JP2000340229A - Nonaqueous secondary battery - Google Patents

Nonaqueous secondary battery

Info

Publication number
JP2000340229A
JP2000340229A JP11150852A JP15085299A JP2000340229A JP 2000340229 A JP2000340229 A JP 2000340229A JP 11150852 A JP11150852 A JP 11150852A JP 15085299 A JP15085299 A JP 15085299A JP 2000340229 A JP2000340229 A JP 2000340229A
Authority
JP
Japan
Prior art keywords
positive electrode
battery
active material
electrode active
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11150852A
Other languages
Japanese (ja)
Other versions
JP3712251B2 (en
Inventor
Kazuyuki Nakazawa
一幸 中澤
Keiichiro Uenae
圭一郎 植苗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP15085299A priority Critical patent/JP3712251B2/en
Publication of JP2000340229A publication Critical patent/JP2000340229A/en
Application granted granted Critical
Publication of JP3712251B2 publication Critical patent/JP3712251B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous secondary battery capable of having high capacity and high safety in over-charging, preventing gas generation under general use conditions, and having excellent storage characteristics at a high temperature. SOLUTION: This nonaqueous secondary battery comprises a positive electrode 1, a negative electrode 2, and electrolyte. The positive electrode 1 contains positive electrode active material of at least LixCoO2 (x is a value in assembling a battery, 1.01<=x<=1.10) and LiyNisCotMuO2 (M is at least one element selected from a group of B, Mg, Al, Si, P, V, Mn, Fe, Cu, Zn, Sr, In, Sn, and lanthanoid element, y is a value in assembling a battery, 1.01<=y<=1.10, 0.65<=s<=0.90, 0<t<=0.3, 0.01<=u<=0.2). An amount of LiyNisCotMuO2 contained is 10-45 wt.% of a total amount of LixCoO2 and LiyNisCotMuO2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水二次電池に係
わり、さらに詳しくは、高容量で、過充電時の安全性が
高く、かつ通常の使用条件下ではガス発生が少なく、高
温貯蔵特性が優れた非水二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous secondary battery, and more particularly, to a high-capacity, high-overcharge safety, low gas generation under normal use conditions, and high-temperature storage. The present invention relates to a non-aqueous secondary battery having excellent characteristics.

【0002】[0002]

【従来の技術】電子機器の小型化に伴い、高エネルギー
密度を有する二次電池の要求が高まっている。現在、こ
の要求に応える高容量二次電池としては、正極活物質と
してLix CoO2 を用い、負極活物質として炭素系材
料を用いたリチウムイオン二次電池が商品化されてい
る。このリチウムイオン二次電池は平均駆動電圧が3.
6Vと高く、従来のニッケル−カドミウム電池やニッケ
ル水素電池の平均駆動電圧の約3倍であり、また、負極
活物質として炭素系材料を用い、充放電に関与するモビ
リティーが軽金属であるリチウムであることから、軽量
化も可能であって、非常に注目されている。
2. Description of the Related Art A demand for a secondary battery having a high energy density is increasing with the miniaturization of electronic equipment. At present, as a high-capacity secondary battery that meets this demand, a lithium ion secondary battery using Li x CoO 2 as a positive electrode active material and a carbon-based material as a negative electrode active material has been commercialized. This lithium ion secondary battery has an average driving voltage of 3.
It is as high as 6 V, about three times the average driving voltage of conventional nickel-cadmium batteries and nickel-metal hydride batteries, and uses a carbon-based material as a negative electrode active material, and the mobility involved in charging and discharging is lithium, which is a light metal. Therefore, it is possible to reduce the weight, and it has been attracting much attention.

【0003】一方、容量については単位重量当たりの容
量が上記従来電池より高いのに対して、単位体積当たり
の容量がニッケル水素電池の60%程度のものしか商品
化されておらず、さらなる高容量化が要望されている。
ところが、LiCoO2 の理論放電容量は274mAh
/gであるが、深い充放電を行なうとLiCoO2 が相
変化を起こしてサイクル寿命に影響を与えるため、実際
のリチウムイオン二次電池において実用的な放電容量は
125〜140mAh/gの範囲になってしまうという
問題があった。
On the other hand, while the capacity per unit weight is higher than that of the above-mentioned conventional battery, only the capacity per unit volume of about 60% of the nickel-metal hydride battery has been commercialized. Is required.
However, the theoretical discharge capacity of LiCoO 2 is 274 mAh.
However, when deep charge / discharge is performed, LiCoO 2 causes a phase change to affect the cycle life, so that a practical discharge capacity in an actual lithium ion secondary battery is in the range of 125 to 140 mAh / g. There was a problem that would be.

【0004】そのため、LiCoO2 を正極活物質に用
いる場合には、小粒径のものを用い、正極活物質の充填
性を向上させて高容量化を図ることが考えられる。とこ
ろが、上記のようなLiCoO2 を活物質として正極を
作製する場合、これに導電助剤やバインダー、溶剤など
を加え、混合、分散して調製した正極合剤含有ペースト
を導電性基体上に塗布し、乾燥して正極合剤層を形成す
ることにより正極を作製しているため、充填密度を向上
した正極合剤層では、正極合剤層の弾力性が失われ、表
面に亀裂が入ったり、あるいは導電性基体からの剥離が
生じて、充放電特性が低下するという問題があった。
For this reason, when LiCoO 2 is used for the positive electrode active material, it is conceivable to use a material having a small particle size, improve the filling property of the positive electrode active material, and increase the capacity. However, when a positive electrode is prepared using LiCoO 2 as an active material as described above, a conductive additive, a binder, a solvent, and the like are added thereto, and mixed and dispersed to prepare a positive electrode mixture-containing paste, which is applied to a conductive substrate. Since the positive electrode is manufactured by drying and forming the positive electrode mixture layer to form the positive electrode mixture layer, in the positive electrode mixture layer having an improved packing density, the elasticity of the positive electrode mixture layer is lost and cracks may occur on the surface. Alternatively, there has been a problem that peeling from the conductive substrate occurs and the charge / discharge characteristics deteriorate.

【0005】そこで、LiCoO2 に代わる正極活物質
として、スピネル構造のリチウムマンガン酸化物、Li
NiO2 などのニッケル酸リチウム、LiTiO2 など
のチタン酸リチウムなどを用いることが検討されてい
る。これらのリチウム含有複合酸化物の中でも構成元素
の価格が安価で、供給が安定しているニッケルを構成元
素としたLiNiO2 がLiCoO2 に代わる正極活物
質として適していることが報告されている(特開平7−
37576号公報、特開平7−307151号公報、特
開平6−231767号公報、特開平8−31418号
公報など)。
[0005] Therefore, as a positive electrode active material in place of LiCoO 2, lithium manganese oxide of spinel structure, Li
Use of lithium nickelate such as NiO 2, lithium titanate such as LiTiO 2, and the like has been studied. Among these lithium-containing composite oxides, it is reported that LiNiO 2 containing nickel as a constituent element, whose component element is inexpensive and whose supply is stable, is suitable as a positive electrode active material replacing LiCoO 2 among these lithium-containing composite oxides ( JP-A-7-
37576, JP-A-7-307151, JP-A-6-231767, JP-A-8-31418, and the like.

【0006】[0006]

【発明が解決しようとする課題】ところで、LiNiO
2 の理論放電容量はLiCoO2 と同様に274mAh
/gであるが、Li極を基準とした作動電位がLiCo
2 に比べてLiNiO 2 の方が電位が低く、LiNi
2 の放電末期における電圧降下がLiCoO2ほど急
激ではないので、LiNiO2 はLi極に対して3.0
〜4.0V領域での放電容量がLiCoO2 に比べて大
きく、LiNiO2 の方がLiCoO2 より実用的な電
位範囲(Li極に対して3.0〜4.3V領域)での放
電容量が大きい。実際のLi極に対する3.0〜4.3
V領域での放電容量は、それぞれの合成条件によっても
異なるが、一般にLiNiO2 の場合は160〜200
mAh/gである。従って、正極活物質としてLiCo
2 を用いるよりも、LiNiO2 を用いた方が、より
高容量の電池を作製することができるものと期待され
る。
By the way, LiNiO
TwoHas a theoretical discharge capacity of LiCoOTwo274mAh as well as
/ G, but the operating potential based on the Li electrode is LiCo
OTwoLiNiO compared to TwoIs lower in potential and LiNi
OTwoThe voltage drop at the end of discharge of LiCoOTwoSo steep
Because it is not intense, LiNiOTwoIs 3.0 with respect to the Li pole.
LiCoO discharge capacity in the ~ 4.0V regionTwoLarger than
Kiku, LiNiOTwoIs LiCoOTwoMore practical electricity
In the range (3.0-4.3V region with respect to the Li pole)
Large electric capacity. 3.0 to 4.3 for the actual Li pole
The discharge capacity in the V region depends on the respective synthesis conditions.
Different but generally LiNiOTwo160 to 200 in case of
mAh / g. Therefore, LiCo as a positive electrode active material
OTwoThan using LiNiOTwoIt is better to use
It is expected that high capacity batteries can be manufactured.
You.

【0007】また、LiCoO2 とLiNiO2 の真密
度は、LiCoO2 が4.9〜5.1g/cm3 であ
り、LiNiO2 が4.6〜4.8g/cm3 であるこ
とから、ほぼ同程度の充填性が得られるので、LiCo
2 をLiNiO2 で置き換えても、電極作製時に充填
性が劣ることはほとんどない。
Further, the true density of LiCoO 2 and LiNiO 2 are, LiCoO 2 is 4.9~5.1g / cm 3, since LiNiO 2 is 4.6~4.8g / cm 3, approximately Since the same degree of packing can be obtained, LiCo
Even if O 2 is replaced with LiNiO 2 , there is almost no deterioration in the filling property during electrode fabrication.

【0008】さらに、LiNiO2 の不可逆容量はLi
CoO2 の不可逆容量より大きいので、負極活物質とし
て炭素系材料を用いた場合、炭素系材料が持つ不可逆容
量を考慮すると、LiNiO2 を正極活物質として用い
た方が電池設計が容易になるという利点がある。すなわ
ち、炭素系材料にLiイオンが挿入されると、その一部
のLiイオンは炭素系材料に完全に取り込まれ充放電に
関与しなくなる。正極活物質としてLiCoO2 を用
い、負極活物質として炭素系材料を用いた場合には、L
iCoO2 にはほとんど不可逆容量がないため、初回サ
イクルでLiCoO2 の持つ一部のLiイオンが炭素系
材料の不可逆容量として取り込まれてしまい、そのた
め、使用できるLiイオン量が少なくなる。つまり、リ
チウム源であるLiCoO2 から取り出すことのできる
Liイオン量から負極の不可逆容量分のLiイオン量が
減り、その結果、充放電に使用できるLiイオンが少な
くなる。これに対して、LiNiO2 ではLiNiO2
自身が比較的大きな不可逆容量を持っているので、電池
作製時に使用するLiNiO2 の量と炭素系材料の量と
を制御することにより、LiNiO2 の不可逆容量と炭
素系材料の不可逆容量とのバランスをとると、正極活物
質から取り出すことのできるLiイオンのうち自由に充
放電に使用できるLiイオン量を減少させることなく、
充放電に寄与しなくなるLiイオン量をLiNiO2
身の不可逆容量のみにすることができる。
Further, the irreversible capacity of LiNiO 2 is Li
Since the irreversible capacity of CoO 2 is larger than that of CoO 2 , when a carbon-based material is used as the negative electrode active material, considering the irreversible capacity of the carbon-based material, the battery design becomes easier when LiNiO 2 is used as the positive electrode active material. There are advantages. That is, when Li ions are inserted into the carbon-based material, some of the Li-ions are completely taken into the carbon-based material and do not participate in charging and discharging. When LiCoO 2 is used as the positive electrode active material and a carbon-based material is used as the negative electrode active material, L
Since iCoO 2 has almost no irreversible capacity, some Li ions of LiCoO 2 are taken in as irreversible capacity of the carbon-based material in the first cycle, so that the amount of usable Li ions is reduced. That is, the amount of Li ions corresponding to the irreversible capacity of the negative electrode decreases from the amount of Li ions that can be extracted from LiCoO 2 as a lithium source, and as a result, the amount of Li ions that can be used for charging and discharging decreases. On the other hand, LiNiO 2 is LiNiO 2
Since the battery itself has a relatively large irreversible capacity, the balance between the irreversible capacity of LiNiO 2 and the irreversible capacity of the carbon-based material is controlled by controlling the amount of LiNiO 2 and the amount of the carbon-based material used in the production of the battery. When taking, without reducing the amount of Li ions that can be freely used for charge and discharge among Li ions that can be extracted from the positive electrode active material,
The amount of Li ions that no longer contributes to charging and discharging can be limited to the irreversible capacity of LiNiO 2 itself.

【0009】ところが、LiNiO2 は合成条件などに
より層間にNi2+が混入しやすく、その層間にNi2+
混入したものの組成はLi1-x Ni1+x 2 となり、層
間のNi2+がLiイオンの移動を阻害するために量論組
成のLiNiO2 よりも電気化学的容量が減少する。ま
た、量論組成のLiNiO2 の合成は、酸素雰囲気下で
注意深く行なう必要があり、LiCoO2 に比べて製造
コストが高くなる。
[0009] However, LiNiO 2 is Ni 2+ is easily mixed into the interlayer by synthetic conditions, the composition although Ni 2+ is mixed into the interlayer Li 1-x Ni 1 + x O 2 , and the interlayer Ni 2 + Has a smaller electrochemical capacity than stoichiometric LiNiO 2 because it inhibits the transfer of Li ions. In addition, the synthesis of stoichiometric LiNiO 2 must be performed carefully in an oxygen atmosphere, and the production cost is higher than that of LiCoO 2 .

【0010】また、LiNiO2 は充放電を行なうと六
方晶系と単斜晶系との間で相変化を起こし、充放電時に
おいてLiNiO2 中のLi含有量が少なくなると、N
i−Ni層間距離が短いNiO2 相を生じ、急激な格子
の収縮とともに二相共存状態〔LiNiO2 相とLix
NiO 2(x≪1)相〕となる。このような変化は活物
質自体にストレスを与え、電池特性としてサイクル寿命
に悪影響を与える。
LiNiO 2 undergoes a phase change between a hexagonal system and a monoclinic system during charging and discharging. When the Li content in LiNiO 2 during charging and discharging decreases, N
A NiO 2 phase having a short i-Ni interlayer distance is generated, and a two-phase coexistence state [LiNiO 2 phase and Li x
NiO 2 (x≪1) phase]. Such a change puts stress on the active material itself, and adversely affects the cycle life as battery characteristics.

【0011】さらに、LiNiO2 はLiCoO2 に比
べて吸湿性が高く、大気中にLiNiO2 を放置してお
くと、水分を吸収して電気化学特性が低下する。LiC
oO 2 は吸湿後においても真空乾燥や熱処理により水分
を除去することによって電気化学特性が回復するが、L
iNiO2 では水分除去操作を行なっても電気化学特性
が回復しないという問題がある。
Furthermore, LiNiOTwoIs LiCoOTwoCompared to
Highly hygroscopic, LiNiO in airTwoLeave
If it absorbs water, the electrochemical characteristics deteriorate. LiC
oO TwoIs water content even after moisture absorption by vacuum drying or heat treatment.
The electrochemical properties are restored by removing
iNiOTwoNow, even if the water removal operation is performed, the electrochemical characteristics
There is a problem that does not recover.

【0012】そのため、Niの一部をCoで置換したL
i(NiCo)O2 が提案されており(特開昭63−1
24393号公報、特開平7−142056号公報、特
開平7−129719号公報など)、それらの中でも他
の元素を含有したLi(NiCoM)O2 (MはNi、
Co以外の元素)は、過充電時にガスの発生量が多く、
安全性が優れているので、特に注目されている(特開平
9−69363号など)。
Therefore, L in which Ni is partially replaced by Co
i (NiCo) O 2 has been proposed (JP-A-63-1).
24393, JP-A-7-142056, JP-A-7-129719), and among them, Li (NiCoM) O 2 containing other elements (M is Ni,
Elements other than Co) generate a large amount of gas when overcharged,
Because of its excellent safety, it has been particularly noted (Japanese Patent Application Laid-Open No. 9-69363).

【0013】しかしながら、非水二次電池では、過充電
時の安全性確保のためにガスが発生しやすい活物質や電
解液を使用することが望まれるが、通常使用される環境
下においての異常なガス発生は、電池製造時の不良率を
高めることになるため、避けなければならない。一方、
通常に使用される環境下ではガス発生がほとんどない
が、異常な電圧が電池にかかり、連続して電流が流れる
過充電時には効率的にガスが発生して電流遮断機構を作
動させ、異常事態を確実に回避できる電池でなければな
らない。
However, in a non-aqueous secondary battery, it is desirable to use an active material or an electrolyte which easily generates gas in order to ensure safety during overcharge. Unnecessary gas generation increases the rejection rate during battery manufacturing and must be avoided. on the other hand,
Under normal use environment, there is almost no gas generation, but when an abnormal voltage is applied to the battery and continuous current flows, gas is efficiently generated and the current cut-off mechanism is activated to prevent abnormal situations. It must be a battery that can be reliably avoided.

【0014】本発明は、上記のような従来の非水二次電
池における問題点や今後の要求課題を解決し、高容量
で、過充電時の安全性が高く、通常の使用条件下ではガ
ス発生が少なく、高温貯蔵特性が優れた非水二次電池を
提供することを目的とする。
The present invention solves the problems and future requirements of the conventional nonaqueous secondary battery as described above, and has a high capacity, a high safety at the time of overcharge, and a gas under a normal use condition. An object of the present invention is to provide a non-aqueous secondary battery which is less likely to be generated and has excellent high-temperature storage characteristics.

【0015】[0015]

【課題を解決するための手段】本発明者らは、上記課題
を解決するため鋭意研究を重ねた結果、正極活物質とし
て少なくともLix CoO2 (xは、電池組立時の値で
あり、1.01≦x≦1.10)とLiy Nis Cot
u 2 (Mは、B、Mg、Al、Si、P、V、M
n、Fe、Cu、Zn、Sr、In、Snおよびランタ
ノイド元素よりなる群から選ばれる少なくとも1種の元
素であり、yは、電池組立時の値であって、1.01≦
y≦1.10、0.65≦s≦0.90、0<t≦0.
3、0.01≦u≦0.2)とを含有し、かつ上記Li
y Nis Cot u 2 の含有量をLix CoO2 とL
y Nis Cot u 2 との合計量中において10〜
45重量%にするときは、高容量で、過充電時の安全性
が高く、かつ通常の使用条件下ではガス発生が少なく、
高温貯蔵特性が優れた非水二次電池が得られることを見
出し、上記課題を解決したのである。
Means for Solving the Problems The present inventors have conducted intensive studies to solve the above problems, and as a result, at least Li x CoO 2 (x is a value at the time of battery assembly and 1 .01 ≦ x ≦ 1.10) and Li y Ni s Co t
M u O 2 (M is, B, Mg, Al, Si , P, V, M
n, at least one element selected from the group consisting of Fe, Cu, Zn, Sr, In, Sn and a lanthanoid element, y is a value at the time of battery assembly, and is 1.01 ≦
y ≦ 1.10, 0.65 ≦ s ≦ 0.90, 0 <t ≦ 0.
3, 0.01 ≦ u ≦ 0.2) and the above Li
y Ni s Co t M u content of O 2 and Li x CoO 2 and L
i y Ni s Co t M 10~ in a total amount in the u O 2
When the content is 45% by weight, the capacity is high, the safety at the time of overcharging is high, and the gas generation is small under normal use conditions.
The inventors have found that a nonaqueous secondary battery having excellent high-temperature storage characteristics can be obtained, and have solved the above-mentioned problems.

【0016】[0016]

【発明の実施の形態】前記のように、Lix CoO2
理論容量に比べて実際に充放電できる容量が小さい。そ
のため、本発明者らは、正極活物質として高容量化が期
待できるLi(NiCoM)O2 について検討を行なっ
た。このLi(NiCoM)O2 の容量は、Ni、Co
およびMの組成比の影響を受けることが知られている。
そこで、本発明者らは、種々の元素Mとともに、Ni、
CoおよびMの組成比が種々異なるLi(NiCoM)
2 について検討したところ、Mとして、B、Mg、A
l、Si、P、V、Mn、Fe、Cu、Zn、Sr、I
n、Snおよびランタノイド元素よりなる群から選ばれ
る少なくとも1種の元素を用いるとともに、Liリッチ
な組成、特にLiy Nis Cot u 2 で表した時
に、1.01≦y≦1.10、0.65≦s≦0.9
0、0<t≦0.3、0.01≦u≦0.2の範囲にす
るときは、高容量化が可能であることを見出した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As described above, Li x CoO 2 has a smaller capacity that can be actually charged and discharged than the theoretical capacity. Therefore, the present inventors have studied Li (NiCoM) O 2 which can be expected to have a high capacity as a positive electrode active material. The capacity of this Li (NiCoM) O 2 is Ni, Co
And M are known to be affected by the composition ratio.
Then, the present inventors, together with various elements M, Ni,
Li (NiCoM) with various composition ratios of Co and M
When O 2 was examined, M, B, Mg, A
1, Si, P, V, Mn, Fe, Cu, Zn, Sr, I
n, with use of at least one element selected from the group consisting of Sn and lanthanoid elements, Li-rich composition, especially when expressed in Li y Ni s Co t M u O 2, 1.01 ≦ y ≦ 1. 10, 0.65 ≦ s ≦ 0.9
It has been found that when the range is 0, 0 <t ≦ 0.3, and 0.01 ≦ u ≦ 0.2, high capacity can be achieved.

【0017】しかしながら、上記のLiy Nis Cot
u 2 を用いた場合、Lix CoO2 に比べて過充電
時のガス発生量が多く電流遮断機構がより低い温度で作
動するが、放電電位が低くなることが判明した。
[0017] However, the above-mentioned Li y Ni s Co t
When using M u O 2, although Li x CoO 2 gas generating a large amount of current interruption mechanism during overcharge as compared with to operate at lower temperatures, the discharge potential is lowered was found.

【0018】そのため、本発明者らは、Lix CoO2
の一部を上記Liy Nis Cot u 2 で置換し、両
者を併用した正極活物質系を検討したが、そのような正
極活物質を用いた場合、Liy Nis Cot u 2
混合比が多くなるに伴って、過充電時の電流遮断機構が
低い温度で作動し、放電容量が大きくなるが、その反
面、放電電位が減少することが判明した。これは、Li
y Nis Cot u 2の増加に伴い、Liy Nis
t u 2 の性質がより強く現れるようになるためで
ある。
Therefore, the present inventors have proposed LixCoOTwo
Part of the above LiyNisCotM uOTwoAnd replace both
A positive electrode active material system that uses
When a polar active material is used, LiyNisCotMuOTwoof
As the mixing ratio increases, the current interruption mechanism during overcharge
Operates at lower temperatures and has a higher discharge capacity, but
It was found that the surface and discharge potential decreased. This is Li
yNisCotMuOTwoWith the increase of LiyNisC
otMuOTwoBecause the nature of will appear stronger
is there.

【0019】そこで、本発明者らは、Lix CoO2
基づく容量の低下とLiy Nis Cot u 2 に基づ
く放電電位の低下および発熱量の増加について、Liy
Ni s Cot u 2 の置換量を種々変更して検討した
結果、Liy Nis Cot u 2 の量をLix CoO
2 とLiy Nis Cot u 2 との合計量中において
10〜45重量%にするときは、放電容量が大きく、放
電電位の低下もわずかであることを見出した。すなわ
ち、Liy Nis Cot u 2 の含有量がLi x Co
2 とLiy Nis Cot u 2 との合計量において
10重量%より少ない場合は、過充電時の電流遮断機構
が充分に低い温度で作動しなくなるとともに、放電容量
の向上が達成できず、45重量%より多い場合は、放電
電位の低下が大きくなる。そして、このLiy Nis
t u 2 の含有量としては、Lix CoO2 とLi
y Nis Cot u 2 との合計量中において10〜3
5重量%であることが特に好ましい。
Therefore, the present inventors have proposed LixCoOTwoTo
Capacity reduction and LiyNisCotMuOTwoBased on
For the lowering of the discharge potential and the increase of the calorific value,y
Ni sCotMuOTwoWas studied by changing the replacement amount of
As a result, LiyNisCotM uOTwoThe amount of LixCoO
TwoAnd LiyNisCotMuOTwoAnd in the total amount
When the content is 10 to 45% by weight, the discharge capacity is large,
It was found that the electric potential was slightly reduced. Sand
Chi, LiyNisCotMuOTwoContent of Li xCo
OTwoAnd LiyNisCotMuOTwoAnd in the total amount
If less than 10% by weight, current interruption mechanism at overcharge
Will not operate at a sufficiently low temperature, and the discharge capacity
If the improvement of the discharge cannot be achieved and it is more than 45% by weight,
The decrease in potential is large. And this LiyNisC
otMuOTwoThe content of LixCoOTwoAnd Li
yNisCotMuOTwo10 to 3 in the total amount of
Particularly preferred is 5% by weight.

【0020】つぎに、本発明者らは、Lix CoO2
Liy Nis Cot u 2 を上記範囲内の比率で併用
し、過充電時のガス発生による安全性について検討した
ところ、Lix CoO2 とLiy Nis Co1-s 2
おけるLi量(すなわち、xの値およびyの値)を1.
01〜1.10にするときは、特に効率的にガスが発生
し、熱暴走に至るまでに電池封口部に組み込まれている
電流遮断機構が作動して安全性を向上でき、しかも高温
貯蔵時のガス発生が少なくなり高温貯蔵特性も向上でき
ることを見出した。
Next, the present inventors have found that the Li x CoO 2 and Li y Ni s Co t M u O 2 combined in a ratio within the above range, was investigated safety by gas generation during overcharging , Li amount in Li x CoO 2 and Li y Ni s Co 1-s O 2 (i.e., values of and y of x) 1.
When the pressure is set to 01 to 1.10, gas is generated particularly efficiently, and the current cutoff mechanism incorporated in the battery sealing portion is activated by the time the thermal runaway occurs to improve safety. It has been found that the generation of gas from the powder can be reduced and the high-temperature storage characteristics can be improved.

【0021】すなわち、Li量が1.01未満ではガス
の発生速度が遅くなり、過充電時に電流遮断機構が作動
するまでの時間が長くなるため、電流遮断機構が作動し
た時には電池が高温になってしまっていて、安全性を充
分に確保することができず、一方、Li量が1.10よ
り多くなると、通常使用時でもガスの発生量が多くな
り、高温貯蔵時にガスが発生し、電流遮断機構が作動し
て電池の不良率を増加させることになる。
That is, when the Li amount is less than 1.01, the gas generation speed becomes slow, and the time required for the current interrupting mechanism to operate during overcharging becomes long. Therefore, when the current interrupting mechanism operates, the battery becomes hot. However, if the Li content exceeds 1.10, the amount of gas generated increases even during normal use, and gas is generated during high-temperature storage. The shut-off mechanism operates to increase the battery failure rate.

【0022】上記Liy Nis Cot u 2 におい
て、NiとCoの組成比としては、高容量化のために、
0.65≦s≦0.90、0<t≦0.3であることが
必要であり、特に0.70≦s≦0.80、0.10≦
t≦0.20であることが好ましい。また、Mの組成比
としては、Ni、Coによる高容量化とともに、発熱量
を低減させるために、後記の理由に基づき固溶体におい
ては結晶形を著しく変化させず、非化学量論組成の活物
質においては分解物と電解液との接触は妨げられるが充
放電反応には影響しない量である必要があるため、0.
01≦u≦0.2であることが必要であり、特に0.0
5≦u≦0.20であることが好ましい。なお、上記ラ
ンタノイド元素としては、Y、La、Ce、Nb、Yb
などが挙げられ、それらの混合物であるミッシュメタル
であってもよい。
[0022] In the Li y Ni s Co t M u O 2, as the composition ratio of Ni and Co, for high capacity,
It is necessary that 0.65 ≦ s ≦ 0.90 and 0 <t ≦ 0.3, especially 0.70 ≦ s ≦ 0.80 and 0.10 ≦
It is preferable that t ≦ 0.20. In addition, as the composition ratio of M, in order to increase the capacity by Ni and Co and to reduce the calorific value, the crystal form of the solid solution does not significantly change based on the reasons described below, and the active material having a non-stoichiometric composition is used. In this case, the contact between the decomposition product and the electrolytic solution is prevented, but the amount must not affect the charge / discharge reaction.
It is necessary that 01 ≦ u ≦ 0.2, especially 0.0
It is preferable that 5 ≦ u ≦ 0.20. The lanthanoid elements include Y, La, Ce, Nb, and Yb.
And the like, and may be a misch metal which is a mixture thereof.

【0023】本発明において、上記Liy Nis Cot
u 2 にはNi、Co以外にMを含有させているが、
これはMを含有させることにより、Li(NiCo)O
2 に比べて発熱量を低減でき、安全性を向上させること
ができるからである。このようなMを含有させることに
より発熱量を低減できる理由は、現在のところ必ずしも
明確ではないが、次のように考えられる。すなわち、本
発明者らが、正極活物質に起因する発熱について詳細に
検討したところ、上記発熱は正極活物質単体によるもの
ではなく、正極活物質と電解液との反応、特に正極活物
質の分解物と電解液との反応によるものであると考えら
れる。そのような観点から、発熱量の低減のためには、
電解液と反応しやすい分解物を生じないような正極活物
質であるか、あるいは電解液とそのような分解物の接触
を妨げる表面性を有する正極活物質であることが必要で
ある。従って、上記Liy Nis Cot u 2 におい
て、元素MがNi、Coの一部を置換した固溶体である
場合には、Li(NiCo)O2 に比べて結晶形が安定
化して分解物の生成を抑制でき、また、Liy Ni s
t u 2 がLi(NiCo)O2 に元素Mを添加し
た非化学量論組成の活物質である場合には、元素Mが活
物質表面に存在して分解物と電解液との直接の接触を妨
げることができることによるものと考えられる。
In the present invention, the above LiyNisCot
MuOTwoContains M in addition to Ni and Co,
This is because by containing M, Li (NiCo) O
TwoHeat generation can be reduced as compared with, and safety can be improved
Because it can be. In order to contain such M
The reason why the calorific value can be further reduced is not always
Although it is not clear, it can be considered as follows. That is, the book
The inventors have detailed the heat generated by the positive electrode active material.
As a result of examination, the above heat was generated by the positive electrode active material alone.
Instead of the reaction between the positive electrode active material and the electrolyte, especially the positive electrode active material
It is thought to be due to the reaction between the decomposition product of the electrolyte and the electrolyte.
It is. From such a viewpoint, in order to reduce the calorific value,
Cathode active material that does not generate decomposition products that easily react with the electrolyte
Quality or contact of electrolytes with such decomposition products
The positive electrode active material must have a surface property that prevents
is there. Therefore, the above LiyNisCotMuOTwosmell
Is a solid solution in which the element M partially replaces Ni and Co.
In the case, Li (NiCo) OTwoCrystal form is more stable than
And the generation of decomposition products can be suppressed.yNi sC
otMuOTwoIs Li (NiCo) OTwoAdd element M to
If the active material has a non-stoichiometric composition, the element M
Exists on the surface of the substance to prevent direct contact between the decomposition product and the electrolyte
This is probably due to the fact that

【0024】つぎに、本発明の非水二次電池の作製につ
いて説明する。
Next, the fabrication of the non-aqueous secondary battery of the present invention will be described.

【0025】本発明において、Lix CoO2 とLiy
Nis Cot u 2 とを正極活物質として用いて非水
二次電池用の正極を作製するには、例えば、上記正極活
物質に、必要に応じ、例えば鱗片状黒鉛、アセチレンブ
ラックなどのような導電助剤と、例えばポリテトラフル
オロエチレン、ポリフッ化ビニリデンなどのバインダー
を加えて混合し、得られた正極合剤を適宜の手段で成形
すればよい。例えば、上記正極合剤を加圧成形するか、
または上記正極合剤を溶媒に分散させてペーストにし
(この場合、バインダーはあらかじめ溶剤に溶解させて
おいてから正極活物質などと混合してもよい)、その正
極合剤含有ペーストを集電体となる導電性基体に塗布
し、乾燥して正極合剤層を形成する工程を経る方法によ
って正極が作製される。ただし、正極の作製方法は上記
例示の方法に限られることなく、他の方法によってもよ
い。また、上記正極において活物質Lix CoO2 の組
成がx≦1.03の場合には、過充電時にガスが発生す
るリチウム化合物を添加してもよい。上記リチウム化合
物を添加することにより、正極活物質からのガスの発生
の調節が容易になる。このようなリチウム化合物として
は、例えば、Li2 CO 3 などを挙げることができる。
上記リチウム化合物の添加量としては、Lix CoO2
とLiy Nis Cot u 2 との合計量100重量部
に対して0.1〜2重量部にすることが好ましく、0.
2〜1重量部にすることが特に好ましい。なお、本発明
の正極活物質を用いた場合、正極合剤層の充填密度を高
容量化のために2.8〜3.5g/cm3 と高くした場
合でも、高い安全性を確保できるので、本発明は高容量
化に際して特に有用である。
In the present invention, LixCoOTwoAnd Liy
NisCotMuOTwoAnd non-aqueous
To produce a positive electrode for a secondary battery, for example,
If necessary, for example, flaky graphite, acetylene
Conductive additives such as racks and polytetraflu
Binders such as polyethylene and polyvinylidene fluoride
Is added and mixed, and the obtained positive electrode mixture is molded by an appropriate means.
do it. For example, pressure molding of the positive electrode mixture,
Alternatively, the above positive electrode mixture is dispersed in a solvent to form a paste.
(In this case, dissolve the binder in the solvent beforehand
May be mixed with the positive electrode active material, etc.)
Apply paste containing electrode mixture to conductive base material as current collector
And drying to form a positive electrode mixture layer.
Thus, a positive electrode is manufactured. However, the method of manufacturing the positive electrode is described above.
The present invention is not limited to the illustrated method, but may be performed by other methods.
No. In the positive electrode, the active material LixCoOTwoPair of
When x ≦ 1.03, gas is generated at the time of overcharging.
May be added. The above lithium compound
Gas from the positive electrode active material
Adjustment becomes easier. As such a lithium compound
Is, for example, LiTwoCO ThreeAnd the like.
The amount of the lithium compound added may be LixCoOTwo
And LiyNisCotMuOTwo100 parts by weight
0.1 to 2 parts by weight, preferably 0.1 to 2 parts by weight.
It is particularly preferred to use 2 to 1 part by weight. The present invention
When the positive electrode active material is used, the packing density of the positive electrode mixture layer is increased.
2.8-3.5 g / cm for capacityThreeAnd raised place
In this case, the present invention has high capacity
It is particularly useful in the production.

【0026】本発明において、負極活物質は、リチウム
イオンをドープ・脱ドープできるものであればよく、そ
のような負極活物質の具体例としては、例えば、黒鉛、
熱分解炭素類、コークス類、ガラス状炭素類、有機高分
子化合物の焼成体、メソカーボンマイクロビーズ、炭素
繊維、活性炭などの炭素系材料をはじめ、リチウムまた
はリチウム含有化合物などが挙げられる。上記リチウム
含有化合物としてはリチウム合金とそれ以外のものとが
あり、上記リチウム合金としては、例えば、リチウム−
アルミニウム、リチウム−鉛、リチウム−インジウム、
リチウム−ガリウム、リチウム−インジウム−ガリウム
などが挙げられ、リチウム合金以外のリチウム含有化合
物としては、例えば、錫酸化物、珪素酸化物、ニッケル
−珪素系合金、マグネシウム−珪素系合金、タングステ
ン酸化物、インジウム酸化物、リチウム鉄複合酸化物な
どが挙げられる。これら例示のリチウム含有化合物に
は、製造時にリチウムを含んでいないものもあるが、負
極活物質として作用するときにはリチウムを含んだ状態
になる。これらの負極活物質はそれぞれ単独で用いるこ
とができるし、また、2種以上を併用することもでき
る。
In the present invention, the negative electrode active material only needs to be capable of doping and undoping lithium ions. Specific examples of such a negative electrode active material include graphite,
Examples include pyrolytic carbons, cokes, glassy carbons, fired bodies of organic polymer compounds, carbon-based materials such as mesocarbon microbeads, carbon fibers, and activated carbon, as well as lithium or lithium-containing compounds. As the lithium-containing compound, there are a lithium alloy and others, and as the lithium alloy, for example, lithium-
Aluminum, lithium-lead, lithium-indium,
Lithium-gallium, lithium-indium-gallium and the like, and examples of the lithium-containing compound other than the lithium alloy include, for example, tin oxide, silicon oxide, nickel-silicon alloy, magnesium-silicon alloy, tungsten oxide, Indium oxide, lithium iron composite oxide and the like can be mentioned. Some of these exemplified lithium-containing compounds do not contain lithium at the time of production, but when they act as a negative electrode active material, they contain lithium. Each of these negative electrode active materials can be used alone, or two or more of them can be used in combination.

【0027】また、本発明者らは、上記負極活物質のう
ち、前記の正極活物質を用いた場合に、高温でのインピ
ーダンスの上昇を抑制でき、効率的なガス発生が可能な
負極活物質との組み合わせについても検討したところ、
(002)面の面間距離(d 002 )が0.338nm以
下、好ましくは0.336nm以下、c軸方向の結晶子
のサイズ(Lc)が35〜57nm、好ましくは40〜
45nm、アスペクト比(長軸径/短軸径)が2〜2
0、好ましくは5〜15、平均粒子径が20μm以下、
好ましくは6μm以下の鱗片状炭素系材料を用いること
により、上記特性を向上させることができることを見出
した。このような炭素系材料を用いることにより、上記
特性を向上させることができる理由は現在のところ必ず
しも明確ではないが、それらの炭素系材料が発達した層
構造を有するので、正極からドープされるリチウムイオ
ンが円滑に炭素系材料中に挿入されるとともに、正極活
物質にリチウムイオンがドープ・脱ドープすることによ
って生ずる正極活物質の膨張収縮に伴いスライドしなが
ら接触を保って導電性を維持しつづけるので、高温時に
おいても円滑な充放電反応が可能であることによるもの
と考えられる。
Further, the present inventors have proposed the above-mentioned anode active material.
That is, when the above-mentioned positive electrode active material is used, the
-The rise of dance can be suppressed and efficient gas generation is possible.
After examining the combination with the negative electrode active material,
(002) Distance between planes (d 002) Is 0.338 nm or less
Lower, preferably 0.336 nm or less, crystallite in c-axis direction
Has a size (Lc) of 35 to 57 nm, preferably 40 to 57 nm.
45 nm, aspect ratio (major axis diameter / minor axis diameter) 2-2
0, preferably 5 to 15, having an average particle diameter of 20 μm or less,
Preferably, a flaky carbon-based material of 6 μm or less is used.
Found that the above characteristics can be improved by
did. By using such a carbon-based material,
The reason why the characteristics can be improved at present is always
Although it is not clear, the layer where these carbon-based materials have developed
Lithium ion doped from the positive electrode
The anode is smoothly inserted into the carbon-based material,
Doping and undoping of lithium ions into a substance
Slides with the expansion and contraction of the positive electrode active material
Keeps contact and maintains conductivity,
Due to the fact that a smooth charge / discharge reaction is possible
it is conceivable that.

【0028】このような炭素系材料としては、例えば、
天然黒鉛のほか、種々の有機化合物の熱分解、焼成炭化
などによって得られるもの、例えば、ベンゼン、メタ
ン、一酸化炭素などの炭素化合物を気相熱分解させて得
られる炭素系材料などが挙げられ、その熱分解時の温度
としては、2000℃以上で3300℃以下が好まし
い。また、他の例としては、ピッチ系の炭素系材料が挙
げられ、そのようなピッチ類の一例を挙げれば、石油ピ
ッチ、アスファルトピッチ、コールタールピッチ、原油
分解ピッチ、石油スラッジピッチなどの石油、石炭の熱
分解により得られるピッチ、有機低分子芳香族化合物の
熱分解により得られるピッチなどが挙げられる。さら
に、他の例を挙げれば、アクリロニトリルなどを主成分
とする重合体の焼成炭化物が挙げられる。
As such a carbon-based material, for example,
In addition to natural graphite, those obtained by pyrolysis of various organic compounds, carbonization by calcining, and the like, for example, carbon-based materials obtained by gas phase pyrolysis of carbon compounds such as benzene, methane, and carbon monoxide, and the like. The temperature at the time of the thermal decomposition is preferably from 2000 ° C. to 3300 ° C. Other examples include pitch-based carbon-based materials, and examples of such pitches include petroleum pitch, asphalt pitch, coal tar pitch, crude oil cracking pitch, petroleum such as petroleum sludge pitch, Pitch obtained by thermal decomposition of coal, pitch obtained by thermal decomposition of organic low molecular weight aromatic compounds, and the like are included. Still another example is a calcined carbide of a polymer containing acrylonitrile or the like as a main component.

【0029】負極は、上記負極活物質に、要すれば、上
記正極活物質の場合と同様のバインダーや導電助剤など
を加えて混合し、得られた負極合剤を適宜の手段で成形
することによって作製される。例えば、上記負極合剤を
加圧成形するか、あるいは上記負極合剤を溶剤に分散さ
せてペーストにし(バインダーはあらかじめ溶剤に溶解
させておいてから負極活物質などと混合してもよい)、
その負極合剤含有ペーストを集電体となる導電性基体に
塗布し、乾燥して、負極合剤層を形成する工程を経る方
法によって負極が作製される。ただし、負極の作製方法
は上記例示の方法に限られることなく、他の方法によっ
てもよい。
The negative electrode is mixed with the above-mentioned negative electrode active material, if necessary, by adding the same binder and conductive assistant as in the case of the above-mentioned positive electrode active material, and then molding the obtained negative electrode mixture by an appropriate means. It is produced by For example, pressure-forming the negative electrode mixture, or dispersing the negative electrode mixture in a solvent to form a paste (the binder may be dissolved in the solvent in advance and then mixed with the negative electrode active material),
The negative electrode is prepared by applying the negative electrode mixture-containing paste to a conductive substrate serving as a current collector, and drying the paste to form a negative electrode mixture layer. However, the method for producing the negative electrode is not limited to the method exemplified above, and may be another method.

【0030】上記正極合剤含有ペーストや負極合剤含有
ペーストを導電性基体に塗布する際の塗布方法として
は、例えば、押出しコーター、リバースローラー、ドク
ターブレードなどをはじめ、各種の塗布方法を採用する
ことができる。また、正極、負極などの電極の集電体と
なる導電性基体としては、例えば、アルミニウム、ステ
ンレス鋼、チタン、銅などの金属の網、パンチドメタ
ル、エキスパンドメタル、フォームメタル、箔などが用
いられるが、正極の導電性基体には特にアルミニウム箔
が適し、負極の導電性基体には特に銅箔が適している。
As a method of applying the positive electrode mixture-containing paste and the negative electrode mixture-containing paste to the conductive substrate, for example, various coating methods such as an extrusion coater, a reverse roller, and a doctor blade are employed. be able to. In addition, as the conductive substrate serving as a current collector for electrodes such as a positive electrode and a negative electrode, for example, a metal mesh such as aluminum, stainless steel, titanium, and copper, punched metal, expanded metal, foam metal, and foil are used. However, aluminum foil is particularly suitable for the conductive substrate of the positive electrode, and copper foil is particularly suitable for the conductive substrate of the negative electrode.

【0031】上記正極と負極における活物質量の比とし
ては、上記正極活物質と組み合わせて用いる負極活物質
の種類によっても異なるが、上記炭素系材料を用いる場
合、正極活物質/負極活物質=1.0〜3.5(重量
比)にすることが好ましい。
The ratio of the amount of the active material in the positive electrode to the amount of the active material in the negative electrode depends on the type of the negative electrode active material used in combination with the positive electrode active material. It is preferable to set it to 1.0 to 3.5 (weight ratio).

【0032】本発明の正極活物質を用いた非水二次電池
において、電解質としては、通常、液状電解質(以下、
これを「電解液」という)が用いられる。そして、その
電解液としては有機溶媒に溶質としてのリチウム塩を溶
解させた非水溶媒系の電解液が用いられる。その非水溶
媒系の電解液の構成溶媒である有機溶媒は特に限定され
るものではないが、鎖状エステルを主溶媒として用いる
ことが特に適している。そのような鎖状エステルとして
は、例えば、ジエチルカーボネート、ジメチルカーボネ
ート、エチルメチルカーボネート、酢酸エチル、プロピ
オン酸メチルなどの鎖状のCOO−結合を有する有機溶
媒が挙げられる。この鎖状エステルが電解液の主溶媒で
あるということは、これらの鎖状エステルが全電解液溶
媒中の50体積%より多い体積を示すことを意味してお
り、特に鎖状エステルが全電解液溶媒中の65体積%以
上、とりわけ鎖状エステルが全電解液溶媒中の70体積
%以上を占めることが好ましく、なかでも鎖状エステル
が全電解液溶媒中の75体積%以上を占めることが好ま
しい。
In the non-aqueous secondary battery using the positive electrode active material of the present invention, the electrolyte is usually a liquid electrolyte (hereinafter, referred to as a liquid electrolyte).
This is referred to as “electrolyte solution”). As the electrolyte, a non-aqueous solvent-based electrolyte in which a lithium salt as a solute is dissolved in an organic solvent is used. The organic solvent that is a constituent solvent of the non-aqueous solvent-based electrolytic solution is not particularly limited, but it is particularly suitable to use a chain ester as a main solvent. Examples of such a chain ester include organic solvents having a chain COO-bond such as diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, ethyl acetate, and methyl propionate. The fact that the chain ester is the main solvent of the electrolytic solution means that the chain ester has a volume of more than 50% by volume in the total electrolyte solvent, and in particular, that the chain ester is It is preferred that 65% by volume or more in the liquid solvent, especially the chain ester accounts for 70% by volume or more in the total electrolyte solution solvent, and that the chain ester occupies 75% by volume or more in the total electrolyte solution solvent. preferable.

【0033】電解液の溶媒として、この鎖状エステルを
主溶媒にすることが好ましいとしているのは、鎖状エス
テルが全電解液溶媒中の50体積%を超えることによっ
て、電池特性、特に低温特性が改善されるからである。
It is preferred that the chain ester be used as the main solvent as the solvent of the electrolytic solution because the chain ester exceeds 50% by volume in the total solvent of the electrolyte, and the battery characteristics, especially the low temperature characteristics Is improved.

【0034】ただし、電解液溶媒としては、上記鎖状エ
ステルのみで構成するよりも、電池容量の向上を図るた
めに、上記鎖状エステルに誘電率の高いエステル(誘電
率30以上のエステル)を混合して用いることが好まし
い。そのような誘電率の高いエステルの全電解液溶媒中
で占める量としては、10体積%以上、特に20体積%
以上が好ましい。すなわち、誘電率の高いエステルが全
電解液溶媒中で10体積%以上になると容量の向上が明
確に発現するようになり、誘電率の高いエステルが全電
解液溶媒中で20体積%以上になると容量の向上がより
一層明確に発現するようになる。ただし、誘電率の高い
エステルの全電解液溶媒中で占める割合が多くなりすぎ
ると、電池の放電特性が低下する傾向があるので、誘電
率の高いエステルの全電解液溶媒中で占める量として
は、上記のように好ましくは10体積%以上、より好ま
しくは20体積%以上の範囲内で、40体積%以下が好
ましく、より好ましくは30体積%以下、さらに好まし
くは25体積%以下である。
However, as the electrolyte solvent, an ester having a high dielectric constant (an ester having a dielectric constant of 30 or more) is used as the above-mentioned chain ester in order to improve the battery capacity as compared with the case of using only the above-mentioned chain ester. It is preferable to use a mixture. The amount of such an ester having a high dielectric constant in the total electrolyte solvent is 10% by volume or more, particularly 20% by volume.
The above is preferred. That is, when the amount of the ester having a high dielectric constant is 10% by volume or more in the total electrolyte solvent, the improvement in capacity is clearly exhibited, and when the amount of the ester having a high dielectric constant becomes 20% by volume or more in the total electrolyte solution. The improvement in capacity is more clearly expressed. However, if the proportion of the ester having a high dielectric constant in the total solvent of the electrolyte is too large, the discharge characteristics of the battery tend to be reduced. As described above, the content is preferably 10% by volume or more, more preferably 20% by volume or more, preferably 40% by volume or less, more preferably 30% by volume or less, and still more preferably 25% by volume or less.

【0035】上記誘電率の高いエステルとしては、例え
ば、エチレンカーボネート、プロピレンカーボネート、
ブチレンカーボネート、γ−ブチロラクトン、エチレン
グリコールサルファイトなどが挙げられ、特にエチレン
カーボネート、プロピレンカーボネートなどの環状構造
のものが好ましく、とりわけ環状のカーボネートが好ま
しく、具体的にはエチレンカーボネートが最も好まし
い。
Examples of the ester having a high dielectric constant include ethylene carbonate, propylene carbonate,
Examples thereof include butylene carbonate, γ-butyrolactone, and ethylene glycol sulphite. Particularly, those having a cyclic structure such as ethylene carbonate and propylene carbonate are preferable, and cyclic carbonates are particularly preferable. Specifically, ethylene carbonate is most preferable.

【0036】また、上記誘電率の高いエステル以外に併
用可能な溶媒としては、例えば、1,2−ジメトキシエ
タン、1,3−ジオキソラン、テトラヒドロフラン、2
−メチル−テトラヒドロフラン、ジエチルエーテルなど
が挙げられる。そのほか、アミン系またはイミド系有機
溶媒や、含イオウ系または含フッ素系有機溶媒なども用
いることができる。
Examples of the solvent which can be used in combination with the ester having a high dielectric constant include 1,2-dimethoxyethane, 1,3-dioxolan, tetrahydrofuran,
-Methyl-tetrahydrofuran, diethyl ether and the like. In addition, an amine-based or imide-based organic solvent, a sulfur-containing or fluorine-containing organic solvent, and the like can also be used.

【0037】電解液の溶質となるリチウム塩としては、
例えば、LiClO4 、LiPF6、LiBF4 、Li
AsF6 、LiSbF6 、LiCF3 SO3 、LiC4
9SO3 、LiCF3 CO 2、Li2 2 4 (SO
3 2 、LiN(CF3 SO2)、LiC(CF3 SO
23 、LiCn 2n+1SO 3(n≧2)などが単独で
または2種以上混合して用いられる。特にLiPF6
LiC4 9 SO3 などが充放電特性が良好なことから
好ましい。電解液中における溶質としてのリチウム塩の
濃度は、特に限定されるものではないが、0.3〜1.
7mol/l、特に0.4〜1.5mol/l程度が好
ましい。
As a lithium salt to be a solute of the electrolytic solution,
For example, LiClO 4 , LiPF 6 , LiBF 4 , Li
AsF 6 , LiSbF 6 , LiCF 3 SO 3 , LiC 4
F 9 SO 3 , LiCF 3 CO 2 , Li 2 C 2 F 4 (SO
3 ) 2 , LiN (CF 3 SO 2 ), LiC (CF 3 SO
2 ) 3 , LiC n F 2n + 1 SO 3 (n ≧ 2) or the like is used alone or in combination of two or more. Particularly, LiPF 6 and LiC 4 F 9 SO 3 are preferable because of good charge / discharge characteristics. The concentration of the lithium salt as a solute in the electrolyte is not particularly limited, but may be 0.3 to 1.
7 mol / l, particularly preferably about 0.4 to 1.5 mol / l.

【0038】本発明において、電解質としては、上記電
解液以外にも、固体状またはゲル状の電解質を用いるこ
とができる。そのような電解質としては、無機固体電解
質のほか、ポリエチレンオキサイド、ポリプロピレンオ
キサイドまたはこれらの誘導体などを主材にした有機固
体電解質や有機ゲル状電解質などが挙げられる。
In the present invention, a solid or gel electrolyte can be used as the electrolyte in addition to the above-mentioned electrolyte. Examples of such electrolytes include, besides inorganic solid electrolytes, organic solid electrolytes and organic gel electrolytes mainly composed of polyethylene oxide, polypropylene oxide or derivatives thereof.

【0039】セパレータとしては、特に限定されること
はないが、強度が充分でしかも電解液を多く保持できる
ものがよく、そのような観点から、厚さが10〜50μ
mで、開孔率が30〜70%のポリプロピレン製、ポリ
エチレン製、またはプロピレンとエチレンとのコポリマ
ー製の微孔性フィルムや不織布などが好ましい。
The separator is not particularly limited, but preferably has sufficient strength and can hold a large amount of electrolyte.
m, and a microporous film or nonwoven fabric made of polypropylene, polyethylene, or a copolymer of propylene and ethylene having a porosity of 30 to 70% is preferable.

【0040】本発明の電池の作製方法としては、例え
ば、上記のようにして作製された正極および負極をセパ
レータを介して、積層または巻回して作製した電極体を
電池ケースに挿入し、電解液を注入した後、開裂ベント
を有する封口体で封口して作製される。上記開裂ベント
としては、高い安全性を確保するため、20〜40at
m、特に25〜35atmで作動する不可逆式のベント
構造を有するものが好ましい。また、本発明の非水二次
電池は、上記封口部に電流遮断機構を設けることが好ま
しく、特に本発明の正極活物質を用いた場合、過充電時
のガス発生量を多くして高容量化した際の安全性を確保
するため、電流遮断機構の作動圧力としては、5〜20
atmにすることが好ましく、8〜15atmにするこ
とがより好ましい。
As a method for producing the battery of the present invention, for example, an electrode assembly produced by laminating or winding the positive electrode and the negative electrode produced as described above via a separator is inserted into a battery case, And then sealed with a sealing body having a cleavage vent. As the cleavage vent, in order to ensure high safety, 20 to 40 at
m, especially those having an irreversible vent structure operating at 25-35 atm. In addition, the non-aqueous secondary battery of the present invention preferably has a current cut-off mechanism in the above-mentioned sealing portion. In particular, when the positive electrode active material of the present invention is used, the amount of gas generated during overcharge is increased to increase the In order to ensure safety in the event of a change, the operating pressure of the current interrupt mechanism should be 5-20.
atm, preferably 8 to 15 atm.

【0041】[0041]

【実施例】つぎに、実施例を挙げて本発明をより具体的
に説明する。ただし、本発明はそれらの実施例のみに限
定されるものではない。なお、以下において、部とある
のは重量部を意味する。
Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to only these examples. In the following, “parts” means “parts by weight”.

【0042】実施例1〜6および比較例1〜4 正極活物質として下記の表1に示す組成のLix CoO
2 とLiy Nis Co t u 2 を表2に示す割合(重
量比)で用い、それらの正極活物質を合計量で91部、
導電助剤としての天然黒鉛を4部、バインダーとしての
ポリフッ化ビニリデンを4部の割合になるように混合し
た。ただし、混合はポリフッ化ビニリデンをあらかじめ
N−メチルピロリドンに溶解しておき、そのバインダー
溶液に活物質と天然黒鉛を加え、さらにN−メチルピロ
リドンを加えて充分に分散し、粘度を調整して正極合剤
含有ペーストを調製した。なお、実施例4および実施例
5の正極合剤含有ペーストにはLi2 CO3 を0.5部
添加した。
Examples 1 to 6 and Comparative Examples 1 to 4 Li having the composition shown in Table 1 below was used as a positive electrode active material.xCoO
TwoAnd LiyNisCo tMuOTwoIs shown in Table 2
Quantitative ratio), 91 parts of those positive electrode active materials in total amount,
4 parts of natural graphite as a conductive additive, as a binder
Mix polyvinylidene fluoride in a ratio of 4 parts
Was. However, mixing should be done with polyvinylidene fluoride in advance.
Dissolved in N-methylpyrrolidone,
The active material and natural graphite are added to the solution, and
Add lidon, disperse well, adjust viscosity and mix positive electrode
A containing paste was prepared. Example 4 and Example 4
In the paste containing the positive electrode mixture of No. 5, LiTwoCOThree0.5 parts
Was added.

【0043】[0043]

【表1】 [Table 1]

【0044】[0044]

【表2】 [Table 2]

【0045】上記実施例1〜6および比較例1〜4の正
極合剤含有ペーストをそれぞれ導電性基体としての厚さ
20μmのアルミニウム箔上に一定の塗布量を均一に塗
布し、乾燥して正極合剤層を形成した。同様に、アルミ
ニウム箔の裏面にも上記正極合剤含有ペーストを塗布
し、乾燥して正極合剤層を形成し、ついで、ロールプレ
スで圧力を変えて圧延処理し、裁断して、帯状の正極を
作製した。なお、正極合剤層の充填密度は3.0〜3.
2g/cm3 とした。
Each of the positive electrode mixture-containing pastes of Examples 1 to 6 and Comparative Examples 1 to 4 was uniformly coated on a 20 μm-thick aluminum foil as a conductive substrate in a uniform amount, dried and dried. A mixture layer was formed. Similarly, the positive electrode mixture-containing paste is applied to the back surface of the aluminum foil, dried to form a positive electrode mixture layer, and then rolled under a pressure change by a roll press, cut, and cut into a strip-shaped positive electrode. Was prepared. The packing density of the positive electrode mixture layer is 3.0 to 3.0.
It was 2 g / cm 3 .

【0046】また、上記正極の場合と同様のバインダー
溶液(ポリフッ化ビニリデンをN−メチルピロリドンに
溶解したバインダー溶液)を調製し、そのバインダー溶
液に負極活物質として黒鉛〔(002)面の面間距離
(d002 ):0.336nm、c軸方向の結晶子の大き
さ(Lc):42nm、アスペクト比:10、平均粒
径:10μm〕180部を加え、混合して負極合剤含有
ペーストを調製した。この負極合剤含有ペーストをそれ
ぞれ導電性基体としての厚さ18μmの銅箔の両面に均
一に塗布し、乾燥して負極合剤層を形成した後、ロール
ープレスにより圧延処理し、ついで裁断して、帯状の負
極を作製した。なお、正極活物質と負極活物質との重量
比は2.1:1〔正極活物質/負極活物質=2.1(重
量比)〕にした。
A binder solution (a binder solution obtained by dissolving polyvinylidene fluoride in N-methylpyrrolidone) similar to that of the above positive electrode was prepared, and graphite [as a negative electrode active material] was added to the binder solution. Distance (d 002 ): 0.336 nm, crystallite size in the c-axis direction (Lc): 42 nm, aspect ratio: 10, average particle diameter: 10 μm] 180 parts were added and mixed to obtain a negative electrode mixture-containing paste. Prepared. This negative electrode mixture-containing paste is uniformly applied to both sides of a copper foil having a thickness of 18 μm as a conductive substrate, dried to form a negative electrode mixture layer, rolled by a roll-press, and then cut. Thus, a strip-shaped negative electrode was produced. The weight ratio between the positive electrode active material and the negative electrode active material was 2.1: 1 [positive electrode active material / negative electrode active material = 2.1 (weight ratio)].

【0047】つぎに、上記各実施例および比較例の帯状
正極と帯状負極との間に厚さ25μmの微孔性ポリエチ
レンフィルムからなるセパレータを配置し、渦巻状に巻
回して、渦巻状電極体とした後、外径18mm、高さ6
7cmの有底円筒状の電池ケース内に挿入し、正極リー
ド体および負極リード体の溶接を行なった。
Next, a separator made of a microporous polyethylene film having a thickness of 25 μm was arranged between the strip-shaped positive electrode and the strip-shaped negative electrode of each of the above-mentioned Examples and Comparative Examples, and wound spirally to form a spiral electrode body. After that, outer diameter 18mm, height 6
The battery was inserted into a 7 cm bottomed cylindrical battery case, and the positive electrode lead body and the negative electrode lead body were welded.

【0048】その後、電池ケース内に1.0mol/l
LiPF6 /EC+EMC(体積比1:3)からなる電
解液〔すなわち、エチレンカーボネートとエチルメチル
カーボネートとの体積比1:3の混合溶媒にLiPF6
を1.0mol/l溶解させた電解液〕を4.0cc注
入した。
After that, 1.0 mol / l in the battery case
Electrolyte solution composed of LiPF 6 / EC + EMC (volume ratio 1: 3) [that is, LiPF 6 was added to a mixed solvent of ethylene carbonate and ethyl methyl carbonate in a volume ratio of 1: 3.
Was dissolved in 1.0 mol / l].

【0049】ついで、上記電池ケースの開口部を常法に
従って封口し、図1に示す構造で外径18mm、高さ6
5mmの筒形の非水二次電池を作製した。
Then, the opening of the battery case was sealed in a conventional manner, and the structure shown in FIG.
A 5 mm cylindrical non-aqueous secondary battery was produced.

【0050】図1に示す電池について概略的に説明する
と、1は前記の正極で、2は前記の負極である。ただ
し、図1では、繁雑化を避けるため、正極1や負極2の
作製にあたって使用された基体などは図示しておらず、
これらの正極1と負極2はセパレータ3を介して渦巻状
に巻回され、渦巻状電極体として、上記組成の電解液と
共に、ステンレス鋼製の電池ケース4内に収容されてい
る。
The battery shown in FIG. 1 will be described briefly. 1 is the positive electrode and 2 is the negative electrode. However, FIG. 1 does not show the substrates used for producing the positive electrode 1 and the negative electrode 2 in order to avoid complication.
The positive electrode 1 and the negative electrode 2 are spirally wound with a separator 3 interposed therebetween, and are accommodated in a stainless steel battery case 4 together with an electrolytic solution having the above composition as a spiral electrode body.

【0051】上記電池ケース4は負極端子を兼ねてい
て、その底部には絶縁体5が配置され、渦巻状電極体上
にも絶縁体6が配置されている。そして、電池ケース4
の開口部には環状の絶縁パッキング7を介して封口体8
が配置され、電池ケース4の開口端部の内方への締め付
けにより電池内部を密閉構造にしている。
The battery case 4 also serves as a negative electrode terminal, and an insulator 5 is disposed at the bottom thereof, and an insulator 6 is also disposed on the spiral electrode body. And battery case 4
The opening 8 is provided with a sealing body 8 through an annular insulating packing 7.
Are arranged, and the inside of the battery is sealed by tightening the open end of the battery case 4 inward.

【0052】ただし、上記封口体8には、過充電などの
異常事態発生時に電池内部で電解液の分解反応が起こ
り、ガスが発生した際に電池内部に電流を流せなくする
ための電流遮断機構と、電池内部に発生したガスをある
一定圧力まで上昇した段階で電池外部に排出して電池の
高圧下での破裂を防止するための不可逆式ベント機構が
組み込まれていて、電流遮断機構は電池内のガス圧が1
3atm以上になったときに作動し、また、高圧下で作
動する不可逆式ベントは電池内のガス圧が30atm以
上になったときに作動するようになっている。
However, the sealing member 8 has a current cut-off mechanism for preventing a current from flowing inside the battery when a decomposition reaction of the electrolyte occurs inside the battery when an abnormal situation such as overcharging occurs and gas is generated. And, when the gas generated inside the battery rises to a certain pressure, an irreversible vent mechanism is built in to prevent the battery from bursting under high pressure by discharging to the outside of the battery, and the current interruption mechanism is The gas pressure inside is 1
The irreversible vent that operates when the pressure becomes 3 atm or more and operates under high pressure is activated when the gas pressure in the battery becomes 30 atm or more.

【0053】以上のように作製した実施例1〜5および
比較例1〜4の電池について、放電容量と平均放電電圧
を測定し、また、貯蔵試験と過充電試験を行なった。そ
の結果を表3に示す。放電容量は20℃で各電池を0.
2Cの電流密度で終止電圧3.0Vまで放電することに
よって測定し、比較例1の電池の容量を100とした場
合の指数で示した。平均放電電圧は、20℃、1Cで
4.2Vまで定電流定電圧充電した後、0.2Cで終止
電圧3Vで放電した時の放電深度50%のときの電圧を
測定し、それを平均放電電圧とした。
With respect to the batteries of Examples 1 to 5 and Comparative Examples 1 to 4 prepared as described above, the discharge capacity and the average discharge voltage were measured, and a storage test and an overcharge test were performed. Table 3 shows the results. The discharge capacity of each battery was 0.2 at 20 ° C.
It was measured by discharging the battery to a final voltage of 3.0 V at a current density of 2 C, and was indicated by an index when the capacity of the battery of Comparative Example 1 was 100. The average discharge voltage was constant current and constant voltage charging at 20 ° C and 1C up to 4.2V, then the voltage at a discharge depth of 50% when discharging at a final voltage of 3V at 0.2C was measured. Voltage.

【0054】貯蔵試験では、20℃の環境下で1.5A
の定電流で4.2Vまで充電した後、定電圧方式で充電
を行い、充電の合計時間が2.5時間となるように充電
した後、20℃の環境下で1.5Aの定電流で2.75
Vまで放電する充放電サイクルを5回行なった後に、2
0℃の環境下で1.5Aの定電流で4.2Vまで充電し
た後、定電圧方式で充電を行い、充電の合計時間が2.
5時間となるように充電した後、60℃の環境下で貯蔵
した。そして、60℃で20日間貯蔵後の電池のインピ
ーダンスを測定することにより、電流遮断機構の作動の
有無を調べた。
In the storage test, 1.5 A under an environment of 20 ° C.
After charging to 4.2 V at a constant current of 2.5 V, charging was performed by a constant voltage method, and charging was performed so that the total charging time was 2.5 hours. 2.75
After 5 charge / discharge cycles of discharging to V, 2
After charging to 4.2 V at a constant current of 1.5 A in an environment of 0 ° C., charging was performed by a constant voltage method, and the total charging time was 2.
After charging for 5 hours, the battery was stored in an environment of 60 ° C. Then, by measuring the impedance of the battery after storage at 60 ° C. for 20 days, it was checked whether or not the current interrupting mechanism was activated.

【0055】さらに、過充電試験は、電池を20℃の環
境下で1.5Aの定電流で4.2Vまで充電した後、定
電圧方式で充電を行い、充電の合計時間が2.5時間と
なるように充電し、その後、0℃で4時間保存し、充電
電流3Aで発火の有無を調べた。
Further, in the overcharge test, the battery was charged at a constant current of 1.5 A to 4.2 V in an environment of 20 ° C., and then charged by a constant voltage method, for a total charging time of 2.5 hours. Then, the battery was stored at 0 ° C. for 4 hours, and the presence or absence of ignition was examined at a charging current of 3 A.

【0056】[0056]

【表3】 [Table 3]

【0057】実施例1〜6の電池は、表2に示すよう
に、Lix CoO2 /Liy Nis Cot u 2 (重
量比)が90/10〜55/45の範囲内〔すなわち、
LiyNis Cot u 2 の含有量がLix CoO2
とLiy Nis Cot u 2との合計量中において1
0〜45重量%(実施例1が20重量%、実施例2が1
0重量%、実施例3が35重量%、実施例4が20重量
%、実施例5が20重量%、実施例6が45重量%)の
範囲内〕にあるが、この実施例1〜6の電池は、表3に
示すように、比較の基準となる比較例1の電池(この比
較例1の電池の正極活物質には表1に示すようにLi
1.00CoO2 のみを用いている)に比べて、放電容量が
大きく、また、平均放電電圧も比較例1に比べれば若干
低いものの、3.65Vであって充分に高電圧を保って
いた。
[0057] batteries of Examples 1-6, as shown in Table 2, Li x CoO 2 / Li y Ni s Co t M u O 2 ( weight ratio) in the range of 90 / 10-55 / 45 [ That is,
Li y Ni s Co t M u O 2 content is Li x CoO 2
1 in the total amount of the Li y Ni s Co t M u O 2 and
0 to 45% by weight (Example 1 is 20% by weight, Example 2 is 1% by weight)
0% by weight, Example 3 has 35% by weight, Example 4 has 20% by weight, Example 5 has 20% by weight, and Example 6 has 45% by weight). As shown in Table 3, the battery of Comparative Example 1 was used as a reference for comparison (the positive electrode active material of the battery of Comparative Example 1 was Li as shown in Table 1).
( Using only 1.00 CoO 2 ), and the average discharge voltage was slightly lower than that of Comparative Example 1, but was 3.65 V, which was a sufficiently high voltage.

【0058】また、実施例1〜6の電池は、過充電時の
発火がなく、安全性を確保できるが、60℃で20日間
の貯蔵でも電流遮断機構が作動せず、通常の使用環境下
で電流遮断機構が作動して電池が使用できなくなるよう
なことや電池製造時に電流遮断機構が作動して不良率が
高くなるようなこともないことが明らかになった。つま
り、実施例1〜6の電池は、高容量で、過充電時の安全
性が高く、通常の使用条件下ではガス発生が少なく、高
温貯蔵特性も優れていた。
The batteries of Examples 1 to 6 do not ignite at the time of overcharging and can ensure safety. However, even when stored at 60 ° C. for 20 days, the current cutoff mechanism does not operate, and the battery is operated under normal operating conditions. It has become clear that the current interruption mechanism does not operate and the battery cannot be used, and that the current interruption mechanism does not operate at the time of battery production and the defect rate does not increase. That is, the batteries of Examples 1 to 6 had high capacity, high safety during overcharge, low gas generation under normal use conditions, and excellent high-temperature storage characteristics.

【0059】これに対して、比較例1の電池は、容量が
実施例1〜6の電池に比べて小さい上に、過充電時に発
火の問題があり、過充電時の安全性が欠けていた。
On the other hand, the battery of Comparative Example 1 had a smaller capacity than the batteries of Examples 1 to 6, and had a problem of ignition at the time of overcharging, and lacked safety at the time of overcharging. .

【0060】また、比較例2の電池は、表1に示すよう
に、正極活物質としてLi1.02Ni 0.82 0.08 Mg
0.1 2 のみを用いた電池であるが、過充電時の電流遮
断機構の作動温度が低く、高容量になるものの、平均放
電電圧が低下した。
The battery of Comparative Example 2 is shown in Table 1.
In addition, Li as a positive electrode active material1.02Ni 0.82C0.08Mg
0.1OTwoBattery that uses only
Although the operating temperature of the disconnection mechanism is low and the capacity is high,
The voltage has dropped.

【0061】さらに、Lix CoO2 中のリチウム(L
i)の比率が高いリチウム化合物を正極活物質として用
いた比較例3やLiy Nis Cot u 2 中のリチウ
ムの比率が高いリチウム化合物を正極活物質として用い
た比較例4の電池は、60℃で20日間の貯蔵中に電流
遮断機構が作動し、高温貯蔵特性に欠けるという問題が
あった。
Further, lithium (L) in Li x CoO 2
Comparative Example Ratio of i) is having a high lithium compound as a cathode active material 3 and Li y Ni s Co t M u O cell of Comparative Example 4 using the ratio of lithium in 2 high lithium compound as a cathode active material However, there is a problem in that the current cutoff mechanism operates during storage at 60 ° C. for 20 days, and lacks high-temperature storage characteristics.

【0062】[0062]

【発明の効果】以上説明したように、本発明では、高容
量で、過充電時の安全性が高く、通常の使用条件下では
ガス発生が少なく、高温貯蔵特性が優れた非水二次電池
を提供することができた。
As described above, according to the present invention, a non-aqueous secondary battery having a high capacity, high safety at the time of overcharging, low gas generation under normal use conditions, and excellent high-temperature storage characteristics. Could be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】非水二次電池の一例を模式的に示す部分断面斜
視図である。
FIG. 1 is a partial cross-sectional perspective view schematically illustrating an example of a non-aqueous secondary battery.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレータ 4 電池ケース 5 絶縁体 6 絶縁体 7 絶縁パッキング 8 封口体 DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Separator 4 Battery case 5 Insulator 6 Insulator 7 Insulation packing 8 Sealing body

フロントページの続き Fターム(参考) 5H003 AA02 AA03 AA04 AA10 BB05 BD00 BD04 5H014 AA02 EE10 HH00 HH01 5H029 AJ03 AJ04 AJ05 AJ12 AK03 AL02 AL03 AL06 AL07 AL08 AL11 AL12 AM02 AM03 AM04 AM05 AM07 BJ02 BJ14 HJ01 HJ02 Continued on the front page F-term (reference)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 正極、負極および電解質を有する非水二
次電池において、上記正極が、正極活物質として少なく
ともLix CoO2 (xは、電池組立時の値であり、
1.01≦x≦1.10)とLiy Nis Cot u
2 (Mは、B、Mg、Al、Si、P、V、Mn、F
e、Cu、Zn、Sr、In、Snおよびランタノイド
元素よりなる群から選ばれる少なくとも1種の元素であ
り、yは、電池組立時の値であって、1.01≦y≦
1.10、0.65≦s≦0.90、0<t≦0.3、
0.01≦u≦0.2)を含有し、上記Liy Nis
t u 2 の含有量がLix CoO2 とLiy Nis
Cot u 2 との合計量中において10〜45重量%
であることを特徴とする非水二次電池。
1. A non-aqueous electrolyte comprising a positive electrode, a negative electrode, and an electrolyte.
In the secondary battery, the positive electrode has a small amount as a positive electrode active material.
And LixCoOTwo(X is a value at the time of battery assembly,
1.01 ≦ x ≦ 1.10) and LiyNisCotMuO
Two(M is B, Mg, Al, Si, P, V, Mn, F
e, Cu, Zn, Sr, In, Sn and lanthanoid
At least one element selected from the group consisting of
Where y is a value at the time of battery assembly, and 1.01 ≦ y ≦
1.10, 0.65 ≦ s ≦ 0.90, 0 <t ≦ 0.3,
0.01 ≦ u ≦ 0.2) and the above LiyNisC
otM uOTwoContent of LixCoOTwoAnd LiyNis
CotMuOTwo10 to 45% by weight in the total amount of
Non-aqueous secondary battery characterized by the following.
JP15085299A 1999-05-31 1999-05-31 Non-aqueous secondary battery Expired - Fee Related JP3712251B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15085299A JP3712251B2 (en) 1999-05-31 1999-05-31 Non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15085299A JP3712251B2 (en) 1999-05-31 1999-05-31 Non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JP2000340229A true JP2000340229A (en) 2000-12-08
JP3712251B2 JP3712251B2 (en) 2005-11-02

Family

ID=15505792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15085299A Expired - Fee Related JP3712251B2 (en) 1999-05-31 1999-05-31 Non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP3712251B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002019449A1 (en) * 2000-08-29 2002-03-07 Santoku Corporation Positive active material for non-aqueous electrolyte secondary cell, method for preparation thereof and non-aqueous electrolyte secondary cell
WO2003041193A1 (en) * 2001-11-09 2003-05-15 Sony Corporation Positive plate material and cell comprising it
JP2003303591A (en) * 2002-04-09 2003-10-24 Toshiba Corp Positive electrode active material and nonaqueous electrolyte battery
WO2004027903A1 (en) * 2002-09-18 2004-04-01 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary cell
JP2004172113A (en) * 2002-11-06 2004-06-17 Toshiba Corp Nonaqueous electrolyte secondary battery
JP2004533104A (en) * 2001-06-15 2004-10-28 呉羽化学工業株式会社 Graded positive electrode material for lithium secondary batteries
JP2005174847A (en) * 2003-12-15 2005-06-30 Toshiba Corp Electrode and nonaqueous electrolyte secondary battery
JP2005259703A (en) * 2004-03-12 2005-09-22 Samsung Sdi Co Ltd Lithium secondary battery
JP2005339970A (en) * 2004-05-26 2005-12-08 Sony Corp Cathode activator and nonaqueous electrolyte secondary battery
JP2006294393A (en) * 2005-04-11 2006-10-26 Hitachi Maxell Ltd Lithium ion secondary battery
JP2007048560A (en) * 2005-08-09 2007-02-22 Sony Corp Battery
JP2007103245A (en) * 2005-10-06 2007-04-19 Sony Corp Battery
CN1331267C (en) * 2003-08-15 2007-08-08 比亚迪股份有限公司 Lithium ion secondary cell and method for preparing anode thereof
JP2008198463A (en) * 2007-02-13 2008-08-28 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
JP2008226693A (en) * 2007-03-14 2008-09-25 Matsushita Electric Ind Co Ltd Lithium-ion secondary battery
JP2008293988A (en) * 2001-04-20 2008-12-04 Gs Yuasa Corporation:Kk Positive electrode active material and method of manufacturing the same, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous secondary battery
JP2009129632A (en) * 2007-11-21 2009-06-11 Gs Yuasa Corporation:Kk Nonaqueous electrolyte battery
JP2011071103A (en) * 2009-08-25 2011-04-07 Toshiba Corp Positive electrode, nonaqueous electrolyte battery, and battery pack
US20110165460A1 (en) * 2010-01-06 2011-07-07 Sanyo Electric Co., Ltd. Lithium secondary battery
JP2013069698A (en) * 2012-12-11 2013-04-18 Gs Yuasa Corp Nonaqueous electrolyte secondary battery
CN103270627A (en) * 2010-12-20 2013-08-28 三洋电机株式会社 Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using said positive electrode
US8741483B2 (en) 2008-07-09 2014-06-03 Sanyo Electric Co., Ltd. Positive electrode active material for non-aqueous electrolyte secondary battery having rare earth hydroxide and/or oxyhydroxide
US10128495B2 (en) 2013-02-28 2018-11-13 Sanyo Electric Co., Ltd. Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery that uses the positive electrode

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002019449A1 (en) * 2000-08-29 2002-03-07 Santoku Corporation Positive active material for non-aqueous electrolyte secondary cell, method for preparation thereof and non-aqueous electrolyte secondary cell
JP2008293988A (en) * 2001-04-20 2008-12-04 Gs Yuasa Corporation:Kk Positive electrode active material and method of manufacturing the same, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous secondary battery
JP2004533104A (en) * 2001-06-15 2004-10-28 呉羽化学工業株式会社 Graded positive electrode material for lithium secondary batteries
JP4695831B2 (en) * 2001-06-15 2011-06-08 ティアックス エルエルシー Inclined cathode material for lithium secondary battery
US9054378B2 (en) 2001-11-09 2015-06-09 Sony Corporation Positive plate material and cell comprising it
WO2003041193A1 (en) * 2001-11-09 2003-05-15 Sony Corporation Positive plate material and cell comprising it
JP2003151548A (en) * 2001-11-09 2003-05-23 Sony Corp Positive electrode material and battery using it
JP2003303591A (en) * 2002-04-09 2003-10-24 Toshiba Corp Positive electrode active material and nonaqueous electrolyte battery
WO2004027903A1 (en) * 2002-09-18 2004-04-01 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary cell
JP4498142B2 (en) * 2002-09-18 2010-07-07 株式会社東芝 Nonaqueous electrolyte secondary battery
JPWO2004027903A1 (en) * 2002-09-18 2006-01-19 株式会社東芝 Nonaqueous electrolyte secondary battery
CN100350650C (en) * 2002-09-18 2007-11-21 株式会社东芝 Nonaqueous electrolyte secondary cell
KR100841136B1 (en) * 2002-09-18 2008-06-24 가부시끼가이샤 도시바 Nonaqueous electrolyte secondary cell
JP4599050B2 (en) * 2002-11-06 2010-12-15 株式会社東芝 Nonaqueous electrolyte secondary battery
JP2004172113A (en) * 2002-11-06 2004-06-17 Toshiba Corp Nonaqueous electrolyte secondary battery
CN1331267C (en) * 2003-08-15 2007-08-08 比亚迪股份有限公司 Lithium ion secondary cell and method for preparing anode thereof
JP2005174847A (en) * 2003-12-15 2005-06-30 Toshiba Corp Electrode and nonaqueous electrolyte secondary battery
JP4680637B2 (en) * 2004-03-12 2011-05-11 三星エスディアイ株式会社 Lithium secondary battery
JP2005259703A (en) * 2004-03-12 2005-09-22 Samsung Sdi Co Ltd Lithium secondary battery
JP2010278014A (en) * 2004-03-12 2010-12-09 Samsung Sdi Co Ltd Lithium secondary battery
JP2005339970A (en) * 2004-05-26 2005-12-08 Sony Corp Cathode activator and nonaqueous electrolyte secondary battery
JP2006294393A (en) * 2005-04-11 2006-10-26 Hitachi Maxell Ltd Lithium ion secondary battery
JP4743752B2 (en) * 2005-04-11 2011-08-10 日立マクセル株式会社 Lithium ion secondary battery
JP2007048560A (en) * 2005-08-09 2007-02-22 Sony Corp Battery
JP2007103245A (en) * 2005-10-06 2007-04-19 Sony Corp Battery
JP2008198463A (en) * 2007-02-13 2008-08-28 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
JP2008226693A (en) * 2007-03-14 2008-09-25 Matsushita Electric Ind Co Ltd Lithium-ion secondary battery
JP2009129632A (en) * 2007-11-21 2009-06-11 Gs Yuasa Corporation:Kk Nonaqueous electrolyte battery
US8741483B2 (en) 2008-07-09 2014-06-03 Sanyo Electric Co., Ltd. Positive electrode active material for non-aqueous electrolyte secondary battery having rare earth hydroxide and/or oxyhydroxide
US9929401B2 (en) 2008-07-09 2018-03-27 Sanyo Electric Co., Ltd. Positive electrode active material for non-aqueous electrolyte secondary battery having rare earth hydroxide and/or oxyhydroxide
JP2011071103A (en) * 2009-08-25 2011-04-07 Toshiba Corp Positive electrode, nonaqueous electrolyte battery, and battery pack
US9634328B2 (en) 2009-08-25 2017-04-25 Kabushiki Kaisha Toshiba Positive electrode
US9843044B2 (en) 2009-08-25 2017-12-12 Kabushiki Kaisha Toshiba Positive electrode
US20110165460A1 (en) * 2010-01-06 2011-07-07 Sanyo Electric Co., Ltd. Lithium secondary battery
US9299984B2 (en) * 2010-01-06 2016-03-29 Sanyo Electric Co., Ltd. Lithium secondary battery having positive electrode active material including lithium transition metal composite oxide with particles of rare earth compound adhered thereto
CN103270627A (en) * 2010-12-20 2013-08-28 三洋电机株式会社 Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using said positive electrode
JP2013069698A (en) * 2012-12-11 2013-04-18 Gs Yuasa Corp Nonaqueous electrolyte secondary battery
US10128495B2 (en) 2013-02-28 2018-11-13 Sanyo Electric Co., Ltd. Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery that uses the positive electrode

Also Published As

Publication number Publication date
JP3712251B2 (en) 2005-11-02

Similar Documents

Publication Publication Date Title
JP3712251B2 (en) Non-aqueous secondary battery
US7214449B2 (en) Cathode active material and non-aqueous electrolyte secondary battery
JP3844733B2 (en) Nonaqueous electrolyte secondary battery
US8026003B2 (en) Negative active material for a non-aqueous electrolyte battery, and a non-aqueous electrolyte battery comprising the same
US20070111102A1 (en) Negative electrode for non-aqueous electrolyte secondary batteries, non-aqueous electrolyte secondary battery having the electrode, and method for producing negative electrode for non-aqueous electrolyte secondary batteries
JP5066798B2 (en) Secondary battery
JP2002319398A (en) Nonaqueous electrolyte secondary battery
JPWO2003049216A1 (en) Lithium ion secondary battery
JP2017520892A (en) Positive electrode for lithium battery
JP2008016414A (en) Non-aqueous electrolyte secondary battery
JP4929701B2 (en) Non-aqueous electrolyte secondary battery
KR100624970B1 (en) Positive active material for lithium secondary battery, thereof method, and Lithium secondary battery
JP2016139548A (en) Lithium ion battery
JP2003157900A (en) Battery
JP4150202B2 (en) battery
JP3734145B2 (en) Lithium secondary battery
KR100635741B1 (en) Positive active material for lithium secondary battery and thereof method
JP2005294028A (en) Lithium secondary battery
EP0887875A1 (en) Non-aqueous electrolytic solution and secondary battery containing non-aqueous electrolytic solution
JP2000133246A (en) Nonaqueous secondary battery
JP4447831B2 (en) Positive electrode active material and non-aqueous electrolyte secondary battery
WO2016080457A1 (en) Lithium-ion cell
JP4795509B2 (en) Non-aqueous electrolyte battery
JP3804742B2 (en) Non-aqueous secondary battery
JP2007134218A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050815

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090826

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100826

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100826

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100826

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110826

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120826

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120826

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120826

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120826

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120826

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120826

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120826

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130826

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130826

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130826

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130826

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees