JPH0752712B2 - Exposure equipment - Google Patents

Exposure equipment

Info

Publication number
JPH0752712B2
JPH0752712B2 JP1336665A JP33666589A JPH0752712B2 JP H0752712 B2 JPH0752712 B2 JP H0752712B2 JP 1336665 A JP1336665 A JP 1336665A JP 33666589 A JP33666589 A JP 33666589A JP H0752712 B2 JPH0752712 B2 JP H0752712B2
Authority
JP
Japan
Prior art keywords
mask
optical system
projection optical
deviation amount
exposure light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1336665A
Other languages
Japanese (ja)
Other versions
JPH03198319A (en
Inventor
武寿 清野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1336665A priority Critical patent/JPH0752712B2/en
Publication of JPH03198319A publication Critical patent/JPH03198319A/en
Publication of JPH0752712B2 publication Critical patent/JPH0752712B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70258Projection system adjustments, e.g. adjustments during exposure or alignment during assembly of projection system
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70358Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、凹凸の各反射鏡から成る反射投影光学系を用
いた露光装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to an exposure apparatus using a catoptric projection optical system composed of concave and convex reflecting mirrors.

(従来の技術) 第4図は反射投影光学系を用いた露光装置の構成図であ
る。水銀ランプ等の光源1から放射された露光光は図示
しない光学系により円弧スリット状照明光束に形成され
てマスク2に照射される。このマスク2には所定パター
ンが形成されており、このパターンを通過した露光光は
第1の平面ミラー3で反射して反射投影光学系4に入射
する。この反射投影光学系4は凹面鏡5と凸面鏡6との
各光軸を一致させて配置したもので、平面ミラー3から
の露光光を凹面鏡5で反射して凸面鏡6に送り、さらに
この凸面鏡6で反射した露光光を再び凹面鏡5で反射さ
せて第2の平面ミラー7に送っている。そして、平面ミ
ラー7で反射した露光光はウエハ8に照射される。な
お、ウエハ8は反射投影光学系4の結像位置に配置され
ている。又、マスク2とウエハ8とは1軸走査テーブル
9によって同期してx方向に移動される。このx方向へ
の移動によりマスク2のパターンがウエハ8の全域に亙
ってスキャンされる。かくして、マスク2に形成された
パターンがウエハ8に転写される。
(Prior Art) FIG. 4 is a block diagram of an exposure apparatus using a reflection projection optical system. The exposure light emitted from the light source 1 such as a mercury lamp is formed into an arc slit-shaped illumination light flux by an optical system (not shown) and applied to the mask 2. A predetermined pattern is formed on the mask 2, and the exposure light passing through this pattern is reflected by the first plane mirror 3 and enters the catoptric projection optical system 4. In this reflection projection optical system 4, a concave mirror 5 and a convex mirror 6 are arranged with their respective optical axes aligned with each other. The exposure light from the plane mirror 3 is reflected by the concave mirror 5 and sent to the convex mirror 6, and then the convex mirror 6 is used. The reflected exposure light is reflected again by the concave mirror 5 and sent to the second plane mirror 7. Then, the exposure light reflected by the plane mirror 7 is applied to the wafer 8. The wafer 8 is arranged at the image forming position of the reflection projection optical system 4. Further, the mask 2 and the wafer 8 are moved in the x direction in synchronization with each other by the uniaxial scanning table 9. By this movement in the x direction, the pattern of the mask 2 is scanned over the entire area of the wafer 8. Thus, the pattern formed on the mask 2 is transferred to the wafer 8.

ところが、このような装置ではマスク2とウエハ8との
移動を1軸走査テーブル9によって行っているので、こ
の1軸走査テーブル9にマスク2とウエハ8とが一体と
なって傾くヨーイング誤差が生じると、マスク2のパタ
ーンがウエハ8に正確に転写されなくなる。このため、
ヨーイング誤差を小さくするために1軸走査テーブル9
の支持ガラスに2本のエアスライドを設け、1軸走査テ
ーブル9を移動させる場合、このうちの1本のエアスラ
イドの精度に他方のエアスライドを倣わせたり、又エア
スライドに空気圧センサを設けて空気圧を調整すること
が行われている。
However, since the mask 2 and the wafer 8 are moved by the uniaxial scanning table 9 in such an apparatus, a yawing error occurs in which the mask 2 and the wafer 8 are integrally tilted on the uniaxial scanning table 9. Then, the pattern of the mask 2 cannot be accurately transferred to the wafer 8. For this reason,
1-axis scanning table 9 to reduce yawing error
When two air slides are provided on the supporting glass of No. 1 and the one-axis scanning table 9 is moved, the other air slide is made to follow the accuracy of one of the air slides, or an air pressure sensor is provided on the air slide. The air pressure is adjusted by using this method.

しかしながら、エアスライドを用いる方法では1軸走査
テーブル9のストロークが大きくなるほどエアスライド
の真直度等に高い精度が要求される。このため、エアス
ライドは高度な加工技術によって製造されることが要求
される。又、2本のエアスライドは互いに平行に設けら
れるが、この平行度の調整が大変困難である。さらに、
空気圧センサを設けて空気圧を調整する方法では、応答
速度に限界があるので、1軸走査テーブル9のテーブル
速度が大きくなった場合にヨーイング誤差の補正が困難
となる。
However, in the method using the air slide, the higher the stroke of the uniaxial scanning table 9 is, the higher the accuracy of the straightness of the air slide is required. For this reason, the air slide is required to be manufactured by an advanced processing technique. Further, although the two air slides are provided in parallel with each other, it is very difficult to adjust the parallelism. further,
In the method of adjusting the air pressure by providing the air pressure sensor, since the response speed is limited, it becomes difficult to correct the yawing error when the table speed of the uniaxial scanning table 9 increases.

又、上記のような反射投影光学系4では光学系のNA(si
nθ,θ:広がり角)が縮小投影露光装置と比較して小
さいので、焦点深度(フォーカス許容範囲)が大きくな
る。このため、ヨーイング誤差の補正は、ウエハ8側に
1軸走査テーブル9と同一方向に微動可能なステージを
設け、この微動ステージの微動によってマスク2とウエ
ハ8との相対位置を調整することが行われている。
Further, in the reflection projection optical system 4 as described above, the NA (si
Since nθ and θ: divergence angles are smaller than those of the reduction projection exposure apparatus, the depth of focus (focus allowable range) becomes large. Therefore, in order to correct the yawing error, a stage that can be finely moved in the same direction as the uniaxial scanning table 9 is provided on the wafer 8 side, and the relative position between the mask 2 and the wafer 8 can be adjusted by the fine movement of the fine movement stage. It is being appreciated.

しかしながら、微動ステージによる調整ではこの微動ス
テージは1軸走査テーブル9上を走行するので、1軸走
査テーブル9の剛性が十分でない場合、外乱の影響が大
きくなって微動ステージのフィードバック系が不安定と
なる。
However, since the fine movement stage travels on the uniaxial scanning table 9 in the adjustment by the fine movement stage, if the rigidity of the uniaxial scanning table 9 is not sufficient, the influence of disturbance becomes large and the feedback system of the fine movement stage becomes unstable. Become.

(発明が解決しようとする課題) 以上のようにヨーイング誤差を補正しようとしてもエア
スライドを用いる方法では、エアスライドに高度な加工
技術が要求されるとともに平行度の調整が大変困難であ
り、又テーブル速度が大きくなった場合にヨーイング誤
差の補正が困難となる。一方、反射投影光学系4では微
動ステージを設けるが、1軸走査テーブル9の剛性が十
分でない場合、外乱の影響が大きくなって微動ステージ
のフィードバック系が不安定となる。
(Problems to be Solved by the Invention) Even if an attempt is made to correct a yawing error as described above, the method using an air slide requires a high processing technology for the air slide, and it is very difficult to adjust the parallelism. It becomes difficult to correct the yawing error when the table speed increases. On the other hand, in the catoptric projection optical system 4, a fine movement stage is provided, but if the rigidity of the uniaxial scanning table 9 is not sufficient, the influence of disturbance becomes large and the feedback system of the fine movement stage becomes unstable.

そこで本発明は、ヨーイング誤差により生じるマスクパ
ターンの転写ずれを簡単な構成で補正できる機能を備え
た露光装置を提供することを目的とする。
Therefore, it is an object of the present invention to provide an exposure apparatus having a function capable of correcting a mask pattern transfer deviation caused by a yawing error with a simple configuration.

[発明の構成] (課題を解決するための手段) 本発明は、所定パターンが形成されたマスクを通過した
露光光を凹凸の各反射鏡から成る反射投影光学系の光軸
に対して平行に入射し、この反射投影光学系から出射さ
れた露光光を反射投影光学系の結像位置に配置された基
板に照射してマスクの所定パターンを基板に転写する露
光装置において、 マスクと基板とを一体的に移動させて露光光を基板全体
に走査する走査機構と、 マスクを通過した露光光を反射投影光学系に向かって反
射する第1の平面ミラーと、 反射投影光学系が出射された露光光を基板に向かって反
射する第2の平面ミラーと、 これら第1又は第2の平面ミラーのうちいずれか一方又
は両方に設けられた駆動手段と、 走査機構のヨーイングによるマスク及び基板の基準位置
からのずれ量を検出するずれ量検出手段と、 このずれ量検出手段により検出された走査機構のヨーイ
ングによるずれ量から補正角度を算出するずれ量演算器
と、 このずれ量演算器により算出された補正角度に基づいて
駆動手段を駆動し第1又は第2の平面ミラーのうちいず
れか一方又は両方の配置角度を変化させることによりヨ
ーイングによるずれ量を補正する制御ドライバと、 を備えて上記目的を達成しようとする露光装置である。
[Structure of the Invention] (Means for Solving the Problems) According to the present invention, the exposure light that has passed through a mask on which a predetermined pattern is formed is made parallel to the optical axis of a reflective projection optical system including concave and convex reflecting mirrors. In an exposure apparatus that irradiates the substrate arranged at the image forming position of the reflection projection optical system with the exposure light that is incident and is emitted from the reflection projection optical system, the mask and the substrate are transferred to each other in the exposure device. A scanning mechanism that integrally moves and scans the exposure light over the entire substrate, a first plane mirror that reflects the exposure light that has passed through the mask toward the reflection projection optical system, and an exposure that is emitted from the reflection projection optical system. A second plane mirror that reflects light toward the substrate, a driving unit provided on either or both of the first and second plane mirrors, and a reference position of the mask and the substrate by yawing the scanning mechanism. A deviation amount detecting means for detecting a deviation amount from the deviation amount, a deviation amount calculator for calculating a correction angle from the deviation amount due to yawing of the scanning mechanism detected by the deviation amount detecting means, and a deviation amount calculator for calculating the correction angle. A control driver that corrects the displacement amount due to yawing by driving the driving means based on the correction angle and changing the arrangement angle of either or both of the first and second plane mirrors. This is an exposure apparatus that is about to be achieved.

(作用) このような手段を備えたことにより、マスクを通過した
露光光を反射投影光学系を通して基板に照射してマスク
パターンを基板に転写する際、マスクと基板とを走査機
構により一体的に移動し、このときにずれ量検出手段に
よって走査機種のヨーイングによるマスク及び基板の基
準位置からのずれ量を検出し、このずれ量からずれ量演
算器によって補正角度を算出し、この補正角度に従って
制御ドライバにより駆動手段を駆動し、第1又は第2の
平面ミラーのうちいずれか一方又は両方の配置角度を変
化させることによりヨーイングによるずれ量を補正す
る。
(Operation) By providing such a means, when the exposure light that has passed through the mask is applied to the substrate through the reflection projection optical system to transfer the mask pattern to the substrate, the mask and the substrate are integrated by a scanning mechanism. At this time, the deviation amount detecting means detects the deviation amount from the reference position of the mask and the substrate due to the yawing of the scanning model, and the deviation amount calculator calculates a correction angle from this deviation amount, and controls according to this correction angle. The driver drives the driving unit to change the arrangement angle of one or both of the first and second plane mirrors to correct the deviation amount due to yawing.

(実施例) 以下、本発明の一実施例について図面を参照して説明す
る。尚、第4図と同一部分には同一符号を付してその詳
しい説明は省略する。
(Example) Hereinafter, one example of the present invention will be described with reference to the drawings. The same parts as those in FIG. 4 are designated by the same reference numerals and detailed description thereof will be omitted.

レーザ測長器10はマスク2及びウエハ8の各基準位置か
らの各ずれ量ΔxM,ΔxUを測定するもので、これらずれ
量ΔxM,ΔxUはずれ量演算器11に送られている。このず
れ量演算器11はCPU(中央処理装置)を備え、レーザ測
長器10からの各ずれ量ΔxM,ΔxUを受け取って平面ミラ
ー7の補正角度θを演算し求める機能を有するもので
ある。そして、この補正角度θは制御ドライバ12に送
られている。一方、平面ミラー7にはDCモータ13が設け
られ、このDCモータ13の駆動によって平面ミラー7が反
射投影光学系4の光軸を仰ぐ矢印(イ)方向に回動する
ものとなっている。前記制御ドライバ12はずれ量演算器
11から受け取った補正角度θ に応じてDCモータ13の駆
動量を制御する機能を有するものである。
Is the laser length measuring device 10 at each reference position of the mask 2 and the wafer 8?
Each deviation ΔxM, ΔxUIs measured by these deviations
Amount ΔxM, ΔxUIt is sent to the deviation amount calculator 11. This one
The amount calculator 11 has a CPU (central processing unit)
The amount of deviation Δx from the length 10M, ΔxUReceiving plane Mira
-7 correction angle θkWith the function to calculate and obtain
is there. Then, this correction angle θkSent to the control driver 12
Has been. On the other hand, the plane mirror 7 is provided with a DC motor 13
Driven by this DC motor 13, the plane mirror 7 is reversed.
Rotate in the direction of arrow (a) looking up the optical axis of the projection optical system 4.
It has become a thing. The control driver 12 is a shift amount calculator.
Correction angle θ received from 11 Drive the DC motor 13 according to
It has a function of controlling the amount of movement.

次に上記の如く構成された装置の作用について説明す
る。
Next, the operation of the apparatus configured as described above will be described.

水銀ランプ等の光源1から放射された露光光は図示しな
い光学系により円弧スリット状照明光束に形成されてマ
スク2に照射される。このマスク2のパターンを通過し
た露光光は平面ミラー3で反射して反射投影光学系4に
入射する。この反射投影光学系4において露光光は凹面
鏡5で反射して凸面鏡6に送られ、さらにこの凸面鏡6
で反射し再び凹面鏡5で反射して平面ミラー7に送られ
る。そして、平面ミラー7で反射した露光光はウエハ8
に照射される。このとき、マスク2とウエハ8とは1軸
走査テーブル9によって同期してx方向に移動される。
しかるに、このx方向への移動によりマスク2のパター
ンがウエハ8の全域に亙ってスキャンされ、マスク2に
形成されたパターンがウエハ8に転写される。
The exposure light emitted from the light source 1 such as a mercury lamp is formed into an arc slit-shaped illumination light flux by an optical system (not shown) and applied to the mask 2. The exposure light that has passed through the pattern of the mask 2 is reflected by the plane mirror 3 and enters the catoptric projection optical system 4. In the catoptric projection optical system 4, the exposure light is reflected by the concave mirror 5 and sent to the convex mirror 6, and the convex mirror 6
And then reflected again by the concave mirror 5 and sent to the plane mirror 7. Then, the exposure light reflected by the plane mirror 7 is transferred to the wafer 8
Is irradiated. At this time, the mask 2 and the wafer 8 are synchronously moved in the x direction by the uniaxial scanning table 9.
However, due to this movement in the x direction, the pattern of the mask 2 is scanned over the entire area of the wafer 8 and the pattern formed on the mask 2 is transferred to the wafer 8.

この状態において、レーザ測長器10にては、マスク2及
びウエハ8の基準位置からのずれ量ΔxM,ΔxUを測定す
る。そして、これらずれ量ΔxM,ΔxUはずれ量演算器11
に送られる。ここで、第2図に示すようにマスク2及び
ウエハ8が1軸走査テーブル9のヨーイングにより中点
Qを中心に角度θだけ傾いてマク2'及びウエハ8′に
配置された場合について説明する。マスク2及びウエハ
8の基準位置をP−P′とすると、マスク2′とウエハ
8′との各ずれ量ΔxM,ΔxUは基準位置とP−P′との
間隔となる。従って、レーザ測長器10はこれらずれ量Δ
xM,ΔxUを測定してずれ量演算器11に送る。
In this state, the laser length measuring device 10 measures the deviation amounts Δx M and Δx U of the mask 2 and the wafer 8 from the reference position. The deviation amounts Δx M and Δx U are calculated by the deviation amount calculator 11
Sent to. Here, as shown in FIG. 2, the case where the mask 2 and the wafer 8 are arranged on the mask 2 ′ and the wafer 8 ′ by the yawing of the uniaxial scanning table 9 with an angle θ f centered around the midpoint Q will be described. To do. When the reference positions of the mask 2 and the wafer 8 are P-P ', the deviation amounts Δx M and Δx U between the mask 2'and the wafer 8'are the intervals between the reference position and P-P'. Therefore, the laser length measuring device 10 determines
x M and Δx U are measured and sent to the shift amount calculator 11.

このずれ量演算器11は各ずれ量ΔxM,ΔxUからマスク
2′とウエハ8′とのx方向の相対的なずれ量Δx Δx=ΔxM,ΔxU を算出する。なお、マスク2とウエハ8との間隔を2
とすると、 Δx=2・tan θ の関係が成り立つ。従って、このずれ量Δxによるマス
クパターンの転写ずれを補正するには第3図に示すよう
に平面ミラー7をθだけ矢印(ロ)方向に回動させる
ことになる。そこで、この補正角度θは θ=(1/2)・tan-1(Δx/m) となる。なお、mは平面ミラー7とウエハ8との間隔で
ある。
The shift amount calculator 11 calculates a relative shift amount Δx Δx = Δx M , Δx U between the mask 2 ′ and the wafer 8 ′ in the x direction from each shift amount Δx M , Δx U. The distance between the mask 2 and the wafer 8 should be 2
Then, the relationship of Δx = 2 · tan θ f is established. Therefore, in order to correct the transfer deviation of the mask pattern due to the deviation amount Δx, the plane mirror 7 is rotated by θ k in the arrow (b) direction as shown in FIG. Therefore, the correction angle θ k is θ k = (1/2) · tan −1 (Δx / m). Note that m is the distance between the plane mirror 7 and the wafer 8.

しかるに、ずれ量演算器11はこの補正角度θを算出す
ると、この角度θを制御ドライバ12に送出する。この
制御ドライバ12は補正角度θに応じてDCモータ13の駆
動量を制御する。
However, when the shift amount calculator 11 calculates this correction angle θ k , it sends this angle θ k to the control driver 12. The control driver 12 controls the drive amount of the DC motor 13 according to the correction angle θ k .

かくして、反射投影光学系4が出射された露光光は平面
ミラー7で反射してウエハ8′上状で結像する。一方、
マスク2とウエハ8とは1軸走査テーブル9によって同
期してx方向に移動され、このx方向への移動によりマ
スク2のパターンがウエハの全域に亙ってスキャンされ
る。かくして、マスク2に形成されたパターンがウエハ
8に転写される。
Thus, the exposure light emitted from the reflection projection optical system 4 is reflected by the plane mirror 7 and forms an image on the wafer 8 '. on the other hand,
The mask 2 and the wafer 8 are synchronously moved in the x direction by the uniaxial scanning table 9, and the pattern of the mask 2 is scanned over the entire area of the wafer by the movement in the x direction. Thus, the pattern formed on the mask 2 is transferred to the wafer 8.

このように上記一実施例においては、マスク2を通過し
た露光光を反射投影光学系4を通してウエハ8に照射し
てマスクパターンをウエハ8に転写する際にマスク2と
ウエハ8とを一体的に移動し、このときマスク2とウエ
ハ8との基準位置からのずれ量を検出し、このずれ量に
応じて平面ミラー7の配置角度を調整するようにしたの
で、簡単な構成により1軸走査テーブル9のヨーイング
により生じるずれを補正できて正確なマスクパターンの
転写を行うことができる。そのうえ、かかる構成では高
精度な加工が必要でなく、かつ1軸走査テーブル9のス
トロークが大きくなっても適用可能である。又、応答性
が高く、さらに平面ミラー7と1軸走査テーブル9とは
独立しているので、外乱の影響が無く安定した補正がで
きる。
As described above, in the above-described embodiment, when the exposure light passing through the mask 2 is applied to the wafer 8 through the reflection projection optical system 4 to transfer the mask pattern to the wafer 8, the mask 2 and the wafer 8 are integrated. Since the displacement amount of the mask 2 and the wafer 8 from the reference position is detected at this time and the arrangement angle of the plane mirror 7 is adjusted in accordance with the displacement amount, the uniaxial scanning table has a simple structure. It is possible to correct the deviation caused by the yawing of 9 and transfer the mask pattern accurately. Moreover, such a configuration does not require high-precision machining and can be applied even if the stroke of the uniaxial scanning table 9 becomes large. Further, since the response is high and the plane mirror 7 and the uniaxial scanning table 9 are independent of each other, stable correction can be performed without influence of disturbance.

なお、本発明は上記一実施例に限定されるものでなくそ
の主旨を逸脱しない範囲で変形してもよい。例えば、平
面ミラー7の回動はDCモータ13に限らず他の回転機を使
用してもよく、又マスク2及びウエハ8のずれ量を検出
する手段は他の測長器に代えても良い。又、補正する場
合、平面ミラー7を回動するだけでなく平面ミラー3を
回動しても補正でき、さらに両平面ミラー3,7を同時に
回動させても補正できる。
It should be noted that the present invention is not limited to the above-described embodiment, and may be modified without departing from the spirit of the invention. For example, the rotation of the plane mirror 7 is not limited to the DC motor 13, but another rotating machine may be used, and the means for detecting the deviation amount between the mask 2 and the wafer 8 may be replaced by another length measuring device. . Further, in the case of correction, it can be corrected not only by rotating the plane mirror 7 but also by rotating the plane mirror 3, and further by rotating both plane mirrors 3 and 7 at the same time.

[発明の効果] 以上詳記したように本発明によれば、走査機構のヨーイ
ングによるマスク及び基板の基準位置からのずれを、こ
れら走査機構やマスク、基板、反射投影光学系とは別の
平面ミラーの配置角度を可変して補正するので、走査機
構のヨーイングによる機械的なマスク及び基板のずれに
生じるマスクパターンの転写ずれを簡単な構成で補正で
きる機能を備えた露光装置を提供できる。
[Effect of the Invention] As described in detail above, according to the present invention, the deviation of the mask and the substrate from the reference position due to the yawing of the scanning mechanism is corrected by a plane different from those of the scanning mechanism, the mask, the substrate, and the reflection projection optical system. Since the arrangement angle of the mirror is varied and corrected, it is possible to provide an exposure apparatus having a function capable of correcting a transfer displacement of a mask pattern caused by a mechanical displacement of a mask and a substrate due to yawing of a scanning mechanism with a simple configuration.

【図面の簡単な説明】[Brief description of drawings]

第1図乃至第3図は本発明に係わる露光装置の一実施例
を説明するための図であって、第1図は構成図、第2図
はヨーイングによるずれを示す図、第3図は平面ミラー
による補正角度を示す図、第4図は従来装置の構成図で
ある。 1……光源、2……マスク、3,7……平面ミラー、4…
…反射投影光学系、5……凹面鏡、6……凸面鏡、8…
…ウエハ、9……1軸走査テーブル、10……レーザ測長
器、11……ずれ量演算器、12……制御ドライバ、13……
DCモータ。
1 to 3 are views for explaining an embodiment of an exposure apparatus according to the present invention. FIG. 1 is a configuration diagram, FIG. 2 is a diagram showing a deviation due to yawing, and FIG. FIG. 4 is a diagram showing a correction angle by a plane mirror, and FIG. 4 is a configuration diagram of a conventional device. 1 ... Light source, 2 ... Mask, 3,7 ... Plane mirror, 4 ...
… Reflection projection optical system, 5 ... Concave mirror, 6 ... Convex mirror, 8 ...
... Wafer, 9 ... 1-axis scanning table, 10 ... Laser length measuring device, 11 ... Deviation amount calculator, 12 ... Control driver, 13 ...
DC motor.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】所定パターンが形成されたマスクを通過し
た露光光を凹凸の各反射鏡から成る反射投影光学系の光
軸に対して平行に入射し、この反射投影光学系から出射
された前記露光光を前記反射投影光学系の結像位置に配
置された基板に照射して前記マスクの所定パターンを前
記基板に転写する露光装置において、 前記マスクと前記基板とを一体的に移動させて前記露光
光を前記基板全体に走査する走査機構と、 前記マスクを通過した露光光を前記反射投影光学系に向
かて反射する第1の平面ミラーと、 前記反射投影光学系が出射された露光光を前記基板に向
かって反射する第2の平面ミラーと、 これら第1又は第2の平面ミラーのうちいずれか一方又
は両方に設けられた駆動手段と、 前記走査機構のヨーイングによる前記マスク及び前記基
板の基準位置からのずれ量を検出するずれ量検出手段
と、 このずれ量検出手段により検出された前記走査機構のヨ
ーイングによるずれ量から補正角度を算出するずれ量演
算器と、 このずれ量演算器により算出された補正角度に基づいて
前記駆動手段を駆動し前記第1又は第2の平面ミラーの
うちいずれか一方又は両方の配置角度を変化させること
により前記ヨーイングによるずれ量を補正する制御ドラ
イバと、 を具備したことを特徴とする露光装置。
1. An exposure light passing through a mask on which a predetermined pattern is formed enters parallel to an optical axis of a reflection projection optical system including concave and convex reflecting mirrors, and is emitted from the reflection projection optical system. In an exposure apparatus that irradiates exposure light onto a substrate arranged at an image forming position of the reflection projection optical system to transfer a predetermined pattern of the mask onto the substrate, the mask and the substrate are moved integrally to each other, and A scanning mechanism that scans the entire substrate with exposure light, a first plane mirror that reflects the exposure light that has passed through the mask toward the reflection projection optical system, and the exposure light emitted from the reflection projection optical system. A second plane mirror that reflects light toward the substrate, a drive unit provided on either or both of the first and second plane mirrors, the mask by yawing the scanning mechanism, and A deviation amount detecting means for detecting a deviation amount of the printed circuit board from the reference position, a deviation amount calculator for calculating a correction angle from the deviation amount due to the yawing of the scanning mechanism detected by the deviation amount detecting means, and the deviation amount. Control for correcting the displacement amount due to the yawing by driving the driving unit based on the correction angle calculated by the arithmetic unit and changing the arrangement angle of either one or both of the first and second plane mirrors. An exposure apparatus comprising: a driver.
JP1336665A 1989-12-27 1989-12-27 Exposure equipment Expired - Lifetime JPH0752712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1336665A JPH0752712B2 (en) 1989-12-27 1989-12-27 Exposure equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1336665A JPH0752712B2 (en) 1989-12-27 1989-12-27 Exposure equipment

Publications (2)

Publication Number Publication Date
JPH03198319A JPH03198319A (en) 1991-08-29
JPH0752712B2 true JPH0752712B2 (en) 1995-06-05

Family

ID=18301532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1336665A Expired - Lifetime JPH0752712B2 (en) 1989-12-27 1989-12-27 Exposure equipment

Country Status (1)

Country Link
JP (1) JPH0752712B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999045580A1 (en) * 1998-03-06 1999-09-10 Nikon Corporation Exposure device and method of manufacturing semiconductor device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3301153B2 (en) * 1993-04-06 2002-07-15 株式会社ニコン Projection exposure apparatus, exposure method, and element manufacturing method
JP5116726B2 (en) * 2009-06-01 2013-01-09 キヤノン株式会社 Exposure apparatus and device manufacturing method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4408874A (en) * 1981-05-07 1983-10-11 Computervision Corporation Projection aligner with specific means for bending mirror
JPS59144127A (en) * 1983-02-07 1984-08-18 Canon Inc Optical apparatus with adjustment of image
JPS59218729A (en) * 1983-05-27 1984-12-10 Hitachi Ltd Projection exposing device
JPS59193028A (en) * 1984-02-13 1984-11-01 Nippon Texas Instr Kk Projection type transfer device
US4703434A (en) * 1984-04-24 1987-10-27 The Perkin-Elmer Corporation Apparatus for measuring overlay error
JPS61251031A (en) * 1985-04-30 1986-11-08 Canon Inc Projection exposing apparatus
JPS6358930A (en) * 1986-08-29 1988-03-14 Nikon Corp Exposing apparatus
JPS63128713A (en) * 1986-11-19 1988-06-01 Matsushita Electric Ind Co Ltd Correction of distortion in scanning aligner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999045580A1 (en) * 1998-03-06 1999-09-10 Nikon Corporation Exposure device and method of manufacturing semiconductor device
JP4333035B2 (en) * 1998-03-06 2009-09-16 株式会社ニコン EXPOSURE APPARATUS AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE USING THE APPARATUS

Also Published As

Publication number Publication date
JPH03198319A (en) 1991-08-29

Similar Documents

Publication Publication Date Title
JP2679186B2 (en) Exposure equipment
JP5230236B2 (en) Exposure equipment
JP2785146B2 (en) Automatic focus adjustment controller
JPH06260391A (en) Exposure method
JPH08316123A (en) Projection aligner
KR960001901A (en) Scanning exposure apparatus
JPH01147516A (en) Beam position controller
JPH09223650A (en) Aligner
JP2010087310A (en) Exposure apparatus, and method of manufacturing device
JPH07326567A (en) Unmagnified projection aligner
JPH0752712B2 (en) Exposure equipment
JP3555233B2 (en) Projection exposure equipment
JP3564833B2 (en) Exposure method
JPH11325832A (en) Method and apparatus for measuring position, and aligner
JP2000012422A (en) Aligner
JP2005129785A (en) Aligner
JPS6372115A (en) Alignment device
JP2587292B2 (en) Projection exposure equipment
JP2005345872A (en) Aligner having aligning function
JPS60177625A (en) Projection exposure device
JP2646417B2 (en) Exposure equipment
JPH09289160A (en) Aligner
JPH10242248A (en) Method and apparatus for measuring position of moving stage
JPH11135420A (en) Projection aligner
JPH09213615A (en) Scanning type aligner