JPH0999386A - Automatic alignment device for laser beam - Google Patents

Automatic alignment device for laser beam

Info

Publication number
JPH0999386A
JPH0999386A JP7257577A JP25757795A JPH0999386A JP H0999386 A JPH0999386 A JP H0999386A JP 7257577 A JP7257577 A JP 7257577A JP 25757795 A JP25757795 A JP 25757795A JP H0999386 A JPH0999386 A JP H0999386A
Authority
JP
Japan
Prior art keywords
reflecting mirror
laser
eccentricity
laser beam
output nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7257577A
Other languages
Japanese (ja)
Other versions
JP3625916B2 (en
Inventor
Toshio Kobari
利雄 小播
Ryuichiro Takada
龍一郎 高田
Koichi Ishihara
弘一 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Machine Works Ltd
Original Assignee
Sanyo Machine Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Machine Works Ltd filed Critical Sanyo Machine Works Ltd
Priority to JP25757795A priority Critical patent/JP3625916B2/en
Publication of JPH0999386A publication Critical patent/JPH0999386A/en
Application granted granted Critical
Publication of JP3625916B2 publication Critical patent/JP3625916B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laser Beam Processing (AREA)

Abstract

PROBLEM TO BE SOLVED: To automatically correct the installation angles of reflection mirrors in correspondence to the installation angle errors of these reflection mirrors and the distortions of the guide shafts of the reflection mirrors. SOLUTION: Plural stages of the reflection mirrors 2c, 2d, 2e are successively rectilinearly moved from the mirrors more proximate to a laser oscillator 1 toward the other end from the one end of the guide shafts. Simultaneously, the eccentric rates having the first projection position of a light spot as the origin are stored in association with the moving distances of the reflection mirrors at every specified moving increment of the reflection mirrors by the CCD photodetectors disposed on a laser output nozzle 4 side. The ratios of the eccentric rates of the light spot with respect to the moving distances of the reflection mirror are calculated as a linear proportional relation by an approximation means, such as method of least squares. The reflection mirror just before the moved reflection mirror is corrected to the correct installation angle by a motor in accordance with the calculated linear proportional relation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はレーザロボットのレ
ーザ光線の自動アライメント装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an automatic laser beam alignment apparatus for a laser robot.

【0002】[0002]

【従来の技術】レーザ出力ノズルが三次元方向に移動可
能な多軸系レーザロボットでは、レーザ発振器から出た
レーザ光線を、複数段の反射鏡を介して出力ノズルまで
誘導する。反射鏡の相互間隔は近接・離隔可能に構成さ
れ、X,Y及びZ方向に移動可能な少なくとも3枚の反
射鏡により前記近接・離隔動作がなされる。
2. Description of the Related Art In a multi-axis laser robot in which a laser output nozzle is movable in three dimensions, a laser beam emitted from a laser oscillator is guided to the output nozzle via a plurality of stages of reflecting mirrors. The reflecting mirrors are arranged so that they can be moved closer to each other or separated from each other, and the at least three reflecting mirrors movable in the X, Y, and Z directions perform the above-mentioned approaching / separating operation.

【0003】ところで、各反射鏡の据付け角度が正確に
調整されていないと、レーザ光線が出力ノズル直前の集
光鏡に正しい位置及び角度で入射せず、ワーク表面にお
いて良好なレーザスポット径が得られない。
By the way, if the installation angle of each reflecting mirror is not adjusted accurately, the laser beam will not be incident on the focusing mirror immediately before the output nozzle at the correct position and angle, and a good laser spot diameter will be obtained on the surface of the work. I can't.

【0004】このため、従来の装置では観察可能な調整
用He−Ne(ヘリウム−ネオン)レーザ光線を使用し
て、この光線が各反射鏡の中心に正確に入射しているか
否かを、目盛り付きターゲット板などを反射鏡の直前に
立てて一つずつ目視にて確認することが行なわれてい
た。そして、レーザ光線の光スポットがターゲット板の
目盛り中心から外れている場合は、目盛り中心に一致す
るよう直前の反射鏡を手動にて揺動調節していた。
Therefore, in the conventional apparatus, an observable He-Ne (helium-neon) laser beam for adjustment is used to determine whether or not this beam is accurately incident on the center of each reflecting mirror. It has been performed that the attached target plates and the like are erected immediately before the reflecting mirror and visually checked one by one. When the light spot of the laser beam is off the center of the scale of the target plate, the reflecting mirror immediately before is manually adjusted to swing so as to coincide with the center of the scale.

【0005】しかし、このような手作業によるアライメ
ントは作業能率が非常に悪い。反射鏡は定期的クリーニ
ングのため脱着しなければならないが、現状ではその脱
着の度に面倒なアライメント作業が必要なため、操業上
の必要に迫られて止むを得ずクリーニングを延期または
省略せざるを得ない場合もある。しかし、反射鏡の定期
クリーニングは非常に重要であり、曇りが付いた反射鏡
ではレーザの出力が1割以上低下することも珍しくな
い。このように定格を下回る出力でレーザを使用した場
合、ワーク溶融深さが急に浅くなって溶接不良を起こし
やすい。また反射鏡は微小な塵が付着してもレーザエネ
ルギが塵に吸収されて発熱し、反射鏡面にコーティング
された金の薄膜を溶かしてピンホールを明け、このピン
ホールを発端として金の薄膜が次々と剥離して反射鏡の
寿命を急速に短縮してしまう。従って、反射鏡は定期的
なクリーニングとアライメントが不可欠である。
However, such manual alignment is very inefficient. The reflecting mirror has to be removed for regular cleaning, but at present, it is necessary to perform a troublesome alignment work each time the mirror is attached and removed, and the cleaning must be postponed or omitted due to the operational need. Sometimes you don't get. However, regular cleaning of the reflecting mirror is very important, and it is not uncommon for the reflecting mirror to be fogged to reduce the laser output by 10% or more. When a laser is used with an output below the rating in this way, the work melting depth suddenly becomes shallow and welding defects are likely to occur. Even if a small amount of dust adheres to the reflecting mirror, the laser energy is absorbed by the dust and heats up, melting the gold thin film coated on the reflecting mirror to open a pinhole, and the gold thin film starts from this pinhole. They peel off one after another and the life of the reflecting mirror is shortened rapidly. Therefore, regular cleaning and alignment of the reflector is essential.

【0006】そこで最近では、例えば特開平3−180
292号に開示されているような装置による自動アライ
メントが一般化しつつある。この装置は、レーザ出力ノ
ズル側にレーザ光線の正規投射位置からの偏心量を検出
するセンサを配設し、レーザ発振器に近い方の反射鏡か
ら順次直線移動させ、その時のレーザ光線の偏心量を修
正すべく、移動させた反射鏡の直前の反射鏡の据付け角
度を自動的に補正するようにしたものである。
Therefore, recently, for example, Japanese Patent Laid-Open No. 3-180 has been proposed.
Automatic alignment with devices such as that disclosed in No. 292 is becoming popular. This device is equipped with a sensor that detects the amount of eccentricity of the laser beam from the normal projection position on the laser output nozzle side, and it is moved linearly sequentially from the reflecting mirror closer to the laser oscillator, and the eccentricity of the laser beam at that time is adjusted. In order to correct it, the installation angle of the reflector immediately before the moved reflector is automatically corrected.

【0007】[0007]

【発明が解決しようとする課題】前述の特開平3−18
0292号の装置は自動でアライメントができるので非
常に便利ではあるが、調整精度の点で未解決の課題が残
されている。すなわち、この自動アライメント装置は反
射鏡の直線ガイド軸が正確に直線であることを前提とし
ているが、実際のガイド軸には程度の差はあっても微小
で不規則な歪みが不可避的に存在する。従って、反射鏡
を直線ガイド軸上の移動前後の2位置に置き、その時の
レーザ出力ノズル側のレーザ光線の偏心量から当該反射
鏡の直前の反射鏡の据付け角度誤差を算出すると、反射
鏡の移動途中の中間部分でのガイド軸の歪みは完全に無
視されることになる。すなわち、極端に言えば、反射鏡
の移動始点と終点でガイド軸に歪みが存在しなければ、
軸の中間部分で如何に大きな歪みがあろうとも、その歪
みは完全に無視されてしまう。この結果、反射鏡の据付
け角度を補正したにも拘らず、レーザ出力ノズルの移動
位置によっては、ガイド軸の中間部分の歪に起因してレ
ーザ出力ノズルから投射されたレーザ光線のスポット径
が所定の大きさに収束しないという不都合が生じ得る。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
The apparatus of No. 0292 is very convenient because it can perform automatic alignment, but there are still unsolved problems in terms of adjustment accuracy. That is, this automatic alignment device is premised on that the linear guide axis of the reflecting mirror is exactly a straight line, but there are inevitably small and irregular distortions in the actual guide axis, although there are differences in degree. To do. Therefore, when the reflecting mirror is placed at two positions before and after the movement on the linear guide axis and the installation angle error of the reflecting mirror immediately before the reflecting mirror is calculated from the eccentricity of the laser beam on the laser output nozzle side at that time, The distortion of the guide shaft in the middle part of the movement is completely ignored. That is, extremely speaking, if there is no distortion in the guide axis at the start and end points of movement of the reflecting mirror,
No matter how large the distortion is in the middle of the axis, it is completely ignored. As a result, the spot diameter of the laser beam projected from the laser output nozzle is set to a predetermined value due to the distortion of the intermediate portion of the guide shaft depending on the moving position of the laser output nozzle, although the installation angle of the reflecting mirror is corrected. Inconvenience that it does not converge to the size of

【0008】本発明の目的は、反射鏡の据付誤差だけで
なく、反射鏡のガイド軸の全長にわたる不規則な歪みを
考慮に入れて、反射鏡の据付け角度の最適補正を行な
い、もって反射鏡の全移動行程すなわちレーザ出力ノズ
ルの任意の移動位置において、レーザ出力ノズルから投
射されるレーザ光線のスポット径が正規直径の許容公差
範囲から逸脱しないようにすることにある。
An object of the present invention is to make an optimum correction of the installation angle of the reflecting mirror by taking into consideration not only the installation error of the reflecting mirror but also the irregular distortion over the entire length of the guide axis of the reflecting mirror. Of the laser output nozzle, the spot diameter of the laser beam projected from the laser output nozzle does not deviate from the permissible tolerance range of the normal diameter in the entire movement stroke of the laser output nozzle.

【0009】[0009]

【課題を解決するための手段】本発明は前記課題を解決
するため、反射鏡がガイド軸を端から端まで移動する間
の一定移動増分毎に、レーザ出力ノズルから投射される
レーザ光線の偏心量を、反射鏡の移動始点からの移動量
と関連させて記憶し、記憶された多数の偏心量の値か
ら、反射鏡の移動距離に対する偏心量の割合を直線比例
関係で近似し、この直線比例関係に基づき、直前の反射
鏡を揺動手段によって正しい角度に調整し、もってレー
ザ出力ノズルの任意の移動位置において常に最適なレー
ザスポット径が得られるようにした。
In order to solve the above problems, the present invention solves the above problems by eccentricizing a laser beam projected from a laser output nozzle at every constant movement increment while a reflecting mirror moves from one end to the other of a guide shaft. The amount of eccentricity is stored in association with the amount of movement from the movement start point of the reflecting mirror, and the ratio of the amount of eccentricity to the moving distance of the reflecting mirror is approximated by a linear proportional relationship from the stored values of a large number of eccentricities. Based on the proportional relationship, the immediately preceding reflecting mirror is adjusted to the correct angle by the swinging means, so that the optimum laser spot diameter can always be obtained at any moving position of the laser output nozzle.

【0010】このように構成したレーザアライメント装
置では、各反射鏡の据付け角度が正しく、かつ、反射鏡
のガイド軸に歪みが無く完全な直線であれば、反射鏡を
直線的に移動させてもレーザ出力ノズル直前の集光鏡に
入射するレーザ光線の位置及び角度は変化せず、レーザ
出力ノズル側ではレーザ光線が正規投射位置に常時投射
され、レーザスポット径も許容公差範囲内に収束する。
In the laser alignment apparatus configured as described above, even if the installation angle of each reflecting mirror is correct and the guide axis of the reflecting mirror is a straight line without distortion, even if the reflecting mirror is moved linearly. The position and angle of the laser beam incident on the condenser mirror immediately before the laser output nozzle do not change, the laser beam is always projected on the regular projection position on the laser output nozzle side, and the laser spot diameter also converges within the allowable tolerance range.

【0011】これに対して、ある反射鏡の据付け角度
に誤差があるか、あるガイド軸に歪があると、当該反
射鏡の直後の反射鏡をガイド軸に沿って移動させたとき
に、集光鏡に入射するレーザ光線の位置及び角度が変化
し、レーザ出力ノズル側でレーザ光線が正規投射位置か
ら偏心し、レーザスポット径が許容公差範囲から過大ま
たは過小方向に外れることがある。
On the other hand, if there is an error in the installation angle of a certain reflecting mirror or if there is a distortion in a certain guide axis, when the reflecting mirror immediately after the relevant reflecting mirror is moved along the guide axis, The position and angle of the laser beam incident on the optical mirror may change, the laser beam may deviate from the regular projection position on the laser output nozzle side, and the laser spot diameter may deviate from the allowable tolerance range in the excessive or excessive direction.

【0012】本発明は、従来の特開平3−180292
号の装置のようにレーザ光線投射スポットの移動軌跡の
始端と終端だけを検出するのではなく、反射鏡の一定移
動増分毎にレーザ出力ノズル側でのレーザ光線の偏心量
をセンサで検出する。これにより、反射鏡のガイド軸の
全長にわたる歪みがセンサによりレーザ光線の偏心量と
して間接的に検出されるわけである。この偏心量には、
反射鏡の据付誤差に基づくものと、ガイド軸の歪みに基
づくものの両方が含まれる。
The present invention is based on the conventional Japanese Patent Laid-Open No. 3-180292.
No. 1 does not detect only the start and end of the movement locus of the laser beam projection spot, but the sensor detects the amount of eccentricity of the laser beam on the laser output nozzle side at each constant movement increment of the reflecting mirror. As a result, the distortion over the entire length of the guide shaft of the reflecting mirror is indirectly detected by the sensor as the amount of eccentricity of the laser beam. For this eccentricity,
Both those based on the installation error of the reflecting mirror and those based on the distortion of the guide axis are included.

【0013】レーザ光線の偏心量は、反射鏡の移動始点
からの移動量と関連させて記憶手段に記憶され、最小二
乗法などの近似手段によって、反射鏡の移動量に対する
偏心量の割合が直線比例関係で算出される。この直線比
例関係に基づき、移動させた反射鏡の直前の反射鏡の補
正角度が演算され、揺動手段によって当該直前の反射鏡
が正しい据付け角度に補正され、レーザ光線が反射鏡の
ガイド軸と平行方向に進行することになる。この際、ガ
イド軸の部分的な歪は前記最小二乗法によりガイド軸全
体の一様傾斜に置換されて処理される。
The eccentricity amount of the laser beam is stored in the storage means in association with the movement amount of the reflecting mirror from the movement start point, and the ratio of the eccentricity amount to the moving amount of the reflecting mirror is linear by the approximation means such as the least square method. It is calculated in proportion. Based on this linear proportional relationship, the correction angle of the reflecting mirror immediately before the moved reflecting mirror is calculated, the reflecting mirror immediately before the moving mirror is corrected to the correct installation angle by the swinging means, and the laser beam serves as the guide axis of the reflecting mirror. It will proceed in a parallel direction. At this time, the partial distortion of the guide shaft is replaced with the uniform inclination of the entire guide shaft by the least square method and processed.

【0014】最小二乗法は、図式的に説明すれば、反射
鏡の移動量を横軸に取り、偏心量を縦軸に取って、両者
の関係を暫定的にある直線で近似し、この近似直線に各
偏心量プロット点から降ろした垂線距離の二乗の総和を
算出し、この総和値が最小になるような近似直線を求め
る近似手段の一手法である。つまり、この近似手段は、
反射鏡の一定移動増分毎の偏心量プロット点を連続的に
結ぶひとつの曲線の全体としての傾斜を、一つの直線に
代表的に置き換える方法であって、最小二乗法以外に
は、例えば最小三乗法、最小n乗法(n=4,5,
…)、相加平均法等を採用可能である。
The least-squares method is schematically described. The horizontal axis represents the movement amount of the reflecting mirror and the vertical axis represents the eccentricity amount, and the relationship between the two is tentatively approximated by a straight line. This is one method of approximating means for calculating the total sum of squares of perpendicular distances drawn from each eccentricity plot point on a straight line and obtaining an approximate straight line that minimizes the total sum value. So this approximation means
This is a method of representatively replacing the entire inclination of one curve that continuously connects the eccentricity plot points for each increment of constant movement of the reflecting mirror with one straight line. Multiplication method, least n-th power method (n = 4,5,
…), The arithmetic mean method, etc. can be adopted.

【0015】反射鏡の据付け角度の誤差の影響は、出力
ノズルに近付くにつれて累加されるので、前記誤差の補
正はレーザ発振器に近い方の反射鏡から順次行なう。各
反射鏡は、揺動手段により順次正しい据付け角度に揺動
補正される。この補正が完了すると、どの反射鏡を直線
移動させても出力ノズル側でのレーザビームの偏心移動
やレーザスポット径の過不足が生じなくなる。
Since the influence of the error in the installation angle of the reflecting mirror is accumulated as it approaches the output nozzle, the error is corrected sequentially from the reflecting mirror closer to the laser oscillator. The respective reflecting mirrors are sequentially oscillated and corrected by the oscillating means to correct the installation angle. When this correction is completed, eccentric movement of the laser beam and excess or deficiency of the laser spot diameter on the output nozzle side do not occur regardless of which reflector is linearly moved.

【0016】[0016]

【発明の実施の形態】以下に本発明の自動アライメント
装置を3軸系レーザロボットに適用した一実施形態を図
に基づき説明する。図1は3軸系レーザロボットを略示
したもので、このレーザロボットは加工用のレーザ発振
器1と、複数段の反射鏡2a,2b…2eと、最終段の
集光鏡3と、レーザ出力ノズル4を有する。反射鏡2
c,2d及び2eは、出力ノズル4を三次元方向に移動
させつつワーク5を加工するために、直線状のガイド軸
(図示せず)によりX,Y及びZ方向に移動可能とされ
ている。これに対し他の反射鏡2a及び2bは、所定位
置に位置決めされている。また反射鏡2e、集光鏡3及
び出力ノズル4はレーザヘッド部に一体に組み付けられ
るためその相対位置関係は不変である。前記レーザ発振
器1は、自動アライメントのときだけ、後述のCCD受
光素子9を損傷しないように調整用のHe−Neレーザ
発振器に置き換えられる。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment in which the automatic alignment apparatus of the present invention is applied to a three-axis laser robot will be described below with reference to the drawings. FIG. 1 schematically shows a three-axis laser robot. This laser robot includes a processing laser oscillator 1, a plurality of stages of reflecting mirrors 2a, 2b ... 2e, a final stage condenser mirror 3, and a laser output. It has a nozzle 4. Reflecting mirror 2
c, 2d and 2e are movable in X, Y and Z directions by a linear guide shaft (not shown) in order to process the work 5 while moving the output nozzle 4 in three dimensions. . On the other hand, the other reflecting mirrors 2a and 2b are positioned at predetermined positions. Further, since the reflecting mirror 2e, the condenser mirror 3 and the output nozzle 4 are integrally assembled to the laser head portion, their relative positional relationship is unchanged. The laser oscillator 1 is replaced with a He-Ne laser oscillator for adjustment so as not to damage the CCD light receiving element 9 described later only during automatic alignment.

【0017】出力ノズル4には、図2のようにCCD受
光素子9が取り外し可能な固定金具10により出力ノズ
ル4から所定距離だけ離して、かつ出力ノズル4に対し
直角に取付けられる。このCCD受光素子9はレーザス
ポットSの偏心量を検出するためのものであって、同様
の機能を有するものであれば、フォトダイオードを応用
した半導体位置検出素子(PSD)や、レーザスポット
Sを撮像可能な各種カメラであってもよい。なお、出力
ノズル4とCCD受光素子9は特に芯合わせする必要は
ない。反射鏡の移動始点におけるレーザスポットSの位
置を原点とし、反射鏡の移動に伴うこの原点からのレー
ザスポットSの偏心量を、反射鏡の所定移動増分毎に測
定すればよいからである。
As shown in FIG. 2, the CCD light receiving element 9 is attached to the output nozzle 4 at a predetermined distance from the output nozzle 4 and at a right angle to the output nozzle 4 by means of a removable metal fitting 10. This CCD light receiving element 9 is for detecting the amount of eccentricity of the laser spot S. As long as it has the same function, a semiconductor position detecting element (PSD) applying a photodiode or a laser spot S is used. It may be various cameras capable of capturing images. The output nozzle 4 and the CCD light receiving element 9 need not be aligned with each other. This is because the position of the laser spot S at the movement start point of the reflecting mirror is set as the origin, and the eccentric amount of the laser spot S from the origin due to the movement of the reflecting mirror may be measured for each predetermined increment of movement of the reflecting mirror.

【0018】反射鏡2b、2c及び2dには、その据付
け角度を自動補正するための揺動手段が取付けられてい
る。この揺動手段は反射鏡を三点で支持し、反射鏡2b
についていえば、揺動手段は図3及び図4に示すように
反射鏡2bの裏面縁部に螺合された2本のねじを個別に
駆動する2つのモータ11a,11bと、裏面縁部を当
接支持する支点ピン12とで構成されている。他の反射
鏡2c及び2dについても揺動手段は同様の構成であ
る。
The reflecting mirrors 2b, 2c and 2d are provided with swinging means for automatically correcting the installation angle. This swinging means supports the reflecting mirror at three points, and the reflecting mirror 2b
As for the swinging means, as shown in FIGS. 3 and 4, the two motors 11a and 11b for individually driving the two screws screwed to the rear surface edge of the reflecting mirror 2b and the rear surface edge portion are provided. It is composed of a fulcrum pin 12 that abuts and supports it. The swinging means has the same structure for the other reflecting mirrors 2c and 2d.

【0019】前記CCD受光素子9は、図4に示すよう
に演算回路13を介してモータ11a,11bの駆動回
路14に接続されている。演算回路13は、反射鏡2b
の一定移動増分毎(例えば1cm毎)にCCD受光素子
9から光スポットSの最初の投射位置を原点とする偏心
量を反射鏡2bの移動始点からの移動距離と関連させて
記憶し、最小二乗法により反射鏡2bの据付け角度の誤
差を演算し、この誤差を補正する指令信号をモータの駆
動回路14に入力するように構成されている。一定移動
増分は細かくして多点検出にする程反射鏡のガイド軸の
歪みは忠実に検出されるが、アライメントの処理スピー
ドとの関係もあるのであまり細かくするのもよくない。
なお図4の構成は他の2つの反射鏡2c,2dについて
も同様である。
The CCD light receiving element 9 is connected to a drive circuit 14 for the motors 11a and 11b via an arithmetic circuit 13, as shown in FIG. The arithmetic circuit 13 includes the reflecting mirror 2b.
For each constant movement increment (for example, every 1 cm), the eccentricity amount having the first projection position of the light spot S from the CCD light receiving element 9 as the origin is stored in association with the movement distance from the movement start point of the reflecting mirror 2b, and a minimum of two is stored. An error of the installation angle of the reflecting mirror 2b is calculated by multiplication, and a command signal for correcting this error is input to the motor drive circuit 14. The smaller the constant movement increment is, the more accurately the distortion of the guide axis of the reflecting mirror is detected as the number of detection points is increased.
The configuration of FIG. 4 is the same for the other two reflecting mirrors 2c and 2d.

【0020】本実施形態では、反射鏡の移動距離とレー
ザスポットの偏心量との関係を最小二乗法により直線的
に近似しているが、この近似方法を図5によって説明す
る。図5(A)(B)は反射鏡の移動距離を横軸に取
り、レーザスポットの偏心量を縦軸に取っている。横軸
の左端が反射鏡のガイド軸上での移動始点(直前反射鏡
に最も近い点)に相当し、横軸の右端が移動終点(直前
反射鏡に最も遠い点)に相当する。図5(A)は反射鏡
のガイド軸の歪みが小さいため偏心量のプロット点は近
似直線からあまり離間していない。これに対して図5
(B)は反射鏡のガイド軸の歪みが大きいため偏心量の
プロット点がうねりを描いている。
In the present embodiment, the relationship between the moving distance of the reflecting mirror and the eccentricity of the laser spot is linearly approximated by the least square method. This approximation method will be described with reference to FIG. 5A and 5B, the horizontal axis represents the moving distance of the reflecting mirror, and the vertical axis represents the eccentricity of the laser spot. The left end of the horizontal axis corresponds to the movement start point on the guide axis of the reflecting mirror (the point closest to the previous reflection mirror), and the right end of the horizontal axis corresponds to the movement end point (the point farthest from the previous reflection mirror). In FIG. 5A, since the distortion of the guide axis of the reflecting mirror is small, the plot points of the eccentricity amount are not so far apart from the approximate straight line. On the other hand, FIG.
In (B), since the distortion of the guide axis of the reflecting mirror is large, the plot points of the eccentricity amount show undulations.

【0021】図5(A)のようにガイド軸の歪みが小さ
い場合は、従来のアライメントにより偏心量の最初と最
後の2点のプロット点を結ぶ直線関係によって反射鏡を
補正しても、レーザ出力ノズルから投射されるレーザ光
線の径が許容公差範囲から大きく逸脱することはない。
しかし、図5(B)のようにガイド軸の歪みが大きい場
合は、偏心量の最初と最後の2点のプロット点を結ぶ直
線関係(二点鎖線)によって反射鏡を補正したのでは、
中間のプロット点が二点鎖線から大きく離間してしま
う。このことは、反射鏡がガイド軸の中間部分を移動し
ている時、レーザ出力ノズルから投射されるレーザ光線
の径が許容公差範囲から外れて過大または過小になるこ
とを意味する。
If the distortion of the guide axis is small as shown in FIG. 5 (A), even if the reflecting mirror is corrected by the conventional alignment by the linear relationship connecting the first and last two plot points of the eccentricity amount, the laser The diameter of the laser beam projected from the output nozzle does not largely deviate from the tolerance range.
However, when the distortion of the guide axis is large as shown in FIG. 5B, the reflecting mirror may be corrected by the linear relationship (two-dot chain line) connecting the plot points of the first and last two points of the eccentricity.
The plot points in the middle are greatly separated from the chain double-dashed line. This means that the diameter of the laser beam projected from the laser output nozzle becomes too large or too small outside the allowable tolerance range when the reflecting mirror is moving in the middle part of the guide shaft.

【0022】本実施形態では、最初と最後の2つのプロ
ット点を結ぶのではなく、各プロット点から降ろした垂
線距離の二乗の総和値が最小となるような直線すなわち
最小二乗法による近似直線の傾斜角から反射鏡の角度補
正値を演算するようにしている。この方法によれば、各
レーザスポットの偏心量が近似直線の傾斜角に反映さ
れ、ひいては反射鏡の角度補正値に反映されるから、レ
ーザ出力ノズルから投射されるレーザ光線の径が正規直
径の許容公差範囲に収束する。
In this embodiment, instead of connecting the first and last two plot points, a straight line that minimizes the sum of squares of the perpendicular distances drawn from each plot point, that is, an approximate straight line by the least square method is used. The angle correction value of the reflecting mirror is calculated from the tilt angle. According to this method, the amount of eccentricity of each laser spot is reflected on the inclination angle of the approximate straight line, and by extension is reflected on the angle correction value of the reflecting mirror, the diameter of the laser beam projected from the laser output nozzle is equal to the normal diameter. It converges within the allowable tolerance range.

【0023】次に前記実施形態による自動アライメント
について説明する。まず、自動アライメントを開始する
前に、レーザ発振器1を調整用のHe−Neレーザ発振
器に置き換え、出力ノズル4に図2のようにCCD受光
素子9を取付ける。そしてHe−Neレーザ光線がCC
D受光素子9に到達するように反射鏡2b〜2dの据付
け角度を粗調整する。この粗調整はモータ11a,11
bを手動制御して行なう。後は所定のスタートスイッチ
を入れることにより以下のアライメントが自動的に行な
われる。
Next, the automatic alignment according to the above embodiment will be described. First, before starting the automatic alignment, the laser oscillator 1 is replaced with a He-Ne laser oscillator for adjustment, and the CCD light receiving element 9 is attached to the output nozzle 4 as shown in FIG. And He-Ne laser beam is CC
The installation angles of the reflecting mirrors 2b to 2d are roughly adjusted so as to reach the D light receiving element 9. This rough adjustment is performed by the motors 11a, 11
b is manually controlled. After that, the following alignment is automatically performed by turning on a predetermined start switch.

【0024】最初にレーザ発振器1に近い方の反射鏡か
ら、すなわち本実施形態では反射鏡2cから反射鏡2e
までが順次直線的にガイド軸の直前反射鏡に近い方の端
部から反対側の端部まで定速移動される。この移動方向
は逆であっても構わない。図3は反射鏡2cをガイド軸
の一端の第1位置から他端の第2位置へ移動する例を示
している。反射鏡2cの直前の反射鏡2bの据付け角度
に誤差があると、反射鏡2cが移動されたときに反射鏡
2c上のレーザ光線Bの反射点が移動するため、CCD
受光素子9上でも光スポットSの位置が移動する。
First, the reflecting mirror closer to the laser oscillator 1, that is, the reflecting mirror 2c to the reflecting mirror 2e in this embodiment.
Are sequentially moved linearly at a constant speed from the end of the guide shaft closer to the front reflector to the end on the opposite side. This moving direction may be opposite. FIG. 3 shows an example in which the reflecting mirror 2c is moved from the first position at one end of the guide shaft to the second position at the other end. If there is an error in the installation angle of the reflecting mirror 2b immediately before the reflecting mirror 2c, the reflection point of the laser beam B on the reflecting mirror 2c moves when the reflecting mirror 2c is moved, so that the CCD
The position of the light spot S also moves on the light receiving element 9.

【0025】光スポットSの最初の投射位置を原点とす
る偏心量は、CCD受光素子9によって連続的に検知さ
れ、反射鏡2cの一定移動増分毎に(例えば1cm移動
する毎に)移動始点からの移動距離と関連させて演算回
路13に入力される。演算回路13はこれら偏心量に関
するデータを記憶し、図5(A)(B)の近似手法によ
り、反射鏡の移動距離とレーザスポットの偏心量との直
線比例関係を演算し、この直線比例関係に基づきモータ
駆動回路14に制御信号を与え、モータ11a,11b
を駆動して反射鏡2cを正しい据付け角度に自動的に揺
動補正する。
The eccentricity amount with the first projection position of the light spot S as the origin is continuously detected by the CCD light receiving element 9, and from the movement starting point at every constant movement increment of the reflecting mirror 2c (for example, every 1 cm movement). Is input to the arithmetic circuit 13 in association with the moving distance of the. The arithmetic circuit 13 stores the data relating to the eccentricity amount, calculates the linear proportional relationship between the moving distance of the reflecting mirror and the eccentricity amount of the laser spot by the approximation method of FIGS. A control signal to the motor drive circuit 14 based on the
Is driven to automatically correct the swing of the reflecting mirror 2c to the correct installation angle.

【0026】近似直線の傾斜角と反射鏡2bの据付け角
度誤差との関係は、予め演算回路13に記憶させてお
く。これにより、演算回路13に近似直線の傾斜角が入
力されると、反射鏡2bの角度誤差が演算される。そし
て、この誤差を補正する指令信号が駆動回路14に入力
され、モータ11a,11bが駆動されて反射鏡2bが
正しい据付け角度に自動補正される。この補正角度は設
計段階では考慮できなかったガイド軸の歪みにも対応し
たもので、反射鏡2bを単に設計上の据付け角度に補正
するものではない。
The relationship between the inclination angle of the approximate straight line and the installation angle error of the reflecting mirror 2b is stored in the arithmetic circuit 13 in advance. Accordingly, when the inclination angle of the approximate straight line is input to the arithmetic circuit 13, the angle error of the reflecting mirror 2b is calculated. Then, a command signal for correcting this error is input to the drive circuit 14, the motors 11a and 11b are driven, and the reflecting mirror 2b is automatically corrected to a correct installation angle. This correction angle corresponds to the distortion of the guide shaft that could not be taken into consideration at the design stage, and does not simply correct the reflecting mirror 2b to the designed installation angle.

【0027】次に同様の角度補正を反射鏡2c及び2d
についても順次繰り返し、すべての角度補正を終了した
後、He−Neレーザ発振器を元の加工用のレーザ発振
器1と取り替え、CCD受光素子9を取り外してアライ
メント作業が終了する。
Next, the same angle correction is performed on the reflecting mirrors 2c and 2d.
After all angle corrections are completed, the He-Ne laser oscillator is replaced with the original laser oscillator 1 for processing, the CCD light receiving element 9 is removed, and the alignment work is completed.

【0028】[0028]

【発明の効果】本発明は前述の如く、反射鏡をレーザ発
振器に近い方から順次直線的にガイド軸の一端から他端
まで移動させると共に、レーザ出力ノズル側に配設した
センサによりレーザ光線の偏心量を検出し、この偏心量
を反射鏡の一定移動増分毎に移動距離と関連させて記憶
し、反射鏡の移動距離に対する偏心量の割合を近似手段
によって直線比例関係として近似し、この直線比例関係
に基づき反射鏡を正しい据付け角度に揺動補正するよう
にしたので、反射鏡本来の据付け角度誤差に起因するレ
ーザスポット径の過不足は勿論のこと、ガイド軸の歪み
に起因するレーザスポット径の過不足も同時に補正する
ことができる。このため、レーザ出力ノズルの任意の移
動位置において常に最適なレーザスポット径が得られ
る。
As described above, according to the present invention, the reflecting mirror is linearly moved from one end to the other end of the guide shaft sequentially from the side closer to the laser oscillator, and the laser beam is emitted by the sensor provided on the laser output nozzle side. The amount of eccentricity is detected, and this amount of eccentricity is stored in association with the moving distance for each constant movement increment of the reflecting mirror, and the ratio of the amount of eccentricity to the moving distance of the reflecting mirror is approximated as a linear proportional relationship by an approximating means. Since the reflection mirror is oscillated and corrected to the correct installation angle based on the proportional relationship, not only the laser spot diameter is excessive or insufficient due to the original installation angle error of the reflection mirror, but also the laser spot due to the distortion of the guide axis. The excess and deficiency of the diameter can be corrected at the same time. Therefore, the optimum laser spot diameter can always be obtained at any moving position of the laser output nozzle.

【図面の簡単な説明】[Brief description of drawings]

【図1】3軸系レーザロボットの概略斜視図。FIG. 1 is a schematic perspective view of a three-axis laser robot.

【図2】出力ノズル部の断面図。FIG. 2 is a sectional view of an output nozzle section.

【図3】レーザ光線の反射状態を示す平面図。FIG. 3 is a plan view showing a reflection state of a laser beam.

【図4】反射鏡の揺動制御を示すブロック図。FIG. 4 is a block diagram showing swing control of a reflecting mirror.

【図5】(A)はガイド軸の歪みが比較的小さい場合の
反射鏡の移動距離とレーザスポットの偏心量との関係を
示す図、(B)はガイド軸の歪みが比較的大きい場合の
反射鏡の移動距離とレーザスポットの偏心量との関係を
示す図。
FIG. 5A is a diagram showing the relationship between the moving distance of the reflecting mirror and the eccentricity of the laser spot when the distortion of the guide axis is relatively small, and FIG. 5B shows the relationship when the distortion of the guide axis is relatively large. The figure which shows the relationship between the moving distance of a reflecting mirror, and the amount of eccentricity of a laser spot.

【符号の説明】[Explanation of symbols]

1 レーザ発振器 2a〜2e 反射鏡 3 集光鏡 4 ワーク 9 CCD受光素子 10 固定金具 11a,11b モータ 12 支点ピン 13 演算回路 14 モータの駆動回路 B レーザ光線 S 光スポット DESCRIPTION OF SYMBOLS 1 laser oscillator 2a-2e reflecting mirror 3 condensing mirror 4 work 9 CCD light receiving element 10 fixing metal fittings 11a, 11b motor 12 fulcrum pin 13 arithmetic circuit 14 motor drive circuit B laser beam S light spot

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 レーザ発振器から出たレーザ光線を複数
段の反射鏡を介してレーザ出力ノズルに導くと共に、前
記反射鏡の相互間隔をガイド軸に沿って近接・離隔させ
て前記レーザ出力ノズルを移動させるレーザロボットに
おいて、 前記反射鏡をレーザ発振器に近い方から順次直線的にガ
イド軸の一端から他端まで移動させる移動手段と、 前記レーザ出力ノズルの前方に配設され、レーザ出力ノ
ズルから投射されたレーザ光線の偏心量を検出するセン
サと、 前記反射鏡の移動距離の一定増分毎に、前記レーザ光線
の偏心量を移動距離と関連させて記憶する記憶手段と、 前記記憶手段により記憶された多数の偏心量の値に基づ
き、前記反射鏡の移動距離に対する偏心量の割合を直線
比例関係で近似する近似手段と、 前記反射鏡の移動距離と偏心量との直線比例関係に基づ
き前記直前の反射鏡を正しい据付け角度に揺動補正する
揺動手段とを具備したことを特徴とするレーザ光線の自
動アライメント装置。
1. A laser beam emitted from a laser oscillator is guided to a laser output nozzle through a plurality of stages of reflecting mirrors, and the mutual spacing of the reflecting mirrors is made closer to or further from each other along a guide axis so that the laser output nozzle is made to move. In a moving laser robot, moving means for moving the reflecting mirror from one end of the guide shaft to the other end in a straight line from a position closer to the laser oscillator, and a laser output nozzle disposed in front of the laser output nozzle. A sensor for detecting the amount of eccentricity of the laser beam, a storage unit for storing the amount of eccentricity of the laser beam in association with the moving distance for each fixed increment of the moving distance of the reflecting mirror, and the storage unit An approximation means for approximating the ratio of the eccentricity to the moving distance of the reflecting mirror in a linear proportional relationship based on the values of the large number of eccentricity, and the moving distance and the deviation of the reflecting mirror. The amount and automatic alignment device of the laser beam, characterized by comprising a rocking means for rocking corrected to the correct mounting angle reflector of the immediately preceding based on linear proportional relationship.
【請求項2】 前記近似手段が、最小二乗法により反射
鏡の移動距離に対する偏心量の割合を直線比例関係で近
似することを特徴とする請求項1記載のレーザ光線の自
動アライメント装置。
2. The automatic laser beam alignment apparatus according to claim 1, wherein the approximating means approximates the ratio of the eccentricity amount to the moving distance of the reflecting mirror in a linear proportional relationship by the method of least squares.
【請求項3】 前記近似手段が、相加平均法により反射
鏡の移動距離に対する偏心量の割合を直線比例関係で近
似することを特徴とする請求項1記載のレーザ光線の自
動アライメント装置。
3. The automatic laser beam alignment apparatus according to claim 1, wherein said approximating means approximates the ratio of the eccentricity amount to the moving distance of the reflecting mirror in a linear proportional relationship by the arithmetic mean method.
JP25757795A 1995-10-04 1995-10-04 Laser beam automatic alignment device Expired - Fee Related JP3625916B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25757795A JP3625916B2 (en) 1995-10-04 1995-10-04 Laser beam automatic alignment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25757795A JP3625916B2 (en) 1995-10-04 1995-10-04 Laser beam automatic alignment device

Publications (2)

Publication Number Publication Date
JPH0999386A true JPH0999386A (en) 1997-04-15
JP3625916B2 JP3625916B2 (en) 2005-03-02

Family

ID=17308209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25757795A Expired - Fee Related JP3625916B2 (en) 1995-10-04 1995-10-04 Laser beam automatic alignment device

Country Status (1)

Country Link
JP (1) JP3625916B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100429545C (en) * 2005-06-23 2008-10-29 哈尔滨工业大学 Single wire trigger analysis olignment method of polar coordination laser writing system
US9980789B2 (en) 2014-12-05 2018-05-29 Convergent Dental, Inc. System and methods for alignment of a laser beam

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6030299B2 (en) * 2011-12-20 2016-11-24 株式会社ディスコ Laser processing equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100429545C (en) * 2005-06-23 2008-10-29 哈尔滨工业大学 Single wire trigger analysis olignment method of polar coordination laser writing system
US9980789B2 (en) 2014-12-05 2018-05-29 Convergent Dental, Inc. System and methods for alignment of a laser beam
US10470843B2 (en) 2014-12-05 2019-11-12 Convergent Dental, Inc. Systems and methods for alignment of a laser beam

Also Published As

Publication number Publication date
JP3625916B2 (en) 2005-03-02

Similar Documents

Publication Publication Date Title
US5536916A (en) Method for performing automatic alignment-adjustment of laser robot and the device
US4710604A (en) Machining apparatus with laser beam
US6658313B1 (en) Apparatus for adjusting the origins of module heads of a surface mounting apparatus and method therefor
JP3180194B2 (en) Laser processing machine
JP3372799B2 (en) Paste coating machine
JPH0122977B2 (en)
JP3625916B2 (en) Laser beam automatic alignment device
JP3285256B2 (en) Automatic alignment adjustment method and apparatus for laser robot
JPH1123952A (en) Automatic focusing device and laser beam machining device using the same
JPH05180622A (en) Position and attitude detecting apparatus
JPH0933236A (en) Measuring method for optical axis of optical module
JPH08327332A (en) Apparatus for measuring film thickness of solder paste
JP3116481B2 (en) Optical device module assembly equipment
JP4046627B2 (en) Optical module assembly method and assembly apparatus
JP3010769B2 (en) Method and apparatus for assembling optical element module
JPH06112568A (en) Device for automatically adjusting alignment of laser beam
WO2003102860A1 (en) Precision laser scan head
JP2001091213A (en) Laser range finder and board thickness measuring device
KR101034720B1 (en) Apparatus for correcting jitter of laser beam in beam director
JP4128483B2 (en) Microparts laminating apparatus and microparts laminating method
JP3074504B2 (en) Distance measuring device and camera using the same
JPS59216006A (en) Borderline detector
JPH0752712B2 (en) Exposure equipment
JP3806532B2 (en) Method for assembling semiconductor laser device
JP3408393B2 (en) High power laser transmission method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041201

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees