JPWO2004027903A1 - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JPWO2004027903A1
JPWO2004027903A1 JP2004537603A JP2004537603A JPWO2004027903A1 JP WO2004027903 A1 JPWO2004027903 A1 JP WO2004027903A1 JP 2004537603 A JP2004537603 A JP 2004537603A JP 2004537603 A JP2004537603 A JP 2004537603A JP WO2004027903 A1 JPWO2004027903 A1 JP WO2004027903A1
Authority
JP
Japan
Prior art keywords
positive electrode
particles
secondary battery
active material
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004537603A
Other languages
Japanese (ja)
Other versions
JP4498142B2 (en
Inventor
加納 幸司
幸司 加納
藤原 雅史
雅史 藤原
吉田 秀紀
秀紀 吉田
志子田 将貴
将貴 志子田
肇 竹内
肇 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Publication of JPWO2004027903A1 publication Critical patent/JPWO2004027903A1/en
Application granted granted Critical
Publication of JP4498142B2 publication Critical patent/JP4498142B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本発明によれば、正極活物質を含む正極と、負極と、非水電解質とを具備する非水電解質二次電池であって、前記正極活物質は、下記(A)式で表わされる酸化物粒子及び下記(B)式で表わされる酸化物粒子を含み、前記正極活物質中の前記(A)式で表わされる酸化物粒子の割合は50重量%を超えており、かつ前記正極活物質は下記(1)〜(5)式を満足する非水電解質二次電池が提供される。LixNiyCozMwO2(A)LiaCobMcO2(B)1.4≦(DN90/DN50)≦2 (1)1.4≦(DN50/DN10)≦2 (2)1.4≦(DC90/DC50)≦2 (3)1.4≦(DC50/DC10)≦2 (4)1.5≦(DN50/DC50)≦2.5 (5)According to the present invention, there is provided a nonaqueous electrolyte secondary battery comprising a positive electrode including a positive electrode active material, a negative electrode, and a nonaqueous electrolyte, wherein the positive electrode active material is an oxide represented by the following formula (A): Particles and oxide particles represented by the following formula (B), the ratio of the oxide particles represented by the formula (A) in the positive electrode active material exceeds 50% by weight, and the positive electrode active material is A nonaqueous electrolyte secondary battery that satisfies the following formulas (1) to (5) is provided. LixNiyCozMwO2 (A) LiaCobMcO2 (B) 1.4 ≦ (DN90 / DN50) ≦ 2 (1) 1.4 ≦ (DN50 / DN10) ≦ 2 (2) 1.4 ≦ (DC90 / DC50) ≦ 2 (3) 1.4 ≦ (DC50 / DC10) ≦ 2 (4) 1.5 ≦ (DN50 / DC50) ≦ 2.5 (5)

Description

本発明は、非水電解質二次電池に関するものである。  The present invention relates to a non-aqueous electrolyte secondary battery.

近年、VTR、携帯電話、モバイルコンピュータ等の電子機器の小型、軽量化に伴い、それらの電源である二次電池のエネルギー密度を高くすることが要望されている。このようなことから、リチウムを負極とする非水電解質二次電池の研究が活発におこなわれており、すでに、LiCoOを正極活物質に用いたリチウムイオン二次電池が実用化されている。
ところで、非水電解質二次電池の負極には、リチウム、リチウム合金またはリチウムを吸蔵放出する化合物が用いられている。また、非水電解質としては、非水溶媒にリチウム塩(電解質)を溶解したものが多用されている。かかる非水溶媒としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、1,2−ジメトキシエタン(DME)、γ−ブチルラクトン(γ−BL)、テトラヒドロフラン(THF)、2−メチルテトラヒドロフラン(2−MeTHF)が知られている。一方、リチウム塩としては、LiClO、LiBF、LiAsF、LiPF、LiCFSO、LiAlClが知られている。
一方、正極活物質としては、層状化合物のインターカレーション、またはドーピング現象を利用したものが注目されている。
前記層状化合物のインターカレーションを利用したものの中でも、カルコゲナイド化合物が比較的優れた充放電サイクル特性を示している。しかしながら、カルコゲナイド化合物は起電力が低く、リチウム金属を負極として用いた場合でも実用的な充電電圧はせいぜい2V前後であり、非水電解質二次電池の特徴である高起電力という点を満足するものではない。
層状化合物のインターカレーションを利用した活物質は、カルコゲナイド化合物の他にも存在する。かかる活物質のうちのV13、LiCoO、LiNiOと、ドーピング現象を利用したLiMnなどの金属酸化物系化合物は、高起電力という特徴を有する点で注目されている。特に、LiNiOを活物質として含む正極は、4V程度の起電力を有し、しかも理論的エネルギー密度が正極活物質あたりほぼ1kWh/kgという大きな値を有する。
しかしながら、LiNiOを活物質として含む正極を備えた非水電解質二次電池は、充放電サイクル寿命が低いという問題点がある。
一方、特開昭63−121258号公開公報には、層状構造を有し、一般式Aで示される複合酸化物を正極として用いる非水系二次電池が開示されている。一般式中、Aはアルカリ金属から選ばれた少なくとも1種であり、Bは遷移金属であり、CはAl、In、Snの群から選ばれた少なくとも1種であり、Dは(a)A以外のアルカリ金属、(b)B以外の遷移金属、(c)IIa族元素、(d)Al、In、Sn、炭素、窒素、酸素を除くIIIb族、IVb族、Vb族、VIb族の第2〜第6周期の元素、の群から選ばれた少なくとも1種を表わす。x、y、z、wは各々0.05≦x≦1.10、0.85≦y≦1.00、0.001≦z≦0.10、0.001≦w≦0.10の数を表わす。
しかしながら、前記公開公報に記載された非水系二次電池は、十分なサイクル寿命を得られるものではなかった。
In recent years, with the reduction in size and weight of electronic devices such as VTRs, mobile phones, and mobile computers, it has been desired to increase the energy density of secondary batteries that are power sources thereof. For this reason, research on non-aqueous electrolyte secondary batteries using lithium as a negative electrode has been actively conducted, and lithium ion secondary batteries using LiCoO 2 as a positive electrode active material have already been put into practical use.
By the way, lithium, a lithium alloy, or a compound that absorbs and releases lithium is used for the negative electrode of the nonaqueous electrolyte secondary battery. As the non-aqueous electrolyte, a solution obtained by dissolving a lithium salt (electrolyte) in a non-aqueous solvent is often used. Such non-aqueous solvents include propylene carbonate (PC), ethylene carbonate (EC), ethyl methyl carbonate (EMC), dimethyl carbonate (DMC), diethyl carbonate (DEC), 1,2-dimethoxyethane (DME), γ- Butyllactone (γ-BL), tetrahydrofuran (THF), and 2-methyltetrahydrofuran (2-MeTHF) are known. On the other hand, LiClO 4 , LiBF 4 , LiAsF 6 , LiPF 6 , LiCF 3 SO 3 , and LiAlCl 4 are known as lithium salts.
On the other hand, as the positive electrode active material, attention is paid to a material utilizing intercalation of a layered compound or a doping phenomenon.
Among those using intercalation of the layered compound, the chalcogenide compound exhibits relatively excellent charge / discharge cycle characteristics. However, the chalcogenide compound has a low electromotive force, and even when lithium metal is used as the negative electrode, the practical charging voltage is about 2 V at most, which satisfies the high electromotive force characteristic of the nonaqueous electrolyte secondary battery. is not.
In addition to chalcogenide compounds, active materials using layered compound intercalation exist. Among these active materials, V 6 O 13 , LiCoO 2 , LiNiO 2 and metal oxide compounds such as LiMn 2 O 4 utilizing a doping phenomenon are attracting attention because they have a characteristic of high electromotive force. In particular, the positive electrode containing LiNiO 2 as an active material has an electromotive force of about 4 V, and the theoretical energy density has a large value of approximately 1 kWh / kg per positive electrode active material.
However, the nonaqueous electrolyte secondary battery including a positive electrode containing LiNiO 2 as an active material has a problem that the charge / discharge cycle life is low.
On the other hand, the JP 63-121258 publication has a layered structure, the general formula A x B y C z D w O 2 composite oxide represented by a non-aqueous secondary battery using the positive electrode is disclosed ing. In the general formula, A is at least one selected from alkali metals, B is a transition metal, C is at least one selected from the group of Al, In, and Sn, and D is (a) A (B) transition metals other than B, (c) IIa group elements, (d) Al, In, Sn, carbon, nitrogen, oxygen group IIIb, IVb group, Vb group, VIb group It represents at least one selected from the group of 2 to 6th element. x, y, z, and w are numbers of 0.05 ≦ x ≦ 1.10, 0.85 ≦ y ≦ 1.00, 0.001 ≦ z ≦ 0.10, and 0.001 ≦ w ≦ 0.10, respectively. Represents.
However, the non-aqueous secondary battery described in the above publication cannot obtain a sufficient cycle life.

本発明は、充放電サイクル寿命が向上された非水電解質二次電池を提供することを目的とする。
本発明によれば、正極活物質を含む正極と、負極と、非水電解質とを具備する非水電解質二次電池であって、
前記正極活物質は、下記(A)式で表わされる酸化物粒子及び下記(B)式で表わされる酸化物粒子を含み、前記正極活物質中の前記(A)式で表わされる酸化物粒子の割合は50重量%を超えており、かつ前記正極活物質は下記(1)〜(5)式を満足する非水電解質二次電池が提供される。
LiNiCo (A)
LiCo (B)
但し、前記Mは、Mn、B、Al及びSnよりなる群から選択される1種類以上の元素であり、前記モル比x、y、z、w、a、b、cは、それぞれ、0.95≦x≦1.05、0.7≦y≦0.95、0.05≦z≦0.3、0≦w≦0.1、0.95≦y+z+w≦1.05、0.95≦a≦1.05、0.95≦b≦1.05、0≦c≦0.05、0.95≦b+c≦1.05を示し、
1.4≦(DN90/DN50)≦2 (1)
1.4≦(DN50/DN10)≦2 (2)
1.4≦(DC90/DC50)≦2 (3)
1.4≦(DC50/DC10)≦2 (4)
1.5≦(DN50/DC50)≦2.5 (5)
但し、前記DN10、前記DN50、前記DN90は、LiNiCo粒子の体積累積頻度が10%、50%、90%の粒径を示し、前記DC10、前記DC50、前記DC90は、LiCo粒子の体積累積頻度が10%、50%、90%の粒径を示す。
An object of the present invention is to provide a nonaqueous electrolyte secondary battery having an improved charge / discharge cycle life.
According to the present invention, a nonaqueous electrolyte secondary battery comprising a positive electrode containing a positive electrode active material, a negative electrode, and a nonaqueous electrolyte,
The positive electrode active material includes oxide particles represented by the following formula (A) and oxide particles represented by the following formula (B), and the oxide particles represented by the formula (A) in the positive electrode active material A nonaqueous electrolyte secondary battery in which the ratio exceeds 50% by weight and the positive electrode active material satisfies the following formulas (1) to (5) is provided.
Li x Ni y Co z M w O 2 (A)
Li a Co b M c O 2 (B)
However, said M is one or more elements selected from the group consisting of Mn, B, Al and Sn, and said molar ratios x, y, z, w, a, b, c are 0. 95 ≦ x ≦ 1.05, 0.7 ≦ y ≦ 0.95, 0.05 ≦ z ≦ 0.3, 0 ≦ w ≦ 0.1, 0.95 ≦ y + z + w ≦ 1.05, 0.95 ≦ a ≦ 1.05, 0.95 ≦ b ≦ 1.05, 0 ≦ c ≦ 0.05, 0.95 ≦ b + c ≦ 1.05,
1.4 ≦ (D N90 / D N50 ) ≦ 2 (1)
1.4 ≦ (D N50 / D N10 ) ≦ 2 (2)
1.4 ≦ (D C90 / D C50 ) ≦ 2 (3)
1.4 ≦ (D C50 / D C10 ) ≦ 2 (4)
1.5 ≦ (D N50 / D C50 ) ≦ 2.5 (5)
However, the D N10, the D N50, the D N90 is, Li x Ni y Co z M w volume cumulative frequency of O 2 particles of 10%, 50%, showed a particle size of 90%, the D C10, the D C50 and D C90 indicate particle diameters of Li a Co b M c O 2 particles with a volume cumulative frequency of 10%, 50%, and 90%.

図1は、本発明に係わる非水電解質二次電池の一例である薄型非水電解質二次電池を示す断面図。
図2は、図1のA部を示す拡大断面図。
図3は、本発明に係わる非水電解質二次電池の一例である角形非水電解質二次電池を示す断面図。
FIG. 1 is a cross-sectional view showing a thin nonaqueous electrolyte secondary battery which is an example of a nonaqueous electrolyte secondary battery according to the present invention.
FIG. 2 is an enlarged cross-sectional view showing a portion A of FIG.
FIG. 3 is a cross-sectional view showing a prismatic nonaqueous electrolyte secondary battery which is an example of the nonaqueous electrolyte secondary battery according to the present invention.

本発明に係る非水電解質二次電池の一例について説明する。
本発明に係る非水電解質二次電池は、容器と、容器内に収納され、かつ正極及び負極を含む電極群と、前記電極群に保持される非水電解質とを具備する。
この二次電池においては、正極と負極の間にセパレータを配置しても良いし、セパレータの代わりにゲル状または固体状の非水電解質層を用いることも可能である。
以下、正極、負極、セパレータ、非水電解質および容器について説明する。
1)正極
この正極は、集電体と、前記集電体の片面もしくは両面に担持され、かつ正極活物質を含有する正極層とを含む。
正極活物質は、下記(A)式で表わされる酸化物粒子及び下記(B)式で表わされる酸化物粒子を含む。前記正極活物質中の前記(A)式で表わされる酸化物粒子の割合は50重量%を超える。
LiNiCo (A)
LiCo (B)
但し、前記Mは、Mn、B、Al及びSnよりなる群から選択される1種類以上の元素であり、前記モル比x、y、z、w、a、b、cは、それぞれ、0.95≦x≦1.05、0.7≦y≦0.95、0.05≦z≦0.3、0≦w≦0.1、0.95≦y+z+w≦1.05、0.95≦a≦1.05、0.95≦b≦1.05、0≦c≦0.05、0.95≦b+c≦1.05を示す。
また、この正極活物質は、下記(1)〜(5)式を満足する。
1.4≦(DN90/DN50)≦2 (1)
1.4≦(DN50/DN10)≦2 (2)
1.4≦(DC90/DC50)≦2 (3)
1.4≦(DC50/DC10)≦2 (4)
1.5≦(DN50/DC50)≦2.5 (5)
但し、前記DN10は、前記LiNiCo粒子の体積累積頻度10%粒径を示し、前記DN50は、前記LiNiCo粒子の体積累積頻度50%粒径を示し、前記DN90は、前記LiNiCo粒子の体積累積頻度90%粒径を示す。一方、前記DC10は、前記LiCo粒子の体積累積頻度10%粒径を示し、前記DC50は、前記LiCo粒子の体積累積頻度50%粒径を示し、前記DC90は、前記LiCo粒子の体積累積頻度90%粒径を示す。
{LiNiCo粒子(以下、ニッケル系粒子と称す)}
(Li)
リチウムのモル比xを前記範囲に規定するのは、以下に説明する理由によるものである。モル比xを0.95未満にすると、充放電反応に寄与するLiイオンが減少して放電容量が低下する。一方、モル比xが1.05を超えると、NiサイトへのLiイオンの混入が生じるため、放電容量が低下する。また、結晶構造の変化によって反応性が低下するため、放電電圧が低下する。モル比xのさらに好ましい範囲は、0.97≦x≦1.03である。
(Ni)
ニッケルのモル比yを前記範囲に規定するのは、以下に説明する理由によるものである。モル比yを0.7未満にすると、LiCoOによる放電容量に近い特性となるため、エネルギー密度向上を達成し難くなる。一方、モル比yが0.95を超えると、放電容量が大きくなるものの、充放電サイクルに伴い結晶構造の分解が起こりやすくなる。モル比yのさらに好ましい範囲は、0.75≦y≦0.9である。
(Co)
コバルトのモル比zを前記範囲に規定するのは、以下に説明する理由によるものである。モル比zを0.05未満にすると、Ni層のスタッキングが乱れやすく、充放電サイクルに伴い結晶構造の分解が起こりやすい。一方、モル比zが0.3を超えると、Co層のスタッキングを整える(結晶性を高くする)ために合成温度を850℃以上にする必要があるが、合成温度を高くすると、Ni−Oの結合が切れて脱酸素反応が生じ、R3m構造からの逸脱が起こり、放電容量が低下する。モル比zのさらに好ましい範囲は、0.1≦z≦0.25である。
(元素M)
元素Mは、充放電サイクルによる分解を抑制する効果を奏し、結晶の構造を支える柱となることが可能である。また、元素Mの添加により、反応界面での非水電解質の分解を抑制することも可能である。但し、モル比wが0.1を超えると、リチウムイオンサイトへニッケルが混入しやすくなるため、結晶構造が変化し大電流の放電が困難となる恐れがあることから、モル比wは0.1以下にすることが望ましい。モル比wのより好ましい範囲は0≦w≦0.07で、さらに好ましい範囲は0≦w≦0.05で、最も好ましい範囲は0≦w≦0.03である。元素Mの添加効果を十分に得るために、モル比wの下限値は0.001にすることが好ましい。
元素Mの中でもSnが好ましい。元素MとしてSnを用いると、高温環境下での充放電サイクル寿命を向上することができる。これは、正極の表面にEC由来の保護被膜が形成される反応が促進され、高温環境下(45℃付近)での正極とγ−ブチルラクトンとの反応が抑制されるためであると推測される。なお、LiNiCoSn粒子は、LiNiCoとLiSnOとの混合物である。
また、元素MとしてAlまたはMnを用いると、LiNiCo粒子の結晶構造の安定性が高くなるため、長期サイクルに亘って充放電を安定して行なうことができ、充放電サイクル寿命をより向上することができる。
モル比y、z、wの合計(y+z+w)を前記範囲に規定する理由を説明する。(y+z+w)を0.95未満にすると、粒子中のLi比率が高くなるため、充放電反応に寄与しない不純物が生成し、放電容量が低下する。一方、(y+z+w)が1.05を超えると、反応に寄与するLi量が減少するため、放電容量が低下する。
(DN90/DN50)と(DN50/DN10)のそれぞれを1.4〜2の範囲内に限定するのは、以下に説明する理由によるものである。(DN90/DN50)と(DN50/DN10)が1であるとは、ニッケル系粒子の粒度分布が単分散であることを意味する。(DN90/DN50)および(DN50/DN10)が1.4未満であると、ニッケル系粒子の粒度分布が狭いため、正極の活物質充填量が不足して高容量を得られなくなる。
一方、(DN90/DN50)が2を超えるニッケル系粒子には、大粒径の粒子が多く含まれている。大粒径の粒子は、リチウムの吸蔵・放出に伴う膨張収縮が大きいため、微粉化の進行が速い。よって、(DN90/DN50)が2を超えると、ニッケル系粒子の微粉化が進み、長寿命を得られなくなる。
また、(DN50/DN10)が2を超えるニッケル系粒子には、微小粒子が多く含まれている。このようなニッケル系粒子は、非水電解質に対する反応性が高いため、非水電解質の酸化分解が進み、充放電サイクル寿命が低下する。
(DN90/DN50)および(DN50/DN10)それぞれのさらに好ましい範囲は、1.5〜1.9である。
正極活物質中のニッケル系粒子の含有量を50重量%よりも多くするのは、以下に説明する理由によるものである。正極活物質中のニッケル系粒子の含有量を50重量%以下にすると、単位重量当りの放電容量(比容量)が低下する。但し、ニッケル系粒子の含有量が90重量%を超えると、高い放電電圧と優れた大電流充放電特性が得られなくなる恐れがあるため、ニッケル系粒子の含有量は、50重量%より多く、90重量%以下の範囲内にすることが望ましい。
さらに好ましい範囲は、50〜80重量%である。
{LiCo粒子(以下、コバルト系粒子と称す)}
リチウムのモル比aを前記範囲に規定するのは、以下に説明する理由によるものである。モル比aを0.95未満にすると、充放電反応に寄与するLiイオンが減少するため、放電容量が低下する。一方、モル比aが1.05を超えると、LiCoO構造とは異なる不純物が生成するため、放電容量が低下する。モル比aのさらに好ましい範囲は、0.97≦a≦1.03である。
(Co)
コバルトのモル比bを前記範囲に規定するのは、以下に説明する理由によるものである。モル比bを0.95未満にすると、相対的に(a/b)比が大きくなるため、充放電反応に寄与するLiイオンが減少し、放電容量が低下する。一方、モル比bが1.05を超えると、相対的に(a/b)比が小さくなるため、充放電に関与しない不純物が生成して放電容量が低下する。モル比bのさらに好ましい範囲は、0.97≦b≦1.03である。
(元素M)
元素Mは、非水電解質の分解反応を抑制もしくは制御したり、充放電サイクルによる結晶構造の分解を抑制するための構造強化の役割をなす。また、充放電に対して元素Mの価数が変化しない場合、結晶構造が強化されるため、サイクル特性が向上される。但し、モル比cが0.05を超えると、相対的にCo量が低下し、電池反応に関与するLi量が不足するため、放電容量が低下する。よって、モル比cは0,05以下にすることが望ましい。モル比cのさらに好ましい範囲は、0.001≦c≦0.03である。
元素Mの中でもSnが好ましい。元素MとしてSnを用いると、高温環境下での充放電サイクル寿命を向上することができる。これは、正極の表面にEC由来の保護被膜が形成される反応が促進され、高温環境下(45℃付近)での正極とγ−ブチルラクトンとの反応が抑制されるためであると推測される。なお、LiCoSn粒子は、LiCoとLiSnOとの混合物である。
モル比b、cの合計(b+c)を前記範囲に規定する理由を説明する。(b+c)を0.95未満にすると、粒子中のLi比率が高くなるため、充放電反応に寄与しない不純物が生成し、放電容量が低下する。一方、(b+c)が1.05を超えると、反応に寄与するLi量が減少するため、放電容量が低下する。
(DC90/DC50)と(DC50/DC10)のそれぞれを1.4〜2の範囲内に限定するのは、以下に説明する理由によるものである。(DC90/DC50)と(DC50/DC10)が1であるとは、コバルト系粒子の粒度分布が単分散であることを意味する。(DC90/DC50)および(DC50/DC10)が1.4未満であると、コバルト系粒子の粒度分布が狭いため、正極の活物質充填量が不足して高容量を得られなくなる。
一方、(DC90/DC50)が2を超えるコバルト系粒子には、大粒径の粒子が多く含まれている。このようなコバルト系粒子は、リチウム拡散速度が遅いため、大電流充放電特性の低下を招く。
また、(DC50/DC10)が2を超えるコバルト系粒子には、微小粒子が多く含まれている。このようなコバルト系粒子は、非水電解質との反応性が高いため、非水電解質の酸化分解が進み、充放電サイクル寿命が低下する。
(DC90/DC50)および(DC50/DC10)それぞれのさらに好ましい範囲は、1.5〜1.9である。
コバルト系粒子のDC50は、0.2μm以上、30μm以下の範囲内であることが好ましい。これは次のような理由によるものである。DC50を0.2μm未満にすると、コバルト系粒子の結晶成長が不充分となって充分な放電容量を得られなくなる恐れがある。一方、DC50が30μmを超えると、正極の製造時に、均一な正極表面を得ることが困難になるほか、粒子径が大きいために体積当りの表面積が少なくなって反応性が低下する。DC50のより好ましい範囲は、1μm以上、15μm以下である。
前述したニッケル系粒子及びコバルト系粒子が体積累積頻度10%、50%、90%について前述した(1)〜(4)の関係を満たした際に、粒径D(DN50/DC50)を1.5〜2.5の範囲内に規定する理由について説明する。(DN50/DC50)が1以上、1.5未満であると、ニッケル系粒子の粒度分布とコバルト系粒子の粒度分布の類似性が高いため、ニッケル系粒子のリチウム吸蔵・放出に伴う膨張収縮をコバルト系粒子で抑制することが困難になり、充放電サイクル寿命が低下する。また、コバルト系粒子は、平均放電電圧をニッケル系粒子よりも高くすることができ、かつ放電初期からリチウムの吸蔵・放出を容易に行うことができる。(DN50/DC50)が1より小さい場合には、コバルト系粒子の粒度分布がニッケル系粒子の粒度分布よりも大粒径側に存在するため、コバルト系粒子のリチウム拡散速度が損なわれ、大電流充放電特性が劣化する。
(DN50/DC50)が2.5を超えると、ニッケル系粒子の粒度分布がコバルト系粒子の粒度分布よりも著しく大粒径側に位置するため、ニッケル系粒子の反応性とコバルト系粒子の反応性の差が顕著になる。その結果、正極において充放電反応が不均一に生じやすくなるため、充放電サイクル寿命が低下する。また、かかる正極活物質を用いてペーストを調製すると、ペーストの分散性あるいは塗工性が損なわれるため、品質の安定した正極を得ることが困難になる。(DN50/DC50)のより好ましい範囲は、1.6〜2.4である。
正極活物質には、ニッケル系粒子とコバルト系粒子をそれぞれ1種類ずつ用いても良いが、ニッケル系粒子として組成の異なる2種類以上を用いても、もしくはコバルト系粒子として組成の異なる2種類以上を用いても良い。
前記正極は、例えば、以下の(i)〜(iii)に説明する方法で作製される。
(i)正極活物質、導電剤および結着剤を適当な溶媒に懸濁させ、得られた合剤スラリーを集電体に塗布し、乾燥した後、プレスを施し、所望の大きさに裁断することによって正極を得る。この時、集電体の片面当りのスラリーの塗布量を100〜400g/mの範囲内にすることが好ましい。
(ii)正極活物質、導電剤および結着剤を混練し、得られた混合物をペレット状に成型した後、得られたペレットを集電体に圧着することにより正極を得る。
(iii)正極活物質、導電剤および結着剤を混練し、得られた混合物をシート状に成型した後、得られたシートを集電体に圧着することにより正極を得る。
前記導電剤としては、例えば、アセチレンブラックやケッチェンブラックなどのカーボンブラック、黒鉛等を挙げることができる。
前記結着剤としては、例えば、ポリフッ化ビニリデン(PVdF)、モノマー成分としてフッ化ビニリデン(VdF)、テトラフルオロエチレン(TFE)、ヘキサフルオロプロピレン(HFP)、クロロトリフルオロエチレン(CTFE)、パーフルオロアルキルビニルエーテル(PFA)、エチレンを含む共重合体あるいは三元共重合体等を用いることができる。
正極活物質、導電剤および結着剤の配合割合は、正極活物質80〜95重量%、導電剤3〜10重量%、結着剤2〜10重量%の範囲であることが好ましい。
前記集電体としては、例えばアルミニウム箔、ステンレス箔、チタン箔を用いることができるが、引張り強度、電気化学的な安定性および捲回時の柔軟性等を考慮するとアルミニウム箔が最も好ましい。この時の箔の厚さは10μm以上、30μm以下であることが好ましい。集電体は箔状である他にもパンチドメタル、エキスパンドメタル等の有孔集電体を使用しても良い。
2)負極
この負極は、集電体と、前記集電体の片面もしくは両面に担持される負極層とを含む。
負極層には、リチウムイオンまたはリチウム原子を吸蔵・放出する化合物が含まれる。かかる化合物としては、例えば、導電性高分子(例えば、ポリアセタール、ポリアセチレン、ポリピロールなど)、有機物焼結体のような炭素材料などを挙げることができる。
前記炭素材料は、原料の種類や焼結法により特性を調節することができる。炭素材料の具体例としては、黒鉛系炭素材料、黒鉛結晶部と非晶部が混在したような炭素材料、結晶層の積層に規則性のない乱層構造を取る炭素材料などを挙げることができる。
前記負極は、例えば、以下の(I)〜(III)に説明する方法で作製される。
(I)リチウムイオンまたはリチウム原子を吸蔵・放出する化合物と結着剤とを適当な溶媒に懸濁させ、得られた合剤スラリーを集電体に塗布し、乾燥した後、プレスを施し、所望の大きさに裁断することによって負極を得る。この時、集電体の片面当りのスラリーの塗布量を50〜200g/mの範囲内にすることが好ましい。
(II)リチウムイオンまたはリチウム原子を吸蔵・放出する化合物と結着剤とを混練し、得られた混合物をペレット状に成型した後、得られたペレットを集電体に圧着することにより負極を得る。
(III)リチウムイオンまたはリチウム原子を吸蔵・放出する化合物と結着剤とを混練し、得られた混合物をシート状に成型した後、得られたシートを集電体に圧着することにより負極を得る。
前記結着剤としては、前述した正極で説明したのと同様なものを挙げることができる。
前記負極の集電体としては、例えば銅箔、ニッケル箔等を用いることができる。電気化学的な安定性および柔軟性を考慮すると、銅箔がもっとも好ましい。この時の箔の厚さはとしては8μm以上、20μm以下であることが好ましい。集電体は箔状である他にもパンチドメタル、エキスパンドメタル等の有孔集電体を使用しても良い。
3)非水電解質
非水電解質には、実質的に液状またはゲル状の形態を有するものを使用することができる。液状非水電解質は、非水溶媒と、非水溶媒に溶解される電解質とを含む。一方、ゲル状非水電解質は、液状非水電解質と、液状非水電解質をゲル化させるゲル化剤とを含むものである。ゲル化剤としては、例えば、ポリエチレンオキサイド、ポリアクリロニトリル等を挙げることができる。
前記非水溶媒としては、例えば、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、ジエトキシエタン(DEE)、γ−ブチルラクトン(γ−BL)、テトラヒドロフラン(THF)、2−メチルテトラヒドロフラン(2−MeTHF)、1,3−ジオキソラン、1,3−ジメトキシプロパン等を挙げることができる。使用する非水溶媒の種類は、1種類または2種類以上にすることができる。
前記電解質としては、例えば、過塩素酸リチウム(LiClO)、四フッ化ホウ酸リチウム(LiBF)、六フッ化砒素リチウム(LiAsF)、トリフルオロメタンスルホン酸リチウム(LiCFSO)、ビストリフルオロメチルスルホニルイミドリチウム[(LiN(CFSO]、LiN(CSO、四塩化アルミニウムリチウムなどのリチウム塩を挙げることができる。使用する電解質の種類は、1種類または2種類以上にすることができる。
前記電解質の前記非水溶媒に対する溶解量は、0.5〜1.5モル/Lの範囲内にすることが望ましい。
4)セパレータ
このセパレータは、多孔質シートから形成される。
前記多孔質シートは、例えば、多孔質フィルム、もしくは不織布を用いることができる。前記多孔質シートは、例えば、ポリオレフィンおよびセルロースから選ばれる少なくとも1種類の材料からなることが好ましい。前記ポリオレフィンとしては、例えば、ポリエチレン、ポリプロピレンをあげることができる。中でも、ポリエチレンか、あるいはポリプロピレン、または両者からなる多孔質フィルムは、二次電池の安全性を向上できるため好ましい。
5)容器
容器の形状は、例えば、有底円筒形、有底角筒形、袋状、カップ状等にすることができる。
前記容器は、例えば、樹脂、樹脂層を含むシート、金属板、金属フィルム等から形成することができる。
前記樹脂としては、例えば、ポリエチレンやポリプロピレンのようなポリオレフィン、ナイロン等をあげることができる。
前記シートに含まれる樹脂層は、たとえば、ポリエチレン、ポリプロピレン、ナイロン等から形成することができる。前記シートとしては金属層と、前記金属層の両面に配置された保護層とが一体化されたシートを用いることが好ましい。前記金属層は、例えば、アルミニウム、ステンレス、鉄、銅、ニッケル等から形成される。中でも、軽量で、水分を遮断する機能が高いアルミニウムが好ましい。前記金属層は、1種類の金属から形成してもよいが、2種類以上の金属を一体化させたものから形成してもよい。前記2つの保護層のうち、外部と接する保護層は前記金属層の損傷を防止する役割をなす。この外部保護層は、1種類の樹脂層、もしくは2種類以上の樹脂層から形成される。一方、内部保護層は、前記金属層が非水電解質により腐食されるのを防止する役割を担う。この内部保護相は、1種類の樹脂層、もしくは2種類以上の樹脂層から形成される。また、かかる内部保護層の表面に熱可塑性樹脂を配することができる。
前記金属板および前記金属フィルムは、例えば、鉄、ステンレス、アルミニウムから形成することができる。
本発明に係わる非水電解質二次電池の一例である薄型非水電解質二次電池を図1および図2を参照にして説明する。
図1は本発明に係わる非水電解質二次電池の一例である薄型非水電解質二次電池を示す断面図、図2は図1のA部を示す拡大断面図である。図1に示すように、容器1内には、電極群2が収納されている。前記電極群2は、正極、セパレータおよび負極からなる積層物が扁平形状に捲回された構造を有する。前記積層物は、図2に示すように、(図の下側から)セパレータ3、正極層4と正極集電体5と正極層4とを備えた正極6、セパレータ3、負極層7と負極集電体8と負極層7とを備えた負極9、セパレータ3、正極層4と正極集電体5と正極層4とを備えた正極6、セパレータ3、負極層7と負極集電体8とを備えた負極9がこの順番に積層されたされたものからなる。帯状正極リード10は、一端が前記正極群2の前記正極集電体5に接続され、かつ、他端が前記容器1から延出されている。一方、帯状の負極リード11は、一端が前記負極群2の前記負極集電体8に接続され、かつ、他端が前記容器1から延出されている。
なお、前述した図1、図2においては正極と負極がセパレータを介在させて扁平形状に捲回された電極群を用いたが、正極と負極をセパレータを介在させて折りたたむことによる電極群や、正極と負極をセパレータを介在させて積層した電極群などを使用してもよい。
また、本発明を角形非水電解質二次電池に適用した例を図3に示す。
図3に示すように、例えばアルミニウムのような金属製の有底矩形筒状容器12内には、電極群13が収納されている。電極群13は、正極14、セパレータ15及び負極16がこの順序で積層され、扁平状に捲回されたものである。中央付近に開口部を有するスペーサ17は、電極群13の上方に配置されている。
非水電解質は、電極群13に保持されている。防爆機構18aを備え、かつ中央付近に円形孔が開口されている封口板18bは、容器12の開口部にレーザ溶接されている。負極端子19は、封口板18bの円形孔にハーメチックシールを介して配置されている。負極16から引き出された負極タブ20は、負極端子19の下端に溶接されている。一方、正極タブ(図示しない)は、正極端子を兼ねる容器12に接続されている。
以上説明した本発明に係る非水電解質二次電池の正極活物質は、LiCo粒子(コバルト系粒子)と、50重量%を超えるLiNiCo粒子(ニッケル系粒子)とを含有し、かつ前述した(1)〜(5)式を満足する。
このような二次電池によれば、高い放電電圧と優れた大電流充放電特性を確保しつつ、正極活物質充填密度と充放電サイクル寿命とを向上することができる。
すなわち、正極活物質中のニッケル系粒子の含有量を50重量%よりも多くすることによって、単位重量当りの放電容量(比容量)を向上することができる。
また、ニッケル系粒子の(DN90/DN50)を1.4〜2の範囲内にすることによって、ニッケル系粒子のうち、リチウムの吸蔵放出に伴う膨張収縮が極端に大きい粒子を少なくすることができる。一方、コバルト系粒子の(DC90/DC50)を1.4〜2の範囲内にすることによって、正極活物質において高いリチウム拡散速度を確保することができる。
ニッケル系粒子の(DN50/DN10)とコバルト系粒子の(DC50/DC10)とを1.4〜2の範囲内にすることによって、正極活物質の非水電解質に対する反応性を低くすることができるため、非水電解質の酸化分解を抑制することができる。
さらに、(DN50/DC50)を1.5〜2.5の範囲内にすることによって、正極活物質の粒度分布に適度な幅を持たせることができるため、正極活物質の充填密度を向上することができる。同時に、ニッケル系粒子のリチウム吸蔵・放出に伴う膨張収縮を、より膨張収縮度合いが小さいコバルト系粒子によって抑えることができるため、ニッケル系粒子の微粉化を抑制することができる。
従って、本願発明によれば、放電電圧、比容量、大電流充放電特性、活物質充填密度および充放電サイクル寿命を同時に満足する非水電解質二次電池を実現することができる。
以下、本発明の実施例を図面を参照して詳細に説明する。
<正極の比容量(mAh/g)の測定>
まず、コバルト系粒子であるLiCoO粒子と、ニッケル系粒子であるLiNi0.81Co0.19粒子とを下記表1に示す重量比で混合し、試料1〜7を用意した。
試料1〜7を活物質として用いて作用極を作製した。すなわち、ポリテトラフルオロエチレン(PTFE)0.03重量部、アセチレンブラック(AB)0.06重量部、活物質1重量部をメノウ乳鉢で混練し、ローラープレスでシート化した後、ニッケル製の網に圧着し、活物質約0.05gを含有する1cm×1cmの作用極を作製した。
Li箔をニッケル製の網に圧着して2cm×2cmの対極および0.5cm×0.5cmの参照極を作製した。ガラスフィルターを介在させて作用極と対極を対向させて配置し、参照極を対極と作用極に接触しないように配置してセルを作製した。
金属性ワイヤーを介して通電できるガラス容器に前記セルを接続し、前記セルが浸漬するまで非水電解液(エチレンカーボネート(EC)とγ−ブチルラクトンが体積比で1:2で混合された非水溶媒にLiBFを1.5mol/L溶解させたもの)を満たした後、封止した。作業は、露点−80℃のグローブボックス内部でおこなった。
充電は1mAの定電流で4.25Vまで充電し、4.25Vに達した時点から4.25Vの定電圧で充電した。定電流充電と定電圧充電の時間の合計を20時間とした。放電は1.0mAでおこない3.0Vに達するまでの放電量を放電容量とした。放電容量を作用極中の活物質重量で割った値を比容量(mAh/g)として、下記表1に示す。また、表1には、1gのLiCoOの放電容量と同様の放電容量が得られる試料1〜7の重量も合わせて示す。

Figure 2004027903
表1から明らかなように、ニッケル系粒子の配合量が50重量%よりも多い試料1〜4は、放電容量(mAh/g)を試料5〜7に比較して高くすることができ、また、LiCoO(試料7)に比較して少ない量で高い放電容量が得られることがわかる。
以下の実施例では、コバルト系粒子とニッケル系粒子との混合比の違いによる比容量差に起因する影響を少なくするために、負極の塗布量を一定として、正極活物質の混合比に合わせて正極塗布量(正極活物質含有量)を変化させて電池作製をおこなった。An example of the nonaqueous electrolyte secondary battery according to the present invention will be described.
The nonaqueous electrolyte secondary battery according to the present invention includes a container, an electrode group that is housed in the container and includes a positive electrode and a negative electrode, and a nonaqueous electrolyte that is held by the electrode group.
In this secondary battery, a separator may be disposed between the positive electrode and the negative electrode, or a gel-like or solid non-aqueous electrolyte layer may be used instead of the separator.
Hereinafter, the positive electrode, the negative electrode, the separator, the nonaqueous electrolyte, and the container will be described.
1) Positive electrode
The positive electrode includes a current collector and a positive electrode layer supported on one or both surfaces of the current collector and containing a positive electrode active material.
The positive electrode active material includes oxide particles represented by the following formula (A) and oxide particles represented by the following formula (B). The ratio of the oxide particles represented by the formula (A) in the positive electrode active material exceeds 50% by weight.
Li x Ni y Co z M w O 2 (A)
Li a Co b M c O 2 (B)
However, M is one or more elements selected from the group consisting of Mn, B, Al, and Sn, and the molar ratios x, y, z, w, a, b, c are 0. 95 ≦ x ≦ 1.05, 0.7 ≦ y ≦ 0.95, 0.05 ≦ z ≦ 0.3, 0 ≦ w ≦ 0.1, 0.95 ≦ y + z + w ≦ 1.05, 0.95 ≦ a ≦ 1.05, 0.95 ≦ b ≦ 1.05, 0 ≦ c ≦ 0.05, 0.95 ≦ b + c ≦ 1.05 are shown.
Moreover, this positive electrode active material satisfies the following formulas (1) to (5).
1.4 ≦ (D N90 / D N50 ) ≦ 2 (1)
1.4 ≦ (D N50 / D N10 ) ≦ 2 (2)
1.4 ≦ (D C90 / D C50 ) ≦ 2 (3)
1.4 ≦ (D C50 / D C10 ) ≦ 2 (4)
1.5 ≦ (D N50 / D C50 ) ≦ 2.5 (5)
However, D N10 Is the Li x Ni y Co z M w O 2 The volume cumulative frequency of particles is 10%, and the particle size D N50 Is the Li x Ni y Co z M w O 2 The volume cumulative frequency of the particles is 50%, and the particle size D N90 Is the Li x Ni y Co 2 M w O 2 The volume cumulative frequency of the particles is 90%. Meanwhile, D C10 Is the Li a Co b M c O 2 The volume cumulative frequency of particles is 10%, and the particle size D C50 Is the Li a Co b M c O 2 The volume cumulative frequency of the particles is 50%, and the particle size D C90 Is the Li a Co b M c O 2 The volume cumulative frequency of particles is 90%.
{Li x Ni y Co z M w O 2 Particle (hereinafter referred to as nickel-based particle)}
(Li)
The reason why the molar ratio x of lithium is defined in the above range is for the reason described below. When the molar ratio x is less than 0.95, the Li ions contributing to the charge / discharge reaction are reduced and the discharge capacity is reduced. On the other hand, when the molar ratio x exceeds 1.05, Li ions are mixed into the Ni site, so that the discharge capacity is reduced. In addition, since the reactivity decreases due to a change in the crystal structure, the discharge voltage decreases. A more preferable range of the molar ratio x is 0.97 ≦ x ≦ 1.03.
(Ni)
The reason why the molar ratio y of nickel is defined within the above range is for the reason described below. When the molar ratio y is less than 0.7, LiCoO 2 Therefore, it becomes difficult to achieve an improvement in energy density. On the other hand, when the molar ratio y exceeds 0.95, the discharge capacity increases, but the crystal structure is likely to be decomposed along with the charge / discharge cycle. A more preferable range of the molar ratio y is 0.75 ≦ y ≦ 0.9.
(Co)
The reason why the molar ratio z of cobalt is defined in the above range is for the reason described below. When the molar ratio z is less than 0.05, the stacking of the Ni layer tends to be disturbed, and the crystal structure is likely to be decomposed along with the charge / discharge cycle. On the other hand, when the molar ratio z exceeds 0.3, the synthesis temperature needs to be 850 ° C. or higher in order to adjust the stacking of the Co layer (increase the crystallinity). As a result, a deoxygenation reaction occurs, a deviation from the R3m structure occurs, and the discharge capacity decreases. A more preferable range of the molar ratio z is 0.1 ≦ z ≦ 0.25.
(Element M)
The element M has an effect of suppressing decomposition due to the charge / discharge cycle, and can serve as a pillar supporting the crystal structure. Further, by adding the element M, it is possible to suppress the decomposition of the nonaqueous electrolyte at the reaction interface. However, if the molar ratio w exceeds 0.1, nickel is likely to be mixed into the lithium ion site, so that the crystal structure may change and it may be difficult to discharge a large current. It is desirable to make it 1 or less. A more preferable range of the molar ratio w is 0 ≦ w ≦ 0.07, a more preferable range is 0 ≦ w ≦ 0.05, and a most preferable range is 0 ≦ w ≦ 0.03. In order to sufficiently obtain the effect of adding the element M, the lower limit value of the molar ratio w is preferably set to 0.001.
Among the elements M, Sn is preferable. When Sn is used as the element M, the charge / discharge cycle life in a high temperature environment can be improved. This is presumed to be because the reaction of forming a protective coating derived from EC on the surface of the positive electrode is promoted, and the reaction between the positive electrode and γ-butyllactone in a high temperature environment (around 45 ° C.) is suppressed. The Li x Ni y Co z Sn w O 2 The particles are Li x Ni y Co z O 2 And Li 2 SnO 3 And a mixture.
When Al or Mn is used as the element M, Li x Ni y Co z M w O 2 Since the stability of the crystal structure of the particles is increased, charging / discharging can be performed stably over a long-term cycle, and the charge / discharge cycle life can be further improved.
The reason why the total (y + z + w) of the molar ratios y, z, and w is defined in the above range will be described. When (y + z + w) is less than 0.95, the Li ratio in the particles increases, so that impurities that do not contribute to the charge / discharge reaction are generated, and the discharge capacity decreases. On the other hand, when (y + z + w) exceeds 1.05, the amount of Li contributing to the reaction decreases, and the discharge capacity decreases.
(D N90 / D N50 ) And (D N50 / D N10 ) Is limited to the range of 1.4 to 2 for the reason described below. (D N90 / D N50 ) And (D N50 / D N10 1) means that the particle size distribution of the nickel-based particles is monodispersed. (D N90 / D N50 ) And (D N50 / D N10 ) Less than 1.4, the particle size distribution of the nickel-based particles is narrow, so the active material filling amount of the positive electrode is insufficient and a high capacity cannot be obtained.
On the other hand, (D N90 / D N50 The nickel-based particles in which) exceeds 2 contain many large particles. Large particles have a large expansion and contraction associated with insertion and extraction of lithium, so that the progress of pulverization is fast. Therefore, (D N90 / D N50 ) Exceeds 2, the pulverization of nickel-based particles proceeds and a long life cannot be obtained.
Also, (D N50 / D N10 The nickel-based particles having more than 2) contain many fine particles. Since such nickel-based particles have high reactivity with respect to the non-aqueous electrolyte, the oxidative decomposition of the non-aqueous electrolyte proceeds and the charge / discharge cycle life is reduced.
(D N90 / D N50 ) And (D N50 / D N10 ) A more preferable range of each is 1.5 to 1.9.
The reason why the content of nickel-based particles in the positive electrode active material is more than 50% by weight is as follows. When the content of nickel-based particles in the positive electrode active material is 50% by weight or less, the discharge capacity (specific capacity) per unit weight decreases. However, if the content of nickel-based particles exceeds 90% by weight, a high discharge voltage and excellent large current charge / discharge characteristics may not be obtained. Therefore, the content of nickel-based particles is more than 50% by weight, It is desirable to be within the range of 90% by weight or less.
A more preferable range is 50 to 80% by weight.
{Li a Co b M c O 2 Particles (hereinafter referred to as cobalt-based particles)}
The reason why the molar ratio a of lithium is defined in the above range is for the reason described below. When the molar ratio a is less than 0.95, Li ions contributing to the charge / discharge reaction are reduced, so that the discharge capacity is lowered. On the other hand, when the molar ratio a exceeds 1.05, LiCoO 2 Since impurities different from the structure are generated, the discharge capacity is reduced. A more preferable range of the molar ratio a is 0.97 ≦ a ≦ 1.03.
(Co)
The reason why the molar ratio b of cobalt is defined within the above range is for the reason described below. When the molar ratio b is less than 0.95, since the (a / b) ratio is relatively large, Li ions contributing to the charge / discharge reaction are reduced, and the discharge capacity is reduced. On the other hand, when the molar ratio b exceeds 1.05, since the (a / b) ratio is relatively small, impurities not involved in charge / discharge are generated and the discharge capacity is reduced. A more preferable range of the molar ratio b is 0.97 ≦ b ≦ 1.03.
(Element M)
The element M plays a role of strengthening the structure for suppressing or controlling the decomposition reaction of the nonaqueous electrolyte and suppressing the decomposition of the crystal structure due to the charge / discharge cycle. Moreover, when the valence of the element M does not change with respect to charging / discharging, since the crystal structure is strengthened, cycle characteristics are improved. However, when the molar ratio c exceeds 0.05, the amount of Co is relatively decreased, and the amount of Li involved in the battery reaction is insufficient, so that the discharge capacity is decreased. Therefore, the molar ratio c is desirably 0.05 or less. A more preferable range of the molar ratio c is 0.001 ≦ c ≦ 0.03.
Among the elements M, Sn is preferable. When Sn is used as the element M, the charge / discharge cycle life in a high temperature environment can be improved. This is presumed to be because the reaction of forming a protective coating derived from EC on the surface of the positive electrode is promoted, and the reaction between the positive electrode and γ-butyllactone in a high temperature environment (around 45 ° C.) is suppressed. The Li a Co b Sn c O 2 The particles are Li a Co b O 2 And Li 2 SnO 3 And a mixture.
The reason why the total (b + c) of the molar ratios b and c is defined within the above range will be described. When (b + c) is less than 0.95, the Li ratio in the particles increases, so that impurities that do not contribute to the charge / discharge reaction are generated, and the discharge capacity decreases. On the other hand, when (b + c) exceeds 1.05, the amount of Li contributing to the reaction decreases, and the discharge capacity decreases.
(D C90 / D C50 ) And (D C50 / D C10 ) Is limited to the range of 1.4 to 2 for the reason described below. (D C90 / D C50 ) And (D C50 / D C10 ) Of 1 means that the particle size distribution of the cobalt-based particles is monodispersed. (D C90 / D C50 ) And (D C50 / D C10 ) Less than 1.4, the particle size distribution of the cobalt-based particles is narrow, so that the active material filling amount of the positive electrode is insufficient and a high capacity cannot be obtained.
On the other hand, (D C90 / D C50 The cobalt-based particles in which) exceeds 2 contain many large particles. Since such cobalt-based particles have a low lithium diffusion rate, the large current charge / discharge characteristics are deteriorated.
Also, (D C50 / D C10 The cobalt-based particles in which) exceeds 2 contain many fine particles. Since such cobalt-based particles have high reactivity with the non-aqueous electrolyte, the oxidative decomposition of the non-aqueous electrolyte proceeds and the charge / discharge cycle life is reduced.
(D C90 / D C50 ) And (D C50 / D C10 ) A more preferable range of each is 1.5 to 1.9.
D of cobalt-based particles C50 Is preferably in the range of 0.2 μm or more and 30 μm or less. This is due to the following reason. D C50 If the thickness is less than 0.2 μm, the crystal growth of the cobalt-based particles is insufficient and there is a possibility that a sufficient discharge capacity cannot be obtained. On the other hand, D C50 When the thickness exceeds 30 μm, it is difficult to obtain a uniform positive electrode surface during the production of the positive electrode, and since the particle size is large, the surface area per volume is reduced and the reactivity is lowered. D C50 The more preferable range is 1 μm or more and 15 μm or less.
When the nickel-based particles and cobalt-based particles described above satisfy the relationships (1) to (4) described above for the volume accumulation frequencies of 10%, 50%, and 90%, the particle diameter D (D N50 / D C50 ) Will be described in the range of 1.5 to 2.5. (D N50 / D C50 ) Is 1 or more and less than 1.5, the similarity between the nickel particle size distribution and the cobalt particle size distribution is high. It becomes difficult to suppress, and the charge / discharge cycle life is reduced. Further, the cobalt-based particles can make the average discharge voltage higher than that of the nickel-based particles, and can easily occlude / release lithium from the initial stage of discharge. (D N50 / D C50 ) Is smaller than 1, since the particle size distribution of the cobalt-based particles is larger than the particle size distribution of the nickel-based particles, the lithium diffusion rate of the cobalt-based particles is impaired, and the large current charge / discharge characteristics are to degrade.
(D N50 / D C50 ) Exceeds 2.5, the particle size distribution of the nickel-based particles is significantly larger than the particle size distribution of the cobalt-based particles, so the difference between the reactivity of the nickel-based particles and the reactivity of the cobalt-based particles is Become prominent. As a result, the charge / discharge reaction tends to occur non-uniformly in the positive electrode, so that the charge / discharge cycle life is reduced. In addition, when a paste is prepared using such a positive electrode active material, the dispersibility or coating property of the paste is impaired, so that it is difficult to obtain a positive electrode with stable quality. (D N50 / D C50 ) Is more preferably 1.6 to 2.4.
The positive electrode active material may be one type of nickel-based particles and one type of cobalt-based particles. However, two or more types of nickel-based particles having different compositions may be used, or two or more types of cobalt-based particles having different compositions. May be used.
The said positive electrode is produced by the method demonstrated to the following (i)-(iii), for example.
(I) The positive electrode active material, the conductive agent and the binder are suspended in an appropriate solvent, and the resulting mixture slurry is applied to a current collector, dried, pressed, and cut into a desired size By doing so, a positive electrode is obtained. At this time, the application amount of the slurry per one side of the current collector is 100 to 400 g / m. 2 It is preferable to be within the range.
(Ii) A positive electrode is obtained by kneading a positive electrode active material, a conductive agent and a binder, molding the resulting mixture into a pellet, and then crimping the resulting pellet to a current collector.
(Iii) A positive electrode is obtained by kneading a positive electrode active material, a conductive agent, and a binder, molding the resulting mixture into a sheet, and then pressure bonding the obtained sheet to a current collector.
Examples of the conductive agent include carbon black such as acetylene black and ketjen black, graphite, and the like.
Examples of the binder include polyvinylidene fluoride (PVdF), and monomer components such as vinylidene fluoride (VdF), tetrafluoroethylene (TFE), hexafluoropropylene (HFP), chlorotrifluoroethylene (CTFE), perfluoro An alkyl vinyl ether (PFA), a copolymer containing ethylene, a terpolymer or the like can be used.
The mixing ratio of the positive electrode active material, the conductive agent and the binder is preferably in the range of 80 to 95% by weight of the positive electrode active material, 3 to 10% by weight of the conductive agent, and 2 to 10% by weight of the binder.
As the current collector, for example, an aluminum foil, a stainless steel foil, or a titanium foil can be used, and an aluminum foil is most preferable in consideration of tensile strength, electrochemical stability, flexibility during winding, and the like. The thickness of the foil at this time is preferably 10 μm or more and 30 μm or less. In addition to the foil-like current collector, a perforated current collector such as a punched metal or an expanded metal may be used.
2) Negative electrode
The negative electrode includes a current collector and a negative electrode layer carried on one side or both sides of the current collector.
The negative electrode layer contains lithium ions or compounds that occlude and release lithium atoms. Examples of such compounds include conductive polymers (for example, polyacetal, polyacetylene, polypyrrole, etc.), carbon materials such as organic sintered bodies, and the like.
The characteristics of the carbon material can be adjusted by the type of raw material and the sintering method. Specific examples of the carbon material include a graphite-based carbon material, a carbon material in which a graphite crystal part and an amorphous part are mixed, and a carbon material having a turbulent structure with no regularity in the lamination of crystal layers. .
The said negative electrode is produced by the method demonstrated to the following (I)-(III), for example.
(I) Lithium ions or a compound that occludes / releases lithium atoms and a binder are suspended in a suitable solvent, and the resulting mixture slurry is applied to a current collector, dried, and then pressed. A negative electrode is obtained by cutting into a desired size. At this time, the amount of slurry applied to one side of the current collector is 50 to 200 g / m. 2 It is preferable to be within the range.
(II) After kneading lithium ion or a compound that occludes / releases lithium atoms and a binder, and molding the resulting mixture into a pellet, the resulting pellet is pressure-bonded to a current collector. obtain.
(III) A compound that occludes / releases lithium ions or a lithium atom and a binder are kneaded, and the resulting mixture is molded into a sheet shape. Then, the resulting sheet is pressure-bonded to a current collector to form a negative electrode. obtain.
Examples of the binder include the same ones as described for the positive electrode.
As the current collector of the negative electrode, for example, a copper foil, a nickel foil or the like can be used. In view of electrochemical stability and flexibility, copper foil is most preferred. The thickness of the foil at this time is preferably 8 μm or more and 20 μm or less. In addition to the foil-like current collector, a perforated current collector such as a punched metal or an expanded metal may be used.
3) Non-aqueous electrolyte
As the non-aqueous electrolyte, those having a substantially liquid or gel-like form can be used. The liquid nonaqueous electrolyte includes a nonaqueous solvent and an electrolyte dissolved in the nonaqueous solvent. On the other hand, the gel-like non-aqueous electrolyte contains a liquid non-aqueous electrolyte and a gelling agent that gels the liquid non-aqueous electrolyte. Examples of the gelling agent include polyethylene oxide and polyacrylonitrile.
Examples of the non-aqueous solvent include propylene carbonate (PC), ethylene carbonate (EC), ethyl methyl carbonate (EMC), dimethyl carbonate (DMC), diethyl carbonate (DEC), diethoxyethane (DEE), and γ-butyl. Examples include lactone (γ-BL), tetrahydrofuran (THF), 2-methyltetrahydrofuran (2-MeTHF), 1,3-dioxolane, 1,3-dimethoxypropane, and the like. The kind of non-aqueous solvent to be used can be one kind or two or more kinds.
Examples of the electrolyte include lithium perchlorate (LiClO). 4 ), Lithium tetrafluoroborate (LiBF) 4 ), Lithium hexafluoroarsenide (LiAsF) 6 ), Lithium trifluoromethanesulfonate (LiCF) 3 SO 3 ), Bistrifluoromethylsulfonylimide lithium [(LiN (CF 3 SO 2 ) 2 ], LiN (C 2 F 5 SO 2 ) 2 And lithium salts such as lithium aluminum tetrachloride. The type of electrolyte used can be one type or two or more types.
The amount of the electrolyte dissolved in the non-aqueous solvent is preferably in the range of 0.5 to 1.5 mol / L.
4) Separator
This separator is formed from a porous sheet.
For example, a porous film or a non-woven fabric can be used as the porous sheet. The porous sheet is preferably made of at least one material selected from, for example, polyolefin and cellulose. Examples of the polyolefin include polyethylene and polypropylene. Among these, a porous film made of polyethylene, polypropylene, or both is preferable because it can improve the safety of the secondary battery.
5) Container
The shape of the container can be, for example, a bottomed cylindrical shape, a bottomed rectangular tube shape, a bag shape, a cup shape, or the like.
The container can be formed of, for example, a resin, a sheet including a resin layer, a metal plate, a metal film, or the like.
Examples of the resin include polyolefin such as polyethylene and polypropylene, nylon, and the like.
The resin layer included in the sheet can be formed from, for example, polyethylene, polypropylene, nylon, or the like. As the sheet, it is preferable to use a sheet in which a metal layer and protective layers disposed on both sides of the metal layer are integrated. The metal layer is made of, for example, aluminum, stainless steel, iron, copper, nickel or the like. Among these, aluminum that is lightweight and has a high function of blocking moisture is preferable. The metal layer may be formed from one type of metal, but may be formed from a combination of two or more types of metals. Of the two protective layers, the protective layer in contact with the outside serves to prevent damage to the metal layer. This external protective layer is formed of one type of resin layer or two or more types of resin layers. On the other hand, the internal protective layer plays a role of preventing the metal layer from being corroded by the non-aqueous electrolyte. This internal protective phase is formed of one type of resin layer or two or more types of resin layers. In addition, a thermoplastic resin can be disposed on the surface of the internal protective layer.
The metal plate and the metal film can be formed of, for example, iron, stainless steel, or aluminum.
A thin nonaqueous electrolyte secondary battery which is an example of a nonaqueous electrolyte secondary battery according to the present invention will be described with reference to FIGS.
FIG. 1 is a cross-sectional view showing a thin non-aqueous electrolyte secondary battery which is an example of a non-aqueous electrolyte secondary battery according to the present invention, and FIG. 2 is an enlarged cross-sectional view showing part A of FIG. As shown in FIG. 1, an electrode group 2 is accommodated in the container 1. The electrode group 2 has a structure in which a laminate composed of a positive electrode, a separator, and a negative electrode is wound into a flat shape. As shown in FIG. 2, the laminate includes a separator 3, a positive electrode layer 4 having a positive electrode layer 4, a positive electrode current collector 5, and a positive electrode layer 4, a separator 3, a negative electrode layer 7, and a negative electrode. Negative electrode 9 having current collector 8 and negative electrode layer 7, separator 3, positive electrode layer 4 having positive electrode layer 4, positive electrode current collector 5, and positive electrode layer 4, separator 3, negative electrode layer 7 and negative electrode current collector 8 And the negative electrode 9 having the above structure is laminated in this order. One end of the strip-like positive electrode lead 10 is connected to the positive electrode current collector 5 of the positive electrode group 2, and the other end is extended from the container 1. On the other hand, one end of the strip-like negative electrode lead 11 is connected to the negative electrode current collector 8 of the negative electrode group 2 and the other end is extended from the container 1.
In addition, in FIG. 1 and FIG. 2 described above, the electrode group in which the positive electrode and the negative electrode are wound in a flat shape with a separator interposed therebetween is used. An electrode group in which a positive electrode and a negative electrode are laminated with a separator interposed therebetween may be used.
Moreover, the example which applied this invention to the square nonaqueous electrolyte secondary battery is shown in FIG.
As shown in FIG. 3, an electrode group 13 is accommodated in a bottomed rectangular cylindrical container 12 made of metal such as aluminum. In the electrode group 13, a positive electrode 14, a separator 15 and a negative electrode 16 are laminated in this order and wound in a flat shape. A spacer 17 having an opening near the center is disposed above the electrode group 13.
The nonaqueous electrolyte is held in the electrode group 13. A sealing plate 18 b having an explosion-proof mechanism 18 a and having a circular hole opened near the center is laser welded to the opening of the container 12. The negative electrode terminal 19 is disposed in a circular hole of the sealing plate 18b via a hermetic seal. The negative electrode tab 20 drawn out from the negative electrode 16 is welded to the lower end of the negative electrode terminal 19. On the other hand, a positive electrode tab (not shown) is connected to a container 12 that also serves as a positive electrode terminal.
The positive electrode active material of the non-aqueous electrolyte secondary battery according to the present invention described above is Li a Co b M c O 2 Particles (cobalt-based particles) and Li over 50% by weight x Ni y Co z M w O 2 Particles (nickel-based particles) and satisfy the above-mentioned formulas (1) to (5).
According to such a secondary battery, it is possible to improve the positive electrode active material filling density and the charge / discharge cycle life while securing a high discharge voltage and excellent large current charge / discharge characteristics.
That is, the discharge capacity (specific capacity) per unit weight can be improved by increasing the content of nickel-based particles in the positive electrode active material to more than 50% by weight.
In addition, (D N90 / D N50 ) Within the range of 1.4 to 2, among the nickel-based particles, particles that are extremely large in expansion and contraction associated with insertion and extraction of lithium can be reduced. On the other hand, (D C90 / D C50 ) Within the range of 1.4 to 2 can ensure a high lithium diffusion rate in the positive electrode active material.
(D of nickel-based particles N50 / D N10 ) And cobalt-based particles (D C50 / D C10 ) Within the range of 1.4 to 2, the reactivity of the positive electrode active material with respect to the non-aqueous electrolyte can be lowered, so that the oxidative decomposition of the non-aqueous electrolyte can be suppressed.
In addition, (D N50 / D C50 ) Within the range of 1.5 to 2.5, the particle size distribution of the positive electrode active material can have an appropriate width, so that the packing density of the positive electrode active material can be improved. At the same time, the expansion and contraction associated with the lithium occlusion / release of the nickel-based particles can be suppressed by the cobalt-based particles having a smaller degree of expansion and contraction, so that the pulverization of the nickel-based particles can be suppressed.
Therefore, according to the present invention, it is possible to realize a nonaqueous electrolyte secondary battery that simultaneously satisfies the discharge voltage, specific capacity, large current charge / discharge characteristics, active material packing density, and charge / discharge cycle life.
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
<Measurement of specific capacity of positive electrode (mAh / g)>
First, LiCoO, which is a cobalt-based particle 2 Particles and nickel-based particles LiNi 0.81 Co 0.19 O 2 Particles were mixed at a weight ratio shown in Table 1 below to prepare Samples 1 to 7.
Working electrodes were prepared using Samples 1 to 7 as active materials. That is, 0.03 part by weight of polytetrafluoroethylene (PTFE), 0.06 part by weight of acetylene black (AB), and 1 part by weight of an active material were kneaded in an agate mortar, formed into a sheet with a roller press, and then a nickel mesh. A 1 cm × 1 cm working electrode containing about 0.05 g of an active material was produced.
The Li foil was pressed onto a nickel net to produce a 2 cm × 2 cm counter electrode and a 0.5 cm × 0.5 cm reference electrode. A cell was produced by arranging the working electrode and the counter electrode so as to face each other with a glass filter interposed therebetween, and arranging the reference electrode so as not to contact the counter electrode and the working electrode.
The cell is connected to a glass container that can be energized through a metallic wire, and a non-aqueous electrolyte (ethylene carbonate (EC) and γ-butyllactone are mixed at a volume ratio of 1: 2 until the cell is immersed) LiBF in water solvent 4 And 1.5 mol / L was dissolved) and sealed. The work was performed inside a glove box with a dew point of −80 ° C.
Charging was performed at a constant current of 1 mA up to 4.25 V, and charging was performed at a constant voltage of 4.25 V after reaching 4.25 V. The total time for constant current charging and constant voltage charging was 20 hours. The discharge was performed at 1.0 mA, and the discharge amount until reaching 3.0 V was defined as the discharge capacity. A value obtained by dividing the discharge capacity by the weight of the active material in the working electrode is shown in Table 1 as specific capacity (mAh / g). Table 1 also shows 1 g of LiCoO. 2 The weights of the samples 1 to 7 that can obtain the same discharge capacity as the discharge capacity are also shown.
Figure 2004027903
As is apparent from Table 1, Samples 1 to 4 in which the amount of nickel-based particles is more than 50% by weight can have a higher discharge capacity (mAh / g) than Samples 5 to 7, and LiCoO 2 It can be seen that a high discharge capacity can be obtained with a small amount as compared with (Sample 7).
In the following examples, in order to reduce the influence caused by the difference in specific capacity due to the difference in the mixing ratio between cobalt-based particles and nickel-based particles, the coating amount of the negative electrode is made constant and the mixing ratio of the positive electrode active material is adjusted. Batteries were produced by changing the positive electrode coating amount (positive electrode active material content).

<正極の作製>
コバルト系粒子として、体積累積頻度10%粒径DC10が1.9μmで、体積累積頻度50%粒径DC50が3.3μmで、体積累積頻度90%粒径DC90が5.7μmのLiCoO粒子を用意した。また、ニッケル系粒子として、体積累積頻度10%粒径DN10が4μmで、体積累積頻度50%粒径DN50が7μmで、体積累積頻度90%粒径DN90が11.6μmのLiNi0.81Co0.19粒子を用意した。
(DN50/DN10)、(DN90/DN50)、(DC50/DC10)、(DC90/DC50)および(DN50/DC50)を下記表2に示す。
体積累積頻度10%、50%、90%粒径は、以下に説明する方法で測定した。すなわち、レーザー回折・散乱法によりニッケル系粒子とコバルト系粒子それぞれについての粒径と各粒度区間での粒子の占有体積を測定する。粒度区間の体積を累積して全体の10%となった時の粒径を体積累積頻度10%粒径とし、50%の時の粒径を体積累積頻度50%粒径とし、90%の時の粒径を体積累積頻度90%粒径とする。
まず、N−メチルピロリドン25重量部にポリフッ化ビニリデン(呉羽化学工業製商品名:#1100)3重量部を溶解させた。上記LiCoO粒子を8.9重量部と上記LiNi0.81Co0.19粒子を80.1重量部とを混合したものを正極活物質とし、この正極活物質と導電性材料であるグラファイト(ロンザ社製商品名:KS6)8重量部とをポリフッ化ビニリデン溶液に添加し、ディゾルバーおよびビーズミルを用いて攪拌混合し、正極スラリーを調製した。このスラリーを厚み15μmのアルミニウム箔の両面にダイコーターを用いて一定間隔を開けて塗布し、乾燥した後に一定線圧(kgf/cm)でプレスし、スリットすることにより、リール状正極を得た。正極層の厚さから活物質の単位体積当たりの密度(活物質密度:g/cm)を算出し、その結果を下記表3に示す。
なお、表2には、LiNi0.81Co0.19粒子の重量比率W(重量%)とLiCoO粒子の重量比率Wc(重量%)とを併記する。
<負極の作製>
メソフェーズピッチ系炭素繊維粉末(ペトカ社製)100重量部に対して、グラファイト粉末(ロンザ社製商品名:KS15)を10重量部添加して混合し、さらにスチレン/ブタジエンラテックス(旭化成工業社製商品名L1571、固形分が48重量%)4.2重量部と、増粘材としてカルボキシメチルセルロース(第一工業製薬製商品名BSH12)の水溶液(固形分1重量%)130重量部と、蒸留水20重量部とを加えて混合し、スラリーを調製した。
厚さが10μmの銅箔の両面に、このスラリーをダイコーターによって、一定間隔を開けて塗布し、乾燥した後にプレスし、スリットすることにより、リール状負極を得た。
<非水電解液の調製>
エチレンカーボネート(EC)とγ−ブチルラクトン(GBL)が体積比で1:2で混合された非水溶媒にLiBFを1.5モル/L溶解することにより非水電解液を得た。
<電池の組み立て>
あらかじめ正極の集電体タブとして厚さ100μm、長さ70mmのアルミニウムリボンが所定の位置に超音波溶接され、かつ短絡防止のためのポリイミド製保護テープが溶接部位に貼付された前記正極、ポリプロピレン製セパレータ、およびあらかじめ負極の集電タブとして厚さ100μm長さ70mmのニッケルリボンが所定の位置に超音波溶接され、かつ短絡防止の為にポリイミド製保護テープが溶接部位に貼付された前記負極をそれぞれこの順序で積層した後、扁平状に捲回し、90℃で30秒間プレスして電極群を作製した。
一方、アルミニウム箔の電極群側をポリエチレン、外側をナイロンでそれぞれ被覆した厚さ0.1mmのラミネートフィルムにカップ成型を施すことにより形成した容器を用意した。
前記電極群および前記電解液を前記容器内に収納し、ヒートシールを施すことにより薄型非水電解質二次電池(幅35mm、長さ62mm)を組みたてた。注液工程から密封工程までは、Ar雰囲気下で露点−80℃に制御されたグローブボックス内にておこなった。
<Preparation of positive electrode>
As the cobalt-based particles, LiCoO having a volume cumulative frequency 10% particle diameter D C10 of 1.9 μm, a volume cumulative frequency 50% particle diameter D C50 of 3.3 μm, and a volume cumulative frequency 90% particle diameter D C90 of 5.7 μm. Two particles were prepared. Further, as the nickel-based particles, the volume cumulative frequency 10% particle diameter D N10 is 4 [mu] m, a volume cumulative frequency 50% particle diameter D N50 is 7 [mu] m, LiNi volume cumulative frequency 90% particle diameter D N90 is 11.6 0. 81 Co 0.19 O 2 particles were prepared.
Table 2 shows (D N50 / D N10 ), (D N90 / D N50 ), (D C50 / D C10 ), (D C90 / D C50 ), and (D N50 / D C50 ).
The volume cumulative frequencies of 10%, 50%, and 90% were measured by the method described below. That is, the particle size for each of the nickel-based particles and the cobalt-based particles and the occupied volume of the particles in each particle size interval are measured by a laser diffraction / scattering method. When the volume of the particle size interval is 10% of the total, the particle size is 10% of the volume cumulative frequency, the particle size of 50% is the volume cumulative frequency of 50%, and 90%. The particle diameter is set to a volume cumulative frequency of 90%.
First, 3 parts by weight of polyvinylidene fluoride (trade name: # 1100, manufactured by Kureha Chemical Industry) was dissolved in 25 parts by weight of N-methylpyrrolidone. A mixture of 8.9 parts by weight of the LiCoO 2 particles and 80.1 parts by weight of the LiNi 0.81 Co 0.19 O 2 particles is used as a positive electrode active material, and this positive electrode active material and a conductive material are used. 8 parts by weight of graphite (trade name: KS6 manufactured by Lonza) was added to the polyvinylidene fluoride solution, and the mixture was stirred and mixed using a dissolver and a bead mill to prepare a positive electrode slurry. This slurry was applied to both sides of a 15 μm thick aluminum foil using a die coater at regular intervals, dried, pressed at a constant linear pressure (kgf / cm), and slitted to obtain a reel-like positive electrode. . The density per unit volume of the active material (active material density: g / cm 3 ) was calculated from the thickness of the positive electrode layer, and the results are shown in Table 3 below.
In Table 2, the weight ratio W N (% by weight) of LiNi 0.81 Co 0.19 O 2 particles and the weight ratio Wc (% by weight) of LiCoO 2 particles are also shown.
<Production of negative electrode>
10 parts by weight of graphite powder (trade name: KS15, manufactured by Lonza) is added to 100 parts by weight of mesophase pitch-based carbon fiber powder (manufactured by Petka) and mixed. Further, styrene / butadiene latex (product of Asahi Kasei Kogyo Co., Ltd.) Name L1571, solid content is 48 wt%) 4.2 parts by weight, carboxymethylcellulose (Daiichi Kogyo Seiyaku brand name BSH12) aqueous solution (solid content 1 wt%) 130 parts by weight as a thickener, distilled water 20 Part by weight was added and mixed to prepare a slurry.
This slurry was applied to both sides of a copper foil having a thickness of 10 μm with a die coater at regular intervals, dried, pressed and slitted to obtain a reel-shaped negative electrode.
<Preparation of non-aqueous electrolyte>
A nonaqueous electrolytic solution was obtained by dissolving LiBF 4 in a nonaqueous solvent in which ethylene carbonate (EC) and γ-butyllactone (GBL) were mixed at a volume ratio of 1: 2 to 1.5 mol / L.
<Battery assembly>
The positive electrode made of polypropylene, in which an aluminum ribbon having a thickness of 100 μm and a length of 70 mm is ultrasonically welded to a predetermined position in advance as a current collector tab of the positive electrode, and a polyimide protective tape for preventing a short circuit is attached to the welding site A separator and a negative electrode current collecting tab were previously ultrasonically welded at predetermined positions with a nickel ribbon having a thickness of 100 μm and a length of 70 mm, and a protective tape made of polyimide was applied to the welded portion to prevent a short circuit. After laminating in this order, it was wound into a flat shape and pressed at 90 ° C. for 30 seconds to produce an electrode group.
On the other hand, a container formed by cup-forming a 0.1 mm thick laminate film in which the electrode group side of the aluminum foil was coated with polyethylene and the outside was coated with nylon was prepared.
The electrode group and the electrolyte solution were housed in the container, and a thin non-aqueous electrolyte secondary battery (width 35 mm, length 62 mm) was assembled by heat sealing. The liquid injection process to the sealing process were performed in a glove box controlled at a dew point of −80 ° C. in an Ar atmosphere.

正極中のLiCoO粒子の配合量を26.7重量部にし、かつLiNi0.81Co0.19粒子の配合量を62.3重量部にすること以外は、前述した実施例1で説明したのと同様にして薄型非水電解質二次電池を製造した。Example 1 described above except that the amount of LiCoO 2 particles in the positive electrode is 26.7 parts by weight and the amount of LiNi 0.81 Co 0.19 O 2 particles is 62.3 parts by weight. A thin nonaqueous electrolyte secondary battery was produced in the same manner as described.

正極中のLiCoO粒子の配合量を35.6重量部にし、かつLiNi0.81Co0.19粒子の配合量を53.4重量部にすること以外は、前述した実施例1で説明したのと同様にして薄型非水電解質二次電池を製造した。Example 1 described above except that the amount of LiCoO 2 particles in the positive electrode is 35.6 parts by weight and the amount of LiNi 0.81 Co 0.19 O 2 particles is 53.4 parts by weight. A thin nonaqueous electrolyte secondary battery was produced in the same manner as described.

ニッケル系粒子として、DN10が5.3μmで、DN50が7.7μmで、DN90が11.1μmのLiNi0.81Co0.19粒子を用いると共に、正極中のLiCoO粒子の配合量を26.7重量部にし、かつLiNi0.81Co0.19粒子の配合量を62.3重量部にすること以外は、前述した実施例1で説明したのと同様にして薄型非水電解質二次電池を製造した。As nickel-based particles, LiNi 0.81 Co 0.19 O 2 particles having DN 10 of 5.3 μm, DN 50 of 7.7 μm, and DN 90 of 11.1 μm were used, and the LiCoO 2 particles in the positive electrode Except that the blending amount is 26.7 parts by weight and the blending amount of the LiNi 0.81 Co 0.19 O 2 particles is 62.3 parts by weight, it is the same as described in Example 1 above. A thin non-aqueous electrolyte secondary battery was manufactured.

ニッケル系粒子として、DN10が3.3μmで、DN50が6.5μmで、DN90が12.5μmのLiNi0.81Co0.19粒子を用いると共に、正極中のLiCoO粒子の配合量を26.7重量部にし、かつLiNi0.81Co0.19粒子の配合量を62.3重量部にすること以外は、前述した実施例1で説明したのと同様にして薄型非水電解質二次電池を製造した。As the nickel-based particles, in D N10 is 3.3 [mu] m, D N50 is at 6.5 [mu] m, with D N90 is used LiNi 0.81 Co 0.19 O 2 particles 12.5 .mu.m, the LiCoO 2 particles Seikyokuchu Except that the blending amount is 26.7 parts by weight and the blending amount of the LiNi 0.81 Co 0.19 O 2 particles is 62.3 parts by weight, it is the same as described in Example 1 above. A thin non-aqueous electrolyte secondary battery was manufactured.

コバルト系粒子として、DC10が2.7μmで、DC50が3.9μmで、DC90が5.8μmのLiCoO粒子を用いると共に、正極中のLiCoO粒子の配合量を26.7重量部にし、かつLiNi0.81Co0.19粒子の配合量を62.3重量部にすること以外は、前述した実施例1で説明したのと同様にして薄型非水電解質二次電池を製造した。As the cobalt-based particles, LiCoO 2 particles having DC 10 of 2.7 μm, DC 50 of 3.9 μm, and DC 90 of 5.8 μm are used, and the amount of LiCoO 2 particles in the positive electrode is 26.7 parts by weight. And a thin non-aqueous electrolyte secondary battery in the same manner as described in Example 1 except that the blending amount of LiNi 0.81 Co 0.19 O 2 particles is 62.3 parts by weight. Manufactured.

コバルト系粒子として、DC10が1.6μmで、DC50が3μmで、DC90が5.7μmのLiCoO粒子を用いると共に、正極中のLiCoO粒子の配合量を26.7重量部にし、かつLiNi0.81Co0.19粒子の配合量を62.3重量部にすること以外は、前述した実施例1で説明したのと同様にして薄型非水電解質二次電池を製造した。As the cobalt-based particles, LiCoO 2 particles having DC 10 of 1.6 μm, DC 50 of 3 μm, and DC 90 of 5.7 μm are used, and the amount of LiCoO 2 particles in the positive electrode is 26.7 parts by weight, A thin nonaqueous electrolyte secondary battery was manufactured in the same manner as described in Example 1 except that the amount of LiNi 0.81 Co 0.19 O 2 particles was 62.3 parts by weight. .

ニッケル系粒子として、DN10が4.7μmで、DN50が8μmで、DN90が13.6μmのLiNi0.81Co0.19粒子を用いると共に、正極中のLiCoO粒子の配合量を26.7重量部にし、かつLiNi0.81Co0.19粒子の配合量を62.3重量部にすること以外は、前述した実施例1で説明したのと同様にして薄型非水電解質二次電池を製造した。As nickel-based particles, LiNi 0.81 Co 0.19 O 2 particles having DN 10 of 4.7 μm, DN 50 of 8 μm, and DN 90 of 13.6 μm were used, and the amount of LiCoO 2 particles contained in the positive electrode Is 26.7 parts by weight, and the amount of LiNi 0.81 Co 0.19 O 2 particles is 62.3 parts by weight. A water electrolyte secondary battery was manufactured.

ニッケル系粒子として、DN10が2.9μmで、DN50が5.2μmで、DN90が8.9μmのLiNi0.81Co0.19粒子を用いると共に、正極中のLiCoO粒子の配合量を26.7重量部にし、かつLiNi0.81Co0.19粒子の配合量を62.3重量部にすること以外は、前述した実施例1で説明したのと同様にして薄型非水電解質二次電池を製造した。As nickel-based particles, LiNi 0.81 Co 0.19 O 2 particles having DN 10 of 2.9 μm, DN 50 of 5.2 μm, and DN 90 of 8.9 μm were used, and LiCoO 2 particles in the positive electrode were used. Except that the blending amount is 26.7 parts by weight and the blending amount of the LiNi 0.81 Co 0.19 O 2 particles is 62.3 parts by weight, it is the same as described in Example 1 above. A thin non-aqueous electrolyte secondary battery was manufactured.

コバルト系粒子として、DC10が1.9μmで、DC50が3.3μmで、DC90が5.7μmのLiCo0.97Sn0.03粒子(LiCoO100重量部とした際に3.1重量部のLiSnOを含む混合物)を用い、正極中のLiCo0.97Sn0.03粒子の配合量を26.7重量部にし、かつLiNi0.81Co0.19粒子の配合量を62.3重量部にすること以外は、前述した実施例1で説明したのと同様にして薄型非水電解質二次電池を製造した。As the cobalt-based particles, in D C10 is 1.9 .mu.m, with D C50 is 3.3 [mu] m, when D C90 is obtained by the LiCo 0.97 Sn 0.03 O 2 particles (LiCoO 2 100 parts by weight of 5.7 .mu.m 3 1 part by weight of Li 2 SnO 3 ), the amount of LiCo 0.97 Sn 0.03 O 2 particles in the positive electrode is 26.7 parts by weight, and LiNi 0.81 Co 0.19 A thin nonaqueous electrolyte secondary battery was produced in the same manner as described in Example 1 except that the amount of O 2 particles was 62.3 parts by weight.

ニッケル系粒子として、DN10が4μmで、DN50が7μmで、DN90が11.6μmのLiNi0.78Co0.18Sn0.03粒子(LiNi0.81Co0.19100重量部とした際に3.1重量部のLiSnOを含む混合物)を用いると共に、正極中のLiCoO粒子の配合量を26.7重量部にし、かつLiNi0.78Co0.18Sn0.03粒子の配合量を62.3重量部にすること以外は、前述した実施例1で説明したのと同様にして薄型非水電解質二次電池を製造した。The nickel-based particles are LiNi 0.78 Co 0.18 Sn 0.03 O 2 particles (LiNi 0.81 Co 0.19 O 2) having DN 10 of 4 μm, DN 50 of 7 μm, and DN 90 of 11.6 μm. (Mixture containing 3.1 parts by weight of Li 2 SnO 3 when using 100 parts by weight), the amount of LiCoO 2 particles in the positive electrode is 26.7 parts by weight, and LiNi 0.78 Co 0. A thin non-aqueous electrolyte secondary battery was manufactured in the same manner as described in Example 1 except that the amount of 18 Sn 0.03 O 2 particles was 62.3 parts by weight.

ニッケル系粒子として、DN10が4μmで、DN50が7μmで、DN90が11.6μmのLiNi0.76Co0.18Al0.06粒子を用いること以外は、前述した実施例1で説明したのと同様にして薄型非水電解質二次電池を製造した。Example 1 described above, except that LiNi 0.76 Co 0.18 Al 0.06 O 2 particles having DN 10 of 4 μm, DN 50 of 7 μm, and DN 90 of 11.6 μm are used as nickel-based particles. A thin non-aqueous electrolyte secondary battery was manufactured in the same manner as described above.

ニッケル系粒子として、DN10が4μmで、DN50が7μmで、DN90が11.6μmのLiNi0.76Co0.18Mn0.06粒子を用いること以外は、前述した実施例1で説明したのと同様にして薄型非水電解質二次電池を製造した。
〈比較例1〉
正極活物質として、DN10が4μmで、DN50が7μmで、DN90が11.6μmのLiNi0.81Co0.19粒子のみを用いること以外は、前述した実施例1で説明したのと同様にして薄型非水電解質二次電池を製造した。
〈比較例2〉
正極中のLiCoO粒子の配合量を53.4重量部にし、かつLiNi0.81Co0.19粒子の配合量を35.6重量部にすること以外は、前述した実施例1で説明したのと同様にして薄型非水電解質二次電池を製造した。
〈比較例3〉
コバルト系粒子として、DC10が2.7μmで、DC50が3.4μmで、DC90が4.3μmのLiCoO粒子を用いると共に、正極中のLiCoO粒子の配合量を26.7重量部にし、かつLiNi0.81Co0.19粒子の配合量を62.3重量部にすること以外は、前述した実施例1で説明したのと同様にして薄型非水電解質二次電池を製造した。
〈比較例4〉
コバルト系粒子として、DC10が1.5μmで、DC50が3.5μmで、DC90が8.4μmのLiCoO粒子を用いると共に、正極中のLiCoO粒子の配合量を26.7重量部にし、かつLiNi0.81Co0.19粒子の配合量を62.3重量部にすること以外は、前述した実施例1で説明したのと同様にして薄型非水電解質二次電池を製造した。
〈比較例5〉
コバルト系粒子として、DC10が3.8μmで、DC50が6.1μmで、DC90が10μmのLiCoO粒子を用いると共に、正極中のLiCoO粒子の配合量を26.7重量部にし、かつLiNi0.81Co0.19粒子の配合量を62.3重量部にすること以外は、前述した実施例1で説明したのと同様にして薄型非水電解質二次電池を製造した。
〈比較例6〉
コバルト系粒子として、DC10が1.5μmで、DC50が2.6μmで、DC90が4.5μmのLiCoO粒子を用いると共に、正極中のLiCoO粒子の配合量を26.7重量部にし、かつLiNi0.81Co0.19粒子の配合量を62.3重量部にすること以外は、前述した実施例1で説明したのと同様にして薄型非水電解質二次電池を製造した。
〈比較例7〉
正極活物質として、DC10が1.9μmで、DC50が3.3μmで、DC90が5.7μmのLiCoO粒子のみを用いること以外は、前述した実施例1で説明したのと同様にして薄型非水電解質二次電池を製造した。
得られた実施例1〜13及び比較例1〜7の二次電池について、以下に説明する方法で0.2C容量、1C容量、電池厚さ、平均放電電圧、エネルギー密度およびサイクル寿命を測定し、その結果を下記表3に示す。
<定格容量>
組みたてられた二次電池に、20℃で4.2Vまで140mA(0.2CmA相当)の定電流で、さらに4.2Vに到達した後は定電圧で合計12時間初充電を施した。3.0Vまで140mAの定電流で放電した時の放電容量を測定し、0.2C放電における定格容量とし、その結果を下記表3に示す。
<1.0C放電容量>
充電を4.2Vまで定電流140mAでおこなった後、さらに4.2Vの定電圧で合計12時間の充電をおこない、次いで3.0Vまで1CmA(700mA)の定電流で放電した時の放電容量を測定し、1.0C放電における容量とし、その結果を下記表3に示す。
<電池厚み測定・エネルギー密度>
充電を4.2Vまで定電流140mAでおこなった後、さらに4.2Vの定電圧で合計12時間の充電をおこない、4.2V時点での電池の厚みを測定した。平均電圧は0.2CmA(140mA)で3.0Vまで放電曲線の積分値から求めた。体積エネルギー密度は正極および負極の集電タブを除いた電池の幅(35mm)、長さ(62mm)、測定した電池厚さおよび平均電圧から求めた。結果を表3に示す。
<サイクル寿命>
充電を4.2Vまで定電流1C(700mA)でおこない、さらに4.2Vに到達した後は定電圧で合計3時間充電をおこない、放電については3.0Vまで1Cで行った。放電容量が1サイクル目の放電容量の80%に到達したサイクル数を測定し、その結果をサイクル寿命として下記表3に示す。

Figure 2004027903
Figure 2004027903
表2、表3から明らかなように、実施例1〜13の二次電池は、活物質密度、エネルギー密度および充放電サイクル寿命が比較例1〜7と比較して高いことがわかる。
これに対し、リチウムニッケルコバルト複合酸化物のみを正極活物質として用いる比較例1の二次電池は、充放電サイクル寿命が著しく低かった。正極活物質中のリチウムニッケルコバルト複合酸化物の含有量が50重量%以下である比較例2の二次電池と、リチウムコバルト複合酸化物のみを活物質として用いる比較例7の二次電池は、放電時の平均作動電圧が高くなるものの、充放電サイクル寿命が短くなった。
(DC50/DC10)と(DC90/DC50)が1.4〜2の範囲を外れる比較例3、4の二次電池と、(DN50/DC50)が1.5〜2.5の範囲を外れる比較例5,6の二次電池は、活物質密度、1C容量、エネルギー密度及び充放電サイクル寿命のいずれもが実施例1〜13に比較して低かった。
なお、前述した実施例においては、LiCoO粒子とLiNi0.81Co0.19粒子の2種類からなる正極活物質に適用した例を説明したが、正極活物質としては、充放電サイクル寿命を改善できる限り、LiCoO粒子とLiNi0.81Co0.19粒子にLiMnのような他の種類の粒子を混合させた3種類以上の粒子からなるものを用いることができる。
また、前述した実施例においては、薄型非水電解質二次電池および角形非水電解質二次電池に適用した例を説明したが、円筒形非水電解質二次電池、コイン型非水電解質二次電池にも同様に適用することができる。Example 1 described above, except that LiNi 0.76 Co 0.18 Mn 0.06 O 2 particles having DN 10 of 4 μm, DN 50 of 7 μm, and DN 90 of 11.6 μm are used as nickel-based particles. A thin non-aqueous electrolyte secondary battery was manufactured in the same manner as described above.
<Comparative example 1>
Explained in Example 1 above, except that only the LiNi 0.81 Co 0.19 O 2 particles having DN 10 of 4 μm, DN 50 of 7 μm and DN 90 of 11.6 μm were used as the positive electrode active material. A thin non-aqueous electrolyte secondary battery was produced in the same manner as described above.
<Comparative example 2>
Example 1 described above except that the amount of LiCoO 2 particles in the positive electrode is 53.4 parts by weight and the amount of LiNi 0.81 Co 0.19 O 2 particles is 35.6 parts by weight. A thin nonaqueous electrolyte secondary battery was produced in the same manner as described.
<Comparative Example 3>
As the cobalt-based particles, LiCoO 2 particles having DC 10 of 2.7 μm, DC 50 of 3.4 μm, and DC 90 of 4.3 μm are used, and the amount of LiCoO 2 particles in the positive electrode is 26.7 parts by weight. And a thin non-aqueous electrolyte secondary battery in the same manner as described in Example 1 except that the blending amount of LiNi 0.81 Co 0.19 O 2 particles is 62.3 parts by weight. Manufactured.
<Comparative example 4>
As the cobalt-based particles, LiCoO 2 particles having DC 10 of 1.5 μm, DC 50 of 3.5 μm, and DC 90 of 8.4 μm are used, and the amount of LiCoO 2 particles in the positive electrode is 26.7 parts by weight. And a thin non-aqueous electrolyte secondary battery in the same manner as described in Example 1 except that the blending amount of LiNi 0.81 Co 0.19 O 2 particles is 62.3 parts by weight. Manufactured.
<Comparative Example 5>
As the cobalt-based particles, LiCoO 2 particles having DC 10 of 3.8 μm, DC 50 of 6.1 μm, and DC 90 of 10 μm are used, and the amount of LiCoO 2 particles in the positive electrode is 26.7 parts by weight, A thin nonaqueous electrolyte secondary battery was manufactured in the same manner as described in Example 1 except that the amount of LiNi 0.81 Co 0.19 O 2 particles was 62.3 parts by weight. .
<Comparative Example 6>
As the cobalt-based particles, LiCoO 2 particles having a DC 10 of 1.5 μm, a DC 50 of 2.6 μm, and a DC 90 of 4.5 μm are used, and the amount of the LiCoO 2 particles in the positive electrode is 26.7 parts by weight. And a thin non-aqueous electrolyte secondary battery in the same manner as described in Example 1 except that the blending amount of LiNi 0.81 Co 0.19 O 2 particles is 62.3 parts by weight. Manufactured.
<Comparative Example 7>
As the positive electrode active material, in D C10 is 1.9 .mu.m, with D C50 is 3.3 [mu] m, but using D C90 only LiCoO 2 particles 5.7 .mu.m, in a similar manner as described in Example 1 above A thin non-aqueous electrolyte secondary battery was manufactured.
For the obtained secondary batteries of Examples 1 to 13 and Comparative Examples 1 to 7, 0.2 C capacity, 1 C capacity, battery thickness, average discharge voltage, energy density, and cycle life were measured by the method described below. The results are shown in Table 3 below.
<Rated capacity>
The assembled secondary battery was initially charged at a constant current of 140 mA (equivalent to 0.2 CmA) up to 4.2 V at 20 ° C., and after reaching 4.2 V, the battery was initially charged at a constant voltage for a total of 12 hours. The discharge capacity when discharged at a constant current of 140 mA up to 3.0 V was measured to obtain the rated capacity at 0.2 C discharge. The results are shown in Table 3 below.
<1.0C discharge capacity>
After charging at a constant current of 140 mA up to 4.2 V, charge for a total of 12 hours at a constant voltage of 4.2 V, and then discharge at a constant current of 1 CmA (700 mA) up to 3.0 V. The capacity was measured at 1.0 C discharge, and the results are shown in Table 3 below.
<Battery thickness measurement / energy density>
After charging to 4.2 V at a constant current of 140 mA, charging was further performed at a constant voltage of 4.2 V for a total of 12 hours, and the thickness of the battery at the time of 4.2 V was measured. The average voltage was obtained from the integrated value of the discharge curve up to 3.0 V at 0.2 CmA (140 mA). The volume energy density was determined from the width (35 mm) and length (62 mm) of the battery excluding the positive and negative current collecting tabs, the measured battery thickness, and the average voltage. The results are shown in Table 3.
<Cycle life>
Charging was performed at a constant current of 1 C (700 mA) up to 4.2 V, and after reaching 4.2 V, charging was performed at a constant voltage for a total of 3 hours, and discharging was performed at 1 C up to 3.0 V. The number of cycles at which the discharge capacity reached 80% of the discharge capacity at the first cycle was measured, and the results are shown in Table 3 below as the cycle life.
Figure 2004027903
Figure 2004027903
As is apparent from Tables 2 and 3, the secondary batteries of Examples 1 to 13 have higher active material density, energy density, and charge / discharge cycle life than those of Comparative Examples 1 to 7.
In contrast, the secondary battery of Comparative Example 1 using only the lithium nickel cobalt composite oxide as the positive electrode active material had a remarkably low charge / discharge cycle life. The secondary battery of Comparative Example 2 in which the content of the lithium nickel cobalt composite oxide in the positive electrode active material is 50% by weight or less, and the secondary battery of Comparative Example 7 using only the lithium cobalt composite oxide as an active material, Although the average operating voltage during discharge increased, the charge / discharge cycle life decreased.
The secondary battery of Comparative Examples 3 and 4 in which (D C50 / D C10 ) and (D C90 / D C50 ) are out of the range of 1.4 to 2, and (D N50 / D C50 ) is 1.5 to 2. In the secondary batteries of Comparative Examples 5 and 6 outside the range of 5, all of the active material density, 1C capacity, energy density, and charge / discharge cycle life were lower than those of Examples 1-13.
In the embodiment described above, a description has been given of an example of applying the positive electrode active material made of two kinds of LiCoO 2 particles and LiNi 0.81 Co 0.19 O 2 particles, as the positive electrode active material, the charge-discharge cycle As long as the lifespan can be improved, it is necessary to use a material composed of three or more kinds of particles obtained by mixing LiCoO 2 particles and LiNi 0.81 Co 0.19 O 2 particles with other kinds of particles such as LiMn 2 O 4. it can.
In the above-described embodiments, examples of applying to a thin nonaqueous electrolyte secondary battery and a rectangular nonaqueous electrolyte secondary battery have been described. However, a cylindrical nonaqueous electrolyte secondary battery and a coin-type nonaqueous electrolyte secondary battery are described. It can be similarly applied to.

以上詳述したように本発明によれば、充放電サイクル寿命が向上された非水電解質二次電池を提供することができる。  As described above in detail, according to the present invention, it is possible to provide a non-aqueous electrolyte secondary battery having an improved charge / discharge cycle life.

Claims (7)

正極活物質を含む正極と、負極と、非水電解質とを具備する非水電解質二次電池であって、
前記正極活物質は、下記(A)式で表わされる酸化物粒子及び下記(B)式で表わされる酸化物粒子を含み、前記正極活物質中の前記(A)式で表わされる酸化物粒子の割合は50重量%を超えており、かつ前記正極活物質は下記(1)〜(5)式を満足する。
LiNiCo (A)
LiCo (B)
但し、前記Mは、Mn、B、Al及びSnよりなる群から選択される1種類以上の元素であり、前記モル比x、y、z、w、a、b、cは、それぞれ、0.95≦x≦1.05、0.7≦y≦0.95、0.05≦z≦0.3、0≦w≦0.1、0.95≦y+z+w≦1.05、0.95≦a≦1.05、0.95≦b≦1.05、0≦c≦0.05、0.95≦b+c≦1.05を示し、
1.4≦(DN90/DN50)≦2 (1)
1.4≦(DN50/DN10)≦2 (2)
1.4≦(DC90/DC50)≦2 (3)
1.4≦(DC50/DC10)≦2 (4)
1.5≦(DN50/DC50)≦2.5 (5)
但し、前記DN10、前記DN50、前記DN90は、LiNiCo粒子の体積累積頻度が10%、50%、90%の粒径を示し、前記DC10、前記DC50、前記DC90は、LiCo粒子の体積累積頻度が10%、50%、90%の粒径を示す。
A non-aqueous electrolyte secondary battery comprising a positive electrode containing a positive electrode active material, a negative electrode, and a non-aqueous electrolyte,
The positive electrode active material includes oxide particles represented by the following formula (A) and oxide particles represented by the following formula (B), and the oxide particles represented by the formula (A) in the positive electrode active material The ratio exceeds 50% by weight, and the positive electrode active material satisfies the following formulas (1) to (5).
Li x Ni y Co z M w O 2 (A)
Li a Co b M c O 2 (B)
However, said M is one or more elements selected from the group consisting of Mn, B, Al and Sn, and said molar ratios x, y, z, w, a, b, c are 0. 95 ≦ x ≦ 1.05, 0.7 ≦ y ≦ 0.95, 0.05 ≦ z ≦ 0.3, 0 ≦ w ≦ 0.1, 0.95 ≦ y + z + w ≦ 1.05, 0.95 ≦ a ≦ 1.05, 0.95 ≦ b ≦ 1.05, 0 ≦ c ≦ 0.05, 0.95 ≦ b + c ≦ 1.05,
1.4 ≦ (D N90 / D N50 ) ≦ 2 (1)
1.4 ≦ (D N50 / D N10 ) ≦ 2 (2)
1.4 ≦ (D C90 / D C50 ) ≦ 2 (3)
1.4 ≦ (D C50 / D C10 ) ≦ 2 (4)
1.5 ≦ (D N50 / D C50 ) ≦ 2.5 (5)
However, the D N10, the D N50, the D N90 is, Li x Ni y Co z M w volume cumulative frequency of O 2 particles of 10%, 50%, showed a particle size of 90%, the D C10, the D C50 and D C90 indicate particle diameters of Li a Co b M c O 2 particles with a volume cumulative frequency of 10%, 50%, and 90%.
前記LiCo粒子の前記DC50は、0.2μm〜30μmの範囲である請求項1記載の非水電解質二次電池。The Li a Co b M c O 2 wherein D C50 of the particles, the non-aqueous electrolyte secondary battery according to claim 1, wherein in the range of 0.2Myuemu~30myuemu. 粒径比(DN90/DN50)は、1.5以上、1.9以下である請求項1記載の非水電解質二次電池。The nonaqueous electrolyte secondary battery according to claim 1, wherein a particle size ratio (D N90 / D N50 ) is 1.5 or more and 1.9 or less. 粒径比(DN50/DN10)は、1.5以上、1.9以下である請求項1記載の非水電解質二次電池。2. The nonaqueous electrolyte secondary battery according to claim 1, wherein a particle size ratio (D N50 / D N10 ) is 1.5 or more and 1.9 or less. 粒径比(DC90/DC50)は、1.5以上、1.9以下である請求項1記載の非水電解質二次電池。2. The nonaqueous electrolyte secondary battery according to claim 1, wherein a particle size ratio (D C90 / D C50 ) is 1.5 or more and 1.9 or less. 粒径比(DC50/DC10)は、1.5以上、1.9以下である請求項1記載の非水電解質二次電池。2. The nonaqueous electrolyte secondary battery according to claim 1, wherein a particle size ratio (D C50 / D C10 ) is 1.5 or more and 1.9 or less. 前記正極活物質中の前記(A)式で表わされる酸化物粒子の割合は50重量%より多く、90重量%以下である請求項1記載の非水電解質二次電池。The nonaqueous electrolyte secondary battery according to claim 1, wherein a ratio of the oxide particles represented by the formula (A) in the positive electrode active material is more than 50 wt% and 90 wt% or less.
JP2004537603A 2002-09-18 2003-09-18 Nonaqueous electrolyte secondary battery Expired - Lifetime JP4498142B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002271775 2002-09-18
JP2002271775 2002-09-18
PCT/JP2003/011918 WO2004027903A1 (en) 2002-09-18 2003-09-18 Nonaqueous electrolyte secondary cell

Publications (2)

Publication Number Publication Date
JPWO2004027903A1 true JPWO2004027903A1 (en) 2006-01-19
JP4498142B2 JP4498142B2 (en) 2010-07-07

Family

ID=32024883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004537603A Expired - Lifetime JP4498142B2 (en) 2002-09-18 2003-09-18 Nonaqueous electrolyte secondary battery

Country Status (4)

Country Link
JP (1) JP4498142B2 (en)
KR (1) KR100841136B1 (en)
CN (1) CN100350650C (en)
WO (1) WO2004027903A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004362934A (en) * 2003-06-04 2004-12-24 Sony Corp Positive electrode material and battery
EP3432392B1 (en) * 2003-12-31 2023-03-29 LG Energy Solution, Ltd. Electrode active material powder with size dependent composition and method to prepare the same
KR100578877B1 (en) * 2004-03-12 2006-05-11 삼성에스디아이 주식회사 Rechargeable lithium battery
JP4172423B2 (en) * 2004-05-26 2008-10-29 ソニー株式会社 Positive electrode active material and non-aqueous electrolyte secondary battery
JP2006107779A (en) * 2004-09-30 2006-04-20 Dainippon Printing Co Ltd Manufacturing method of electrode plate, and electrode plate
JP4639775B2 (en) * 2004-11-26 2011-02-23 パナソニック株式会社 Nonaqueous electrolyte secondary battery
CN101030639B (en) * 2006-03-02 2011-07-06 深圳市比克电池有限公司 Lithium-ion battery positive material and its production
JP2008198463A (en) * 2007-02-13 2008-08-28 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
JP4972624B2 (en) 2008-09-30 2012-07-11 日立ビークルエナジー株式会社 Positive electrode material for lithium secondary battery and lithium secondary battery using the same
JP2012142157A (en) * 2010-12-28 2012-07-26 Sony Corp Lithium ion secondary battery, positive electrode active material, positive electrode, power tool, electric vehicle, and power storage system
CN103163476B (en) * 2013-02-04 2015-07-15 普天新能源有限责任公司 Measuring method of discharging capacity of battery
JP5773226B2 (en) * 2013-02-04 2015-09-02 トヨタ自動車株式会社 Method for producing lithium ion secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11162466A (en) * 1997-12-01 1999-06-18 Sanyo Electric Co Ltd Manufacture of positive electrode active material for lithium secondary battery
JP2000340228A (en) * 1999-05-31 2000-12-08 Hitachi Maxell Ltd Nonaqueous secondary battery
JP2000340229A (en) * 1999-05-31 2000-12-08 Hitachi Maxell Ltd Nonaqueous secondary battery
JP2002319398A (en) * 2001-04-20 2002-10-31 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2003077459A (en) * 2001-08-30 2003-03-14 Mitsubishi Cable Ind Ltd Positive electrode active material and positive electrode for lithium secondary battery and lithium secondary battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5820790A (en) * 1994-11-11 1998-10-13 Japan Storage Battery Co., Ltd. Positive electrode for non-aqueous cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11162466A (en) * 1997-12-01 1999-06-18 Sanyo Electric Co Ltd Manufacture of positive electrode active material for lithium secondary battery
JP2000340228A (en) * 1999-05-31 2000-12-08 Hitachi Maxell Ltd Nonaqueous secondary battery
JP2000340229A (en) * 1999-05-31 2000-12-08 Hitachi Maxell Ltd Nonaqueous secondary battery
JP2002319398A (en) * 2001-04-20 2002-10-31 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2003077459A (en) * 2001-08-30 2003-03-14 Mitsubishi Cable Ind Ltd Positive electrode active material and positive electrode for lithium secondary battery and lithium secondary battery

Also Published As

Publication number Publication date
JP4498142B2 (en) 2010-07-07
CN100350650C (en) 2007-11-21
WO2004027903A1 (en) 2004-04-01
CN1682391A (en) 2005-10-12
KR100841136B1 (en) 2008-06-24
KR20050057402A (en) 2005-06-16

Similar Documents

Publication Publication Date Title
JP4072126B2 (en) Electrode active material, electrode, lithium ion secondary battery, method for producing electrode active material, and method for producing lithium ion secondary battery
JP5338041B2 (en) Negative electrode for secondary battery and secondary battery
US7682746B2 (en) Negative electrode for non-aqueous secondary battery
JP4897223B2 (en) Nonaqueous electrolyte secondary battery
JP5109359B2 (en) Nonaqueous electrolyte secondary battery
JP5522844B2 (en) Electrode for electrochemical element and lithium ion secondary battery
JP2006344425A (en) Cathode activator, cathode, and battery
JP2006134719A (en) Electrolyte and battery
US8778544B2 (en) Battery with terminal
JP2009043477A (en) Positive electrode active material, positive electrode as well as nonaqueous electrolyte battery using the same
EP1710855A2 (en) Negative electrode for non-aqueous secondary battery
KR20060106895A (en) Battery
JP2007042387A (en) Electrolyte, electrode, and battery
JP4498142B2 (en) Nonaqueous electrolyte secondary battery
JP4713886B2 (en) Nonaqueous electrolyte secondary battery
JP2006216451A (en) Method of manufacturing battery
JP4821217B2 (en) Positive electrode active material, positive electrode and battery
JP4867218B2 (en) Lithium ion secondary battery
JP2005135603A (en) Nonaqueous secondary battery
JP2004327371A (en) Non-aqueous electrolyte secondary battery
JP2002359003A (en) Nonaqueous electrolyte secondary battery
WO2023033009A1 (en) Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JPWO2006088001A1 (en) Electrolyte and battery
JP6846860B2 (en) Non-aqueous electrolyte secondary battery
JP2023039365A (en) Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100413

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4498142

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 4

EXPY Cancellation because of completion of term