(Li1/3Mn2/31/3]O2の方が、Li1.2Ni0.4Mn0.42より、Mn量が多く、酸素を放出したためと考えられる。 In addition, although the decomposition of the electrolyte solution occurs while generating heat from about 4.5 V, in Examples 1 to 6, since the voltage rises suddenly, the decomposition is difficult to occur. This is considered to be the reason why the maximum temperature of the battery side surface temperature is lower than 1-4. The reason why the maximum temperature of the battery side surface temperature is lower in Examples 4 to 6 than in Examples 1 to 3 is that Li [(Ni 0.5 Mn 0.5 ) 1/12 Co 1/4 (Li 1/3 Mn 2/3 ) 1/3 ] O 2 is considered to have a larger amount of Mn and release oxygen than Li 1.2 Ni 0.4 Mn 0.4 O 2 .

比較例2のLiNi0.5Mn0.52を含む電池では、実施例1のLi1.2Ni0.4Mn0.42より最高到達温度が高く、二酸化炭素ガス、水素ガスの放出が多かった。よって、LiαNiβMnγO2の活物質でβ:γ=1:1の時、αが1.1以上であることが好ましい。 In the battery containing LiNi 0.5 Mn 0.5 O 2 of Comparative Example 2, the maximum temperature reached was higher than that of Li 1.2 Ni 0.4 Mn 0.4 O 2 of Example 1, and carbon dioxide gas and hydrogen gas were released more. Therefore, when β: γ = 1: 1 in the LiαNiβMnγO 2 active material, α is preferably 1.1 or more.

比較例3のLi(N1/3Mn1/3Co1/3)O2を含む電池では、実施例2のLi[(Ni0.5Mn0.51/12Co1/4(Li1/3Mn2/31/3]O2を含む電池より、最高到達温度が高く、酸化炭素ガス、水素ガスの放出が多かった。よって、Li[(Ni0.5Mn0.5xCoy(Li1/3Mn1/3z]O2(ただし、x+y+z=1 z>0 )であることが好ましい。 In the battery containing Li (N 1/3 Mn 1/3 Co 1/3 ) O 2 of Comparative Example 3, Li [(Ni 0.5 Mn 0.5 ) 1/12 Co 1/4 (Li 1/3 Mn 2/3 ) 1/3 ] The highest temperature was higher than the battery containing O 2, and the release of carbon oxide gas and hydrogen gas was more. Therefore, Li [(Ni 0.5 Mn 0.5 ) x Co y (Li 1/3 Mn 1/3 ) z ] O 2 (where x + y + z = 1 z> 0) is preferable.

比較例4のLi1.2Ni0.4Mn0.42粉末とLiCoO2粉末を重量比で9:91とした場合では、電池側面温度の最高到達温度が実施例7より高くなった。酸素ガスの放出量が少なかったことが理由と考えられる。したがって、過充電時に酸素ガスが発生する活物質は、活物質の重量比で10%以上含まれることが好ましい。 When the Li 1.2 Ni 0.4 Mn 0.4 O 2 powder and the LiCoO 2 powder of Comparative Example 4 were in a weight ratio of 9:91, the maximum battery side temperature reached higher than that in Example 7. The reason is that the amount of released oxygen gas was small. Therefore, it is preferable that the active material that generates oxygen gas during overcharge is contained in an active material weight ratio of 10% or more.

したがって、Li1.2Ni0.4Mn0.42、Li[(Ni0.5Mn0.51/12Co1/4(Li1/3Mn2/31/3]O2を正極極板に存在させた場合、安全性をさらに向上させた電池を作ることができる。 Therefore, Li 1.2 Ni 0.4 Mn 0.4 O 2 and Li [(Ni 0.5 Mn 0.5 ) 1/12 Co 1/4 (Li 1/3 Mn 2/3 ) 1/3 ] O 2 were present in the positive electrode plate. In this case, a battery with further improved safety can be produced.

さらに、Li1.2Ni0.4Mn0.42、Li[(Ni0.5Mn0.51/12Co1/4(Li1/3Mn2/31/3]O2ともに、LiCoO2より活物質の電子抵抗が2桁ほど高いことから、これらの活物質を含むと極板抵抗が高くなり、なんらかの原因で内部短絡が生じた場合でも電池内にながれる電流を低減することが可能であり、内部短絡時の安全性にも有効と考えられる。 Further, Li 1.2 Ni 0.4 Mn 0.4 O 2 and Li [(Ni 0.5 Mn 0.5 ) 1/12 Co 1/4 (Li 1/3 Mn 2/3 ) 1/3 ] O 2 are more active materials than LiCoO 2 . Since the electronic resistance is about two orders of magnitude higher, if these active materials are included, the plate resistance increases, and even if an internal short circuit occurs for any reason, it is possible to reduce the current that flows in the battery. It is thought that it is effective for safety at the time.

さらに、電池の内圧がある一定以上となると充電が遮断される機能を備える電池において、電解液の分解によるガス発生のみならず、酸素ガスの発生も起こるため、電解液分解とこれに伴う発熱を抑えて、内圧を上昇させて充電を遮断することが可能であり、さらに安全性を高めることが可能である。   Furthermore, in a battery having a function of interrupting charging when the internal pressure of the battery exceeds a certain level, not only gas generation due to decomposition of the electrolyte solution but also generation of oxygen gas occurs. It is possible to suppress the charging by increasing the internal pressure, and it is possible to further improve the safety.

本発明にかかるリチウムイオン二次電池によれば安全性に優れたリチウムイオン二次電池を提供することができるため、パソコン、携帯電話などのモバイル化された電子機器の駆動電源等に有用である。   Since the lithium ion secondary battery according to the present invention can provide a lithium ion secondary battery with excellent safety, it is useful as a drive power source for mobile electronic devices such as personal computers and mobile phones. .

本発明の第1のリチウムイオン二次電池の模式図Schematic diagram of the first lithium ion secondary battery of the present invention 本発明の第2のリチウムイオン二次電池の模式図Schematic diagram of the second lithium ion secondary battery of the present invention 本発明の第3のリチウムイオン二次電池の模式図Schematic diagram of the third lithium ion secondary battery of the present invention

符号の説明Explanation of symbols

1 混合正極活物質層
2 集電体
3 リチウムを吸蔵放出可能な正極活物質層
4 過充電時に酸素ガスを発生する正極活物質層
DESCRIPTION OF SYMBOLS 1 Mixed positive electrode active material layer 2 Current collector 3 Positive electrode active material layer which can occlude / release lithium 4 Positive electrode active material layer which generates oxygen gas at the time of overcharge

Claims (6)

集電体にリチウムイオンを吸蔵放出可能な活物質層を設けた正極板と負極板とをセパレータを介して巻回または積層して電極群を構成し非水電解質とともにケースに封入してなる非水系二次電池であって、前記正極板に、Li/Li+基準で4.3V以下で充電する活物質と過充電時に酸素ガスを発生する物質を存在させたリチウムイオン二次電池。 A positive electrode plate provided with an active material layer capable of occluding and releasing lithium ions on a current collector and a negative electrode plate are wound or laminated via a separator to form an electrode group, which is sealed in a case together with a non-aqueous electrolyte. A lithium ion secondary battery, which is an aqueous secondary battery, wherein an active material that is charged at 4.3 V or less on the basis of Li / Li + and a material that generates oxygen gas when overcharged are present on the positive electrode plate. 前記過充電時に酸素ガスを発生する物質として、Li[(Ni0.5Mn0.5xCoy(Li1/3Mn1/3z]O2(ただし、x+y+z=1 z>0 )またはLiαNiβMnγO2(αが1.1以上でβ:γ=1:1)で示される活物質を用いた請求項1記載のリチウムイオン二次電池。 As a substance that generates oxygen gas at the time of overcharge, Li [(Ni 0.5 Mn 0.5 ) x Co y (Li 1/3 Mn 1/3 ) z ] O 2 (where x + y + z = 1 z> 0 The lithium ion secondary battery according to claim 1, wherein an active material represented by Li) NiβMnγO 2 (α is 1.1 or more and β: γ = 1: 1) is used. 前記正極板として、Li/Li+基準で4.3V以下で充電する活物質を含む正極活物質層と集電体との間に過充電時に酸素ガスを発生する物質を設けた構成とする請求項1記載のリチウムイオン二次電池。 The positive electrode plate has a configuration in which a material that generates oxygen gas at the time of overcharge is provided between a positive electrode active material layer containing an active material charged at 4.3 V or less on the basis of Li / Li + and a current collector. Item 2. A lithium ion secondary battery according to item 1. 前記正極板として、Li/Li+基準で4.3V以下で充電する活物質を含む正極活物質層の前記セパレータに対向する外表面に、過充電時に酸素ガスを発生する物質を設けた構成とする請求項1記載のリチウムイオン二次電池。 A structure in which a material that generates oxygen gas at the time of overcharge is provided on the outer surface facing the separator of the positive electrode active material layer containing an active material that is charged at 4.3 V or less on the basis of Li / Li + as the positive electrode plate. The lithium ion secondary battery according to claim 1. 前記正極板として、Li/Li+基準で4.3V以下で充電する活物質を含む、正極活物質層内に、過充電時に酸素ガスを発生する物質を混合した構成とする請求項1記載のリチウムイオン二次電池。 2. The structure according to claim 1, wherein the positive electrode plate includes a positive electrode active material layer containing an active material charged at 4.3 V or less on the basis of Li / Li + , and a material that generates oxygen gas at the time of overcharge. Lithium ion secondary battery. 前記過充電時に酸素ガスを発生する物質が、活物質として10%以上存在する請求項1記載のリチウムイオン二次電池。   The lithium ion secondary battery according to claim 1, wherein a substance that generates oxygen gas at the time of overcharge is present as an active material in an amount of 10% or more.
JP2007064752A 2007-03-14 2007-03-14 Lithium ion secondary battery Expired - Fee Related JP5103961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007064752A JP5103961B2 (en) 2007-03-14 2007-03-14 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007064752A JP5103961B2 (en) 2007-03-14 2007-03-14 Lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2008226693A true JP2008226693A (en) 2008-09-25
JP5103961B2 JP5103961B2 (en) 2012-12-19

Family

ID=39845057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007064752A Expired - Fee Related JP5103961B2 (en) 2007-03-14 2007-03-14 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP5103961B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011105832A3 (en) * 2010-02-24 2012-01-12 주식회사 엘지화학 High-capacity positive electrode active material and lithium secondary battery comprising same
WO2012017826A1 (en) * 2010-08-06 2012-02-09 Tdk株式会社 Active material, process for production of active material, and lithium ion secondary battery
WO2012091015A1 (en) 2010-12-27 2012-07-05 株式会社Gsユアサ Positive electrode material for nonaqueous electrolyte rechargeable batteries, method for producing positive electrode material, electrode for nonaqueous electrolyte rechargeable batteries, nonaqueous electrolyte rechargeable batteries and method of production therefor
WO2012115411A3 (en) * 2011-02-21 2012-12-20 주식회사 엘지화학 Positive electrode active material having improved output characteristics, and lithium secondary battery comprising same
CN103943844A (en) * 2014-04-04 2014-07-23 西安交通大学 Cobalt-free lithium-rich manganese-based cathode material as well as preparation method and application thereof
WO2014155709A1 (en) * 2013-03-29 2014-10-02 株式会社日立製作所 Positive electrode material for lithium ion secondary batteries, positive electrode for lithium ion secondary batteries, and lithium ion secondary battery
WO2015059779A1 (en) * 2013-10-23 2015-04-30 株式会社日立製作所 Positive electrode material for lithium ion secondary batteries, and lithium ion secondary battery
JP2020535588A (en) * 2017-09-19 2020-12-03 エルジー・ケム・リミテッド Positive electrode for secondary battery and secondary battery including this
CN112701248A (en) * 2020-12-29 2021-04-23 蜂巢能源科技有限公司 Positive pole piece and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000340229A (en) * 1999-05-31 2000-12-08 Hitachi Maxell Ltd Nonaqueous secondary battery
JP2005259703A (en) * 2004-03-12 2005-09-22 Samsung Sdi Co Ltd Lithium secondary battery
JP2005339970A (en) * 2004-05-26 2005-12-08 Sony Corp Cathode activator and nonaqueous electrolyte secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000340229A (en) * 1999-05-31 2000-12-08 Hitachi Maxell Ltd Nonaqueous secondary battery
JP2005259703A (en) * 2004-03-12 2005-09-22 Samsung Sdi Co Ltd Lithium secondary battery
JP2005339970A (en) * 2004-05-26 2005-12-08 Sony Corp Cathode activator and nonaqueous electrolyte secondary battery

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011105832A3 (en) * 2010-02-24 2012-01-12 주식회사 엘지화학 High-capacity positive electrode active material and lithium secondary battery comprising same
WO2012017826A1 (en) * 2010-08-06 2012-02-09 Tdk株式会社 Active material, process for production of active material, and lithium ion secondary battery
CN103069622A (en) * 2010-08-06 2013-04-24 Tdk株式会社 Active material, process for production of active material, and lithium ion secondary battery
US9543055B2 (en) 2010-12-27 2017-01-10 Gs Yuasa International Ltd. Positive active material for nonaqueous electrolyte secondary battery, method of manufacturing the positive active material, electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery and method of manufacturing the secondary battery
WO2012091015A1 (en) 2010-12-27 2012-07-05 株式会社Gsユアサ Positive electrode material for nonaqueous electrolyte rechargeable batteries, method for producing positive electrode material, electrode for nonaqueous electrolyte rechargeable batteries, nonaqueous electrolyte rechargeable batteries and method of production therefor
US10297822B2 (en) 2010-12-27 2019-05-21 Gs Yuasa International Ltd. Positive active material for nonaqueous electrolyte secondary battery, method of manufacturing the positive active material, electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery and method of manufacturing the secondary battery
WO2012115411A3 (en) * 2011-02-21 2012-12-20 주식회사 엘지화학 Positive electrode active material having improved output characteristics, and lithium secondary battery comprising same
US8741482B2 (en) 2011-02-21 2014-06-03 Lg Chem, Ltd. Mixed cathode active material having improved power characteristics and lithium secondary battery including the same
WO2014155709A1 (en) * 2013-03-29 2014-10-02 株式会社日立製作所 Positive electrode material for lithium ion secondary batteries, positive electrode for lithium ion secondary batteries, and lithium ion secondary battery
WO2015059779A1 (en) * 2013-10-23 2015-04-30 株式会社日立製作所 Positive electrode material for lithium ion secondary batteries, and lithium ion secondary battery
CN103943844A (en) * 2014-04-04 2014-07-23 西安交通大学 Cobalt-free lithium-rich manganese-based cathode material as well as preparation method and application thereof
JP2020535588A (en) * 2017-09-19 2020-12-03 エルジー・ケム・リミテッド Positive electrode for secondary battery and secondary battery including this
JP7062161B2 (en) 2017-09-19 2022-05-06 エルジー エナジー ソリューション リミテッド Positive electrode for secondary battery and secondary battery including this
US11569501B2 (en) 2017-09-19 2023-01-31 Lg Energy Solution, Ltd. Positive electrode for secondary battery and secondary battery including the same
CN112701248A (en) * 2020-12-29 2021-04-23 蜂巢能源科技有限公司 Positive pole piece and preparation method and application thereof

Also Published As

Publication number Publication date
JP5103961B2 (en) 2012-12-19

Similar Documents

Publication Publication Date Title
JP3844733B2 (en) Nonaqueous electrolyte secondary battery
JP5095098B2 (en) Nonaqueous electrolyte secondary battery
JP5103961B2 (en) Lithium ion secondary battery
US9088035B2 (en) Nonaqueous electrolyte secondary battery and charge/discharge system thereof
JP4945967B2 (en) Non-aqueous electrolyte secondary battery
JP2002203553A (en) Positive-electrode active material and non-aqueous electrolyte secondary battery
JPWO2005098996A1 (en) Lithium ion secondary battery and its charge / discharge control system
JP2007095443A (en) Nonaqueous electrolyte secondary battery
JP2008243810A (en) Nonaqueous electrolyte secondary battery
JP2005129489A (en) Nonaqueous electrolyte secondary battery and manufacturing method of the same
JP2010129471A (en) Cathode active material and nonaqueous electrolyte battery
JP2010040382A (en) Method of manufacturing positive electrode active material, and positive electrode active material
JP2004047180A (en) Nonaqueous electrolytic solution battery
JP2015046218A (en) Electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP2008226537A (en) Nonaqueous electrolyte secondary battery and its manufacturing method
JP2010055777A (en) Method for manufacturing positive active material and positive active material
JP2003331825A (en) Nonaqueous secondary battery
JP2004281158A (en) Nonaqueous electrolyte secondary battery
US10177370B2 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery using the same
CN100424925C (en) Non-aqueous electrolyte secondary cell
JP2009266791A (en) Nonaqueous electrolyte secondary battery
JP4746846B2 (en) Negative electrode active material for lithium ion battery, method for producing the same, and lithium ion battery
JP3582823B2 (en) Positive electrode for non-aqueous secondary battery and non-aqueous secondary battery
JP2001143708A (en) Non-aqueous electrolyte secondary battery
JP2014067587A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100219

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120917

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees